

Stefano Gariazzo

IFIC, Valencia (ES) CSIC – Universitat de Valencia

European Commission

Horizon 2020 European Union funding for Research & Innovation gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

Relic neutrinos and the PTOLEMY project

RWTH Aachen, Particle and Astroparticle Physics Colloquium, 2/04/2019

1 Cosmic Neutrino Background

² Direct detection of relic neutrinos

- Some proposed methods
- Neutrino capture

3 Relic neutrino clustering at Earth

- N-one-body simulations
- Results from the Milky Way
- Systematics and future developments

4 PTOLEMY

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

1 Cosmic Neutrino Background

- 2 Direct detection of relic neutrinos
 Some proposed methods
 Neutrino capture
- 3 Relic neutrino clustering at Earth
 - N-one-body simulations
 - Results from the Milky Way
 - Systematics and future developments

4 PTOLEMY

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

The Standard Model of Particle Physics

The Standard Model of Particle Physics

Three Neutrino Oscillations

Analogous to CKM mixing for quarks:

[Pontecorvo, 1968] [Maki, Nakagawa, Sakata, 1962]

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau)$$

 u_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_k mass eigenstates.

Current knowledge of the 3 active ν mixing: [de Salas et al. (2018)]

 $\Delta m_{jj}^2 = m_j^2 - m_i^2$, θ_{ij} mixing angles NO: Normal Ordering, $m_1 < m_2 < m_3$ IO: Inverted Ordering, $m_3 < m_1 < m_2$

Three Neutrino Oscillations

Analogous to CKM mixing for quarks:

[Pontecorvo, 1968] [Maki, Nakagawa, Sakata, 1962]

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau)$$

 u_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_k mass eigenstates.

Current knowledge of the 3 active ν mixing: [de Salas et al. (2018)]

S. Gariazzo

"Relic neutrinos and the PTOLEMY project"

RWTH Aachen, GK-Seminare, 02/04/2019

Relic neutrinos in cosmology: N_{eff}

Radiation energy density ρ_r in the early Universe:

$$\rho_{r} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma} = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_{\gamma}$$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{\rm eff}\simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos:

 $N_{\rm eff} = 3.046$ [Mangano et al., 2005] (damping factors approximations) $\sim N_{\rm eff} = 3.045$ [de Salas et al., 2016] (full collision terms) due to not instantaneous decoupling for the neutrinos

= + Non Standard Interactions: $3.040 < N_{
m eff} < 3.059$ [de Salas et al., 2016]

Observations: $N_{\rm eff}\simeq 3.0\pm 0.2$ [Planck 2018] Indirect probe of cosmic neutrino background!

Cosmological neutrino mass bounds

Cosmological neutrino mass bounds

S. Gariazzo

Cosmological neutrino mass bounds

S. Gariazzo

1 Cosmic Neutrino Background

2 Direct detection of relic neutrinos
 Some proposed methods
 Neutrino capture

3 Relic neutrino clustering at Earth

- N-one-body simulations
- Results from the Milky Way
- Systematics and future developments

4 PTOLEMY

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

Direct detection - proposed methods - Stodolsky effect

How to directly detect non-relativistic neutrinos?

Direct detection - proposed methods - Stodolsky effect

How to directly detect non-relativistic neutrinos?

Direct detection - proposed methods - at interferometers

How to directly detect non-relativistic neutrinos?

Direct detection - proposed methods - at interferometers

S. Gariazzo

Direct detection - proposed methods - Capture (I)

How to directly detect non-relativistic neutrinos?

must have very specific Q value in order to avoid EC background and have no threshold specific energy conditions required

but

Q value depends on ionization fraction!

Direct detection - proposed methods - Capture (I)

How to directly detect non-relativistic neutrinos?

or significant improvements on ion storage rings are achieved"

S. Gariazzo

RWTH Aachen, GK-Seminare, 02/04/2019

A viable method - Capture (II)

[Long et al., JCAP 08 (2014) 038]

How to directly detect non-relativistic neutrinos?

$$\langle E_{
u}
angle \, \simeq \, {\cal O}(10^{-4}) \; {
m eV} \; {
m today}$$

a process without energy threshold is necessary

[Weinberg, 1962]: neutrino capture in eta-decaying nuclei $u + n
ightarrow p + e^-$

Main background: β decay $n \rightarrow p + e^- + \bar{\nu}!$

What material?

