

H2020 MSCA COFUND GA 754496

INFN. Turin section Turin (IT)

Istituto Nazionale di Fisica Nucleare

gariazzo@to.infn.it

http://personalpages.to.infn.it/~gariazzo/

(Light) Sterile neutrinos, from A to Z

Seminar at Universidad Adolfo Ibañez, Stgo / online, 11/06/2021

Appearance: the first anomaly

Based on:

- JPG 43 (2016) 033001
- LSND
- MiniBooNE
- in preparation

The Standard Model of Particle Physics

The Standard Model of Particle Physics

Neutrino oscillations

first discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations from atmospheric ν

first discovery of $\nu_e \rightarrow \nu_\mu, \nu_\tau$ oscillations from solar ν

Nobel prize in 2015

Two neutrino bases flavor neutrinos ν_{α} | $|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k} |\nu_{k}\rangle |$ massive neutrinos ν_{k} $|\nu(t=0)\rangle = |\nu_{\alpha}\rangle = U_{\alpha 1}|\nu_{1}\rangle + U_{\alpha 2}|\nu_{2}\rangle + U_{\alpha 3}|\nu_{3}\rangle$ ν_{α} ν_{β} → detector source $|\nu(t>0)\rangle = |\nu_{\beta}\rangle = U_{\alpha 1} e^{-iE_{1}t} |\nu_{1}\rangle + U_{\alpha 2} e^{-iE_{2}t} |\nu_{2}\rangle + U_{\alpha 3} e^{-iE_{3}t} |\nu_{3}\rangle \neq |\nu_{\alpha}\rangle$ $E_{\nu}^2 = p^2 + m_{\nu}^2 \longleftarrow \text{define} \longrightarrow t = L$ $\left| P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \left| \langle \nu_{\alpha} | \nu(L) \rangle \right|^{2} = \sum_{k} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{k j}^{2} L}{2E} \right)$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

Three Neutrino Oscillations

$$u_{lpha} = \sum_{k=1}^{3} U_{lpha k} \nu_k \quad (lpha = e, \mu, \tau)$$

 $U_{\alpha k}$ described by 3 mixing angles θ_{12} , θ_{13} , θ_{23} and one CP phase δ

Current knowledge of the 3 active ν mixing: [JHEP 02 (2021)]

NO/NH: Normal Ordering/Hierarchy, $m_1 < m_2 < m_3$ IO/IH: Inverted O/H, $m_3 < m_1 < m_2$ $\begin{array}{lll} \Delta m^2_{21} & = (7.50^{+0.22}_{-0.20}) \cdot 10^{-5} \ \mathrm{eV}^2 \\ |\Delta m^2_{31}| & = (2.55^{+0.02}_{-0.03}) \cdot 10^{-3} \ \mathrm{eV}^2 \ \mathrm{(NO)} \end{array}$ 310 $= (2.45^{+0.02}_{-0.03}) \cdot 10^{-3} \text{ eV}^2$ (IO) $\begin{array}{ll} 10 \sin^2(\theta_{12}) & = 3.18 \pm 0.16 \\ 10^2 \sin^2(\theta_{13}) & = 2.200 \substack{+0.069 \\ -0.062} (\mathrm{NO}) \\ & = 2.225 \substack{+0.064 \\ -0.070} (\mathrm{IO}) \end{array}$ 0.5 sin²θ₂₃ 0.016 0.020 sin²θ₁₃ 0.024 0.6 sin²θ₁₇ 15 °₹10 $10 \sin^2(\theta_{23})$ $= 5.74 \pm 0.14$ (NO) $= 5.78^{+0.10}_{-0.17}$ (IO) 8.5 2.3 2.4 2.5 2.6 |Δm²₃₁| [10⁻³ eV²] Δm²₂₁ [10⁻⁵ eV²] $\delta/\pi = 1.08^{+0.13}_{-0.12} \text{ (NO)}$ $= 1.58^{+0.15}_{-0.16} \text{ (IO)}$ mass ordering δ still unknown still unknown see also: http://globalfit.astroparticles.es

UAI, 11/06/2021

4/47

[SG+, JPG 43 (2016) 033001]

[SG+, JPG 43 (2016) 033001]

A large family

In principle, previous discussion is valid for N neutrinos

A large family

In principle, previous discussion is valid for N neutrinos $N \times N$ mixing matrix, N flavor neutrinos, N massive neutrinos

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \\ |\nu_{s_1}\rangle \\ \dots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \vdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_1 1} & U_{s_1 2} & U_{s_1 3} & U_{s_1 4} \\ \dots & & \ddots \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \\ |\nu_4\rangle \\ \dots \end{pmatrix}$$

