

Stefano Gariazzo

IFIC, Valencia (ES) CSIC – Universitat de Valencia

European Commission Horizon 2020 European Union funding for Research & Innovation gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

(Cosmological) Relic neutrinos, from A to Z

Seminar at SISSA, Trieste (IT), 25/11/2019

A Active neutrinos Spoiler: "Sterile" will come later

Based on:

- Planck 2018
- Mangano+ 2005
- de Salas+ 2016
- in preparation (1)

The Standard Model of Particle Physics

The Standard Model of Particle Physics

Neutrino oscillations

first discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations from atmospheric ν

first discovery of $\nu_e \rightarrow \nu_\mu, \nu_\tau$ oscillations from solar ν

Nobel prize in 2015

"(Cosmological) Relic neutrinos, from A to Z"

SISSA, 25/11/2019

S. Gariazzo

"(Cosmological) Relic neutrinos, from A to Z"

SISSA, 25/11/2019

The mixing matrix

U can be parameterized using 3 angles (θ_{12} , θ_{13} , θ_{23}) and max 3 (1 Dirac δ , 2 Majorana [\exists only for Majorana ν]) phases

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} M$$
mainly atmospheric mainly SBL reactors and and LBL LBL accelerator LBL reactors accelerator appearance disappearance

Majorana phases irrelevant for oscillation experiments -Relevant for example in neutrinoless double-beta decay

$$s_{ij} \equiv \sin \theta_{ij}; \ c_{ij} \equiv \cos \theta_{ij}$$

SBL = short baseline; LBL = long baseline

S. Gariazzo

"(Cosmological) Relic neutrinos, from A to Z"

Three Neutrino Oscillations

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau)$$

 $U_{\alpha k}$ described by 3 mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ and one CP phase δ

Current knowledge of the 3 active ν mixing: [de Salas et al. (2018)]

NO/NH: Normal Ordering/Hierarchy, $m_1 < m_2 < m_3$ IO/IH: Inverted O/H, $m_3 < m_1 < m_2$ $\Delta m_{21}^2 = (7.55^{+0.20}_{-0.16}) \cdot 10^{-5} \text{ eV}^2$ $|\Delta m_{31}^2| = (2.50 \pm 0.03) \cdot 10^{-3} \text{ eV}^2 (\text{NO})$ $= (2.42^{+0.03}_{-0.04}) \cdot 10^{-3} \text{ eV}^2$ (IO) $\frac{\sin^2(\theta_{12})}{\sin^2(\theta_{13})} = 0.320^{+0.020}_{-0.016}$ $\sin^2(\theta_{13}) = 0.0216^{+0.008}_{-0.007} \text{ (NO)}$ 0.4 0.4 0.016 0.02 $\sin^2 \theta_{12}$ $\sin^2 \theta_{11}$ $= 0.0222^{+0.007}_{-0.008}$ (IO) 15 $\frac{\sin^2(\theta_{23})}{= 0.547^{+0.020}_{-0.030} (NO)} = 0.551^{+0.018}_{-0.030} (IO)$ ~×10 First hints for $\delta \simeq 3/2\pi$ 26 0 $\left| \Delta m_{21}^2 \right| [10^{-3} eV^2]$ $\Delta m_{21}^2 [10^{-5} eV^2]$ δ/π

see also: http://globalfit.astroparticles.es

History of the universe

6/45

History of the universe

The oldest picture of the Universe

The Cosmic Microwave Background, generated at $t \simeq 4 \times 10^5$ years COBE (1992) WMAP (2003) Planck (2013)

CMB spectra as of 2018

[Planck Collaboration, 2018]

0.05°

ĒΕ

BB

ΤE

lensing

4000

3000

S. Gariazzo

"(Cosmological) Relic neutrinos, from A to Z"

Big Bang Nucleosynthesis (BBN)

temperature $T_{fr} \simeq 1$ MeV from nucleon freeze-out

much earlier than CMB!

strong probe for physics before the CMB

e.g. neutrinos!

