

H2020 MSCA COFUND GA 754496

INFN. Turin section Turin (IT)

Istituto Nazionale di Fisica Nucleare

gariazzo@to.infn.it

http://personalpages.to.infn.it/~gariazzo/

Light sterile neutrinos

from A to 7

TAUP 2021, Valencia (ES) / online, 26/08/2021

Based on:

- JHEP 02 (2021) 071 and update
- JPG 43 (2016) 033001
- LSND
- MiniBooNE

Neutrino oscillations

first discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations from atmospheric ν

first discovery of $\nu_e \rightarrow \nu_\mu, \nu_\tau$ oscillations from solar ν

Nobel prize in 2015

TAUP 2021, 26/08/2021

Two neutrino bases

Three Neutrino Oscillations

$$u_{lpha} = \sum_{k=1}^{3} U_{lpha k} \nu_k \quad (lpha = e, \mu, \tau)$$

 $U_{\alpha k}$ described by 3 mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ and one CP phase δ

Current knowledge of the 3 active ν mixing: [JHEP 02 (2021) update]

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

A large family

In principle, previous discussion is valid for N neutrinos

TAUP 2021, 26/08/2021

A large family

In principle, previous discussion is valid for N neutrinos $N \times N$ mixing matrix, N flavor neutrinos, N massive neutrinos

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \\ |\nu_{s_{1}}\rangle \\ \dots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \vdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_{1} 1} & U_{s_{1} 2} & U_{s_{1} 3} & U_{s_{1} 4} \\ \dots & & \ddots \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \\ |\nu_{4}\rangle \\ \dots \end{pmatrix}$$

A large family

In principle, previous discussion is valid for N neutrinos $N \times N$ mixing matrix, N flavor neutrinos, N massive neutrinos

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \\ |\nu_{s_{1}}\rangle \\ \dots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \vdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \\ U_{s_{1} 1} & U_{s_{1} 2} & U_{s_{1} 3} & U_{s_{1} 4} & \\ \dots & & \ddots & \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \\ |\nu_{4}\rangle \\ \dots \end{pmatrix}$$

Our case will be 3 (active)+1 (sterile), a perturbation of 3 neutrinos case

New mixings in the <u>3+1 scenario</u>

 $4 \times 4 \text{ mixing matrix:} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{\mathfrak{s}_{1}1} & U_{\mathfrak{s}_{1}2} & U_{\mathfrak{s}_{1}3} & U_{\mathfrak{s}_{1}4} \end{pmatrix}$

New mixings in the 3+1 scenario

 4×4 mixing matrix:

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\ U_{s_{1}1} & U_{s_{1}2} & U_{s_{1}3} & U_{s_{1}4} \end{pmatrix} \end{bmatrix} \begin{bmatrix} \vartheta_{14} \\ \vartheta_{24} \\ U_{51} \end{bmatrix}$$

New mixings in the 3+1 scenario

$$4 \times 4 \text{ mixing matrix:} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{51} & U_{51} & U_{51} & U_{51} \end{pmatrix} \end{bmatrix} \begin{bmatrix} \vartheta_{14} \\ \vartheta_{24} \\ \vartheta_{34} \end{bmatrix}$$

$$\begin{bmatrix} \text{DISappearance} \\ P_{\substack{(-) \ (-) \\ \nu_{\alpha} \to \nu_{\alpha}}}^{\text{SBL}} \simeq 1 - \sin^{2} 2\vartheta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right) \\ \sin^{2} 2\vartheta_{\alpha\alpha} = 4 |U_{\alpha4}|^{2} (1 - |U_{\alpha4}|^{2})$$

$$\begin{bmatrix} \overline{(\nu_{e}} \to \overline{(\nu_{e})} \\ \eta_{24} \end{bmatrix} = \sin^{2} \vartheta_{14}$$

$$\begin{bmatrix} \overline{(\nu_{\mu}} \to \overline{(\nu_{\mu})} \\ \overline{(\nu_{\mu}} \to \overline{(\nu_{\mu})} \end{bmatrix} \\ \operatorname{accelerator} \\ \operatorname{atmospheric} \\ |U_{\mu4}|^{2} = \cos^{2} \vartheta_{14} \sin^{2} \vartheta_{24}$$

