

Stefano Gariazzo

IFIC, Valencia (ES) CSIC – Universitat de Valencia

European Commission

Horizon 2020 European Union funding for Research & Innovation gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

Light sterile neutrino: the 2018 status

The Magnificent CE ν NS, Chicago, 03/11/2018

- 1 Neutrino Oscillations Some theory
- 2 Electron (anti)neutrino disappearence
- 3 Muon (anti)neutrino disappearence
- 4 Electron (anti)neutrino appearence
- 5 Global fit
- 6 Sterile neutrinos and CEvNS
- 7 Conclusions

1 Neutrino Oscillations - Some theory

- 2 Electron (anti)neutrino disappearence
- 3 Muon (anti)neutrino disappearence
 - 4 Electron (anti)neutrino appearence
- 5 Global fit
- **6** Sterile neutrinos and CEvNS

7 Conclusions

The Standard Model of Particle Physics

The Standard Model of Particle Physics

1/23

Three Neutrino Oscillations

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau)$$

 $U_{\alpha k}$ described by 3 mixing angles $\theta_{12}, \, \theta_{13}, \, \theta_{23}$ and one CP phase $\delta_{\rm CP}$

Current knowledge of the 3 active ν mixing: [de Salas et al. (2018)]

NO: Normal Ordering, $m_1 < m_2 < m_3$ IO: Inverted Ordering, $m_3 < m_1 < m_2$ $\Delta m_{21}^2 = (7.55^{+0.20}_{-0.16}) \cdot 10^{-5} \text{ eV}^2$ $|\Delta m_{31}^2| = (2.50 \pm 0.03) \cdot 10^{-3} \text{ eV}^2 (\text{NO})$ $= (2.42^{+0.03}_{-0.04}) \cdot 10^{-3} \text{ eV}^2$ (IO) $\begin{array}{ll} \sin^2(\theta_{12}) &= 0.320^{+0.020}_{-0.016} \\ \sin^2(\theta_{13}) &= 0.0216^{+0.008}_{-0.007} \ (\text{NO}) \end{array}$ 0.4 0.4 0.016 $\sin^2 \theta_{12}$ $\sin^2 \theta_{12}$ $= 0.0222^{+0.007}_{-0.008}$ (IO) 15 $\sin^{2}(\theta_{23}) = 0.547^{+0.020}_{-0.030} (\text{NO})$ $= 0.551^{+0.018}_{-0.030} (\text{IO})$ ~×10 First hints for $\delta_{\rm CP} \simeq 3/2\pi$ $|\Delta m_{21}^2| [10^{-3} eV^2]$ $\Delta m_{21}^2 [10^{-5} eV^2]$ δ/π

see also: http://globalfit.astroparticles.es

S. Gariazzo

"Light sterile neutrino: the 2018 status"

The Magnificent CEvNS, 03/11/2018

A large family

In principle, previous discussion is valid for N neutrinos

S. Gariazzo

The Magnificent CE_vNS, 03/11/2018

4/23

A large family

In principle, previous discussion is valid for N neutrinos $N \times N$ mixing matrix, N flavor neutrinos, N massive neutrinos

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \\ |\nu_{s_{1}}\rangle \\ \dots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \vdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \\ U_{s_{1} 1} & U_{s_{1} 2} & U_{s_{1} 3} & U_{s_{1} 4} & \\ \dots & & \ddots & \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \\ |\nu_{4}\rangle \\ \dots \end{pmatrix}$$

A large family

In principle, previous discussion is valid for N neutrinos $N \times N$ mixing matrix, N flavor neutrinos, N massive neutrinos

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \\ |\nu_{s_{1}}\rangle \\ \dots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \vdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \\ U_{s_{1} 1} & U_{s_{1} 2} & U_{s_{1} 3} & U_{s_{1} 4} & \\ \dots & & \ddots & \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \\ |\nu_{4}\rangle \\ \dots \end{pmatrix}$$

Our case will be 3 (active)+1 (sterile), a perturbation of 3 neutrinos case

S. Gariazzo

"Light sterile neutrino: the 2018 status"