 $\nu \text{ affect}$ universe expansion
and
reaction rates $(\nu_e/\bar{\nu}_e)$

at BBN time...

S. Gariazzo

"(Cosmological) Relic neutrinos, from A to Z"

SISSA, 25/11/2019

9/45

BBN concordance

Big Bang Nucleosynthesis (BBN)

much earlier than CMB!

strong probe for physics before the CMB

e.g. neutrinos!

at BBN time...

"(Cosmological) Relic neutrinos, from A to Z"

SISSA, 25/11/2019

9/45

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

 ν decouple mostly before $e^+e^- \to \gamma\gamma$ annihilation!

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

Neutrino momentum distribution and N_{eff}

[deSalas+, 2016]

Distortion of the momentum distribution (f_{eq} : Fermi-Dirac)

11/45

S. Gariazzo

Neutrino momentum distribution and N_{eff}

[deSalas+, 2016]

Distortion of the momentum distribution (f_{eq} : Fermi-Dirac)

Neutrino momentum distribution and $N_{\rm eff}$

$$N_{\rm eff} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\nu}}{\rho_{\gamma}} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{1}{\rho_{\gamma}} \sum_{i} g_{i} \int \frac{d^{3}p}{(2\pi)^{3}} E(p) f_{\nu,i}(p)$$

[Mangano+, 2005]

Case	z _{fin}	$\delta \bar{\rho}_{\nu_e}$ (%)	$\delta \bar{\rho}_{\nu \mu, \tau}$ (%)	N _{eff}	ΔY_p					
No mixing	1.3978	0.94	0.43	3.046	1.71×10^{-4}					
No mixing (no QED)	1.3990	0.95	0.43	3.035	1.47×10^{-4}					
No mixing (all v_e)	1.3966	0.95	0.95	3.066	3.57×10^{-4}					
No mixing (all ν_{μ})	1.3986	0.35	0.35	3.031	1.35×10^{-4}					

two-neutrino approximation:

full three-neutrino results (with oscillations):

Case	Zfin	$\delta \bar{\rho}_{\nu_e}$ (%)	$\delta \bar{ ho}_{ u_{\mu}}$ (%)	$\delta \bar{\rho}_{\nu_{\tau}}$ (%)	N _{eff}	ΔY_p
$\theta_{13} = 0$	1.3978	0.73	0.52	0.52	3.046	$2.07 imes 10^{-4}$
$\sin^2 \theta_{13} = 0.047$	1.3978	0.70	0.56	0.52	3.046	2.12×10^{-4}
Bimaximal ($\theta_{13} = 0$)	1.3978	0.69	0.54	0.54	3.045	$2.13 imes 10^{-4}$

How precise is $N_{\text{eff}} = 3.04...?$

Long list of previous works... always less than 3ν mixing

How precise is $N_{\text{eff}} = 3.04...?$

Long list of previous works... always less than 3ν mixing

[Mangano+, 2005]: $N_{\text{eff}} = 3.046$ 1st with 3ν mixing (still most cited value)

How precise is $N_{\rm eff} = 3.04...?$

Long list of previous works... always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

[de Salas+, 2016]: $N_{\rm eff} = 3.045$ updated collision terms

How precise is $N_{\text{eff}} = 3.04...?$

Long list of previous works... always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

[de Salas+, 2016]: $N_{
m eff} = 3.045$ updated collision terms

[SG+, 2019]: $N_{\text{eff}} = 3.044$ FortEPiaNO code more efficient and precise code, N > 3 neutrinos allowed, minor differences in numerical integrals

How precise is $N_{\rm eff} = 3.04...?$

Long list of previous works...always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