[Cocco et al., JCAP 06 (2007) 015]

best element has highest $\sigma_{
m NCB}(v_
u/c) \cdot t_{1/2}$

to minimize contamination from β decay background

Isotope	Decay	$Q_{\beta} \; (\mathrm{keV})$	Half-life (s)	$\sigma_{\rm NCB}(v_{\nu}/c) \ (10^{-41} \ {\rm cm}^2)$
$^{3}\mathrm{H}$	β^{-}	18.591	3.8878×10^8	7.84×10^{-4}
⁶³ Ni	β^{-}	66.945	3.1588×10^9	1.38×10^{-6}
$^{93}\mathrm{Zr}$	β^{-}	60.63	4.952×10^{13}	2.39×10^{-10}
$^{106}\mathrm{Ru}$	β^{-}	39.4	3.2278×10^7	5.88×10^{-4}
$^{107}\mathrm{Pd}$	β^{-}	33	2.0512×10^{14}	2.58×10^{-10}
$^{187}\mathrm{Re}$	β^{-}	2.64	1.3727×10^{18}	4.32×10^{-11}
$^{11}\mathrm{C}$	β^+	960.2	1.226×10^3	4.66×10^{-3}
$^{13}\mathrm{N}$	β^+	1198.5	$5.99 imes 10^2$	$5.3 imes 10^{-3}$
$^{15}\mathrm{O}$	β^+	1732	1.224×10^2	9.75×10^{-3}
$^{18}\mathrm{F}$	β^+	633.5	6.809×10^3	2.63×10^{-3}
22 Na	β^+	545.6	$9.07 imes 10^7$	3.04×10^{-7}
$^{45}\mathrm{Ti}$	β^+	1040.4	1.307×10^4	3.87×10^{-4}

What material?

[Cocco et al., JCAP 06 (2007) 015]

best element has highest $\sigma_{
m NCB}(v_{
u}/c) \cdot t_{1/2}$

to minimize contamination from β decay background

Isotope	Decay	$Q_{\beta} \; (\mathrm{keV})$	Half-life (s)	$\sigma_{\rm NCB}(v_{\nu}/c) \ (10^{-41} \ {\rm cm}^2)$
$^{3}\mathrm{H}$	β^{-}	18.591	3.8878×10^8	7.84×10^{-4}
⁶³ Ni	β^{-}	66.945	3.1588×10^{9}	1.38×10^{-6}
$^{93}\mathrm{Zr}$	β^{-}	60.63	4.952×10^{13}	2.39×10^{-10}
106 Ru	β^{-}	39.4	3.2278×10^7	5.88×10^{-4}
$^{107}\mathrm{Pd}$	β^{-}	33	2.0512×10^{14}	2.58×10^{-10}
$^{187}\mathrm{Re}$	β^{-}	2.64	1.3727×10^{18}	4.32×10^{-11}
$^{11}\mathrm{C}$	β^+	960.2	1.226×10^3	4.66×10^{-3}
^{13}N	β^+	1198.5	$5.99 imes 10^2$	$5.3 imes 10^{-3}$
$^{15}\mathrm{O}$	β^+	1732	1.224×10^2	9.75×10^{-3}
$^{18}\mathrm{F}$	β^+	633.5	$6.809 imes 10^3$	2.63×10^{-3}
22 Na	β^+	545.6	$9.07 imes 10^7$	3.04×10^{-7}
$^{45}\mathrm{Ti}$	β^+	1040.4	1.307×10^4	3.87×10^{-4}

What material?

[Cocco et al., JCAP 06 (2007) 015]