The Magnificent $CE\nu NS$, 03/11/2018

4/23

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

Short BaseLine (SBL) oscillations: $\frac{\Delta m_{41}^2 L}{E} \simeq 1$

At SBL, oscillations due to Δm_{21}^2 and $|\Delta m_{31}^2|$ do not develop

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

S. Gariazzo

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

5/23

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

 $4 \times 4 \text{ mixing matrix:} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{\mathfrak{s} 1} & U_{\mathfrak{s} 1 2} & U_{\mathfrak{s} 1 3} & U_{\mathfrak{s} 1 4} \end{pmatrix}$

 4×4 mixing matrix:

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_1 1} & U_{s_1 2} & U_{s_1 3} & U_{s_1 4} \end{pmatrix} \end{bmatrix} \\ \begin{bmatrix} \vartheta_{14} \\ \vartheta_{24} \\ U_{\tau 4} \\ U_{\tau 4} \\ U_{s_1 4} \end{bmatrix}$$

$$4 \times 4 \text{ mixing matrix:} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{s11} & U_{s12} & U_{s13} \end{pmatrix} \begin{bmatrix} \vartheta_{14} \\ \vartheta_{24} \\ U_{\tau 4} \\ U_{\tau 4} \\ U_{\tau 4} \\ U_{\tau 4} \end{bmatrix}$$

$$\begin{bmatrix} \text{DISappearance} \\ P_{(-) \ (-$$

$$4 \times 4 \text{ mixing matrix:} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\pi1} & U_{\pi2} & U_{\pi3} \\ U_{51} & U_{52} & U_{53} \end{pmatrix} \begin{bmatrix} \vartheta_{14} \\ \psi_{\mu4} \\ U_{\pi4} \\ U_{514} \end{bmatrix} \\ \vartheta_{34} \end{pmatrix} \begin{bmatrix} \vartheta_{24} \\ \vartheta_{24} \\ \vartheta_{34} \\ \vartheta_{34} \end{bmatrix} \\ \frac{\vartheta_{24} \\ \vartheta_{34} \\ \frac{\vartheta_{24} \\ \frac{\vartheta_{24} \\ \vartheta_{34} \\ \frac{\vartheta_{24} \\ \frac{\vartheta_{24}$$

1 Neutrino Oscillations - Some theory

- 2 Electron (anti)neutrino disappearence
- **3** Muon (anti)neutrino disappearence
 - 4 Electron (anti)neutrino appearence
- 5 Global fit
- **6** Sterile neutrinos and CEvNS
- 7 Conclusions

Reactor Antineutrino Anomaly (RAA)

[PRD 83 (2011) 073006]

2011: new reactor $\bar{\nu}_e$ fluxes by Huber and Mueller+ (HM)

[Huber, PRC 84 (2011) 024617] [Mueller et al., PRC 83 (2011) 054615]

Previous reactor rates evaluated with new fluxes \Rightarrow deficit

Can we trust the HM fluxes?

2014: bump in the spectrum around 5 MeV!

cannot be explained by SBL oscillations

(averaged at the observed distances)

many attempts of possible explanations, how to clarify the issue?

Can we trust the HM fluxes?

2014: bump in the spectrum around 5 MeV!

cannot be explained by SBL oscillations

(averaged at the observed distances)

many attempts of possible explanations, how to clarify the issue?

Model independent information!

(i.e. take ratio of spectra at different distances)

S. Gariazzo

[PRL 118 (2017) 121802]

Ratio to DayaBay measurement to be model independent

[SG et al., PLB 782 (2018) 13]

Model-independent fit of $\stackrel{(-)}{\nu_e}$ DIS

NEOS + DANSS

The NEOS and **DANSS** region perfectly overlap at $\Delta m_{41}^2 \simeq 1.3 \text{ eV}^2$ $\sin^2 2\vartheta_{ee} \simeq 0.05$ $\sin^2 \vartheta_{14} \simeq 0.01$

Model-independent fit of $\stackrel{(-)}{\nu_e}$ DIS

[SG et al., PLB 782 (2018) 13]

DANSS + NEOS do not agree with Gallium and RAA

Model-independent fit of $\stackrel{(-)}{\nu_e}$ DIS

[SG et al., PLB 782 (2018) 13]

More to come...

