

H2020 MSCA COFUND GA 754496

INFN. Turin section Turin (IT)

Istituto Nazionale di Fisica Nucleare

gariazzo@to.infn.it

http://personalpages.to.infn.it/~gariazzo/

Neutrino oscillations in the early universe with three or four neutrinos: precision calculations

INT Electronic Workshop 21-79W, Seattle (WA-US) / online, 21/09/2021

1 Active neutrinos

2 (Light) Sterile neutrinos

3 Conclusions

Neutrino oscillations

first discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations from atmospheric ν

first discovery of $\nu_e \rightarrow \nu_\mu, \nu_\tau$ oscillations from solar ν

Nobel prize in 2015

Two neutrino bases

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

Three Neutrino Oscillations

$$u_{lpha} = \sum_{k=1}^{3} U_{lpha k} \nu_k \quad (lpha = e, \mu, \tau)$$

 $U_{\alpha k}$ described by 3 mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ and one CP phase δ

Current knowledge of the 3 active ν mixing: [JHEP 02 (2021) update]

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

 ν decouple mostly before $e^+e^- \to \gamma\gamma$ annihilation!

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

 $\frac{\nu \text{ oscillations in the early universe}}{\text{comoving coordinates: } a = 1/T \quad x \equiv m_e \text{ a} \quad y \equiv p \text{ a} \quad z \equiv T_{\gamma} \text{ a} \quad w \equiv T_{\nu} \text{ a}}$

density matrix:
$$\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} \end{pmatrix}$$

$$\frac{\mathrm{d}\varrho(y,x)}{\mathrm{d}x} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_\ell + \mathbb{P}_\ell}{m_W^2} + \frac{4\mathbb{E}_\nu}{3m_Z^2} \right), \varrho \right] + \frac{m_e^3 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\}$$

 $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [.,.] commutator

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\mu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv t_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{\mu\sigma} & \varrho_{\sigma\sigma} \equiv f_{\nu} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{\mathbf{x}^2}{m_{e}^3} \left| \frac{\mathbb{M}_{\mathrm{F}}}{2\mathbf{y}} - \frac{2\sqrt{2}G_{\mathrm{F}}\mathbf{y}}{\mathbf{x}^6/m_{e}^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_{\mu\nu}^2} + \frac{4\mathbb{E}_{\nu}}{3m_{\mathrm{T}}^2} \right), \varrho \right] + \frac{m_{e}^2 G_{\mathrm{F}}^2}{(2\pi)^3 \mathbf{x}^4 \mathbf{v}^2} \mathcal{I}(\varrho) \right\} \right|$ $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [., .] commutator $M_{\rm E} = U M U^{\dagger}$ $M = diag(m_1^2, m_2^2, m_3^2)$ e.g. $R^{13} = \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13} \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix}$ $U = R^{23} R^{13} R^{12}$

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{--} & \varrho_{--} & \varrho_{--} & \varrho_{--} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2\mathbf{y}} - \frac{2\sqrt{2}G_{\mathrm{F}}\mathbf{y}}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_{\mathrm{ev}}^2} + \frac{4\mathbb{E}_{\nu}}{3m_{\mathrm{T}}^2} \right), \varrho \right] + \frac{m_e^2 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 v^2} \mathcal{I}(\varrho) \right\}$ $m_{\rm Pl}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [.,.] commutator $\mathbb{M}_{\mathrm{F}} = U \mathbb{M} U^{\dagger}$ $\mathbb{E}_{\ell} = \operatorname{diag}(
ho_e,
ho_\mu, 0) \qquad \mathbb{E}_{\nu} = S_a \left(\int dy y^3 \varrho \right) S_a \quad ext{with } S_a = \operatorname{diag}(1, 1, 1)$ (only for active neutrinos) lepton densities neutrino densities

take into account matter effects in oscillations

[Bennett, SG+, JCAP 2021] $\mathbf{\nu}$ oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{\mu} & \varrho_{\mu\tau} & \varrho_{\mu\tau} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2\mathbf{y}} - \frac{2\sqrt{2}G_{\mathrm{F}}\mathbf{y}}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_{\mathrm{W}}^2} + \frac{4\mathbb{E}_{\nu}}{3m_{\mathrm{T}}^2} \right), \varrho \right] + \frac{m_e^2 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 v^2} \mathcal{I}(\varrho) \right\} \right|$ $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [.,.] commutator $\mathbb{M}_{\mathrm{F}} = U\mathbb{M}U^{\dagger}$ $\mathbb{E}_{\ell} = \mathrm{diag}(
ho_{e},
ho_{\mu}, 0)$ $\mathbb{E}_{
u} = S_{a}\left(\int dyy^{3}\varrho\right)S_{a}$ $\mathcal{I}(\rho)$ collision integrals

take into account neutrino-electron scattering and pair annihilation, plus neutrino-neutrino interactions