New mixings in the 3+1 scenario

4 × 4 mixing matrix:
$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\pi1} & U_{\pi2} & U_{\pi3} \\ U_{\pi1} & U_{\pi1} & U_{\pi2} \\ U_{\pi1} & U_{\pi2} & U_{\pi3} \\ U_{\pi1} & U_{\pi2} & U_{\pi3} \\ U_{\pi1} & U_{\pi1} & U_{\pi2} \\ U_{\pi1} & U_{\pi2} & U_{\pi3} \\ U_{\pi1} & U_{\pi1} & U_{\pi2} \\ U_{\pi1} & U_{\pi1} & U_{\pi2} \\ U_{\pi1} & U_{\pi2} & U_{\pi3} \\ U_{\pi1} & U_{\pi1} & U_{\pi3} \\ U_{\pi1} & U_{\pi3} & U_{\pi3} \\ U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} \\ U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} \\ U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} \\ U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} \\ U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} \\ U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3} \\ U_{\pi3} & U_{\pi3} & U_{\pi3} & U_{\pi3$$

6/29

[PRL 121 (2018) 221801]

MiniBooNE

 $L \simeq 541$ m, 200 MeV $\leq E \lesssim 3$ GeV

7/29

[PRL 121 (2018) 221801]

MiniBooNE

purpose: check LSND signal

 $L\simeq 541$ m, 200 MeV $\leq E\lesssim$ 3 GeV

TAUP 2021, 26/08/2021

B Beta decay constraints

i.e. non-oscillation probes, first part

Based on:

KATRIN

$$eta$$
 decay: $\mathcal{N}(A, Z) \longrightarrow \mathcal{N}(A, Z+1) + e^- + \bar{\nu}_e$

 $Q_{\beta} = M_i - M_f - m_e$ total available energy $E_{\nu} = Q_{\beta} - T = Q_{\beta} - (E_e - m_e)$ neutrino energy

notice that max electron energy is:

$${\cal T}_{
m max} = {\cal Q}_eta \ - \ m_{ar
u_e}$$

Kurie function: (degenerate ν masses) $K(T) = \left[(Q_{\beta} - T) \sqrt{(Q_{\beta} - T)^2 - m_{\tilde{\nu}_e}^2} \right]^{1/2}$

Useful to describe the e^- spectrum near the endpoint

$$eta$$
 decay: $\mathcal{N}(A, Z) \longrightarrow \mathcal{N}(A, Z+1) + e^- + \bar{\nu}_e$

 $Q_{\beta} = M_i - M_f - m_e$ $E_{\nu} = Q_{\beta} - T = Q_{\beta} - (E_{\rho} - m_{\rho})$ total available energy neutrino energy

notice that max electron energy is:

 $T_{\rm max} = Q_{\beta} - m_{\bar{\nu}_{a}}$

Kurie function: (degenerate ν masses) $K(T) = \left[(Q_{\beta} - T) \sqrt{(Q_{\beta} - T)^2 - m_{\tilde{\nu}_s}^2} \right]^{1/2}$

Useful to describe the e spectrum near the endpoint

notice: flavor neutrinos have no definite mass! $|m_{\bar{\nu}_a}^2 = \sum |U_{ei}|^2 m_i^2$

$$\beta$$
 decay: $\mathcal{N}(A, Z) \longrightarrow \mathcal{N}(A, Z+1) + e^{-} + \bar{\nu}_{e}$