best element has highest $\sigma_{
m NCB}(v_{
u}/c) \cdot t_{1/2}$

to minimize contamination from β decay background

Isotope	Decay	$Q_{\beta} \; (\mathrm{keV})$	Half-life (s)	$\sigma_{\rm NCB}(v_{\nu}/c) \ (10^{-41} \ {\rm cm}^2)$
$^{3}\mathrm{H}$	β^{-}	18.591	3.8878×10^8	7.84×10^{-4}
⁶³ Ni	β^{-}	66.945	3.1588×10^{9}	1.38×10^{-6}
$^{93}\mathrm{Zr}$	β^{-}	60.63	4.952×10^{13}	2.39×10^{-10}
$^{106}\mathrm{Ru}$	β^{-}	39.4	3.2278×10^7	5.88×10^{-4}
$^{107}\mathrm{Pd}$	β^{-}	33	2.0512×10^{14}	2.58×10^{-10}
$^{187}\mathrm{Re}$	β^{-}	2.64	1.3727×10^{18}	4.32×10^{-11}
$^{11}\mathrm{C}$	β^+	960.2	1.226×10^3	4.66×10^{-3}
^{13}N	β^+	1198.5	$5.99 imes 10^2$	5.3×10^{-3}
$^{15}\mathrm{O}$	β^+	1732	1.224×10^2	9.75×10^{-3}
$^{18}\mathrm{F}$	β^+	633.5	$6.809 imes 10^3$	2.63×10^{-3}
22 Na	β^+	545.6	$9.07 imes 10^7$	3.04×10^{-7}
$^{45}\mathrm{Ti}$	β^+	1040.4	1.307×10^4	3.87×10^{-4}

 ^{3}H better because the cross section (\rightarrow event rate) is higher

[PTOLEMY, arxiv:1902.05508]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi}\sigma} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_T |U_{ei}|^2 n_i \times e^{-\frac{[E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})]^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), $E_{\rm end}$ endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

[PTOLEMY, arxiv:1902.05508]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi}\sigma} \sum_{i=1}^{N_{\nu}} \overline{\sigma} N_T |U_{ei}|^2 n_i \times e^{-\frac{|E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})|^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\left| \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right] \right|$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), $E_{\rm end}$ endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

[PTOLEMY, arxiv:1902.05508]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi}\sigma} \sum_{i=1}^{N_{\nu}} \overline{\sigma} N_T |U_{ei}|^2 n_i \times e^{-\frac{|E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})|^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\left| \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right] \right|$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), $E_{\rm end}$ endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

[PTOLEMY, arxiv:1902.05508]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi}\sigma} \sum_{i=1}^{N_{\nu}} \overline{\sigma} N_T |U_{ei}|^2 n_i \times e^{-\frac{|E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})|^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\left| \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right] \right|$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), E_{end} endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

12/40

[PTOLEMY, arxiv:1902.05508]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi}\sigma} \sum_{i=1}^{N_{\nu}} \overline{\sigma} N_T |U_{ei}|^2 n_i \times e^{-\frac{|E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})|^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\left| \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right] \right|$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), $E_{\rm end}$ endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

[PTOLEMY, arxiv:1902.05508]

$$\frac{d\tilde{\Gamma}_{CNB}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_{T} |U_{ei}|^{2} n_{i} \times e^{-\frac{[E_{e} - (E_{end} + m_{i} + m_{lightest})]^{2}}{2\sigma^{2}}}$$
$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$
$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e} - x)^{2}}{2\sigma^{2}}\right]$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), E_{end} endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

dΓ/dE_e [yr⁻¹ eV⁻¹]

12/40

$$\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma} \sim \mathcal{O}(10) \text{ yr}^{-1}$$
T number of ³H nuclei in a sample of mass $M_T = \bar{\sigma} \simeq 3.834 \times 10^{-45} \text{ cm}^2 = n_i \text{ number density of neutrino } i$
(without clustering)

Ν

Dirac and Majorana neutrinos

[Roulet+, JCAP 10 (2018) 049]

direct detection through $\nu_e + {}^3\mathrm{H} \longrightarrow e^- + {}^3\mathrm{He}$

only neutrinos with correct chirality can be detected!

non-relativistic Majorana case: ν and $\bar{\nu}$ cannot be distinguished!

expect more events for the Majorana than for Dirac case

1 Cosmic Neutrino Background

Direct detection of relic neutrinos
 Some proposed methods
 Neutrino capture

3 Relic neutrino clustering at Earth

- N-one-body simulations
- Results from the Milky Way
- Systematics and future developments