A large family

In principle, previous discussion is valid for N neutrinos $N \times N$ mixing matrix, N flavor neutrinos, N massive neutrinos

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \\ |\nu_{s_{1}}\rangle \\ \dots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \vdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_{1} 1} & U_{s_{1} 2} & U_{s_{1} 3} & U_{s_{1} 4} \\ \dots & & \ddots \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \\ |\nu_{4}\rangle \\ \dots \end{pmatrix}$$

Our case will be 3 (active)+1 (sterile), a perturbation of 3 neutrinos case

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{k j}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

Short BaseLine (SBL) oscillations: $\frac{\Delta m_{41}^2 L}{E} \simeq 1$

At SBL, oscillations due to Δm_{21}^2 and $|\Delta m_{31}^2|$ do not develop

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

New mixings in the <u>3+1 scenario</u>

 $4 \times 4 \text{ mixing matrix:} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{\mathfrak{s}_{1}1} & U_{\mathfrak{s}_{1}2} & U_{\mathfrak{s}_{1}3} & U_{\mathfrak{s}_{1}4} \end{pmatrix}$

New mixings in the 3+1 scenario

 $4 \times 4 \text{ mixing matrix:} \left(\begin{array}{cccc} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_{1} 1} & U_{s_{1} 2} & U_{s_{1} 3} & U_{s_{1} 4} \end{array} \right) \right] \left] \begin{array}{c} \vartheta_{14} \\ \vartheta_{24} \\ \vartheta_{34} \end{array} \right)$

New mixings in the 3+1 scenario

$$4 \times 4 \text{ mixing matrix:} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{51} & U_{51} & U_{51} & U_{51} \end{pmatrix} \end{bmatrix} \begin{bmatrix} \vartheta_{14} \\ \vartheta_{24} \\ \vartheta_{34} \end{bmatrix}$$

$$\begin{bmatrix} \text{DISappearance} \\ P_{\substack{(-) \ \nu_{\alpha} \to \nu_{\alpha}}}^{\text{SBL}} \simeq 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right) \\ \sin^2 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^2(1 - |U_{\alpha4}|^2)$$

$$\begin{bmatrix} \overline{\nu_e} \to \overline{\nu_e} \\ U_{e4}|^2 = \sin^2 \vartheta_{14} \end{bmatrix}$$

$$\begin{bmatrix} \overline{\nu_{\mu}} \to \overline{\nu_{\mu}} \\ U_{\mu4}|^2 = \cos^2 \vartheta_{14} \sin^2 \vartheta_{24} \end{bmatrix}$$

New mixings in the 3+1 scenario

4 × 4 mixing matrix:

$$\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\pi1} & U_{\pi2} & U_{\pi3} \\
\end{bmatrix}$$

$$\begin{pmatrix}
U_{e4} \\ |^2 \\ = \sin^2 \vartheta_{14} \\
(\nabla_{\mu} \rightarrow \overline{\nu_{\mu}}) \\
U_{e4} |^2 \\ = \cos^2 \vartheta_{14} \\
(\nabla_{\mu} \rightarrow \overline{\nu_{\mu}}) \\
U_{\mu4} |^2 \\
= \cos^2 \vartheta_{14} \sin^2 \vartheta_{24}
\end{pmatrix}$$

$$\begin{pmatrix}
U_{e4} \\ |^2 \\ U_{\mu4} \\
U_{\pi3} \\
U_{\pi3}$$

[PRD 64 (2001) 112007]

[PRL 121 (2018) 221801]

MiniBooNE

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

UAI, 11/06/2021

10/47

[PRL 121 (2018) 221801]

MiniBooNE

 $L\simeq 541$ m, 200 MeV $\leq E\lesssim$ 3 GeV

UAI, 11/06/2021

Global fit of $\overset{(-)}{\nu_{\mu}} \rightarrow \overset{(-)}{\nu_{e}} APP$

[SG+, in preparation]

ICARUS and OPERA exclude MiniBooNE best fit

LSND and MiniBooNE only partially in agreement

KARMEN cuts part of LSND region

Global fit of $\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}} APP$

[SG+, in preparation]

ICARUS and OPERA exclude MiniBooNE best fit

LSND and MiniBooNE only partially in agreement

KARMEN cuts part of LSND region

B Beta/double beta constraints

i.e. non-oscillation probes, first part

Based on:

- KATRIN
- Giunti+ JHEP 2015

$$eta$$
 decay: $\mathcal{N}(A, Z) \longrightarrow \mathcal{N}(A, Z+1) + e^- + \bar{\nu}_e$

$$Q_{\beta} = M_i - M_f - m_e$$

 $E_{\nu} = Q_{\beta} - T = Q_{\beta} - (E_e - m_e)$

neutrino energy

notice that max electron energy is:

 $T_{\max} = Q_{\beta} - m_{\bar{\nu}_e}$

$$\beta$$
 decay: $\mathcal{N}(A, Z) \longrightarrow \mathcal{N}(A, Z+1) + e^- + \bar{\nu}_e$

 $Q_{\beta} = M_i - M_f - m_e$ $E_{\nu} = Q_{\beta} - T = Q_{\beta} - (E_{\rho} - m_{\rho})$ total available energy neutrino energy

notice that max electron energy is:

 $T_{\rm max} = Q_{\beta} - m_{\bar{\nu}_{a}}$

Kurie function: (degenerate ν masses) $K(T) = \left[(Q_{\beta} - T) \sqrt{(Q_{\beta} - T)^2 - m_{\tilde{\nu}_s}^2} \right]^{1/2}$

Useful to describe the e spectrum near the endpoint

notice: flavor neutrinos have no definite mass! $|m_{\bar{\nu}_a}^2 = \sum |U_{ei}|^2 m_i^2$

$$\beta$$
 decay: $\mathcal{N}(A, Z) \longrightarrow \mathcal{N}(A, Z+1) + e^{-} + \bar{\nu}_{e}$

 $Q_{\beta} = M_i - M_f - m_e$ total available energy $E_{\nu} = Q_{\beta} - T = Q_{\beta} - (E_e - m_e)$

$$T_{\max} = Q_{\beta} - m_{\overline{\nu}_e}$$

Kurie function: (degenerate
$$\nu$$
 masses)

$$K(T) = \left[(Q_{\beta} - T) \sqrt{(Q_{\beta} - T)^2 - m_{\overline{\nu}_e}^2} \right]^{1/2}$$

Useful to describe the e^- spectrum near the endpoint

notice: flavor neutrinos have no definite mass! $\left| \ m_{\bar{\nu}}^2 \right|$

$$d_{\overline{\nu}_e}^2 = \sum |U_{ei}|^2 m_i^2$$

$$\begin{split} & \text{Full expression:} \\ & \mathcal{K}(\mathcal{T}) = \begin{bmatrix} (\mathcal{Q}_{\beta} - \mathcal{T}) \sum_{i=1}^{N_{\nu}} |\mathcal{U}_{ei}|^2 \sqrt{(\mathcal{Q}_{\beta} - \mathcal{T})^2 - m_i^2} \end{bmatrix}^{1/2} & \text{with different} \\ & \text{masses } m_i \\ & \text{mixing angles} \\ & \text{enter } (|\mathcal{U}_{ei}|^2) \end{split}$$

ľ

 β decay

$$K(T) = \left[(Q_{\beta} - T) \sum_{i=1}^{N_{\nu}} |U_{ei}|^2 \sqrt{(Q_{\beta} - T)^2 - m_i^2} \right]^{1/2}$$

endpoint shifted + one kink for each mass eigenstate

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

ο Ζ"

 β decay

$$K(T) = \left[(Q_{\beta} - T) \sum_{i=1}^{N_{\nu}} |U_{ei}|^2 \sqrt{(Q_{\beta} - T)^2 - m_i^2} \right]^{1/2}$$

Much harder to see the endpoint shift and kinks!

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

UAI, 11/06/2021

[KATRIN, 2105.08533]

KATRIN results

"(Light) Sterile neutrinos, from A to Z"

KATRIN results

[KATRIN, 2105.08533]

Sterile neutrino in β decay

[KATRIN, PRL 126 (2021)]

Sterile neutrino in β decay

[KATRIN, PRL 126 (2021)]

Sterile neutrino in β decay

Sterile neutrino in β decay

[KATRIN, PRL 126 (2021)]

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

Neutrino masses from neutrinoless double β decay

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

UAI, 11/06/2021

[Giunti&Zavanin, JHEP 07 (2015) 171]

3 neutrinos, normal ordering (NO): $m_1 < m_2 < m_3$, $|U_{e1}| > |U_{e2}| > |U_{e3}|$

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

[Giunti&Zavanin, JHEP 07 (2015) 171]

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

[Giunti&Zavanin, JHEP 07 (2015) 171]

effective Majorana mass:
$$m_{\beta\beta} = \left| \sum_{k} e^{i\alpha_{k}} \mu_{k} \right|$$
, with $\mu_{k} \equiv U_{ek}^{2} m_{k}$

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

[Giunti&Zavanin, JHEP 07 (2015) 171]

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

Light sterile neutrino and $0\nu\beta\beta$

[Giunti&Zavanin, JHEP 07 (2015) 171] [Giunti @ MEDEX 2017]

Based on:

- JCAP 04 (2021) 073
- JCAP 07 (2019) 014
- arxiv:2003.02289

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

 ν decouple mostly before $e^+e^- \to \gamma\gamma$ annihilation!