[STEREO, arxiv:1806.02096]

HEUTRINO-4 ACCEPTED, IC RAA AND GALLIUM ANOMALY 10⁻²

sin²(2014)

★ = current DANSS+NEOS best fit [SG et al., PLB 782 (2018) 13]

[PROSPECT, arxiv:1806.02784]

1 Neutrino Oscillations - Some theory

- 2 Electron (anti)neutrino disappearence
- 3 Muon (anti)neutrino disappearence
- 4 Electron (anti)neutrino appearence
- 5 Global fit
- **6** Sterile neutrinos and CEvNS
- 7 Conclusions

[PRL 117 (2016) 071801]

S. Gariazzo

MINOS & MINOS+

 $1 \,\, {
m GeV} \,\, \lesssim \,\, E \,\, \lesssim \,\,$ 40 GeV,

peak at 3 GeV

MINOS & MINOS+

MINOS & MINOS+

Global fit of $\stackrel{(-)}{\nu_{\mu}}$ DIS

1 Neutrino Oscillations - Some theory

- 2 Electron (anti)neutrino disappearence
- **3** Muon (anti)neutrino disappearence
- 4 Electron (anti)neutrino appearence
- 5 Global fit
- **6** Sterile neutrinos and CEvNS
- 7 Conclusions

[arxiv:1805.12028]

MiniBooNE

 $L\simeq 541$ m, 200 MeV $\leq E\lesssim$ 3 GeV

The Magnificent CE ν NS, 03/11/2018

[arxiv:1805.12028]

MiniBooNE

purpose: check LSND signal

 $L\simeq 541$ m, 200 MeV $\leq E\lesssim$ 3 GeV

The Magnificent CE ν NS, 03/11/2018

Global fit of $\overset{(-)}{\nu_{\mu}} \rightarrow \overset{(-)}{\nu_{e}} APP$

- **1** Neutrino Oscillations Some theory
- 2 Electron (anti)neutrino disappearence
- **3** Muon (anti)neutrino disappearence
 - 4 Electron (anti)neutrino appearence
- 5 Global fit
- **6** Sterile neutrinos and CEvNS
- 7 Conclusions

APPearance - DISappearance tension

Without 2018 data: 10 0 Δm^2_{41} [eV²] 1 + 3σ Global Fit v_e Dis v_{μ} Dis 1σ 2σ Dis 3σ App 10^{-1} 10^{-4} 10^{-3} 10⁻² 10⁻¹ $sin^2 2\vartheta_{eu} = 4|U_{e4}|^2|U_{u4}|^2$

S. Gariazzo

"Light sterile neutrino: the 2018 status"

The Magnificent CE_vNS, 03/11/2018

20/23

APPearance - DISappearance tension

APPearance - DISappearance tension

[Dentler+, JHEP 08 (2018) 010]

(2013 data from MiniBooNE)

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{\rm app}$	$\chi^2_{\rm min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{\rm dof}$	PG		
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	3.71×10^{-7}		
Removing anomalous data sets									
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}		
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}		
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	$3.8 imes 10^{-5}$		
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}		
Removing constraints	3								
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}		
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	4.7×10^{-6}		
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	6.0×10^{-7}		
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes 10^{-7}$		
Removing classes of data									
$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	3.6×10^{-2}		
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}		
$\stackrel{(-)}{\nu}_{\mu}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}		

[Dentler+, JHEP 08 (2018) 010]

(2013 data from MiniBooNE)

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{ m app}$	$\chi^2_{\rm min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{\rm dof}$	PG		
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	$3.71 imes 10^{-7}$		
Removing anomalous data sets									
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}		
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}		
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	$3.8 imes 10^{-5}$		
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}		
Removing constraints	3								
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}		
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	$4.7 imes 10^{-6}$		
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	$6.0 imes 10^{-7}$		
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes 10^{-7}$		
Removing classes of data									
$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	3.6×10^{-2}		
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}		
$\stackrel{(-)}{\nu}_{\mu}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}		

No improvements if MiniBooNE is not considered

[Dentler+, JHEP 08 (2018) 010]

(2013 data from MiniBooNE)

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{ m app}$	$\chi^2_{\rm min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{\rm dof}$	PG		
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	$3.71 imes 10^{-7}$		
Removing anomalous data sets									
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}		
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}		
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	$3.8 imes 10^{-5}$		
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}		
Removing constraints	3								
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}		
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	$4.7 imes 10^{-6}$		
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	$6.0 imes 10^{-7}$		
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes 10^{-7}$		
Removing classes of data									
$\overline{\nu}_e$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	$3.6 imes 10^{-2}$		
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}		
$\tilde{\nu}_{\mu}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	$7.4 imes 10^{-6}$		

 $\stackrel{(-)}{\nu_{\mu}}$ DIS also constrain $|U_{e4}|^2$, while $\stackrel{(-)}{\nu_{e}}$ DIS do not constrain $|U_{\mu4}|^2$

[Dentler+, JHEP 08 (2018) 010]

(2013 data from MiniBooNE)

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{ m app}$	$\chi^2_{\rm min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{\rm dof}$	PG		
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	3.71×10^{-7}		
Removing anomalous data sets									
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}		
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}		
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	$3.8 imes 10^{-5}$		
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}		
Removing constraints	3								
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}		
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	$4.7 imes 10^{-6}$		
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	$6.0 imes 10^{-7}$		
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes 10^{-7}$		
Removing classes of data									
$\overline{\nu}_e$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	$3.6 imes 10^{-2}$		
$\overline{\nu}_{\mu}^{(-)}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	$2.3 imes 10^{-4}$		
$\stackrel{(-)}{\nu}_{\mu}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}		

Only removing LSND or all $\stackrel{(-)}{\nu_{\mu}}$ constraints the fit is almost acceptable

No reason to do so!

The Magnificent $CE\nu NS$, 03/11/2018

- **1** Neutrino Oscillations Some theory
 - 2 Electron (anti)neutrino disappearence
- **3** Muon (anti)neutrino disappearence
 - 4 Electron (anti)neutrino appearence
- 5 Global fit
- **6** Sterile neutrinos and CEvNS

Present and future... [Papoulias+, PRD 97 (2018) 033003]

 $\begin{array}{l} \mbox{Assumption: all DIS} \\ \mbox{mixing angles are equal} \\ \mbox{sin}^2 2 \vartheta_{ee} = \mbox{sin}^2 2 \vartheta_{\mu\mu} = \mbox{sin}^2 2 \theta_{\rm new} \end{array}$

not competitive (yet)

Present and future... [Papoulias+, PRD 97 (2018) 033003] [Cañas+, PLB 776 (2018) 451] 1.05 10^{2} = 4 MeVE = 6.5 MeVF COHERENT 14.57 kg CsI 10^{1} **≃** 0.95 Δm^2_{41} RED 100 19m RED 100 15m MINER 1m MINER CONNIE exono 10^{0} 90%C.L. 0.85^{L}_{C} 10 20 30 full syst. L (m) simple syst. 10^{-1} 10^{-1} 10^{0} 100100% eff, $Q_c = 1.0$ $\sin^2 2\theta_{new}$ 50% eff, Q_c = 1.0 10 50% eff, Q_c = 0.2 $\Delta m^{2}_{0.941}$ (eV²) Assumption: all DIS mixing angles are equal $\sin^2 2\vartheta_{ee} = \sin^2 2\vartheta_{\mu\mu} = \sin^2 2\theta_{new}$ 0.01 not competitive (yet) **TEXONO-like reactor experiment** 0.001 0.01 0.1 sin[~]0 ee 22/23

S. Gariazzo

The Magnificent CEvNS, 03/11/2018

- 1 Neutrino Oscillations Some theory
 - 2 Electron (anti)neutrino disappearence
- **3** Muon (anti)neutrino disappearence
 - 4 Electron (anti)neutrino appearence
- 5 Global fit
- **6** Sterile neutrinos and CEvNS

2

first model-independent hints from reactors $\stackrel{(-)}{\nu_e}$ DIS, some discrepancy with Gallium anomaly and RAA

nothing seen in $\overset{(-)}{\nu_{\mu}}$ DIS strong upper bounds on $|U_{\mu4}|^2$, but also first constraints on $|U_{\tau4}|^2$

strong APP-DIS tension What are LSND and MiniBooNE observing? Systematics or $LS\nu$ or new physics?

3

incoming CE ν NS experiments will enter the game!

2

first model-independent hints from reactors $\stackrel{(-)}{\nu_e}$ DIS, some discrepancy with Gallium anomaly and RAA

nothing seen in $\overset{(-)}{\nu_{\mu}}$ DIS strong upper bounds on $|U_{\mu4}|^2$, but also first constraints on $|U_{\tau4}|^2$

3

strong APP-DIS tension What are LSND and MiniBooNE observing? Systematics or $LS\nu$ or new physics?

incoming CE ν NS experiments will enter the game!

Thank you for the attention!