[de Salas+, 2016]: $N_{
m eff}=3.045$ updated collision terms

[SG+, 2019]: $N_{\rm eff} = 3.044$ FortEPiaNO code

[Bennett+, 2019]: $N_{\rm eff} = 3.043$

more efficient and precise code, N > 3 neutrinos allowed, minor differences in numerical integrals

finite-T QED corrections at $\mathcal{O}(e^3)$! further terms should be negligible

How precise is $N_{\rm eff} = 3.04...?$

Long list of previous works...always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

[de Salas+, 2016]: $N_{
m eff}=3.045$ updated collision terms

[SG+, 2019]: $N_{\rm eff} = 3.044$ FortEPiaNO code

[Bennett+, 2019]: $N_{\rm eff} = 3.043$

more efficient and precise code, N > 3 neutrinos allowed, minor differences in numerical integrals

finite-T QED corrections at $\mathcal{O}(e^3)$!

further terms should be negligible

[in preparation]: uncertainty from neutrino mixing and other parameters?

 $\Delta N_{
m eff} \simeq 10^{-4}$ at most

"(Cosmological) Relic neutrinos, from A to Z"

S. Gariazzo

[Planck Collaboration, 2018]

S. Gariazzo

N_{eff} and CMB

N_{eff} and BBN

BBN: production of light nuclei at $t \sim 1$ s to $t \sim \mathcal{O}(10^2)$ s

temperature $T_{fr} \simeq 1 \text{ MeV}$ from nucleon freeze-out:

$$\Gamma_{n\leftrightarrow p} \sim G_F^2 T^5 = H \sim \sqrt{g_\star G_N} T^2$$

$$\downarrow$$

$$T_{fr} \simeq (g_\star G_N / G_F^4)^{1/6}$$

enters
$$n/p = \exp(-Q/T_{fr})$$

enters

$$n/p = \exp(-Q/T_{fr})$$

which controls element abundances
 g_{\star} depends on N_{eff}
abundances depend on N_{eff}
 G_{r} Fermi constant n, p : neutron, proton density number
 G_{N} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 S_{O} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Newton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neutron-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neuton-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neuton-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neuton-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neuton-proton mass difference
 G_{N} Neuton constant $Q = 1.293$ MeV neuton-proton mass

0.26

0.24

3.4

3.0 γDΡ

> 2.6 2.2 0.018

6

5 4

Y_PBBN 0.25 Standard BBN

(Adelberger et al. 2011)

0.020

0.022

 $\omega_{\rm b}$

Standard BBN:

[Planck Collaboration, 2018]

Aver et al. (2015)

+lowE

Cooke et al. (2018)

0.024

Cooke et al. [2018]:

0.026

Planck TT, TE, EE

Σm_{ν} and CMB

Ordering of ν masses

Bayes theorem for models:

 $p(\mathcal{M}|d) \propto Z_{\mathcal{M}} \pi(\mathcal{M})$

Bayesian evidence:

$$\left\{ Z_{\mathcal{M}} = \int_{\Omega_{\mathcal{M}}} \mathcal{L}(heta) \, \pi(heta) \, d heta
ight\}$$

Bayes factor NO vs IO:

 $B_{\rm NO,IO} = Z_{\rm NO}/Z_{\rm IO}$

Posterior probability:

$$\begin{array}{ll} P_{\mathrm{NO}} &= B_{\mathrm{NO,IO}}/(B_{\mathrm{NO,IO}}+1) \\ P_{\mathrm{IO}} &= 1/(B_{\mathrm{NO,IO}}+1) \end{array}$$

$$N\sigma$$
 from $P_{\rm NO} = {
m erf}(N/\sqrt{2})$

 $\pi(\mathcal{M})$ model prior $p(\mathcal{M}|d)$ model posterior S. Gariazzo $\mathcal{L}(\theta)$ likelihood $\Omega_{\mathcal{M}}$ parameter space, for parameters θ "(Cosmological) Relic neutrinos, from A to Z"

[de Salas+, Frontiers 5 (2018) 36] http://globalfit.astroparticles.es/

Based on:

JCAP 03 (2018) 050

Neutrinos are fermions — they obey Fermi-Dirac statistics

Neutrinos are fermions — they obey Fermi-Dirac statistics

Do they obey Fermi-Dirac statistics?