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

 $m_{\rm Pl}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [., .] commutator

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x, y) = \begin{pmatrix}
\varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\
\varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu\mu} & \varrho_{\mu\tau} & \varrho_{\mu s} \\
\varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} & \varrho_{\tau s} \\
\varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \equiv f_{\nu_s}
\end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left| \frac{\mathbb{M}_{\mathrm{F}}}{2\mathbf{y}} - \frac{2\sqrt{2}G_{\mathrm{F}}\mathbf{y}}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_{W}^2} + \frac{4\mathbb{E}_{\nu}}{3m_{\tau}^2} \right), \varrho \right] + \frac{m_e^3 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 v^2} \mathcal{I}(\varrho) \right\} \left| \right|$ $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [., .] commutator $M_{\rm F} = U M U^{\dagger}$ $\mathbb{M} = \operatorname{diag}(m_1^2, \ldots, m_N^2)$ $U = R^{34} R^{24} R^{14} R^{23} R^{13} R^{12} \qquad \text{e.g. } R^{13} = \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta_{13} & 0 & \cos \theta_{13} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $|U|^{2} = \begin{pmatrix} \dots & \dots & \min^{2} \theta_{14} \\ \dots & \dots & \cos^{2} \theta_{14} \sin^{2} \theta_{24} \\ \dots & \dots & \cos^{2} \theta_{14} \cos^{2} \theta_{24} \sin^{2} \theta_{34} \\ \dots & \dots & \cos^{2} \theta_{14} \cos^{2} \theta_{24} \cos^{2} \theta_{34} \end{pmatrix}$

S. Gariazzo

take into account matter effects in oscillations

take into account neutrino-electron scattering and pair annihilation, plus neutrino-neutrino interactions

2D integrals over momentum, take most of the computation time

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} & \varrho_{\mu s} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} & \varrho_{\tau s} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \equiv f_{\nu_s} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_{\mathrm{W}}^2} + \frac{4\mathbb{E}_{\nu}}{3m_{\mathrm{Z}}^2} \right), \varrho \right] + \frac{m_e^2 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\}$ $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [., .] commutator $\mathbb{M}_{\mathrm{F}} = U\mathbb{M}U^{\dagger}$ $\mathbb{E}_{\ell} = \operatorname{diag}(
ho_e,
ho_{\mu}, 0, 0)$ $\mathbb{E}_{
u} = S_a\left(\int dyy^3 arrho\right)S_a$ $\mathcal{I}(\rho)$ collision integrals $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^2}{r} J(r_{\ell})\right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^{\infty} dy \, y^3 \sum_{\alpha=e}^{s} \frac{\mathrm{d}\varrho_{\alpha\alpha}}{\mathrm{d}x}}{\sum \left[r_{\ell}^2 J(r_{\ell}) + Y(r_{\ell})\right] + G_2(r) + \frac{2\pi^2}{15}}$ from continuity equation $\dot{\rho} = -3H(\rho + P)$ $\ell = e, \mu$ r = x/z, $r_{\ell} = m_{\ell}/m_e r$ J(r), Y(r) from non-relativistic transition of e^{\pm} , μ^{\pm} $G_1(r)$ and $G_2(r)$ from electromagnetic corrections

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} & \varrho_{\mu s} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} & \varrho_{\tau s} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \equiv f_{\nu_s} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\boldsymbol{\ell}} + \mathbb{P}_{\boldsymbol{\ell}}}{m_{\mathrm{lov}}^2} + \frac{4\mathbb{E}_{\boldsymbol{\nu}}}{3m_{\mathrm{T}}^2} \right), \varrho \right] + \frac{m_e^2 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\}$ $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [., .] commutator $\mathbb{M}_{\mathrm{F}} = U\mathbb{M}U^{\dagger}$ $\mathbb{E}_{\ell} = \mathrm{diag}(
ho_e,
ho_{\mu}, 0, 0)$ $\mathbb{E}_{
u} = S_a\left(\int dyy^3 arrho\right)S_a$ $\mathcal{I}(\rho)$ collision integrals $\left| \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^2}{r} J(r_{\ell}) \right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^{\infty} dy \, y^3 \sum_{\alpha=e}^{s} \frac{\mathrm{d}\varrho_{\alpha\alpha}}{\mathrm{d}x}}{\sum_{\alpha=e} \left[\frac{r_{\ell}^2}{r_{\ell}^2} J(r_{\ell}) + Y(r_{\ell}) \right] + G_2(r) + \frac{2\pi^2}{15}} \right|$ from continuity equation $\dot{\rho} = -3H(\rho + P)$ $\ell = e, \mu$

