

IFIC, Valencia (ES) CSIC – Universitat de Valencia

Horizon 2020 European Union funding for Research & Innovation gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

Neutrino Properties and the Cosmological Tensions in the ΛCDM Model

15th Marcel Grossmann Meeting, Roma (IT), 01-07/07/2018

1 Introduction

- Neutrinos
- Cosmological tensions

2 Neutrinos and cosmology

- Relativistic neutrinos in the early Universe
- Massive neutrinos in the late Universe
- Current status

3 Light sterile neutrinos

- Why a sterile neutrino
- Cosmological constraints

4 Conclusions

1 Introduction

Neutrinos

Cosmological tensions

2 Neutrinos and cosmology

- Relativistic neutrinos in the early Universe
- Massive neutrinos in the late Universe
- Current status

Light sterile neutrinos Why a sterile neutrino Cosmological constraints

4 Conclusions

Neutrino Oscillations

Analogous to CKM mixing for quarks:

[Pontecorvo, 1958] [Maki, Nakagawa, Sakata, 1962]

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates.

Current knowledge of the 3 active ν mixing: [de Salas et al. (2018)] $\Delta m_{ii}^2 = m_i^2 - m_i^2$, θ_{ij} mixing angles NO: Normal Ordering, $m_1 < m_2 < m_3$ IO: Inverted Ordering, $m_3 < m_1 < m_2$ $\begin{array}{lll} \Delta m_{21}^2 &= (7.55^{+}_{-0.16}) \cdot 10 & \odot \\ |\Delta m_{31}^2| &= (2.50 \pm 0.03) \cdot 10^{-3} \, \mathrm{eV}^2 \, \mathrm{(NO)} \, \mathrm{eV}^3 \\ & (2.50 \pm 0.03) \cdot 10^{-3} \, \mathrm{eV}^2 \, \mathrm{(IO)} \end{array}$ $\begin{array}{ll} \sin^2(\theta_{12}) &= 0.320^{+0.020}_{-0.016} \\ \sin^2(\theta_{13}) &= 0.0216^{+0.008}_{-0.007} \ (\text{NO}) \\ &= 0.0222^{+0.007}_{-0.008} \ (\text{IO}) \\ \sin^2(\theta_{23}) &= 0.547^{+0.020}_{-0.030} \ (\text{NO}) \\ &= 0.551^{+0.018}_{-0.030} \ (\text{IO}) \end{array}$ 0.4 0.6 0.024 0.016 0.028 $sin^2\theta_{12}$ $\sin^2 \theta_{23}$ $\sin^2 \theta_{13}$ 15 ~×10 ₽ 2.4 First hints for $\delta_{\rm CP} \simeq 3/2\pi$

 $\Delta m_{21}^2 [10^{-5} eV^2]$

 $|\Delta m_{21}^2| [10^{-3} eV^2]$

MG15, Roma, 03/07/2018

 δ/π

1/25

Neutrino Oscillations

Analogous to CKM mixing for quarks:

[Pontecorvo, 1958] [Maki, Nakagawa, Sakata, 1962]

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $\textit{U}_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates.

Current knowledge of the 3 active ν mixing: [de Salas et al. (2018)] $\Delta m_{ii}^2 = m_i^2 - m_i^2$, θ_{ij} mixing angles ^{-0.01}. 10 ^{ev} (θ₁₀) ^s see also: http://globalfit.astroparticles.es NO: Normal Ordering, $m_1 < m_2 < m_3$ 0.024 0.028 $\sin^2 \theta_{13}$ s see also: $110^{-0.008}$ (NO = $0.0222^{+0.007}_{-0.008}$ (IO) $\sin^2(\theta_{23}) = 0.547^{+0.020}_{-0.030}$ (NO) = $0.551^{+0.018}_{-0.030}$ (IO) ~×10 ₽ 0.5 First hints for $\delta_{\rm CP} \simeq 3/2\pi$ $\Delta m_{21}^2 [10^{-5} eV^2]$ $|\Delta m_{21}^2| [10^{-3} eV^2]$ δ/π

MG15, Roma, 03/07/2018

2/25

Tension I: the Hubble parameter

Hubble parameter today: $v = H_0 d$, with $H_0 = H(z = 0)$

Local measurements: H(z = 0), local and independent on evolution (model independent, but systematics?)

CMB measurements

(probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics)

(ACDM model - CMB data only) [Planck 2013]: $H_0 = 67.3 \pm 1.2 \,\text{Km s}^{-1} \,\text{Mpc}^{-1}$ [Planck 2015]: $H_0 = 67.27 \pm 0.66 \,\text{Km s}^{-1} \,\text{Mpc}^{-1}$

68% CL error bars

Tension I: the Hubble parameter

Hubble parameter today: $v = H_0 d$, with $H_0 = H(z = 0)$

Local measurements: H(z = 0), local and independent on evolution (model independent, but systematics?)

CMB measurements

(probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics)

[Planck 2015]: $H_0 = 67.27 \pm 0.66 \,\mathrm{Km \, s^{-1} \, Mpc^{-1}}$

68% CL error bars

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

KiDS-450 (68% CL): [Hildebrandt et al., 2016]

 $\sigma_8(\Omega_m)^{0.5} = 0.408 \pm 0.021$

CMB results (68% CL): [Planck 2015]

 $\sigma_8(\Omega_m)^{0.5} = 0.466 \pm 0.013$

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

Similar results from Planck SZ and SPT clusters, CFHTLenS, DES 1yr, ...

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

 KiDS-450 (68% CL):
 CMB results (68% CL):

 [Hildebrandt et al., 2016]
 $\sim 2.5\sigma$ discrepancy!
 [Planck 2015]

 $\sigma_8(\Omega_m)^{0.5} = 0.408 \pm 0.021$ $\sigma_8(\Omega_m)^{0.5} = 0.466 \pm 0.013$

Similar results from Planck SZ and SPT clusters, CFHTLenS, DES 1yr, ...

Count of satellites galaxies of the Milky Way Observed (classical + SDSS): Predicted (CDM only): $N_{sat} = 63 \pm 13$ $(N_{sat} \simeq 160)$

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

 KiDS-450 (68% CL):

 [Hildebrandt et al., 2016]
 $\sim 2.5\sigma$ discrepancy!
 CMB results (68% CL):

 $\sigma_8(\Omega_m)^{0.5} = 0.408 \pm 0.021$ $\sigma_8(\Omega_m)^{0.5} = 0.466 \pm 0.013$

Similar results from Planck SZ and SPT clusters, CFHTLenS, DES 1yr, ...

Count of satellites galaxies of the Milky Way Observed (classical + SDSS): Predicted (CDM only): $N_{sat} = 63 \pm 13$ $(N_{sat} \simeq 160)$

Alert!

- is the nonlinear evolution well known?
 see e.g. [Planck 2015 Results, papers XIII and XIV]
- are we taking into account all the astrophysical systematics? [Joudaki et al., 2016] [Kitching et al., 2016]
- did we count all the satellite galaxies? (very difficult detection)

1 Introduction

- Neutrinos
- Cosmological tensions

2 Neutrinos and cosmology

- Relativistic neutrinos in the early Universe
- Massive neutrinos in the late Universe
- Current status

3 Light sterile neutrinos
 Why a sterile neutrino
 Cosmological constraints

4 Conclusions

Relic neutrinos in cosmology: N_{eff}

Radiation energy density ρ_r in the early Universe: $\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_\gamma$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{\rm eff}\simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos:

 $N_{
m eff} = 3.046 \,$ [Mangano et al., 2005] (damping factors approximations) $\sim N_{
m eff} = 3.045 \,$ [de Salas et al., 2016] (full collision terms) due to not instantaneous decoupling for the neutrinos

= + Non Standard Interactions: $3.040 < N_{
m eff} < 3.059$ [de Salas et al., 2016]

Observations: $N_{\rm eff} \simeq 3.04 \pm 0.2$ [Planck 2015] Indirect probe of cosmic neutrino background! Additional Radiation in the Early Universe

Starting configuration:

If we increase N_{eff} , all the other parameters fixed:

At z_{CMB} : higher $H \propto \rho_r \Rightarrow$ smaller comoving sound horizon $r_s \propto H^{-1}$ \Rightarrow decrease of the angular scale of the acoustic peaks $\theta_s = r_s/D_A$ \Rightarrow shift of the peaks at higher ℓ

If we increase N_{eff} , plus ω_m to fix z_{eq} :

- Contribution from early ISW effect restored (first peak)
- different slope of the Sachs-Wolfe plateau, peak positions, envelope of high- ℓ peaks \Rightarrow due to later z_{Λ}

If we increase N_{eff} , plus ω_m , ω_{Λ} to fix z_{eq} , z_{Λ} :

- peak positions recovered;
- slope of the Sachs-Wolfe plateau recovered;
- peak amplitude not recovered!

S. Gariazzo

"Neutrino Properties and the Cosmological Tensions in the ACDM Model"

S. Gariazzo "Neutrino Properties and the Cosmological Tensions in the ACDM Model" MG15, Ron

$$k_{fs}(z) \equiv \sqrt{rac{3}{2}} rac{H(z)}{(1+z)\sigma_{v,
u}(z)} \simeq 0.7 \left(rac{m_
u}{1 ext{ eV}}
ight) \sqrt{rac{\Omega_M}{1+z}} h/ ext{Mpc}$$

 ρ energy density of a given fluid $\delta = \delta \rho / \rho$ perturbation (single fluid) $c_{\rm s}$ sound speed of the fluid $\sigma_{v,\nu}(z) \nu$ velocity dispersion H = H(z) Hubble factor at redshift z h reduced Hubble factor today

Free-streaming - II

Damping occurs for all $k \gtrsim k_{nr}$

 k_{nr} : corresponding to ν non-relativistic transition

["Neutrino Cosmology", Lesgourgues et al.] (fixed h, ω_m , ω_b , ω_Λ)

Expected constraints from future surveys:
Planck CMB + DES:
$$\sigma(m_{\nu}) \simeq 0.04-0.06$$
 eV [Font-Ribera et al., 2014]
Planck CMB + Euclid: $\sigma(m_{\nu}) \simeq 0.03$ eV [Audren et al., 2013]

Summary: H_0 , σ_8 and neutrino properties

Many useful degeneracies:

use more data to break more degeneracies!

$I_{\rm N_{eff}}$ and the local tensions

$I_{\rm N_{eff}}$ and the local tensions

[Planck Collaboration, 2015]

 Σm_{ν} and the local tensions - 1

[Planck Collaboration, 2015]

 Σm_{ν} and the local tensions - 1

Neutrino masses and CMB lensing

Neutrino masses and CMB lensing

Neutrino masses and CMB lensing

Neutrino masses and CMB lensing

Σm_{ν} and the local tensions - II

[KiDS collaboration, MNRAS 471 (2017) 1259]

[DES collaboration, arxiv:1708.01530]

Overlapping of regions does not improve so much with massive neutrinos

S. Gariazzo "Neutrino Properties and the Cosmological Tensions in the ACDM Model" MG15, Roma, 03/07/2018 16/25

1 Introduction

Neutrinos

Cosmological tensions

2 Neutrinos and cosmology

- Relativistic neutrinos in the early Universe
- Massive neutrinos in the late Universe
- Current status

3 Light sterile neutrinos

- Why a sterile neutrino
- Cosmological constraints

4 Conclusions

Short Baseline (SBL) anomaly

[SG et al., JPG 43 (2016) 033001]

Problem: anomalies in SBL experiments

errors in flux calculations? deviations from $3-\nu$ description?

A short review:

- LSND search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5 \text{ m/MeV}$. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- Reactor re-evaluation of the expected anti-neutrino flux \Rightarrow disappearance of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Mention et al, 2011], [Azabajan et al, 2012]

MiniBooNE

See next

Possible explanation:

Additional squared mass difference $\Delta {\it m}^2_{SBL} \simeq 1 \ {\rm eV}^2$

[DANSS, arxiv:1804.04046]

DANSS alone gives a $\Delta \chi^2 \simeq 13$ in favor of a light sterile neutrino!

MG15, Roma, 03/07/2018 18/25

[MiniBooNE, arxiv:1805.12028]

[MiniBooNE, arxiv:1805.12028]

[MiniBooNE, arxiv:1805.12028]

[MINOS+, arxiv:1710.06488]

First results from...

\star = current DANSS+NEOS best fit

[SG et al., PLB782 (2018) 13-21]

We will have soon new constraints (or evidences?)

[to be precise: $\Delta N_{\rm eff}$ is slightly smaller at CMB decoupling, when the LS ν starts to be non-relativistic]

$LS\nu$ constraints from cosmology

BBN constraints: $N_{\text{eff}} = 2.90 \pm 0.22$ (BBN+ Y_p) [Peimbert et al., 2016]

Summary: $\Delta N_{\rm eff} = 1$ from LS ν incompatible with $m_{\rm s} \simeq 1$ eV!

TT=Planck 2015 TT + lowTEB S. Gariazzo "Neutrino Properties and the Cosmological Tensions in the ACDM Model" MG15, Roma, 03/07/2018

All the constraints are at 2σ CL

Incomplete Thermalization

Active-sterile oscillations in the early Universe: mixing parameters from SBL data $\implies \Delta N_{\rm eff} \simeq 1$ [Hannestad et al., 2012] [Mirizzi et al., 2012]

Many probes constrain $\Delta N_{
m eff} < 1$. Do we need

- a mechanism to suppress oscillations and full thermalization of ν_s ?
- to compensate $\Delta N_{
 m eff} = 1$ with additional mechanisms in Cosmology?
- Some ideas (an incomplete list!):
 - large lepton asymmetry [Foot et al., 1995; Mirizzi et al., 2012; many more]
 - new neutrino interactions [Bento et al., 2001; Dasgupta et al., 2014; Hannestad et al., 2014; Saviano et al., 2014; Archidiacono et al. 2016; many more]
 - entropy production after neutrino decoupling [Ho et al., 2013]
 - very low reheating temperature [Gelmini et al., 2004; Smirnov et al., 2006]
 - time varying dark energy components [Giusarma et al., 2012]
 - Iarger expansion rate at the time of ν_s production [Rehagen et al., 2014]

Solving both σ_8 and H_0 Tension?

[Planck Collaboration, 2015]

dashed: local measurements – Λ CDM model, Λ CDM + $\nu_{a,s}$ models: full cosmological dataset

 H_0 increases $\Rightarrow \sigma_8$ increases (and viceversa)! The correlations do not help.

1 Introduction

Neutrinos

Cosmological tensions

2 Neutrinos and cosmology

- Relativistic neutrinos in the early Universe
- Massive neutrinos in the late Universe
- Current status

Light sterile neutrinos Why a sterile neutrino Cosmological constraints

4 Conclusions

Conclusions

1

2

3

Cosmology is an excellent tool for studying neutrino properties! But beware of systematics/model dependency! Situation less clear than what usually stated?

> Is there a light sterile neutrino? Not completely clear. If yes, problems in early universe! More new physics to be discovered?

Neutrinos cannot really solve the H_0 and σ_8 tensions...

Conclusions

1

2

3

Cosmology is an excellent tool for studying neutrino properties! But beware of systematics/model dependency! Situation less clear than what usually stated?

> Is there a light sterile neutrino? Not completely clear. If yes, problems in early universe! More new physics to be discovered?

Neutrinos cannot really solve the H_0 and σ_8 tensions...

Thank you for the attention!