

Stefano Gariazzo

IFIC, Valencia (ES) CSIC – Universitat de Valencia

Horizon 2020 European Union funding for Research & Innovation gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

Cosmological relic neutrinos, from A to Z

INT-20-1a, Seattle (USA/WA), 30/01/2020

A Active neutrinos Spoiler: "Sterile" will come later

Based on:

- Planck 2018
- Mangano+ 2005
- de Salas+ 2016
- in preparation (1)

History of the universe

History of the universe

The oldest picture of the Universe

The Cosmic Microwave Background, generated at $t \simeq 4 \times 10^5$ years COBE (1992) WMAP (2003) Planck (2013)

Big Bang Nucleosynthesis (BBN)

temperature $T_{fr} \simeq 1$ MeV from nucleon freeze-out

much earlier than CMB!

strong probe for physics before the CMB

e.g. neutrinos!

 $\nu \text{ affect}$ universe expansion
and
reaction rates $(\nu_e/\bar{\nu}_e)$

at BBN time...

baryon-to-photon ratio η BBN concordance

S. Gariazzo

"Cosmological relic neutrinos, from A to Z"

INT Seattle, 30/01/2020

3/28

Big Bang Nucleosynthesis (BBN)

much earlier than CMB!

strong probe for physics before the CMB

e.g. neutrinos!

 $\nu \text{ affect}$ universe expansion
and
reaction rates $(\nu_e/\bar{\nu}_e)$

at BBN time...

S. Gariazzo

"Cosmological relic neutrinos, from A to Z"

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

 ν decouple mostly before $e^+e^- \to \gamma\gamma$ annihilation!

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

Neutrino momentum distribution and N_{eff}

[deSalas+, 2016]

Distortion of the momentum distribution (f_{eq} : Fermi-Dirac)

Neutrino momentum distribution and $N_{\rm eff}$

$$N_{\rm eff} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\nu}}{\rho_{\gamma}} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{1}{\rho_{\gamma}} \sum_{i} g_{i} \int \frac{d^{3}p}{(2\pi)^{3}} E(p) f_{\nu,i}(p)$$

[Mangano+, 2005]

Case	z _{fin}	$\delta \bar{\rho}_{\nu_e}$ (%)	$\delta \bar{\rho}_{\nu \mu, \tau}$ (%)	N _{eff}	ΔY_p				
No mixing	1.3978	0.94	0.43	3.046	1.71×10^{-4}				
No mixing (no QED)	1.3990	0.95	0.43	3.035	1.47×10^{-4}				
No mixing (all v_e)	1.3966	0.95	0.95	3.066	3.57×10^{-4}				
No mixing (all ν_{μ})	1.3986	0.35	0.35	3.031	1.35×10^{-4}				

two-neutrino approximation:

full three-neutrino results (with oscillations):

Case	z _{fin}	$\delta \bar{\rho}_{v_e}$ (%)	$\delta \bar{ ho}_{ u_{\mu}}$ (%)	$\delta \bar{\rho}_{\nu_{\tau}}$ (%)	N _{eff}	ΔY_p
$\theta_{13} = 0$	1.3978	0.73	0.52	0.52	3.046	$2.07 imes 10^{-4}$
$\sin^2 \theta_{13} = 0.047$	1.3978	0.70	0.56	0.52	3.046	2.12×10^{-4}
Bimaximal $(\theta_{13} = 0)$	1.3978	0.69	0.54	0.54	3.045	$2.13 imes 10^{-4}$

Long list of previous works... always less than 3ν mixing

Long list of previous works... always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

Long list of previous works... always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

[de Salas+, 2016]: $N_{\rm eff} = 3.045$ updated collision terms

Long list of previous works... always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

[de Salas+, 2016]: $N_{
m eff} = 3.045$ updated collision terms

[SG+, 2019]: $N_{\text{eff}} = 3.044$ FortEPiaNO code more efficient and precise code, N > 3 neutrinos allowed, minor differences in numerical integrals

How precise is $N_{\rm eff} = 3.04...?$

Long list of previous works...always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

[de Salas+, 2016]: $N_{
m eff}=3.045$ updated collision terms

[SG+, 2019]: $N_{\rm eff} = 3.044$ FortEPiaNO code

[Bennett+, 2019]: $N_{\rm eff} = 3.043$

more efficient and precise code, N > 3 neutrinos allowed, minor differences in numerical integrals

finite-T QED corrections at $\mathcal{O}(e^3)$! further terms should be negligible

How precise is $N_{\rm eff} = 3.04...?$

Long list of previous works...always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

[de Salas+, 2016]: $N_{
m eff}=3.045$ updated collision terms

[SG+, 2019]: $N_{\rm eff} = 3.044$ FortEPiaNO code

[Bennett+, 2019]: $N_{\rm eff} = 3.043$

more efficient and precise code, N > 3 neutrinos allowed, minor differences in numerical integrals

finite-T QED corrections at $\mathcal{O}(e^3)$!

further terms should be negligible

[in preparation]: uncertainty from neutrino mixing and other parameters?