No experimental confirmation of spin-statistics theorem for neutrinos!

Can we find violations of the Pauli exclusion principle?
Do they obey Fermi-Dirac statistics?

No experimental confirmation of spin-statistics theorem for neutrinos!

Can we find violations of the Pauli exclusion principle?

electrons

no violations for atomic electrons e.g. look for anomalous *X*-rays from atomic decays

[Goldhaber&Scharff-Goldhaber, 1948]

[Fischbach&Kirsten&Schaeffer, 1968]

[Reines&Sobel, 1974]

no violations for protons/neutrons e.g. look for anomalous star (Sun) dynamics or transitions in nuclei

> [Plaga, 1989] [Miljanić+, 1990] [Borexino, 2004]

> > . . .

see detailed discussion in [Dolgov&Smirnov, PLB 2005]

The neutrino case

important: since spin-statistics relation confirmed for electrons, difficult to imagine large deviation for neutrinos

The neutrino case

important:

since spin-statistics relation confirmed for electrons, difficult to imagine large deviation for neutrinos

violation of the Pauli principle for ν should show up in elementary processes where identical ν are involved

for example the two-neutrino double beta decay, $A
ightarrow A' + 2 ar{
u} + 2 e^-$ or $A
ightarrow A' + 2
u + 2 e^+$

100% violation excluded [Barabash+, NPB 2007], but still 50% admixture of bosonic component allowed

The neutrino case

important:

since spin-statistics relation confirmed for electrons, difficult to imagine large deviation for neutrinos

violation of the Pauli principle for ν should show up in elementary processes where identical ν are involved

for example the two-neutrino double beta decay, $A
ightarrow A' + 2 ar{
u} + 2 e^-$ or $A
ightarrow A' + 2
u + 2 e^+$

100% violation excluded [Barabash+, NPB 2007], but still 50% admixture of bosonic component allowed

Fermi-Bose parameter κ_{ν} [Dolgov+, JCAP 2005]

$$f_{\nu}(E) = \frac{1}{\exp(E/T) + \kappa_{\nu}}$$
 "mixed"
distribution!
BE $\leftarrow \kappa_{\nu} = -1 \xleftarrow{\kappa_{\nu} = 0}{\text{MB}} \kappa_{\nu} = +1 \rightarrow \text{FD}$

[Barabash+, NPB 2007]: $\kappa_{\nu} \gtrsim -0.2$

Constraints on κ_{ν} from BBN

[de Salas, SG+, JCAP 03 (2018) 050]

what can cosmology say about κ_{ν} ?

different $f_{\nu}(p)$ affects BBN!

statistics factor becomes $(1 - \kappa_{\nu} f_{\nu})$

 $egin{array}{lll} (1+f_
u) &
ightarrow {\sf Bose enhancement,} \ (1-f_
u) &
ightarrow {\sf Pauli blocking} \end{array}$

Constraints on κ_{ν} from BBN

[de Salas, SG+, JCAP 03 (2018) 050]

1.0

Constraints on κ_{ν} from BBN

[de Salas, SG+, JCAP 03 (2018) 050]

CMB/BAO constraints on κ_{ν}

need to cover κ_{ν} - Σm_{ν} degeneracy: vary both!

degeneracy affects mostly CMB only bounds

with BAO, bound on Σm_{ν} is stronger

adding radiation (through κ_{ν}) and Ω_{Λ} alters H_0 and compensates a bit the larger mass

bounds: $\kappa_
u\gtrsim -0.1$ at 68%

 $-1 \leq \kappa_
u \leq 1$ at 95%

 $\kappa_{
u} = -1$ corresponds to $N_{
m eff} \simeq 3.47$ at early times

inside Planck 2σ region! reasonably it's not excluded [de Salas, SG+, JCAP 03 (2018) 050]

 $K_{\rm W}$

SISSA, 25/11/2019

S. Gariazzo

C Clustering in the local Universe in collaboration with G. Parimbelli, from SISSA!