4 PTOLEMY

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

[JCAP 09 (2017) 034] ν clustering with N-one-body simulations Milky Way (MW) matter attracts neutrinos! clustering $\rightarrow \Gamma_{\text{CNB}} = \sum |U_{ei}|^2 f_c(m_i) [n_{i,0}(\nu_{h_R}) + n_{i,0}(\nu_{h_L})] N_T \bar{\sigma}$ $f_c(m_i) = n_i/n_{i,0}$ clustering factor \rightarrow How to compute it? Idea from [Ringwald & Wong, 2004] \longrightarrow N-one-body= N × single ν simulations \rightarrow each ν evolved from initial conditions at z = 3 \rightarrow spherical symmetry, coordinates (r, θ , p_r , l) Assumptions: \rightarrow need $\rho_{\text{matter}}(z) = \rho_{\text{DM}}(z) + \rho_{\text{baryon}}(z)$ ν s are independent only gravitational interactions how many ν s is "N"? ν s do not influence matter evolution $(\rho_{\nu} \ll \rho_{\rm DM})$ \rightarrow must sample all possible r, p_r, l \rightarrow must include all possible ν s that reach the MW (fastest ones may come from given N ν : several (up to $\mathcal{O}(100)$) Mpc!) \rightarrow weigh each neutrinos \rightarrow reconstruct final density profile with kernel method from [Merritt&Tremblay, 1994] S. Gariazzo "Relic neutrinos and the PTOLEMY project" RWTH Aachen, GK-Seminare, 02/04/2019 15/40

[JCAP 09 (2017) 034]

Overdensity when $m_{ m heaviest} \simeq 60$ meV

ordering dependence from $\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 f_i [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma}$

S. Gariazzo

RWTH Aachen, GK-Seminare, 02/04/2019

16/40

Overdensity when $m_{ m u} \simeq 150$ meV

[JCAP 09 (2017) 034]

 \Longrightarrow minimal mass detectable by PTOLEMY if Δ \simeq 100–150 meV

no ordering dependence: $m_1 \simeq m_2 \simeq m_3 \implies f_1 \simeq f_2 \simeq f_3$

S. Gariazzo

RWTH Aachen, GK-Seminare, 02/04/2019

17/40

[JCAP 09 (2017) 034]

 $=n/n_0$

5

[JCAP 09 (2017) 034]

Additional clustering due to Virgo cluster

[JCAP 09 (2017) 034]

nearest galaxy cluster:

1 Cosmic Neutrino Background

Direct detection of relic neutrinos
 Some proposed methods
 Neutrino capture

3 Relic neutrino clustering at Earth

- N-one-body simulations
- Results from the Milky Way
- Systematics and future developments

4 PTOLEMY

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

PTOLEMY pipeline

scope of PTOLEMY:

measure electron spectrum near ³H β -decay endpoint

(same as neutrino mass experiments, e.g. KATRIN)

The source - graphene

source of ³H in gas form (KATRIN-like) has column density $\sim 1 \,\mu g \text{ cm}^{-2}$ source tube is 10 m, for $\sim O(100) \,\mu g$ of ³H

not practical solution for required 100 g of ${}^{3}H!$

The source - graphene

source of ³H in gas form (KATRIN-like) has column density $\sim 1 \,\mu g \text{ cm}^{-2}$ source tube is 10 m, for $\sim O(100) \,\mu g$ of ³H

not practical solution for required 100 g of ${}^{3}H!$

partially existing technology: hydrogenated graphene

Graphene layers are cheap (commercial use in displays)

hydrogenation under study

S. Gariazzo

The source - graphene

source of ³H in gas form (KATRIN-like) has column density $\sim 1 \,\mu g \text{ cm}^{-2}$ source tube is 10 m, for $\sim O(100) \,\mu g$ of ³H

not practical solution for required 100 g of ${}^{3}H!$

partially existing technology: hydrogenated graphene

CNT Tanget

collaboration University of Mons, Belgium

length: 100 μ m (can be increased) ext. diameter: (20 ± 4) nm aspect ratio: $5x10^4$

commercial

length: 75 μm ext. diameter: (13 ± 4) nm aspect ratio: 0.6 x10⁴

MAC-E filter

Background flux is too high for microcalorimeter. Must be reduced!

$\label{eq:magnetic} \mbox{ Magnetic Adiabatic Collimation with Electrostatic filter}$

MAC-E filter technique

Magnetic Adiabatic Collimation with Electrostatic filter Picard et al., NIM B63 (1992) 345

[PTOLEMY]: $E \times B$ filter (must enter in GS labs)

first energy determination with

RadioFrequency trigger, using Cyclotron Radiation Emission Spectroscopy (CRES)

see also [Project 8, JPG 44 (2017) 054004]

can RF antenna be integrated in the MAC-E filter?