 $Q_{\beta} = M_i - M_f - m_e$ total available energy $E_{\nu} = Q_{\beta} - T = Q_{\beta} - (E_e - m_e)$ neutrino energy

$$T_{\max} = Q_{\beta} - m_{\overline{\nu}_e}$$

Kurie function: (degenerate
$$\nu$$
 masses)

$$K(T) = \left[(Q_{\beta} - T) \sqrt{(Q_{\beta} - T)^2 - m_{\overline{\nu}_e}^2} \right]^{1/2}$$

Useful to describe the e^- spectrum near the endpoint

notice: flavor neutrinos have no definite mass! $m_{\tilde{\nu}}^2$

$$m_{\overline{\nu}_e}^2 = \sum |U_{ei}|^2 m_e^2$$

$$\mathcal{K}(\mathcal{T}) = \begin{bmatrix} (\mathcal{Q}_{\beta} - \mathcal{T}) \sum_{i=1}^{N_{\nu}} |\mathcal{U}_{ei}|^2 \sqrt{(\mathcal{Q}_{\beta} - \mathcal{T})^2 - m_i^2} \end{bmatrix}^{1/2} \\ \overset{N_{\nu} \text{ neutrinos}}{\underset{\text{masses } m_i}{\underset{\text{enter } (|\mathcal{U}_{ei}|^2)}{\underset{\text{enter } (|\mathcal{U}_{ei}|^2)}{\underset{\text{masses } m_i}{\underset{\text{masses } m_i}{\underset{\text{mass } m_i}{\underset{\text{mass } m_i}{\underset{\text{mass } m_i}{\underset{\text{mass } m_i}{\underset{\text{mass } m_i}{\underset{m_i}}}}}}}}}}}}}}}}}$$

ľ

 β decay

$$K(T) = \left[(Q_{\beta} - T) \sum_{i=1}^{N_{\nu}} |U_{ei}|^2 \sqrt{(Q_{\beta} - T)^2 - m_i^2} \right]^{1/2}$$

endpoint shifted + one kink for each mass eigenstate

S. Gariazzo

TAUP 2021, 26/08/2021

Sterile neutrino in β decay

[KATRIN, PRL 126 (2021)]

Sterile neutrino in β decay

Sterile neutrino in β decay

[KATRIN, PRL 126 (2021)]

Based on:

- JCAP 04 (2021) 073
- JCAP 07 (2019) 014
- Planck
- arxiv:2003.02289

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma

need to produce it through oscillations, but matter effects may block them time

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma need to produce it through oscillations, but matter effects may block them when are they enough to allow full equilibrium of active-sterile states?

$$0 \longleftarrow \Delta N_{\rm eff} = N_{\rm eff}^{4\nu} - N_{\rm eff}^{3\nu} \longrightarrow \simeq 1$$

o sterile production active&sterile in equilibrium

$$\frac{\Delta m_{as}^2}{\text{eV}^2} \sin^4 (2\vartheta_{as}) \simeq 10^{-5} \ln^2 (1 - \Delta N_{\text{eff}}) \qquad (1+1 \text{ approx.})$$
[Dolgov&Villante, 2004]

e.g.:
$$\Delta m_{as}^2 = 1 \text{ eV}^2$$
, $\sin^2(2\vartheta_{as}) \simeq 10^{-3} \Longrightarrow \Delta N_{\mathrm{eff}} \simeq 1$

$$N_{\rm eff}^{3\nu} = 3.044$$
 [SG+, JCAP 2021] see async talk
by J.Froustey

n

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma need to produce it through oscillations, but matter effects may block them when are they enough to allow full equilibrium of active-sterile states?

$$0 \longleftarrow \Delta N_{\rm eff} = N_{\rm eff}^{4\nu} - N_{\rm eff}^{3\nu} \longrightarrow \simeq 1$$
no sterile production active&sterile in equilibrium

$$\frac{\Delta m_{as}^2}{\text{eV}^2} \sin^4 (2\vartheta_{as}) \simeq 10^{-5} \ln^2 (1 - \Delta N_{\text{eff}}) \qquad (1+1 \text{ approx.})$$
[Dolgov&Villante, 2004]

e.g.:
$$\Delta m^2_{as} = 1 \ {
m eV}^2$$
, $\sin^2 \left(2 artheta_{as} \right) \simeq 10^{-3} \Longrightarrow \Delta N_{
m eff} \simeq 1$

Full calculation: use numerical code!