 $\Delta N_{
m eff} \simeq 10^{-4}$ at most

"Cosmological relic neutrinos, from A to Z"

S. Gariazzo

[Planck Collaboration, 2018]

S. Gariazzo

N_{eff} and CMB

N_{eff} and BBN

BBN: production of light nuclei at $t \sim 1$ s to $t \sim \mathcal{O}(10^2)$ s

temperature $T_{fr} \simeq 1 \text{ MeV}$ from nucleon freeze-out:

$$\Gamma_{n\leftrightarrow p} \sim G_F^2 T^5 = H \sim \sqrt{g_\star G_N} T^2$$

$$\downarrow$$

$$T_{fr} \simeq (g_\star G_N / G_F^4)^{1/6}$$

enters
$$n/p = \exp(-Q/T_{fr})$$

which controls element abundances

0.26

0.24

3.4

2.6 2.2 0.018

γOΡ 3.0

> 5 4

PBBN 0.25 Standard BBN

(Adelberger et al. 2011)

0.020

0.022

 $\omega_{\rm b}$

Standard BBN:

[Planck Collaboration, 2018]

Aver et al. (2015)

Planck TT, TE, EE

+lowE

Cooke et al. (2018)

0.026

0.024

Cooke et al. (2018): (Marcucci et al. 2016)

Based on:

JCAP 03 (2018) 050

Neutrinos are fermions — they obey Fermi-Dirac statistics

Neutrinos are fermions — they obey Fermi-Dirac statistics

Do they obey Fermi-Dirac statistics?

No experimental confirmation of spin-statistics theorem for neutrinos!

Can we find violations of the Pauli exclusion principle?

Do they obey Fermi-Dirac statistics?

No experimental confirmation of spin-statistics theorem for neutrinos!

Can we find violations of the Pauli exclusion principle?

electrons

no violations for atomic electrons e.g. look for anomalous *X*-rays from atomic decays

[Goldhaber&Scharff-Goldhaber, 1948]

[Fischbach&Kirsten&Schaeffer, 1968]

[Reines&Sobel, 1974]

no violations for protons/neutrons e.g. look for anomalous star (Sun) dynamics or transitions in nuclei

> [Plaga, 1989] [Miljanić+, 1990] [Borexino, 2004]

see detailed discussion in [Dolgov&Smirnov, PLB 2005]

. . .

The neutrino case

important: since spin-statistics relation confirmed for electrons, difficult to imagine large deviation for neutrinos

The neutrino case

important:

since spin-statistics relation confirmed for electrons, difficult to imagine large deviation for neutrinos

violation of the Pauli principle for ν should show up in elementary processes where identical ν are involved

for example the two-neutrino double beta decay, $A \rightarrow A' + 2\bar{\nu} + 2e^-$ or $A \rightarrow A' + 2\nu + 2e^+$

The neutrino case

important:

since spin-statistics relation confirmed for electrons, difficult to imagine large deviation for neutrinos

violation of the Pauli principle for ν should show up in elementary processes where identical ν are involved

for example the two-neutrino double beta decay, $A
ightarrow A' + 2 ar{
u} + 2 e^-$ or $A
ightarrow A' + 2
u + 2 e^+$

Fermi-Bose parameter κ_{ν} [Dolgov+, JCAP 2005]

$$f_{\nu}(E) = \frac{1}{\exp(E/T) + \kappa_{\nu}}$$
 "mixed"
distribution!
BE \leftarrow \kappa_{\nu} = -1 \xleftarrow{\kappa_{\nu} = 0}{\mathsf{MB}} \kappa_{\nu} = +1 \rightarrow \mathsf{FD}

[Barabash+, NPB 2007]: $\kappa_{
u}\gtrsim-0.2$

100% violation excluded [Barabash+, NPB 2007], but still 50% admixture of bosonic component allowed

S. Gariazzo

"Cosmological relic neutrinos, from A to Z"

INT Seattle, 30/01/2020

Constraints on κ_{ν} from BBN

what can cosmology say about κ_{ν} ?

different $f_{\nu}(p)$ affects BBN!