neutrino temperature w: same equation as z, but electrons always relativistic

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} & \varrho_{\mu s} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} & \varrho_{\tau s} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \equiv f_{\nu_s} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_W^2} + \frac{4\mathbb{E}_{\nu}}{3m_Z^2} \right), \varrho \right] + \frac{m_e^3 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\} \left[-\frac{1}{2} \left[\frac{1}{2\pi} \frac{1}{3\pi^2} \frac{1}{3\pi^$ $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [., .] commutator $\mathbb{M}_{\mathrm{F}} = U\mathbb{M}U^{\dagger}$ $\mathbb{E}_{\ell} = \operatorname{diag}(
ho_e,
ho_{\mu}, 0, 0)$ $\mathbb{E}_{
u} = S_a\left(\int dyy^3 arrho\right)S_a$ $\mathcal{I}(\rho)$ collision integrals $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^2}{r} J(r_{\ell})\right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^{\infty} dy \, y^3 \sum_{\alpha=e}^{s} \frac{\mathrm{d}\varrho_{\alpha\alpha}}{\mathrm{d}x}}{\sum_{\alpha=e} \left[\frac{r_{\ell}^2}{r} J(r_{\ell}) + Y(r_{\ell})\right] + G_2(r) + \frac{2\pi^2}{15}}$ from continuity equation $\dot{\rho} = -3H(\rho + P)$ $\ell = e, \mu$ neutrino temperature w: same equation as z, but electrons always relativistic initial conditions: $\rho_{\alpha\alpha} =$ Fermi-Dirac at $x_{in} \simeq 0.001$, with $w = z \simeq 1$

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

UAI, 11/06/2021

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu\mu} & \varrho_{\mu\tau} & \varrho_{\mus} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} & \varrho_{\taus} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \equiv f_{\nu_s} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_W^2} + \frac{4\mathbb{E}_{\nu}}{3m_z^2} \right), \varrho \right] + \frac{m_e^2 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\}$ FORTran-Evolved PrimordIAl Neutrino Oscillations (FortEPiaNO) https://bitbucket.org/ahep cosmo/fortepiano public $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^2}{r} J(r_{\ell})\right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^{\infty} dy \, y^3 \sum_{\alpha=e}^{s} \frac{\mathrm{d}\varrho_{\alpha\alpha}}{\mathrm{d}x}}{\sum_{\alpha=e} \left[\frac{r_{\ell}^2}{r} J(r_{\ell}) + Y(r_{\ell})\right] + G_2(r) + \frac{2\pi^2}{15}}$ from continuity equation $\dot{\rho} = -3H(\rho + P)$ $\ell = e, \mu$ neutrino temperature w: same equation as z, but electrons always relativistic initial conditions: $\rho_{\alpha\alpha} =$ Fermi-Dirac at $x_{in} \simeq 0.001$, with $w = z \simeq 1$

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

UAI, 11/06/2021

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

UAI, 11/06/2021

I $N_{\rm eff}$ and the new mixing parameters

Only vary one angle and fix two to zero: do they have the same effect?

I $N_{\rm eff}$ and the new mixing parameters

[SG+, JCAP 07 (2019) 014]

[SG+, JCAP 07 (2019) 014]

$N_{\rm eff}$ and CMB

Cosmological constraints on $|U_{\alpha 4}|^2$

[arxiv:2003.02289]

Use multi-angle results from FortEPiaNO to derive constraints on $|U_{\alpha 4}|^2$:

Prevent ν_s thermalization?

oscillation parameters suggest $\Delta N_{
m eff} \simeq 1$ [SG+, 2019]

is there a way to suppress ν_s contribution to $N_{\rm eff}$?

suppress oscillations/reduce $\Delta N_{\rm eff}$ large lepton asymmetry [Foot+1995, Mirizzi+2012, many more] new neutrino interactions [Bento+2001, Dasgupta+2014, Hannestad+2014, Saviano+2014, Dentler+2019, de Gouvea+2019, Moulai+2019, Fischer+2019, Diaz+2019, Liao+2019, Archidiacono+2020, many more] very low reheating temperature [Gelmini+2004, Smirnov+2006, deSalas+2015, in preparation]

compensate effects of $\Delta N_{
m eff}~\simeq~1$

time varying dark energy components [Giusarma+2012]

larger expansion rate at the time of ν_s production [Rehagen+2014]

freedom in the Primordial Power Spectrum (PPS) of scalar perturbations from inflation compensate damping due to $\Delta N_{\rm eff}$ [SG+2015]

These are just some ideas (incomplete list!)

D Disappearance (Muon channel) strong constraints, and a recent first hint

Based on:

- IceCube 2016
- DeepCore
- Minos/Minos+
- in preparation
- IceCube 2020

[PRL 117 (2016) 071801]

S. Gariazzo

S. Gariazzo

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

$1~{ m GeV}~\lesssim~E~\lesssim$ 40 GeV,

peak at 3 GeV

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

Global fit of $\stackrel{(-)}{\nu_{\mu}}$ DIS

[SG+, in preparation]

 $\frac{\text{MINOS}+}{\text{dominates}}$ at small Δm_{41}^2

 $\frac{\text{lceCube (1 yr)}}{\text{important at}}$ $\Delta m_{41}^2 \simeq 0.2 \text{ eV}^2$

see later for IceCube 8 yr!

Global fit of $\stackrel{(-)}{\nu_{\mu}}$ DIS

[SG+, in preparation]

[IceCube, PRL 2020]

IceCube 8 yr update

First LBL constraints from NOvA

10³ Events / 0.25 GeV / 3.1 × 10²⁰ POT Events / 1 GeV / 12.5 imes 10²⁰ POT 15 - Data Data Total 3-Flavor prediction **Fotal prediction** 1 σ syst. range near detector detector 30 σ syst. range Cosmic-induced 10 backgrounds Beam-induced Beam-induced backgrounds backgrounds 20 $\theta_{13} = 8.48^{\circ}, \sin^2 \theta_{23} = 0.542$ $\Delta m_{aa}^2 = 2.44 \times 10^{-3} \text{ eV}^2$ far $\delta_{CP} = 1.37\pi$ 10 2.5 7.5 Energy Deposited (GeV) Energy Deposited (GeV) NOvA Data Fit, 12.51 × 10²⁰ POT NOvA Data Fit, 12.51 × 10²⁰ POT NOvA 68% C.L. 68% C.L. $sin^2 \theta_{23} = 0.542$, $\Delta m^2_{32} = 2.44 \times 10^{\cdot 3} \text{ eV}^2$ $0.25 = \sin^2 \theta_{22} = 0.542, \Delta m_{22}^2 = 2.44 \times 10^{-3} \text{ eV}^2$ NOvA 90% C.L. $\Delta m_{u}^{2} = 0.5 \text{ eV}^{2}$ $\Delta m_{41}^2 = 0.5 \text{ eV}^2$ 30 Super-Kamiokande 90% C.L. $\delta_{13} = 1.37\pi$ $\delta_{13} = 1.37\pi$ θ_{24} (degrees) 0.2 90% C.L.* IceCube DeepCore 90% C.L.** ⊲_ ⊇^{±. 0.15} 20 * PRD 91, 052019 (2015) ** PRD 95, 112002 (2017) 0. 10 0.05 30 0.2 0.3 10 20 0.1 04 θ_{34} (degrees) $|U_{14}|^2$ S. Gariazzo "(Light) Sterile neutrinos, from A to Z" UAI, 11/06/2021 29/47

[NOvA, 2106.04673]

E disappearance (Electron channel)

reactor and Gallium experiments

Based on:

- JPG 43 (2016) 033001
- Neutrino4
- Giunti+ 2020/2021
- Kostensalo+ 2019
- RENO
- DayaBay
- PLB 782 (2018)

Reactor Antineutrino Anomaly (RAA)

[PRD 83 (2011) 073006]

2011: new reactor $\bar{\nu}_e$ fluxes by Huber and Mueller+ (HM)

[Huber, PRC 84 (2011) 024617] [Mueller et al., PRC 83 (2011) 054615]

Previous reactor rates evaluated with new fluxes \Rightarrow deficit

Can we trust the HM fluxes?

known since 2014: bump in the spectrum around 5 MeV!

cannot be explained by SBL oscillations

(averaged at the observed distances)

many attempts of possible explanations, how to clarify the issue?

UAI, 11/06/2021

Can we trust the HM fluxes?

known since 2014: bump in the spectrum around 5 MeV!

cannot be explained by SBL oscillations

(averaged at the observed distances)

many attempts of possible explanations, how to clarify the issue?

	Model independent information!
	(i.e. take ratio of spectra
	at different distances)
φ	$\Phi_1 = \Phi_0(E)f(L_1, E) \Phi_2 = \Phi_0(E)f(L_2, E)$
	$\Phi_1/\Phi_2 = f(L_1, E)/f(L_2, E)$
<u>,</u>	UAL 11/06/2021 31/47

ν_s at reactors in 2020

[Neutrino-4, PZETF 2020]

[SoLiD, JINST 2018]

[PROSPECT, PRD 2020]

[STEREO, PRD 2020]

"(Light) Sterile neutrinos, from A to Z"

UAI, 11/06/2021

32/47

Significance of the preference?

standard χ^2 distribution may be not appropriate to study the significance due to undercoverage at angles below the experiment sensitivity

Significance of the preference?

[Giunti, PRD 101 (2020)]

standard χ^2 distribution may be not appropriate to study the significance due to undercoverage at angles below the experiment sensitivity

"(Light) Sterile neutrinos, from A to Z"

UAI, 11/06/2021

Neutrino-4

claimed > 3σ preference for 3+1 over 3ν case

> best fit incompatible with other reactor experiments

Neutrino-4

34/47

energy resolution smearing not properly taken into account?

Neutrino-4

[Giunti+, PLB 2021]

relaxed constraints

Fuel evolution

Fuel evolution

Gallium anomaly revisited

New cross section calculations: (interacting nuclear shell model)

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

[Kostensalo+, PLB 795 (2019) 542-547]

Gallium anomaly revisited

New cross section calculations: (interacting nuclear shell model)

[Giunti&Laveder, 2011]

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

[Kostensalo+, PLB 795 (2019) 542-547]

Compare with DANSS+NEOS:

Better compatibility with reactors

UAI, 11/06/2021

F Fit

Based on:

- in preparation
- Dentler+ 2018
- arxiv:2003.02289

Based on:

- in preparation
- Dentler+ 2018
- arxiv:2003.02289

APP – DIS tension in 2019

APP – DIS tension in 2019

[SG+, in preparation]

[SG+, in preparation]

APP – DIS tension in 2019

[Dentler+, JHEP 08 (2018) 010] (2013 data from MiniBooNE, MINOS+ v1!)

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{ m app}$	$\chi^2_{\rm min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{\rm dof}$	PG
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	3.71×10^{-7}
Removing anomalous							
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	$3.8 imes 10^{-5}$
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}
Removing constraints	3						
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	4.7×10^{-6}
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	6.0×10^{-7}
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes 10^{-7}$
Removing classes of data							
$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	3.6×10^{-2}
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}
$\stackrel{\scriptscriptstyle(-)}{\nu}_{\mu}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}

[Dentler+, JHEP 08 (2018) 010] (2013 data from MiniBooNE, MINOS+ v1!)

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{\rm app}$	$\chi^2_{\rm min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{\rm dof}$	PG
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	3.71×10^{-7}
Removing anomalous data sets							
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	$3.8 imes 10^{-5}$
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}
Removing constraints	3						
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	4.7×10^{-6}
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	6.0×10^{-7}
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes 10^{-7}$
Removing classes of data							
$\stackrel{(-)}{\nu}_{e}$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	3.6×10^{-2}
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}
$\stackrel{(-)}{\nu}_{\mu}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}

No improvements if MiniBooNE is not considered

[Dentler+, JHEP 08 (2018) 010] (2013 data from MiniBooNE, MINOS+ v1!)

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{\rm app}$	$\chi^2_{\rm min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{ m dof}$	PG
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	$3.71 imes 10^{-7}$
Removing anomalous data sets							
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	$3.8 imes 10^{-5}$
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}
Removing constraints	3						
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	4.7×10^{-6}
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	6.0×10^{-7}
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes 10^{-7}$
Removing classes of data							
$\overline{\nu}_e$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	$3.6 imes 10^{-2}$
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}
$\overline{\nu}_{\mu}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}

 $\stackrel{(-)}{\nu_{\mu}}$ DIS also constrain $|U_{e4}|^2$, while $\stackrel{(-)}{\nu_{e}}$ DIS do not constrain $|U_{\mu4}|^2$

[Dentler+, JHEP 08 (2018) 010] (2013 data from MiniBooNE, MINOS+ v1!)

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{ m app}$	$\chi^2_{\rm min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{ m dof}$	PG
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	$3.71 imes 10^{-7}$
Removing anomalous data sets							
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	$3.8 imes 10^{-5}$
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}
Removing constraints	3						
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	$4.7 imes 10^{-6}$
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	$6.0 imes 10^{-7}$
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	$7.5 imes 10^{-7}$
Removing classes of data							
$\overline{\nu}_e$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	3.6×10^{-2}
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	$2.3 imes 10^{-4}$
$\stackrel{(-)}{\nu}_{\mu}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}

Only removing LSND or all $\stackrel{(-)}{\nu_{\mu}}$ constraints the fit is almost acceptable

No reason to do so!
Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

S. Gariazzo

H Heavier sterile neutrinos beyond eV: other types of sterile neutrinos

Based on:

JCAP 01 (2017) 025

Heavier neutrino states at oscillation/mass experiments

Oscillation probability:

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right)$$

oscillation length decreases with increasing Δm_{ki}^2 !

2 . \

Heavier neutrino states at oscillation/mass experiments

Oscillation probability:

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i\frac{\Delta m_{kj}^{*}L}{2E}\right)$$

oscillation length decreases with increasing Δm_{ki}^2 !

Concerning the mixing matrix (3+1 scenario):

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_{24} & s_{24} \\ 0 & 0 & -s_{34} & c_{34} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ c_{24} & 0 & s_{24} \\ 0 & 0 & -s_{24} & 0 & c_{24} \end{pmatrix} \begin{pmatrix} c_{14} & 0 & 0 & s_{14} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & c_{14} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{23} & s_{23} & 0 \\ 0 & -s_{24} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} & 0 \\ 0 & -s_{23} & c_{23} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 & 0 \\ -s_{12} & c_{12} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 & 0 \\ -s_{12} & c_{12} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 & 0 \\ -s_{12} & c_{12} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\Rightarrow |U|^{2} = \begin{pmatrix} c_{14}^{2}c_{13}^{2}c_{12}^{2} & c_{14}^{2}c_{13}^{2}s_{12}^{2} & c_{14}^{2}s_{13}^{2} & s_{14}^{2} \\ \cdots & \cdots & c_{14}^{2}s_{24}^{2}s_{24}^{2} \\ \cdots & \cdots & c_{14}^{2}c_{24}^{2}s_{24}^{2} \end{pmatrix}, s_{i4} \simeq 0, c_{i4} \simeq 1$$

2 . \

Heavier neutrino states at oscillation/mass experiments

Oscillation probability:

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i\frac{\Delta m_{kj}^{2}L}{2E}\right)$$

oscillation length decreases with increasing Δm_{ki}^2 !

Concerning the mixing matrix (3+1 scenario):

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_{34} & s_{34} \\ 0 & 0 & -s_{34} & c_{34} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ c_{24} & 0 & s_{24} \\ 0 & 0 & -s_{24} & 0 & c_{24} \end{pmatrix} \begin{pmatrix} c_{14} & 0 & 0 & s_{14} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & c_{13} & s_{23} & 0 \\ 0 & -s_{24} & 0 & c_{24} \end{pmatrix} \begin{pmatrix} c_{14} & 0 & 0 & s_{14} \\ 0 & 1 & 0 & 0 \\ 0 & -s_{24} & 0 & c_{24} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} & 0 \\ 0 & -s_{23} & s_{23} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} & 0 \\ 0 & -s_{12} & c_{12} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & c_{12} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & c_{12} & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\Rightarrow |U|^{2} = \begin{pmatrix} c_{14}^{2}c_{13}^{2}c_{12}^{2} & c_{14}^{2}c_{13}^{2}s_{12}^{2} & c_{14}^{2}s_{13}^{2} & s_{14}^{2} \\ \cdots & \cdots & c_{14}^{2}c_{24}^{2}s_{24}^{2} \\ \cdots & \cdots & c_{14}^{2}c_{24}^{2}s_{24}^{2} \\ \cdots & \cdots & c_{14}^{2}c_{24}^{2}c_{24}^{2}s_{34}^{2} \end{pmatrix}, s_{i4} \simeq 0, c_{i4} \simeq 1$$

Effect of neutrino masses in
$$\beta$$
 and $0\nu\beta\beta$ decays:

$$\kappa(\tau) = \left[(Q_{\beta} - \tau) \sum_{i=1}^{N_{\nu}} |U_{ei}|^2 \sqrt{(Q_{\beta} - \tau)^2 - m_i^2} \right]^{1/2} \text{ and } m_{\beta\beta} = \left| \sum_k e^{i\alpha_k} \mu_k \right|, \text{ with } \mu_k \equiv U_{ek}^2 m_k$$
Gariazzo "(Light) Sterile neutrinos, from A to Z" UAL 11/06/2021 42/47

S

Production in the early Universe [keV ν white paper, JCAP 01 (2017) 025]

OK if early decoupling

dilution of energy density ρ_N to acceptable values during expansion OK also if N is not produced in the early Universe

produced through oscillations, but never reaches equilibrium thanks to small mixing angle

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

UAI, 11/06/2021

43/47

KeV N constraints - I

[Tremaine-Gunn 1979] phase space distribution in galaxy cannot exceed degenerate Fermi gas

KeV N constraints - I

S. Gariazzo

"(Light) Sterile neutrinos, from A to Z"

KeV N constraints - II

[keV ν white paper, JCAP 01 (2017) 025]

The situation is NOT favorable for the light sterile neutrino...

What do we learn on sterile neutrinos?

What do we learn on sterile neutrinos?

"(Light) Sterile neutrinos.from A to Z'