FORTran-Evolved PrimordIAl Neutrino Oscillations (FortEPiaNO) https://bitbucket.org/ahep_cosmo/fortepiano_public

 $N_{\rm eff}$ and the new mixing parameters

[SG+, JCAP 07 (2019) 014]

$N_{\rm eff}$ and the new mixing parameters

[SG+, JCAP 07 (2019) 014]

 $N_{\rm eff}$ and CMB

Cosmological constraints on $|U_{\alpha 4}|^2$

[arxiv:2003.02289]

Use multi-angle results from FortEPiaNO to derive constraints on $|U_{\alpha 4}|^2$:

D Disappearance (Muon channel) strong constraints, and a recent first hint

Based on:

- MINOS/MINOS+
- IceCube 2016
- DeepCore
- IceCube 2020
- NOvA

MINOS & MINOS+

1 GeV $\lesssim E \lesssim$ 40 GeV,

peak at 3 GeV

MINOS & MINOS+

[PRL 117 (2016) 071801]

S. Gariazzo

S. Gariazzo

[IceCube, PRL 2020]

IceCube 8 yr update

S. Gariazzo

"Light sterile neutrinos"

TAUP 2021, 26/08/2021

First LBL constraints from NOvA

[NOvA, arxiv:2106.04673]

E disappearance (Electron channel)

reactor and Gallium experiments

Based on:

- JPG 43 (2016) 033001
- Kostensalo+ 2019
- Giunti, PRD 101 (2020)
- PROSPECT
- STEREO
- DayaBay

Reactor Antineutrino Anomaly (RAA)

[Mention+, PRD 83 (2011)]

2011: new reactor $\bar{\nu}_e$ fluxes by Huber and Mueller+ (HM)

[Huber, PRC 84 (2011) 024617] [Mueller+, PRC 83 (2011) 054615]

Previous reactor rates evaluated with new fluxes \Rightarrow deficit

Can we trust the HM fluxes?

known since 2014: bump in the spectrum around 5 MeV!

cannot be explained by SBL oscillations

(averaged at the observed distances)

many attempts of possible explanations, how to clarify the issue?

Can we trust the HM fluxes?

known since 2014: bump in the spectrum around 5 MeV!

cannot be explained by SBL oscillations

(averaged at the observed distances)

many attempts of possible explanations, how to clarify the issue?

	Model independent information!
	(i.e. take ratio of spectra
	at different distances)
Φ	$\Phi_1 = \Phi_0(E)f(L_1, E) \Phi_2 = \Phi_0(E)f(L_2, E)$
	$\Phi_1/\Phi_2 = f(L_1, E)/f(L_2, E)$
	TAUP 2021, 26/08/2021

19/29

Reactor antineutrino spectrum and RAA

[Courtesy C. Giunti]

When the RAA was discovered:

conversion method (ILL data) and ab initio calculations in agreement

[Huber, 2011], [Mueller+, 2011] spectra

Reactor antineutrino spectrum and RAA

[Courtesy C. Giunti]

Revised *ab initio* calculation: [Estienne, Fallot+, PRL 123 (2019)]

Reactor antineutrino spectrum and RAA

Conversion method on new measurements of electron spectrum at Kurchatov Institute (KI) (updates ILL measurements from the 80's):

[Kopeikin+, arxiv:2103.01684]

ν_s at reactors in 2020

[Neutrino-4, PZETF 2020]

[SoLiD, JINST 2021]

[STEREO, PRD 2020]

"Light sterile neutrinos"

TAUP 2021, 26/08/2021

Significance of the preference?

standard χ^2 distribution may be not appropriate to study the significance due to undercoverage at angles below the experiment sensitivity

Significance of the preference?

[Giunti, PRD 101 (2020)]

standard χ^2 distribution may be not appropriate to study the significance due to undercoverage at angles below the experiment sensitivity

S. Gariazzo

"Light sterile neutrinos"

TAUP 2021, 26/08/2021

[SAGE, 2006][Giunti&Laveder, 2011] Gallium anomaly $L \simeq 1.9 \text{ m}$ $L \simeq 0.6 \text{ m}$ Gallium radioactive source experiments: GALLEX and SAGE ν_e sources: $e^- + {}^{51}$ Cr $\rightarrow {}^{51}$ V + ν_e $e^- + {}^{37}$ Ar $\rightarrow {}^{37}$ Cl + ν_e $E \simeq 0.75$ MeV $E \simeq 0.81 \text{ MeV}$ ν_e +⁷¹ Ga \rightarrow^{71} Ge + e^- In the detector: $3/2^{-}$ $500 \, \mathrm{keV}$ $5/2^{-}$ $175 \,\mathrm{keV}$ $1/2^{-}$ ⁷¹Ge $232 \,\mathrm{keV}$ 3/2⁷¹Ga cross sections of the transitions from [Krofcheck+, PRL 55 (1985) 1051] [Frekers+, PLB 706 (2011) 134] S. Gariazzo "Light sterile neutrinos" TAUP 2021, 26/08/2021 23/29

Gallium anomaly revisited

New cross section calculations: (interacting nuclear shell model)

[Kostensalo+, PLB 795 (2019) 542-547]

Gallium anomaly revisited

New cross section calculations: (interacting nuclear shell model)

[SAGE, 2006] [Giunti&Laveder, 2011] [Kostensalo+, PLB 795 (2019) 542-547]

Compare with DANSS+NEOS:

Better compatibility with reactors

F Fit

Based on:

- work in progress
- Dentler+ 2018
- arxiv:2003.02289

Based on:

- work in progress
- Dentler+ 2018
- arxiv:2003.02289

Global fit of $\overset{(-)}{\nu_{\mu}} \rightarrow \overset{(-)}{\nu_{e}} APP$

[SG+, in preparation]

ICARUS and OPERA exclude MiniBooNE best fit

LSND and MiniBooNE only partially in agreement

KARMEN cuts part of LSND region

Global fit of $\overset{(-)}{\nu_{\mu}} \rightarrow \overset{(-)}{\nu_{e}}$ APP

[SG+, in preparation]

ICARUS and OPERA exclude MiniBooNE best fit

LSND and MiniBooNE only partially in agreement

KARMEN cuts part of LSND region Global fit of $\stackrel{(-)}{\nu_{\mu}}$ DIS

[SG+, in preparation]

 $\frac{\text{MINOS}+}{\text{dominates}}$ at small Δm_{41}^2

 $\frac{\text{lceCube (1 yr)}}{\text{important at}}$ $\Delta m_{41}^2 \simeq 0.2 \text{ eV}^2$

IceCube 8 yr not included!

Global fit of $\stackrel{(-)}{\nu_{\mu}}$ DIS

[SG+, in preparation]

APP – DIS tension in 2019

APP – DIS tension in 2019

[SG+, in preparation]

[SG+, in preparation]

APP – DIS tension in 2019

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Warning: tension between reactor experiments and CMB bounds!

The situation is NOT favorable for the light sterile neutrino...

What do we learn on sterile neutrinos?

What do we learn on sterile neutrinos?

What do we learn on sterile neutrinos?

Neutrino-4

claimed > 3σ preference for 3+1 over 3ν case

> best fit incompatible with other reactor experiments

Neutrino-4

energy resolution smearing not properly taken into account?

Neutrino-4

[Giunti+, PLB 2021]

proper energy resolution treatment moves best-fit $\rightarrow \sin^2 2\vartheta \simeq 1$

need to take into account violation of Wilk's theorem ↓ relaxed constraints

TAUP 2021, 26/08/2021