

Stefano Gariazzo

IFIC, Valencia (ES) CSIC – Universitat de Valencia

gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

Neutrino clustering in the Milky Way

Based on arxiv:170(6/7).[0-9]{5} In collaboration with P. F. de Salas, J. Lesgourgues, S. Pastor

20/06/2017 - WIN2017 - UCI Irvine

- Neutrinos in the early universe
- PTOLEMY
- Neutrino clustering

2 Matter distributions in the Milky Way

- Dark Matter
- Baryons

3 The local neutrino overdensity

- Results for (nearly) minimal neutrino masses
- Results for non-minimal neutrino masses: 150 meV

- Neutrinos in the early universe
- PTOLEMY
- Neutrino clustering

- Dark Matter
- Baryons

The local neutrino overdensity

- Results for (nearly) minimal neutrino masses
- Results for non-minimal neutrino masses: 150 meV

History of the universe

History of the universe

both left and right-helical

if not completely free-streaming, helicities can be flipped

 $\Rightarrow \text{ mix of helicities: } n(\nu_{h_L}) = n(\bar{\nu}_{h_R}) = n(\nu_{h_R}) = n(\bar{\nu}_{h_L}) = n_0/2$

only left-helical!

no change for Majorana

Relic neutrinos in cosmology: N_{eff}

Radiation energy density ρ_r in the early Universe: $\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_\gamma$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{
 m eff}\simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos:

 $N_{
m eff} = 3.046 \,$ [Mangano et al., 2005] (damping factors approximations) $\sim N_{
m eff} = 3.045 \,$ [de Salas et al., 2016] (full collision terms) due to not instantaneous decoupling for the neutrinos

= + Non Standard Interactions: 3.040 $< N_{
m eff} <$ 3.059 [de Salas et al., 2016]

Observations: $N_{\rm eff} \simeq 3.04 \pm 0.2$ [Planck 2015] Indirect probe of cosmic neutrino background!

Direct detection of $C\nu B$ neutrinos

[Long et al., JCAP 08 (2014) 038]

At least two $C\nu B$ neutrinos over three are non-relativistic now!

How to detect non-relativistic neutrinos?

a process without energy threshold is necessary

[Weinberg, 1962]: neutrino capture in eta-decaying nuclei $u + n
ightarrow p + e^-$

Princeton Tritium Observatory for Light, Earlyuniverse, Massive-neutrino Yield (PTOLEMY)

expected resolution $\Delta\simeq 0.1$ eV \checkmark built only for $C\nu B$

 $\longrightarrow M_T = 100$ g atomic tritium

can probe $m_{
u} \simeq 1.4 \Delta \simeq 0.14$ eV

(must distinguish $C\nu B$ events from β -decay ones)

$$\Gamma_{C\nu B} = \sum_{i=1}^{3} |U_{ei}|^2 [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma}$$

 N_T number of ${}^3\mathrm{H}$ nuclei in a sample of mass M_T $\bar{\sigma} = \simeq 3.834 \times 10^{-45}$ cm² n_i number density of neutrino i

$$\Gamma^{D}_{C\nu B} = \sum_{i=1}^{3} |U_{ei}|^{2} \left[2 \left(\frac{n_{0}}{2} \right) \right] N_{T} \, \bar{\sigma} \simeq 4 \, \mathrm{yr}^{-1} \qquad \Gamma^{M}_{C\nu B} = \sum_{i=1}^{3} |U_{ei}|^{2} \left[2 \left(n_{0} \right) \right] N_{T} \, \bar{\sigma} \simeq 8 \, \mathrm{yr}^{-1}$$

$$\Gamma^{M}_{C\nu B} = 2\Gamma^{D}_{C\nu B}$$

S. Gariazzo

"Neutrino clustering in the Milky Way"