- statistics factor becomes $(1 \kappa_{\nu} f_{\nu})$
 - $egin{array}{lll} (1+f_
 u) &
 ightarrow {\sf Bose enhancement,} \ (1-f_
 u) &
 ightarrow {\sf Pauli blocking} \end{array}$

[de Salas, SG+, JCAP 03 (2018) 050]

Constraints on κ_{ν} from BBN

[de Salas, SG+, JCAP 03 (2018) 050]

CMB/BAO constraints on κ_{ν}

need to cover κ_{ν} - Σm_{ν} degeneracy: vary both!

degeneracy affects mostly CMB only bounds

with BAO, bound on Σm_{ν} is stronger

adding radiation (through $\kappa_{\nu})$ and Ω_{Λ} alters H_0 and compensates a bit the larger mass

bounds: $\kappa_{
u}\gtrsim-0.1$ at 68%

 $-1 \leq \kappa_
u \leq 1$ at 95%

 $\kappa_{
u} = -1$ corresponds to $N_{
m eff} \simeq 3.47$ at early times

inside Planck 2σ region! reasonably it's not excluded [de Salas, SG+, JCAP 03 (2018) 050]

C Clustering in the local Universe

Based on:

- JCAP 09 (2017) 034
- arxiv:1910.13388

ν clustering with N-one-body simulations [JCAP 09 (2017) 034]

Relic neutrinos are slow! [$c_{
u} \sim 160(1+z)(1 \text{ eV}/m_{
u}) \text{ km s}^{-1}$]

Can be trapped in the gravitational potential of the Milky Way and neighbours

 $f_c(m_i) = n_i/n_{i,0}$ clustering factor \rightarrow How to compute it?

Idea from [Ringwald & Wong, 2004] \longrightarrow N-one-body= N × single ν simulations

 \rightarrow each ν evolved from initial conditions at z = 3

→ spherical symmetry, coordinates (r, θ , p_r , l) → need $\rho_{matter}(z) = \rho_{DM}(z) + \rho_{baryon}(z)$

 ν s are independent

Assumptions:

only gravitational interactions

us do not influence matter evolution $(
ho_
u \ll
ho_{
m DM})$

how many ν s is "N"?

ightarrow must sample all possible r, p_r, l

 \rightarrow must include all possible ν s that reach the MW

(fastest ones may come from several (up to $\mathcal{O}(100)$) Mpc!)

 \rightarrow weigh each neutrinos

given N ν :

ightarrow reconstruct final density profile with kernel method from [Merritt&Tremblay, 1994]

S. Gariazzo

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution

final phase space, z = 0

S. Gariazzo

final phase space, z = 0

"Cosmological relic neutrinos, from A to Z"

S. Gariazzo

INT Seattle, 30/01/2020

15/28

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution compute final position of each particle final phase space, z = 0S. Gariazzo "Cosmological relic neutrinos, from A to Z" INT Seattle, 30/01/2020 15/28

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution only interested in overdensity at Earth? **★** a lot of time is wasted! smarter way: track backwards only interesting particles! final phase space, z = 0S. Gariazzo "Cosmological relic neutrinos, from A to Z" INT Seattle, 30/01/2020 15/28

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Second advantage: no need to use spherical symmetry!

Forward-tracking

initial conditions need to sample 1D for position + 2D for momentum when using spherical symmetry

> with full grid would require 3+3 dimensions!

Impossible to relax spherical symmetry!

Back-tracking

"Initial" conditions only described by 3D in momentum

(position is fixed, apart for checks)

can do the calculation with any astrophysical setup

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Second advantage: no need to use spherical symmetry!

[JCAP 01 (2020) 015]

In comparison with previous results:

S. Gariazzo

"Cosmological relic neutrinos, from A to Z"

[JCAP 01 (2020) 015]

In comparison with previous results:

S. Gariazzo

"Cosmological relic neutrinos, from A to Z"

In comparison with previous results:

NFW

[JCAP 01 (2020) 015]

S. Gariazzo

"Cosmological relic neutrinos, from A to Z"

In comparison with previous results:

NFW

S. Gariazzo

[JCAP 01 (2020) 015]

D Direct Detection i.e. currently science-fiction, but in few years...

Based on:

- arxiv:1808.01892
- JCAP 07 (2019) 047

The oldest picture of the Universe

The Cosmic Microwave Background, generated at $t \simeq 4 \times 10^5$ years COBE (1992) WMAP (2003) Planck (2013)

The oldest picture of the Universe

The Cosmic Neutrino Background, generated at $t \simeq 1$ s

 $\ldots \to 2019 \to \ldots$

How to capture relic neutrinos?

[Long et al., JCAP 08 (2014) 038]

How to directly detect non-relativistic neutrinos?

Remember that $\langle E_{
u}
angle \, \simeq \, {\cal O}(10^{-4}) \, {
m eV}$ today

a process without energy threshold is necessary

[Weinberg, 1962]: neutrino capture in eta-decaying nuclei $u + n
ightarrow p + e^-$

Main background: β decay $n \rightarrow p + e^- + \bar{\nu}!$

 β and Neutrino Capture spectra

[PTOLEMY, JCAP 07 (2019) 047]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_\nu} \bar{\sigma} N_T |U_{ei}|^2 n_0 f_c(m_i) \times e^{-\frac{[E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})]^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\boxed{\frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e} - x)^{2}}{2\sigma^{2}}\right]}$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), $E_{\rm end}$ endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

 \sim

[PTOLEMY, JCAP 07 (2019) 047]

$$\frac{d\tilde{\Gamma}_{CNB}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_{T} |U_{ei}|^{2} n_{0} f_{c}(m_{i}) \times e^{-\frac{[E_{e}-(E_{end}+m_{i}+m_{lightest})]^{2}}{2\sigma^{2}}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]$$

$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]$$

$$\frac{d\tilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \frac{d\Gamma_{\beta}}{dE_{e}}(x) \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]$$

 σ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), E_{end} endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

dΓ/dE_e [yr⁻¹ eV⁻¹]

300

$$\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma} \sim \mathcal{O}(10) \text{ yr}^{-1}$$

$$N_T \text{ number of }^{3}\text{H nuclei in a sample of mass } M_T \quad \bar{\sigma} \simeq 3.834 \times 10^{-45} \text{ cm}^2 \quad n_i \text{ number density of neutrino } i$$
(without clustering)

Detection of the relic neutrinos

[PTOLEMY, JCAP 07 (2019) 047]

using the definition:

```
N_{\rm th}^{i}(\boldsymbol{\theta}) = A_{\beta}N_{\beta}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + \boldsymbol{A}_{\rm CNB}N_{\rm CNB}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + N_{b}
```

if $m{A_{CNB}} > 0$ at $N\sigma$, direct detection of CNB accomplished at $N\sigma$

seriously, I cannot go through the entire alphabet in 30 minutes!

S (Light) Sterile neutrinos

let's pretend they exist

Based on:

- JCAP 07 (2019) 014
- in preparation (2)

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma

Four neutrinos \longrightarrow new oscillations in the early Universe

 $sterile \implies$ no weak/em interactions in the thermal plasma

need to produce it through oscillations, but matter effects may block them time

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma need to produce it through oscillations, but matter effects may block them when are they enough to allow full equilibrium of active-sterile states?

$$0 \longleftarrow \Delta N_{\rm eff} = N_{\rm eff}^{4\nu} - N_{\rm eff}^{3\nu} \longrightarrow \simeq 1$$

sterile production active&sterile in equilibrium

$$\frac{\Delta m_{as}^2}{\text{eV}^2} \sin^4 (2\vartheta_{as}) \simeq 10^{-5} \ln^2 (1 - \Delta N_{\text{eff}}) \qquad (1+1 \text{ approx.})$$

$$[\text{Dolgov&Villante, 2004}]$$

e.g.:
$$\Delta m_{as}^2 = 1 \ {
m eV}^2$$
, $\sin^2 \left(2 \vartheta_{as} \right) \simeq 10^{-3} \Longrightarrow \Delta N_{
m eff} \simeq 1$

no

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma need to produce it through oscillations, but matter effects may block them when are they enough to allow full equilibrium of active-sterile states?

$$0 \longleftarrow \Delta N_{\rm eff} = N_{\rm eff}^{4\nu} - N_{\rm eff}^{3\nu} \longrightarrow \simeq 1$$

no sterile production active&sterile in equilibrium

$$\frac{\Delta m_{as}^2}{\text{eV}^2} \sin^4 (2\vartheta_{as}) \simeq 10^{-5} \ln^2 (1 - \Delta N_{\text{eff}}) \qquad (1+1 \text{ approx.})$$
[Dolgov&Villante, 2004]

e.g.:
$$\Delta m_{as}^2 = 1 \ {
m eV}^2$$
, $\sin^2 \left(2 \vartheta_{as} \right) \simeq 10^{-3} \Longrightarrow \Delta N_{
m eff} \simeq 1$

Full calculation: use numerical code!

FORTran-Evolved PrimordIAl Neutrino Oscillations (FortEPiaNO) https://bitbucket.org/ahep_cosmo/fortepiano

S. Gariazzo

"Cosmological relic neutrinos, from A to Z"

INT Seattle, 30/01/2020

24/28

$N_{\rm eff}$ and the new mixing parameters

Only vary one angle and fix two to zero: do they have the same effect?

 $N_{\rm eff}$ and the new mixing parameters

 $I_{\rm N_{eff}}$ and the new mixing parameters

Cosmological constraints on $|U_{\alpha 4}|^2$ [in preparation] Use multi-angle results from FortEPiaNO to derive constraints on $|U_{\alpha 4}|^2$:

[in preparation]

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Warning: tension between reactor experiments and CMB bounds!

What do we learn from relic neutrinos?

What do we learn from relic neutrinos?