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

Microcalorimetry with Transition-Edge Sensors

TES: "A microcalorimeter made by a superconducting film operated in the temperature region between the normal and the superconducting state"

difficult readout

difficult temperature control

Same technology as in HOLMES experiment (ν masses)

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

 $\label{eq:main_state} Microcalorimetry \ with \ {\sf Transition-Edge} \ {\sf Sensors}$

[courtesy M.Ratjeri]

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

Microcalorimetry with Transition-Edge Sensors

[courtesy M.Ratjeri]

 $\Delta T \Rightarrow \Delta R$ @ Voltage bias $\Rightarrow \Delta I$

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

[courtesy M.Ratjeri]

 $\Delta T \Rightarrow \Delta R$ @ Voltage bias $\Rightarrow \Delta I$

Final energy determination needs $\sigma_E \simeq 0.1$ eV or less!

[courtesy M.Ratjeri]

S. Gariazzo

Events in **bin** i, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$

with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$ $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

25/40

Events in **bin** i, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N^i_{ ext{exp}}(\hat{E}_{ ext{end}},\hat{m}_i,\hat{U})=N^i_t\pm\sqrt{N^i_t}
ight)$$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Events in **bin** i, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N^i_{ ext{exp}}(\hat{E}_{ ext{end}},\hat{m}_i,\hat{U})=N^i_t\pm\sqrt{N^i_t}$$

repeat for theory spectrum, free **amplitudes** and **endpoint position**:

 $N^{i}_{\mathrm{th}}(\boldsymbol{\theta}) = \boldsymbol{A}_{\boldsymbol{\beta}} N^{i}_{\boldsymbol{\beta}}(\hat{E}_{\textit{end}} + \boldsymbol{\Delta}\boldsymbol{E}_{\textit{end}}, m_{i}, U) + \boldsymbol{A}_{\mathbf{CNB}} N^{i}_{\mathrm{CNB}}(\hat{E}_{\textit{end}} + \boldsymbol{\Delta}\boldsymbol{E}_{\textit{end}}, m_{i}, U) + N_{b}$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Events in **bin** i, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N_{ ext{exp}}^{i}(\hat{E}_{ ext{end}},\hat{m}_{i},\hat{U})=N_{t}^{i}\pm\sqrt{N_{t}^{i}}
ight)$$

repeat for theory spectrum, free amplitudes and endpoint position:

$$N_{\rm th}^{i}(\boldsymbol{\theta}) = \boldsymbol{A}_{\beta}N_{\beta}^{i}(\hat{E}_{end} + \boldsymbol{\Delta}\boldsymbol{E}_{end}, m_{i}, U) + \boldsymbol{A}_{\rm CNB}N_{\rm CNB}^{i}(\hat{E}_{end} + \boldsymbol{\Delta}\boldsymbol{E}_{end}, m_{i}, U) + N_{b}$$

fit
$$\longrightarrow \chi^2(\theta) = \sum_i \left(\frac{N_{exp}^i(\hat{E}_{end}, \hat{m}_i, \hat{U}) - N_{th}^i(\theta)}{\sqrt{N_t^i}} \right)^2$$
 or $\log \mathcal{L} = -\frac{\chi^2}{2}$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

25/40

S. Gariazzo

"Relic neutrinos and the PTOLEMY project"

S. Gariazzo

"Relic neutrinos and the PTOLEMY project"

S. Gariazzo

"Relic neutrinos and the PTOLEMY project"

1 year of observation with 100 g of T source

S. Gariazzo

"Relic neutrinos and the PTOLEMY project"

S. Gariazzo

"Relic neutrinos and the PTOLEMY project"

things are more complicated in this way...low background needed!

1 year of observation with 100 g of T source

Perspectives for the mass determination [PTOLEMY, arxiv:1902.05508]

statistical only!

relative error on $m_{\rm lightest}$

as a function of $\hat{m}_{
m lightest}$, Δ

Perspectives for the mass determination^[PTOLEMY, arxiv:1902.05508]

Perspectives for the mass determination^[PTOLEMY, arxiv:1902.05508]

(mass detection already with 10 mg of tritium!)

statistical only!

Perspectives for the mass determination^[PTOLEMY, arxiv:1902.05508]

relative error on $m_{
m lightest}$ as a function of $\hat{m}_{
m lightest}$, Δ

statistical only!