[arxiv:170(6|7).[0-9]{5}] ν clustering with N-one-body simulations Milky Way (MW) matter attracts neutrinos! clustering $\rightarrow |\Gamma_{C\nu B} = \sum_{i=1} |U_{ei}|^2 f_c(m_i) [n_{i,0}(\nu_{h_R}) + n_{i,0}(\nu_{h_L})] N_T \bar{\sigma}$ $f_c(m_i)$ clustering factor \rightarrow How to compute it? Idea from [Ringwald & Wong, 2004] \longrightarrow N-one-body= N × single ν simulations \rightarrow each ν evolved from initial conditions at z = 3 \rightarrow spherical symmetry, coordinates (r, θ , p_r , l) Assumptions: \rightarrow need $\rho_{\text{matter}}(z) = \rho_{\text{DM}}(z) + \rho_{\text{barvon}}(z)$ ν s are independent only gravitational interactions how many ν s is "N"? ν s do not influence matter evolution $(\rho_{\nu} \ll \rho_{\rm DM})$ \rightarrow must sample all possible r, p_r, l \rightarrow must include all possible ν s that reach the MW (fastest ones may come from given N ν : several (up to $\mathcal{O}(100)$) Mpc!) \rightarrow weigh each neutrinos \rightarrow reconstruct final density profile with kernel method from [Merritt&Tremblay, 1994] S. Gariazzo "Neutrino clustering in the Milky Way" WIN2017 - 20/6/17 6/14

- Neutrinos in the early universe
- PTOLEMY
- Neutrino clustering

2 Matter distributions in the Milky Way

- Dark Matter
- Baryons

The local neutrino overdensity

- Results for (nearly) minimal neutrino masses
- Results for non-minimal neutrino masses: 150 meV

DM: Time evolution of the profiles

[arxiv:170(6|7).[0-9]{5}]

profile evolution from universe expansion

Baryons: the complexity of a structure

10/14

- Neutrinos in the early universe
- PTOLEMY
- Neutrino clustering

Matter distributions in the Milky Way

- Dark Matter
- Baryons

3 The local neutrino overdensity

- Results for (nearly) minimal neutrino masses
- Results for non-minimal neutrino masses: 150 meV

[arxiv:170(6|7).[0-9]{5}]

Overdensity when $m_{ m heaviest} \simeq 60$ meV

ordering dependence from $\Gamma_{C\nu B} = \sum_{i=1}^{3} |U_{ei}|^2 f_i [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma}$

S. Gariazzo

"Neutrino clustering in the Milky Way"

WIN2017 - 20/6/17

11/14

[Long et al., JCAP 08 (2014) 038]

Energy resolution and event rate Hierarchical:

Degenerate: (solid: measured, dotted: ideal with $\Delta = 0$)

[Long et al., JCAP 08 (2014) 038]

Energy resolution and event rate Hierarchical:

"Neutrino clustering in the Milky Way"

Overdensity when $m_{ u} \simeq 150$ meV

[arxiv:170(6|7).[0-9]{5}]

 \Longrightarrow minimal mass detectable by PTOLEMY if Δ \simeq 100–150 meV

- Neutrinos in the early universe
- PTOLEMY
- Neutrino clustering

Matter distributions in the Milky Way

- Dark Matter
- Baryons

The local neutrino overdensity

- Results for (nearly) minimal neutrino masses
- Results for non-minimal neutrino masses: 150 meV

- Cosmic Neutrino Background (CvB) predicted but not detected:
 - only $N_{\rm eff}\simeq 3.04$ as indirect probe
 - must detect scattering of non-relativistic neutrinos!
- massive ν can cluster in the local matter distribution
 - *N*-one-body method: follow *N* single neutrinos in the Milky Way
 - requires knowledge of matter (DM, baryons) profiles and their evolution
- to detect relic neutrinos:
 - process without threshold required
 - $\rightarrow~\nu$ capture on $\beta\text{-decaying nuclei}$
 - $\rightarrow~$ PTOLEMY proposal with 100g of tritium
 - very good energy resolution Δ is necessary to probe $m_{
 u}\gtrsim 1.4\Delta$
- for non-minimal ν masses, PTOLEMY can:
 - detect relic neutrinos (for the first time \checkmark)
 - study non-relativistic neutrinos (for the first time \checkmark)
 - probe the neutrino clustering (for the first time \checkmark)
 - constrain the matter profile of our galaxy
 - measure the absolute neutrino masses (for the first time ?)
 - test Dirac/Majorana nature (for the first time ?)
- and also detect relic sterile neutrinos (if any ?)

Additional clustering due to other galaxies

nearest galaxies: various MW satellites

with
$$M_{
m sat} \ll M_{
m MW} \longrightarrow$$
 negligibly small u halo

Additional clustering due to Virgo cluster

nearest galaxy cluster:

