

IFIC, Valencia (ES) CSIC – Universitat de Valencia

Horizon 2020 European Union funding for Research & Innovation gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

Direct detection of relic neutrinos with PTOLEMY

A focus on the PTOLEMY proposal

26/04/2018 - Seminar at Max-Planck-Institut für Physik - München (DE)

1 Cosmic neutrino background

2 Direct detection of relic neutrinos

- Proposed methods
- Neutrino Capture

3 Relic neutrino clustering in the Milky Way

- N-one-body simulations
- Results for the local neutrino overdensity
- Systematics

4 PTOLEMY

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

1 Cosmic neutrino background

Direct detection of relic neutrinos
 Proposed methods
 Neutrino Capture

3 Relic neutrino clustering in the Milky Way

- N-one-body simulations
- Results for the local neutrino overdensity
- Systematics

4 PTOLEMY

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

The Standard Model of Particle Physics

The Standard Model of Particle Physics

Neutrinos and their masses

Relic neutrinos in cosmology: N_{eff}

Radiation energy density ρ_r in the early Universe: $\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_\gamma$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{
 m eff}\simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos:

 $N_{
m eff} = 3.046$ [Mangano et al., 2005] (damping factors approximations) $\sim N_{
m eff} = 3.045$ [de Salas et al., 2016] (full collision terms) due to not instantaneous decoupling for the neutrinos

= + Non Standard Interactions: 3.040 $< N_{
m eff} <$ 3.059 [de Salas et al., 2016]

Observations: $N_{\rm eff} \simeq 3.04 \pm 0.2$ [Planck 2015] Indirect probe of cosmic neutrino background!

Cosmological mass bounds

Cosmology can constrain also $M_
u = \sum m_
u$

standard

based on ACDM model [Planck Collaboration 2015, AA594 (2016) A13] $M_{\nu} < 0.72 \text{ eV}$ (PlanckTT+lowP) $M_{\nu} < 0.21 \text{ eV}$ (+BAO) $M_{\nu} < 0.49 \text{ eV}$ (PlanckTTTEEE+lowP) $M_{\nu} < 0.17 \text{ eV}$ (+BAO) see also: [Vagnozzi et al., PRD96 (2017) 123503]

(SimLow not public yet)

Cosmological mass bounds

Cosmology can constrain also $M_
u = \sum m_
u$

standard

based on ACDM model [Planck Collaboration 2015, AA594 (2016) A13] $M_{\nu} < 0.72 \text{ eV}$ (PlanckTT+lowP) $M_{\nu} < 0.21 \text{ eV}$ (+BAO) $M_{\nu} < 0.49 \text{ eV}$ (PlanckTTTEEE+lowP) $M_{\nu} < 0.17 \text{ eV}$ (+BAO) see also: [Vagnozzi et al., PRD96 (2017) 123503]

 $\begin{array}{l} \mbox{[Planck Collaboration 2016, AA596 (2016) A107]} \\ M_{\nu} < 0.59 \mbox{ eV } ({\mbox{PlanckTT+SimLow}}) \\ & & & \\$

(SimLow not public yet)

Modified gravity?

[Barreira et al., 2014]: ν Galileon $M_{\nu} = 0.98 \pm 0.24 \text{ eV}$ (CMB) $M_{\nu} = 0.65 \pm 0.11 \text{ eV}$ (CMB+BAO)

[Bellomo et al., 2016]: SeHorndeski scalar-tensor $\Im M_{\nu} < 0.76 \text{ eV}$

[Dirian, 2017]: Senonlocal gravity ${\ensuremath{\mathfrak{G}}\xspace{-0.005ex} M_{\nu}} = 0.21 \pm 0.08 \ {\ensuremath{\mathsf{eV}}\xspace{-0.005ex} eV}$

[Peirone et al, 2017]: Covariant Galileon $M_{\nu} = 0.8 \pm 0.1 \text{ eV}$

1 Cosmic neutrino background

2 Direct detection of relic neutrinos Proposed methods Neutrino Capture

3 Relic neutrino clustering in the Milky Way

- N-one-body simulations
- Results for the local neutrino overdensity
- Systematics

4 PTOLEMY

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

Direct detection - proposed methods - Stodolsky effect

How to directly detect non-relativistic neutrinos?

Direct detection - proposed methods - Stodolsky effect

How to directly detect non-relativistic neutrinos?

Direct detection - proposed methods - at interferometers

How to directly detect non-relativistic neutrinos?

Direct detection - proposed methods - at interferometers

S. Gariazzo

Direct detection - proposed methods - Capture (I)

How to directly detect non-relativistic neutrinos?

must have very specific Q value in order to avoid EC background and have no threshold specific energy conditions required

but

Q value depends on ionization fraction!

Direct detection - proposed methods - Capture (I)

How to directly detect non-relativistic neutrinos?

or significant improvements on ion storage rings are achieved"

S. Gariazzo

A viable method - Capture (II)

[Long et al., JCAP 08 (2014) 038]

How to directly detect non-relativistic neutrinos?

a process without energy threshold is necessary

[Weinberg, 1962]: neutrino capture in eta-decaying nuclei $u + n
ightarrow p + e^-$

Main background: β decay $n \rightarrow p + e^- + \bar{\nu}!$

What material?

[Cocco et al., JCAP 06 (2007) 015]

best element has highest $\sigma_{
m NCB}(\textit{v}_{
u}/\textit{c})\cdot\textit{t}_{1/2}$

to minimize contamination from β decay background

Isotope	Decay	$Q_{\beta} \; (\mathrm{keV})$	Half-life (s)	$\sigma_{\rm NCB}(v_{\nu}/c) \ (10^{-41} \ {\rm cm}^2)$
$^{3}\mathrm{H}$	β^{-}	18.591	3.8878×10^{8}	7.84×10^{-4}
⁶³ Ni	β^{-}	66.945	3.1588×10^9	1.38×10^{-6}
$^{93}\mathrm{Zr}$	β^{-}	60.63	4.952×10^{13}	2.39×10^{-10}
$^{106}\mathrm{Ru}$	β^{-}	39.4	3.2278×10^7	5.88×10^{-4}
$^{107}\mathrm{Pd}$	β^{-}	33	2.0512×10^{14}	2.58×10^{-10}
$^{187}\mathrm{Re}$	β^{-}	2.64	1.3727×10^{18}	4.32×10^{-11}
$^{11}\mathrm{C}$	β^+	960.2	1.226×10^3	4.66×10^{-3}
^{13}N	β^+	1198.5	$5.99 imes 10^2$	$5.3 imes 10^{-3}$
$^{15}\mathrm{O}$	β^+	1732	1.224×10^2	9.75×10^{-3}
$^{18}\mathrm{F}$	β^+	633.5	6.809×10^3	2.63×10^{-3}
22 Na	β^+	545.6	$9.07 imes 10^7$	3.04×10^{-7}
$^{45}\mathrm{Ti}$	β^+	1040.4	1.307×10^4	3.87×10^{-4}

What material?

[Cocco et al., JCAP 06 (2007) 015]

best element has highest $\sigma_{
m NCB}(\textit{v}_{
u}/\textit{c})\cdot\textit{t}_{1/2}$

to minimize contamination from β decay background

Isotope	Decay	$Q_{\beta} \; (\text{keV})$	Half-life (s)	$\sigma_{\rm NCB}(v_{\nu}/c) \ (10^{-41} \ {\rm cm}^2)$
$^{3}\mathrm{H}$	β^{-}	18.591	3.8878×10^8	7.84×10^{-4}
⁶³ Ni	β^{-}	66.945	3.1588×10^9	1.38×10^{-6}
$^{93}\mathrm{Zr}$	β^{-}	60.63	4.952×10^{13}	2.39×10^{-10}
106 Ru	β^{-}	39.4	3.2278×10^7	5.88×10^{-4}
$^{107}\mathrm{Pd}$	β^{-}	33	2.0512×10^{14}	2.58×10^{-10}
$^{187}\mathrm{Re}$	β^{-}	2.64	1.3727×10^{18}	4.32×10^{-11}
$^{11}\mathrm{C}$	β^+	960.2	1.226×10^3	4.66×10^{-3}
^{13}N	β^+	1198.5	$5.99 imes 10^2$	$5.3 imes 10^{-3}$
$^{15}\mathrm{O}$	β^+	1732	1.224×10^2	9.75×10^{-3}
$^{18}\mathrm{F}$	β^+	633.5	$6.809 imes 10^3$	2.63×10^{-3}
22 Na	β^+	545.6	$9.07 imes 10^7$	3.04×10^{-7}
$^{45}\mathrm{Ti}$	β^+	1040.4	1.307×10^4	$3.87 imes 10^{-4}$

What material?

[Cocco et al., JCAP 06 (2007) 015]

best element has highest $\sigma_{
m NCB}(\textit{v}_{
u}/\textit{c})\cdot\textit{t}_{1/2}$

to minimize contamination from β decay background

Isotope	Decay	$Q_{\beta} \; (\text{keV})$	Half-life (s)	$\sigma_{\rm NCB}(v_{\nu}/c) \ (10^{-41} \ {\rm cm}^2)$
$^{3}\mathrm{H}$	β^{-}	18.591	3.8878×10^8	7.84×10^{-4}
⁶³ Ni	β^{-}	66.945	3.1588×10^{9}	1.38×10^{-6}
$^{93}\mathrm{Zr}$	β^{-}	60.63	4.952×10^{13}	2.39×10^{-10}
$^{106}\mathrm{Ru}$	β^{-}	39.4	3.2278×10^7	5.88×10^{-4}
$^{107}\mathrm{Pd}$	β^{-}	33	2.0512×10^{14}	2.58×10^{-10}
$^{187}\mathrm{Re}$	β^{-}	2.64	1.3727×10^{18}	4.32×10^{-11}
$^{11}\mathrm{C}$	β^+	960.2	1.226×10^3	4.66×10^{-3}
$^{13}\mathrm{N}$	β^+	1198.5	$5.99 imes 10^2$	$5.3 imes 10^{-3}$
$^{15}\mathrm{O}$	β^+	1732	1.224×10^2	9.75×10^{-3}
$^{18}\mathrm{F}$	β^+	633.5	$6.809 imes 10^3$	2.63×10^{-3}
22 Na	β^+	545.6	$9.07 imes 10^7$	3.04×10^{-7}
$^{45}\mathrm{Ti}$	β^+	1040.4	1.307×10^4	3.87×10^{-4}

 ^{3}H better because the cross section (\rightarrow event rate) is higher

(see later)

$$\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma} \sim \mathcal{O}(10) \text{ yr}^{-1}$$

$$N_T \text{ number of }^{3}\text{H nuclei in a sample of mass } M_T \quad \bar{\sigma} \simeq 3.834 \times 10^{-45} \text{ cm}^2 \quad n_i \text{ number density of neutrino } i$$
(without clustering)

1 Cosmic neutrino background

2 Direct detection of relic neutrinos
 Proposed methods
 Neutrino Capture

3 Relic neutrino clustering in the Milky Way

- N-one-body simulations
- Results for the local neutrino overdensity
- Systematics

4 **PTOLEMY**

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

[JCAP 09 (2017) 034]

Overdensity when $m_{ m heaviest} \simeq 60$ meV

ordering dependence from $\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 f_i [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma}$

S. Gariazzo

Overdensity when $m_{\nu} \simeq 150$ meV

[JCAP 09 (2017) 034]

 \Longrightarrow minimal mass detectable by PTOLEMY if Δ \simeq 100–150 meV

Additional clustering due to other galaxies

Additional clustering due to other galaxies

Additional clustering due to Virgo cluster

nearest galaxy cluster:

S. Gariazzo

1 Cosmic neutrino background

Direct detection of relic neutrinos
 Proposed methods
 Neutrino Capture

3 Relic neutrino clustering in the Milky Way

- N-one-body simulations
- Results for the local neutrino overdensity
- Systematics

4 **PTOLEMY**

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

Status of PTOLEMY

[Cocco et al., 2007] theoretical basis for the experiment

[Betts et al., arxiv:1307.4738] first proposal – Princeton based

Sept 2017: first Letter of Intent (LoI) submitted to LNGS

LNGS = Laboratori Nazionali del Gran Sasso (Gran Sasso National Labs)

Status of PTOLEMY

[Cocco et al., 2007] theoretical basis for the experiment

[Betts et al., arxiv:1307.4738] first proposal – Princeton based

Sept 2017: first Letter of Intent (LoI) submitted to LNGS

PTOLEMY pipeline

scope of PTOLEMY:

S. Gariazzo

"Direct detection of relic neutrinos with PTOLEMY" MPP München - 26/04/18

18/37

PTOLEMY pipeline

scope of PTOLEMY:

measure electron spectrum near ³H β -decay endpoint

(same as neutrino mass experiments, e.g. KATRIN)

The source - graphene

source of ³H in gas form (KATRIN-like) has column density $\sim 1 \,\mu g \text{ cm}^{-2}$ source tube is 10 m, for $\sim O(100) \,\mu g$ of ³H

not practical solution for required 100 g of ${}^{3}H!$

The source - graphene

source of ³H in gas form (KATRIN-like) has column density $\sim 1 \,\mu g \text{ cm}^{-2}$ source tube is 10 m, for $\sim O(100) \,\mu g$ of ³H

not practical solution for required 100 g of ${}^{3}H!$

partially existing technology: hydrogenated graphene

at Princeton

The source - graphene

source of ³H in gas form (KATRIN-like) has column density $\sim 1 \,\mu g \text{ cm}^{-2}$ source tube is 10 m, for $\sim O(100) \,\mu g$ of ³H

not practical solution for required 100 g of ${}^{3}H!$

partially existing technology: hydrogenated graphene

CNT Tanget

collaboration University of Mons, Belgium

length: 100 μ m (can be increased) ext. diameter: (20 ± 4) nm aspect ratio: $5x10^4$

commercial

length: 75 μm ext. diameter: (13 ± 4) nm aspect ratio: 0.6 x10⁴

MAC-E filter

Background flux is too high for microcalorimeter. Must be reduced!

Magnetic Adiabatic Collimation with Electrostatic filter

MAC-E filter technique

Magnetic Adiabatic Collimation with Electrostatic filter Picard et al., NIM B63 (1992) 345

[PTOLEMY]: $E \times B$ filter (must enter in GS labs)

first energy determination with

RadioFrequency trigger, using Cyclotron Radiation Emission Spectroscopy (CRES)

see also [Project 8, arxiv:1703.02037]

can RF antenna be integrated in the MAC-E filter?

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

Microcalorimetry with Transition-Edge Sensors

TES: "A microcalorimeter made by a superconducting film operated in the temperature region between the normal and the superconducting state"

difficult readout

difficult temperature control

Same technology as in HOLMES experiment (ν masses)

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

 $\label{eq:main_state} Microcalorimetry \ with \ {\sf Transition-Edge} \ {\sf Sensors}$

[courtesy M.Ratjeri]

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

 $\label{eq:main-edge-sensors} Microcalorimetry \ with \ {\sf Transition-Edge \ Sensors}$

[courtesy M.Ratjeri]

 $\Delta T \Rightarrow \Delta R$ @ Voltage bias $\Rightarrow \Delta I$

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

 $\label{eq:main-edge-sensors} Microcalorimetry \ with \ {\sf Transition-Edge \ Sensors}$

[courtesy M.Ratjeri]

 $\Delta T \Rightarrow \Delta R$ @ Voltage bias $\Rightarrow \Delta I$

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

[courtesy M.Ratjeri]

[PTOLEMY Lol, in preparation]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_T |U_{ei}|^2 f_{c,i} n_0 \times e^{-\frac{[E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})]^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]$$

[PTOLEMY Lol, in preparation]

$$\frac{d\tilde{\Gamma}_{CNB}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_{T} |U_{ei}|^{2} f_{c,i} n_{0} \times e^{-\frac{|E_{e} - (E_{end} + m_{i} + m_{lightest})|^{2}}{2\sigma^{2}}}$$
$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$
$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e} - x)^{2}}{2\sigma^{2}}\right]$$

[PTOLEMY Lol, in preparation]

$$\frac{d\tilde{\Gamma}_{CNB}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_{T} |U_{ei}|^{2} f_{c,i} n_{0} \times e^{-\frac{|E_{e} - (E_{end} + m_{i} + m_{lightest})|^{2}}{2\sigma^{2}}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e} - x)^{2}}{2\sigma^{2}}\right]$$

$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e} - x)^{2}}{2\sigma^{2}}\right]$$

$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e} - x)^{2}}{2\sigma^{2}}\right]$$

[PTOLEMY Lol, in preparation]

$$\frac{d\tilde{\Gamma}_{CNB}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_{T} |U_{ei}|^{2} f_{c,i} n_{0} \times e^{-\frac{|E_{e}-(E_{end}+m_{i}+m_{lightest})|^{2}}{2\sigma^{2}}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]$$

$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]$$

$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]$$

[PTOLEMY Lol, in preparation]

$$\frac{d\tilde{\Gamma}_{CNB}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_{T} |U_{ei}|^{2} f_{c,i} n_{0} \times e^{-\frac{|E_{e} - (E_{end} + m_{i} + m_{lightest})|^{2}}{2\sigma^{2}}}$$
$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$
$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e} - x)^{2}}{2\sigma^{2}}\right]$$
$$\frac{10^{4}}{10^{4}} \int_{10^{4}} \frac{m_{lightest} = 50 \text{ meV}}{\Delta = 50 \text{ meV}} \int_{0}^{\frac{V}{2}} \frac{10^{4}}{10^{4}} \int_{0}^{$$

Simulations - I

Events in **bin** *i*, centered at *E_i*:

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_{\beta}(\hat{E}_{end}, \hat{m}_i, \hat{U}) + N^i_{CNB}(\hat{E}_{end}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Simulations - I

Events in **bin** *i*, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N^i_{ ext{exp}}(\hat{E}_{ ext{end}},\hat{m}_i,\hat{U})=N^i_t\pm\sqrt{N^i_t}
ight)$$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Simulations - I

Events in **bin** i, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$

with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$ $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$

simulated experimental spectrum:

$$N^i_{ ext{exp}}(\hat{E}_{ ext{end}},\hat{m}_i,\hat{U})=N^i_t\pm\sqrt{N^i_t}$$

repeat for theory spectrum, free **amplitudes** and **endpoint position**:

 $N_{\rm th}^{i}(\boldsymbol{\theta}) = \boldsymbol{A}_{\beta}N_{\beta}^{i}(\hat{E}_{\textit{end}} + \Delta \boldsymbol{E}_{\textit{end}}, m_{i}, U) + \boldsymbol{A}_{\rm CNB}N_{\rm CNB}^{i}(\hat{E}_{\textit{end}} + \Delta \boldsymbol{E}_{\textit{end}}, m_{i}, U) + N_{b}$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

24/37

Simulations - I

Events in **bin** *i*, centered at *E_i*:

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N^i_{ ext{exp}}(\hat{E}_{ ext{end}},\hat{m}_i,\hat{U})=N^i_t\pm\sqrt{N^i_t}$$

repeat for theory spectrum, free **amplitudes** and **endpoint position**:

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

"Direct detection of relic neutrinos with PTOLEMY"

Simulations - II

[PTOLEMY Lol, in preparation]

no random noise?

Simulations - II

[PTOLEMY Lol, in preparation]

Simulations - II

[PTOLEMY Lol, in preparation]

things are more complicated in this way...low background needed!

Perspectives for the mass determination [PTOLEMY LoI, in preparation]

relative error on $m_{
m lightest}$

as a function of $\hat{m}_{
m lightest}$, Δ

wonderful precision in determining the neutrino mass

(well, yes, with 100 g of tritium...)

 Δ has almost no impact

statistical only!

Detection of the relic neutrinos

[PTOLEMY Lol, in preparation]

using the definition:

if $A_{CNB} > 0$ at $N\sigma$, direct detection of CNB accomplished at $N\sigma$

Requirements for PTOLEMY discoveries

What do we need to discover...

	low Γ_b	extreme Δ	a lot of ³ H
$\dots \nu$ masses?	×	×	?
$\dots \nu$ mass ordering?	×	?	?
CNB direct detection?	\checkmark	\checkmark	\checkmark

√: strongly required
 ?: not so strongly required
 X: loosely required

PTOLEMY collaboration

1 Cosmic neutrino background

2 Direct detection of relic neutrinos
 Proposed methods
 Neutrino Capture

3 Relic neutrino clustering in the Milky Way

- N-one-body simulations
- Results for the local neutrino overdensity
- Systematics

4 **PTOLEMY**

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

[SG et al., JPG 43 (2016) 033001]

Short Baseline (SBL) anomaly

Problem: anomalies in SBL experiments $\Rightarrow \begin{cases} \text{ errors in flux calculations?} \\ \text{deviations from 3-}\nu \text{ description?} \end{cases}$

LSND search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]

Reactor re-evaluation of the expected anti-neutrino flux \Rightarrow disappearance of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]

- Gallium calibration of GALLEX and SAGE Gallium solar neutrino experiments give a 2.7 σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]
- MiniBooNE (inconclusive) search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]

Possible explanation:

Additional squared mass difference $\Delta m^2_{\text{SBL}} \simeq 1 \ \mathrm{eV}^2$

A short review:

More recently...

[NEOS, PRL 118 (2017) 121802] [DANSS, arxiv:1804.04046]

LS ν thermalization

Using SBL best-fit parameters for the LS ν ($\Delta m_{a1}^2, \theta_s$): [Archidiacono, SG et al., JCAP 08 (2016) 067] [Hannestad et al., JCAP 1207 (2012) 025] but cosmological fits give: 0.5 $\Lambda CDM + N_{eff} + m_e$: TT 0.8 71.2 $\Lambda CDM + N_{eff} + m_s$: TT+HST ACDM+Neff+me: TT+HST+BAO 70.4 H -0.5 log₁₀(lõm²l [eV 0.6 $\Delta N_{ m eff}^{ m eff}$ 69.6 68.8 0.4 04 -1.5 68.0 0.2 67.2 0.2 -2.566.4 0.0L 0.8 1.6 2.4 4.0 $^{-3}_{-4}$ -3.5- 7 -2.5-2 -1.5 m_{s} [eV] $\log_{10}(\sin^2 2\theta_s)$ (colors coding $\Delta N_{\rm eff}$) $\Delta N_{\rm eff} = 1$ disfavoured!

 $\Delta N_{\rm eff}$ should be \simeq 1, but it is disfavoured! (new physics?)