Based on:

- JCAP 09 (2017) 034
- arxiv:1910.13388

ν clustering with N-one-body simulations [JCAP 09 (2017) 034]

Relic neutrinos are slow! $[c_{\nu} \sim 160(1 + z)(1 \text{ eV}/m_{\nu}) \text{ km s}^{-1}]$

Can be trapped in the gravitational potential of the Milky Way and neighbours

 $f_c(m_i) = n_i/n_{i,0}$ clustering factor \longrightarrow How to compute it?

Idea from [Ringwald & Wong, 2004] \longrightarrow N-one-body= N × single ν simulations

ightarrow each u evolved from initial conditions at z=3

 \rightarrow spherical symmetry, coordinates (r, θ , p_r , l)

$$ightarrow$$
 need $ho_{
m matter}(z) =
ho_{
m DM}(z) +
ho_{
m baryon}(z)$

 ν s are independent

Assumptions:

only gravitational interactions

us do not influence matter evolution ($ho_
u \ll
ho_{
m DM}$)

how many νs is "N"?

ightarrow must sample all possible r, p_r, l

ightarrow must include all possible us that reach the MW

(fastest ones may come from several (up to $\mathcal{O}(100)$) Mpc!)

given N ν :

 \rightarrow weigh each neutrinos

 \rightarrow reconstruct final density profile with kernel method from [Merritt&Tremblay, 1994]

S. Gariazzo

"(Cosmological) Relic neutrinos, from A to Z"

SISSA, 25/11/2019

22/45

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution

final phase space, z = 0

S. Gariazzo

"(Cosmological) Relic neutrinos, from A to Z"

SISSA, 25/11/2019

23/45

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution compute final position of each particle final phase space, z = 0S. Gariazzo "(Cosmological) Relic neutrinos, from A to Z" SISSA, 25/11/2019 23/45

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution only interested in overdensity at Earth? **★** a lot of time is wasted! smarter way: track backwards only interesting particles! final phase space, z = 0S. Gariazzo "(Cosmological) Relic neutrinos, from A to Z" SISSA, 25/11/2019 23/45

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Second advantage: no need to use spherical symmetry!

Forward-tracking

initial conditions need to sample 1D for position + 2D for momentum when using spherical symmetry

> with full grid would require 3+3 dimensions!

Impossible to relax spherical symmetry!

Back-tracking

"Initial" conditions only described by 3D in momentum

(position is fixed, apart for checks)

can do the calculation with any astrophysical setup

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Second advantage: no need to use spherical symmetry!

Clustering results with back-tracking

In comparison with previous results:

NFW

S. Gariazzo

"(Cosmological) Relic neutrinos, from A to Z"

Clustering results with back-tracking

In comparison with previous results:

Clustering results with back-tracking

In comparison with previous results:

Warning: NFW is not the same for all the cases! [de Salas+, 2017]

and [Zhang², 2018] use $\gamma \neq 1$, now we have $\gamma = 1$

[Ringwald&Wong, 2004] **uses old parameters**

Clustering results with back-tracking

In comparison with previous results:

NFW

D Direct Detection i.e. currently science-fiction, but in few years...

Based on:

- arxiv:1808.01892
- JCAP 07 (2019) 047

The oldest picture of the Universe

The Cosmic Microwave Background, generated at $t \simeq 4 \times 10^5$ years COBE (1992) WMAP (2003) Planck (2013)

The oldest picture of the Universe

The Cosmic Neutrino Background, generated at $t \simeq 1$ s

 $\ldots \to 2019 \to \ldots$

How to capture relic neutrinos?

[Long et al., JCAP 08 (2014) 038]

How to directly detect non-relativistic neutrinos?

Remember that $\langle E_{\nu} \rangle \simeq \mathcal{O}(10^{-4}) \text{ eV today}$ a process without energy threshold is necessary

[Weinberg, 1962]: neutrino capture in β -decaying nuclei $\nu + n \rightarrow p + e^{-1}$

Main background: β decay $n \rightarrow p + e^- + \bar{\nu}!$

 β and Neutrino Capture spectra

[PTOLEMY, JCAP 07 (2019) 047]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \overline{\sigma} N_T |U_{ei}|^2 n_0 f_c(m_i) \times e^{-\frac{[E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})]^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\left[\frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]\right]$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), $E_{\rm end}$ endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

 β and Neutrino Capture spectra

[PTOLEMY, JCAP 07 (2019) 047]

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), $E_{\rm end}$ endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

"(Cosmological) Relic neutrinos, from A to Z"

SISSA, 25/11/2019

$$\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma} \sim \mathcal{O}(10) \text{ yr}^{-1}$$

$$N_T \text{ number of } ^{3}\text{H nuclei in a sample of mass } M_T \quad \bar{\sigma} \simeq 3.834 \times 10^{-45} \text{ cm}^2 \quad n_i \text{ number density of neutrino } i$$
(without clustering)

"(Cosmological) Relic neutrinos, from A to Z"

Dirac and Majorana neutrinos

[Roulet+, JCAP 10 (2018) 049]

direct detection through $\nu_e + {}^3\mathrm{H} \longrightarrow e^- + {}^3\mathrm{He}$

only neutrinos with correct chirality can be detected!

non-relativistic **Majorana** case: ν and $\bar{\nu}$ cannot be distinguished!

expect more events for the **Majorana** than for **Dirac** case

Neutrino mass determination

[PTOLEMY, JCAP 07 (2019) 047]

statistical only!

relative error on $m_{\rm lightest}$

as a function of $\hat{m}_{
m lightest}$, Δ

Neutrino mass determination

[PTOLEMY, JCAP 07 (2019) 047]

Neutrino mass determination

statistical only!

[PTOLEMY, JCAP 07 (2019) 047]

(mass detection already with 10 mg of tritium!)
Neutrino mass determination

[PTOLEMY, JCAP 07 (2019) 047]

 Δ has almost no impact

Detection of the relic neutrinos

[PTOLEMY, JCAP 07 (2019) 047]

using the definition:

$$N_{\rm th}^{i}(\boldsymbol{\theta}) = A_{\beta}N_{\beta}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + \boldsymbol{A_{\rm CNB}}N_{\rm CNB}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + N_{b}$$

if $\mathbf{A_{CNB}} > 0$ at $N\sigma$, direct detection of CNB accomplished at $N\sigma$

seriously, I cannot go through the entire alphabet in one hour!

S (Light) Sterile neutrinos

let's pretend they exist

Based on:

- JPG 43 (2016) 033001
- JHEP 06 (2017) 135
- PLB 782 (2018) 13-21
- in preparation (2)
- JCAP 07 (2019) 014
- in preparation (3)
- JCAP 07 (2019) 047

Short Baseline (SBL) anomaly

[SG+, JPG 43 (2016) 033001]

Problem: anomalies in SBL experiments

errors in flux calculations? deviations from 3- ν description?

A short review:

- LSND search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8 σ excess of $\bar{\nu}_e$ events [Aguilar et al., 2001]
- Reactor re-evaluation of the expected anti-neutrino flux \Rightarrow disappearance of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Mention et al, 2011], [Azabajan et al, 2012]
- Gallium calibration of GALLEX and SAGE Gallium solar neutrino experiments give a 2.7 σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

MiniBooNE

Possible explanation: Additional squared mass difference $\Delta m_{SBL}^2 \simeq 1 \text{ eV}^2$

[NEOS, PRL 2017]

[DANSS, PLB 2018]

first *model independent* indications in favor of SBL oscillations

DANSS alone gives a $\Delta \chi^2 \simeq 13$ in favor of a light sterile neutrino!

[MiniBooNE, PRL 2018]

[MiniBooNE, PRL 2018]

[MiniBooNE, PRL 2018]

[MINOS+, PRL 2019]

MiniBooNE is incompatible with MINOS+ when combined with NEOS&DANSS

APP – DIS tension in 2019

[SG+, in preparation]

APP – DIS tension in 2019

[SG+, in preparation]

[SG+, in preparation]

APP – DIS tension in 2019

DANSS in 2019

[Danilov@EPS-HEP, 2019]

DANSS in 2019

[Danilov@EPS-HEP, 2019]

★ = 2018 DANSS+NEOS best fit [SG et al., PLB 782 (2018) 13]

[PROSPECT, PRL 2018]

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma

need to produce it through oscillations, but matter effects may block them time

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma need to produce it through oscillations, but matter effects may block them when are they enough to allow full equilibrium of active-sterile states?

$$0 \longleftarrow \Delta N_{\rm eff} = N_{\rm eff}^{4\nu} - N_{\rm eff}^{3\nu} \longrightarrow \simeq 1$$

o sterile production active&sterile in equilibrium

$$\frac{\Delta m_{as}^2}{\text{eV}^2} \sin^4 (2\vartheta_{as}) \simeq 10^{-5} \ln^2 (1 - \Delta N_{\text{eff}}) \qquad (1+1 \text{ approx.})$$
[Dolgov&Villante, 2004]

e.g.:
$$\Delta m_{as}^2 = 1 \text{ eV}^2$$
, $\sin^2 (2\vartheta_{as}) \simeq 10^{-3} \Longrightarrow \Delta N_{\mathrm{eff}} \simeq 1$

n

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma need to produce it through oscillations, but matter effects may block them when are they enough to allow full equilibrium of active-sterile states?

$$0 \longleftarrow \Delta N_{\rm eff} = N_{\rm eff}^{4\nu} - N_{\rm eff}^{3\nu} \longrightarrow \simeq 1$$

no sterile production active&sterile in equilibrium

 $\frac{\Delta m_{as}^2}{\text{eV}^2} \sin^4 (2\vartheta_{as}) \simeq 10^{-5} \ln^2 (1 - \Delta N_{\text{eff}}) \qquad (1+1 \text{ approx.})$ [Dolgov&Villante, 2004]

e.g.:
$$\Delta m^2_{as} = 1 \ {
m eV}^2$$
, $\sin^2{(2 artheta_{as})} \simeq 10^{-3} \Longrightarrow \Delta N_{
m eff} \simeq 1$

Full calculation: use numerical code!

S. Gariazzo

"(Cosmological) Relic neutrinos, from A to Z"

SISSA, 25/11/2019

39/45

$N_{\rm eff}$ and the new mixing parameters

Only vary one angle and fix two to zero: do they have the same effect?

 $N_{\rm eff}$ and the new mixing parameters

 $I_{\rm N_{eff}}$ and the new mixing parameters

Cosmological constraints on $|U_{\alpha 4}|^2$

[in preparation]

Use multi-angle results from FortEPiaNO to derive constraints on $|U_{\alpha 4}|^2$:

41/45

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

S. Gariazzo

"(Cosmological) Relic neutrinos, from A to Z"

one recent example: [Dentler+, 2019]

 $\mathcal{L} \supset -g\bar{\nu}_{s}\nu_{s}\phi$ with $\mathcal{O}(\text{eV}) \lesssim m_{4} \lesssim \mathcal{O}(100 \text{ keV})$ and $m_{\phi} \lesssim m_{4}$ here interactions with scalar ϕ and ν_{s} decay

43/45

one recent example: [Dentler+, 2019] $\mathcal{L} \supset -g\bar{\nu}_{s}\nu_{s}\phi$ with $\mathcal{O}(\text{eV}) \lesssim m_{4} \lesssim \mathcal{O}(100 \text{ keV})$ and $m_{\phi} \lesssim m_{4}$ \downarrow new interactions with scalar ϕ and ν_{s} decay

another example: [Liao+, 2019]

$$\mathcal{L}_{\text{NC-NSI}} = -2\sqrt{2}G_{F}\epsilon_{\alpha\beta}^{fC}[\overline{\nu_{\alpha}}\gamma^{\rho}P_{L}\nu_{\beta}]\left[\overline{f}\gamma_{\rho}P_{C}f\right]$$
$$\mathcal{L}_{\text{CC-NSI}} = -2\sqrt{2}G_{F}\epsilon_{\alpha\beta}^{ff'C}[\overline{\nu_{\beta}}\gamma^{\rho}P_{L}\ell_{\alpha}]\left[\overline{f'}\gamma_{\rho}P_{C}f\right]$$

Non-standard interactions (NSI) involving ν_s

another example: [Liao+, 2019]

$$\mathcal{L}_{\mathsf{NC}-\mathsf{NSI}} = -2\sqrt{2}G_{\mathsf{F}}\epsilon^{\mathsf{fC}}_{\alpha\beta}[\overline{\nu_{\alpha}}\gamma^{\rho}P_{\mathsf{L}}\nu_{\beta}]\left[\overline{f}\gamma_{\rho}P_{\mathsf{C}}f\right]$$
$$\mathcal{L}_{\mathsf{CC}-\mathsf{NSI}} = -2\sqrt{2}G_{\mathsf{F}}\epsilon^{\mathsf{ff}'\mathsf{C}}_{\alpha\beta}[\overline{\nu_{\beta}}\gamma^{\rho}P_{\mathsf{L}}\ell_{\alpha}]\left[\overline{f}'\gamma_{\rho}P_{\mathsf{C}}f\right]$$

Non-standard interactions (NSI) involving ν_s

PTOLEMY and the ν_4

$$\begin{split} \Gamma_{\mathrm{C}\nu\mathrm{B}} &= \mathcal{O}(10)/\mathrm{yr} \quad \left[\Gamma_4 \simeq \Delta N_{\mathrm{eff}} \, |U_{e4}|^2 \, f_c(m_4) \, \Gamma_{\mathrm{CNB}} \right] \\ \Delta N_{\mathrm{eff}} &= \stackrel{??}{=} \frac{[\mathrm{de \ Salas+, \ 2017}]}{f_c(m_4) \, = \, \mathcal{O}(10^2)} \end{split}$$

 $[{
m SG}+, {
m PLB} \ 2018] \ m_4 \ \simeq \ 1.15 \ {
m eV} \ |U_{e4}|^2 \ \simeq \ 0.01$

 Γ_4 depends probably on new physics!

PTOLEMY and the ν_4

$$\begin{split} \Gamma_{\rm C\nu B} &= \mathcal{O}(10) / {\rm yr} \quad \left[\begin{array}{c} \Gamma_4 \simeq \Delta N_{\rm eff} \, |\, U_{e4}|^2 \, f_c(m_4) \, \Gamma_{\rm CNB} \\ \Delta N_{\rm eff} &= \stackrel{[{\rm de \ Salas+, \ 2017]}}{f_c(m_4) \, = \, \mathcal{O}(10^2)} \end{array} \right] & \begin{bmatrix} {\rm SG+, \ PLB \ 2018]} \\ m_4 \, \simeq \, 1.15 \ {\rm eV} \\ |\, U_{e4}|^2 \, \simeq \, 0.01 \end{split}$$

 Γ_4 depends probably on new physics!

What do we learn from relic neutrinos?

What do we learn from relic neutrinos?