Neutrino mass ordering

Bayesian method:

Fit fiducial ordering $(\widehat{NO} \text{ or } \widehat{IO})$ using both correct and wrong ordering

 $\widehat{\rm NO}/{\rm NO}$ vs $\widehat{\rm NO}/{\rm IO}$

 $\widehat{\mathrm{IO}}/\mathrm{NO}$ vs $\widehat{\mathrm{IO}}/\mathrm{IO}$

Neutrino mass ordering

Neutrino mass ordering

Neutrino mass ordering

Detection of the relic neutrinos

[PTOLEMY, arxiv:1902.05508]

using the definition:

$$N_{\rm th}^{i}(\boldsymbol{\theta}) = A_{\beta}N_{\beta}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + \boldsymbol{A}_{\rm CNB}N_{\rm CNB}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + N_{b}$$

if $\mathbf{A_{CNB}} > 0$ at $N\sigma$, direct detection of CNB accomplished at $N\sigma$

Requirements for PTOLEMY discoveries

What do we need to discover...

	low Γ_b	extreme Δ	a lot of ³ H
$\dots \nu$ masses?	×	×	?
$\dots \nu$ mass ordering?	×	?	?
CNB direct detection?	\checkmark	\checkmark	\checkmark

√: strongly required
 ?: not so strongly required
 X: loosely required

1 Cosmic Neutrino Background

Direct detection of relic neutrinos
 Some proposed methods
 Neutrino capture

3 Relic neutrino clustering at Earth

- N-one-body simulations
- Results from the Milky Way
- Systematics and future developments

4 **PTOLEMY**

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

Short Baseline (SBL) anomaly

[SG+, JPG 43 (2016) 033001]

Problem: anomalies in SBL experiments

errors in flux calculations? deviations from 3-v description?

A short review:

- LSND search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8 σ excess of $\bar{\nu}_e$ events [Aguilar et al., 2001]
- Reactor re-evaluation of the expected anti-neutrino flux \Rightarrow disappearance of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Mention et al, 2011], [Azabajan et al, 2012]
- Gallium calibration of GALLEX and SAGE Gallium solar neutrino experiments give a 2.7 σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

MiniBooNE

See next

Possible explanation:

Additional squared mass difference $\Delta m_{SBL}^2 \simeq 1 \text{ eV}^2$

[DANSS, PLB 787 (2018) 56]

first *model independent* indications in favor of SBL oscillations

DANSS alone gives a $\Delta \chi^2 \simeq 13$ in favor of a light sterile neutrino!

[MiniBooNE, PRL 121 (2018) 221801]

[MiniBooNE, PRL 121 (2018) 221801]

[MiniBooNE, PRL 121 (2018) 221801]

[MINOS+, PRL 122 (2019) 091803]

More to come...

[STEREO, PRL 121 (2018) 161801]

[Neutrino-4, arxiv:1809.10561]

★ = current DANSS+NEOS best fit [SG et al., PLB 782 (2018) 13]

[PROSPECT, PRL 121 (2018) 251802]

S. Gariazzo

1σ 2σ 3σ

3+1 Neutrino Model

new $\Delta m_{SBL}^2 \Rightarrow 4$ neutrinos! ν_4 with $m_4 \simeq 1$ eV, no weak interactions light sterile neutrino (LS ν) 3 (active) + 1 (sterile) mixing: $u_{\alpha} = \sum U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau, s)$ k=1 $\nu_{\rm s}$ is mainly $\nu_{\rm A}$: $m_s \simeq m_4 \simeq \sqrt{\Delta m_{41}^2} \simeq \sqrt{\Delta m_{\rm SBL}^2}$ assuming $m_4 \gg m_i$ (i = 1, 2, 3)

[SG+, work in progress]

3+1 Neutrino Model

new $\Delta m_{SBL}^2 \Rightarrow 4$ neutrinos! ν_4 with $m_4 \simeq 1$ eV, no weak interactions light sterile neutrino (LS ν) 3 (active) + 1 (sterile) mixing: $\nu_{\alpha} = \sum U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau, s)$ k=1 $\nu_{\rm s}$ is mainly $\nu_{\rm A}$: $m_s \simeq m_4 \simeq \sqrt{\Delta m_{41}^2} \simeq \sqrt{\Delta m_{\rm SBL}^2}$ assuming $m_4 \gg m_i$ (i = 1, 2, 3)

[SG+, work in progress]

can ν_4 thermalize in the early Universe through oscillations?

S. Gariazzo

"Relic neutrinos and the PTOLEMY project"

RWTH Aachen, GK-Seminare, 02/04/2019

34/40

LS ν thermalization

Compute oscillations in early universe, varying Δm_{41}^2 , $|U_{e4}|^2$, here fix $|U_{\mu4}|^2 = |U_{\tau4}|^2 = 0$: [SG+, in preparation]

S. Gariazzo

Assumptions and useful equations

[JCAP 09 (2017) 034]

We assume possible
ncomplete thermalization
(due to some
unknown new physics)

$$\overline{A}N_{eff} = \left[\frac{1}{\pi^2} \int dp \ p^3 f_4(p)\right] / \left[\frac{7}{8} \frac{\pi^2}{15} T_{\nu}^4\right]$$

 $\overline{n}_4 = \frac{g_4}{(2\pi)^3} \int f_4(p) \ p^2 \ dp = n_0 \ \Delta N_{eff}$
 $(f_c(m_4) \text{ is independent of } \Delta N_{eff})$
 $\Gamma_4 \simeq |U_{e4}|^2 \ \Delta N_{eff} \ f_c(m_4) \ \Gamma_{C\nu B}$

(from global fit [SG et al., 2017]: $m_4 \simeq 1.3$ eV, $|U_{e4}|^2 \simeq 0.02$)

i

Overdensity of a sterile neutrino

[JCAP 09 (2017) 034]

 $\Gamma_4 \simeq \Delta N_{
m eff} \, |U_{e4}|^2 \, f_c(m_4) \, \Gamma_{
m C
u
m B}$

 $m_4 \simeq 1.3 \; {
m eV}, \; |U_{e4}|^2 \simeq 0.02$

PTOLEMY and the ν_4

[PTOLEMY, arxiv:1902.05508]

 $m_4 \simeq 1.15 \text{ eV}$

 $|U_{e4}|^2 \simeq 0.01$

 $|\Gamma_4 \simeq \Delta N_{\rm eff} |U_{e4}|^2 f_c(m_4) \Gamma_{\rm CNB}$ $\Gamma_{\mathrm{C}\nu\mathrm{B}} = \mathcal{O}(10)/\mathrm{yr}$ [SG+, PLB 782 (2018)] [de Salas+, 2017] $\Delta N_{\rm eff} = ??$ $f_c(m_4) = \mathcal{O}(10^2)$

 Γ_4 depends probably on new physics!

PTOLEMY and the ν_4

 $\Delta N_{\rm eff} = ??$

 $\Gamma_{\rm C\nu B} = \mathcal{O}(10)/{\rm yr}$

[PTOLEMY, arxiv:1902.05508]

 $\begin{array}{c|c} | & [\text{SG}+, \text{ PLB 782 (2018)}] \\ & m_4 \ \simeq \ 1.15 \text{ eV} \\ & |U_{e4}|^2 \ \simeq \ 0.01 \end{array}$

 Γ_4 depends probably on new physics!

 $|\Gamma_4 \simeq \Delta N_{\rm eff} |U_{e4}|^2 f_c(m_4) \Gamma_{\rm CNB}$

[de Salas+, 2017]

 $f_c(m_4) = \mathcal{O}(10^2)$

1 Cosmic Neutrino Background

Direct detection of relic neutrinos
 Some proposed methods
 Neutrino capture

3 Relic neutrino clustering at Earth

- N-one-body simulations
- Results from the Milky Way
- Systematics and future developments

4 PTOLEMY

- The experiment
- Simulations
- Perspectives

5 Beyond the standard: light sterile neutrinos

6 Conclusions

Conclusions

2

3

amazing (neutrino) science with direct detection of relic neutrinos (e.g. PTOLEMY) [non-relativistic regime, masses, ordering?, MW structure?, Dirac/Majorana?, ...]

But it will be a technological challenge!

(^3H amount, low background, energy resolution, \ldots)

possible event rate enhancement due to clustering in the Milky Way: should also include nearby galaxies/clusters!

Conclusions

amazing (neutrino) science with direct detection of relic neutrinos (e.g. PTOLEMY) [non-relativistic regime, masses, ordering?, MW structure?, Dirac/Majorana?, ...]

But it will be a technological challenge! (³H amount, low background, energy resolution, ...)

possible event rate enhancement due to clustering in the Milky Way: should also include nearby galaxies/clusters!

3

2

light sterile neutrino ($m_4 \simeq 1.15 \text{ eV}$) ?? possible detection thanks to β decay spectrum

PTOLEMY collaboration

S. Gariazzo

"Relic neutrinos and the PTOLEMY project"

RWTH Aachen, GK-Seminare, 02/04/2019

40/40