[to be precise: ΔN_{eff} is slightly smaller at CMB decoupling, when the LSu starts to be non-relativistic]

Assumptions and useful equations

[JCAP 09 (2017) 034]

We assume possible
incomplete thermalization
$$f_4(p) = \frac{\Delta N_{\text{eff}}}{e^{p/T_{\nu}} + 1} = \Delta N_{\text{eff}} f_{\text{active}}(p)$$

(due to some
unknown new physics) $\Delta N_{\text{eff}} = \left[\frac{1}{\pi^2} \int dp \ p^3 f_4(p)\right] / \left[\frac{7}{8} \frac{\pi^2}{15} T_{\nu}^4\right]$
 $\bar{n}_4 = \frac{g_4}{(2\pi)^3} \int f_4(p) \ p^2 \ dp = n_0 \ \Delta N_{\text{eff}}$
 $(f_c(m_4) \text{ is independent of } \Delta N_{\text{eff}})$
 $\int f_4 \simeq |U_{e4}|^2 \ \Delta N_{\text{eff}} \ f_c(m_4) \ \Gamma_{C\nu B}$

(from global fit [SG et al., 2017]: $m_4\simeq 1.3$ eV, $|U_{e4}|^2\simeq 0.02$)

S. Gariazzo

PTOLEMY and the ν_4

[PTOLEMY Lol, in preparation]

$$\Gamma_{C\nu B} = \mathcal{O}(10) / \text{yr} \qquad \left[\Gamma_4 \simeq \Delta N_{\text{eff}} |U_{e4}|^2 f_c(m_4) \Gamma_{\text{CNB}} \right] \qquad \text{[SG et al., 2017]} \\ \Delta N_{\text{eff}} = \stackrel{\text{[SG et al., 2017]}}{f_c(m_4)} = \mathcal{O}(10^2) \qquad \stackrel{\text{[SG et al., 1801.06467]}}{= 0.01}$$

 Γ_4 probably too small to be measured!

PTOLEMY and the ν_4

[PTOLEMY Lol, in preparation]

$$\begin{split} \Gamma_{\rm C\nu B} &= \mathcal{O}(10) / {\rm yr} \quad \left[\begin{array}{c} \Gamma_4 \simeq \Delta N_{\rm eff} \, | \, U_{e4} |^2 \, f_c(m_4) \, \Gamma_{\rm CNB} \\ \Delta N_{\rm eff} &= \ref{eq: constraints} \\ R_{eff} &= \ref{eq: constraints}$$

 Γ_4 probably too small to be measured!

36/37

1 Cosmic neutrino background

Direct detection of relic neutrinos
 Proposed methods
 Neutrino Capture

3 Relic neutrino clustering in the Milky Way

- N-one-body simulations
- Results for the local neutrino overdensity
- Systematics

4 **PTOLEMY**

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

Conclusions

2

3

amazing (neutrino) science with direct detection of relic neutrinos (e.g. PTOLEMY) [non-relativistic regime, masses, ordering?, MW structure?, ...]

> But it will be a technological challenge! (³H amount, low background, energy resolution, ...)

event rate enhancement due to clustering in the Milky Way: should also include nearby galaxies/clusters!

Conclusions

amazing (neutrino) science with direct detection of relic neutrinos (e.g. PTOLEMY) [non-relativistic regime, masses, ordering?, MW structure?, ...]

> But it will be a technological challenge! (³H amount, low background, energy resolution, ...)

event rate enhancement due to clustering in the Milky Way: should also include nearby galaxies/clusters!

3

2

light sterile neutrino ($m_4 \simeq 1.15 \text{ eV}$)? possible detection thanks to large clustering

Conclusions

amazing (neutrino) science with direct detection of relic neutrinos (e.g. PTOLEMY) [non-relativistic regime, masses, ordering?, MW structure?, ...]

> But it will be a technological challenge! (³H amount, low background, energy resolution, ...)

event rate enhancement due to clustering in the Milky Way: should also include nearby galaxies/clusters!

3

2

light sterile neutrino ($m_4 \simeq 1.15 \text{ eV}$)? possible detection thanks to large clustering

Thank you for the attention!