2D integrals over momentum, take most of the computation time

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{\tau e} & \varrho_{\tau e} & \varrho_{\tau \tau} & \varrho_{\tau\tau} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_W^2} + \frac{4\mathbb{E}_{\nu}}{3m_z^2} \right), \varrho \right] + \frac{m_e^2 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\}$ $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [.,.] commutator $\mathbb{M}_{\mathrm{F}} = U\mathbb{M}U^{\dagger}$ $\mathbb{E}_{\ell} = \mathrm{diag}(
ho_{e},
ho_{\mu}, 0)$ $\mathbb{E}_{
u} = S_{a}\left(\int dyy^{3}\varrho\right)S_{a}$ $\mathcal{I}(\rho)$ collision integrals $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^2}{r} J(r_{\ell})\right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^{\infty} dy \, y^3 \sum_{\alpha=e}^{\tau} \frac{\mathrm{d}\varrho_{\alpha\alpha}}{\mathrm{d}x}}{\sum \left[r_{\ell}^2 J(r_{\ell}) + Y(r_{\ell})\right] + G_2(r) + \frac{2\pi^2}{15}}$ from continuity equation $\dot{\rho} = -3H(\rho + P)$ $\ell = e, \mu$ r = x/z, $r_{\ell} = m_{\ell}/m_e r$ J(r), Y(r) from non-relativistic transition of e^{\pm} , μ^{\pm} $G_1(r)$ and $G_2(r)$ from electromagnetic corrections

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\mu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{\mu e} & \varrho_{\mu\nu} \equiv f_{\nu\mu} & \varrho_{\mu\tau} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(y,x)}{\mathrm{d}x} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_W^2} + \frac{4\mathbb{E}_{\nu}}{3m_z^2} \right), \varrho \right] + \frac{m_e^2 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\}$ $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [., .] commutator $\mathbb{M}_{\mathrm{F}} = U\mathbb{M}U^{\dagger}$ $\mathbb{E}_{\ell} = \mathrm{diag}(
ho_{e},
ho_{\mu}, 0)$ $\mathbb{E}_{
u} = S_{a}\left(\int dyy^{3}arrho\right)S_{a}$ $\mathcal{I}(\rho)$ collision integrals $\left| \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^2}{r} J(r_{\ell}) \right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^{\infty} dy \, y^3 \sum_{\alpha=e}^{\tau} \frac{\mathrm{d}\varrho_{\alpha\alpha}}{\mathrm{d}x}}{\sum_{\alpha=e} \left[\frac{r_{\ell}^2}{r_{\ell}^2} J(r_{\ell}) + Y(r_{\ell}) \right] + G_2(r) + \frac{2\pi^2}{15}} \right|$ from continuity equation $\dot{\rho} = -3H(\rho + P)$ $\ell = e, \mu$

neutrino temperature w: same equation as z, but electrons always relativistic

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{e\tau} & \varrho_{e\tau} & \varrho_{e\tau} = f_{\nu} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(y,x)}{\mathrm{d}x} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left\| \frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_W^2} + \frac{4\mathbb{E}_{\nu}}{3m_{\chi}^2} \right), \varrho \right\| + \frac{m_e^2 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\} \left\| -\frac{\mathrm{d}\varphi}{2\pi} \left(\frac{2\pi}{3} + \frac{2\pi}{3} +$ $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [., .] commutator $\mathbb{M}_{\mathrm{F}} = U\mathbb{M}U^{\dagger}$ $\mathbb{E}_{\ell} = \mathrm{diag}(
ho_{e},
ho_{\mu}, 0)$ $\mathbb{E}_{
u} = S_{a}\left(\int dyy^{3}\varrho\right)S_{a}$ $\mathcal{I}(\rho)$ collision integrals $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^2}{r} J(r_{\ell}) \right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^\infty dy \, y^3 \sum_{\alpha=e}^{\tau} \frac{\mathrm{d}\varrho_{\alpha\alpha}}{\mathrm{d}x}}{\sum_{\alpha=e} \left[r_{\ell}^2 J(r_{\ell}) + Y(r_{\ell}) \right] + G_2(r) + \frac{2\pi^2}{15}} \right|$ from continuity equation $\dot{\rho} = -3H(\rho + P)$ $\ell = e, \mu$ neutrino temperature w: same equation as z, but electrons always relativistic

initial conditions: $\varrho_{\alpha\alpha}$ = Fermi-Dirac at $x_{\rm in}$ \simeq 0.001, with w = z \simeq 1

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ density matrix: $\varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{e\tau} & \varrho_{e\tau} & \varrho_{e\tau} = f_{\nu} \end{pmatrix}$ $\frac{\mathrm{d}\varrho(\mathbf{y},\mathbf{x})}{\mathrm{d}\mathbf{x}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2\mathbf{y}} - \frac{2\sqrt{2}G_{\mathrm{F}}\mathbf{y}}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_{\mathrm{W}}^2} + \frac{4\mathbb{E}_{\nu}}{3m_{\mathrm{T}}^2} \right), \varrho \right] + \frac{m_e^3 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\}$ FORTran-Evolved PrimordIAl Neutrino Oscillations (FortEPiaNO) https://bitbucket.org/ahep_cosmo/fortepiano public $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^2}{r} J(r_{\ell})\right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^{\infty} dy \, y^3 \sum_{\alpha=e}^{\tau} \frac{\mathrm{d}\varrho_{\alpha\alpha}}{\mathrm{d}x}}{\sum \left[r_{\ell}^2 J(r_{\ell}) + Y(r_{\ell})\right] + G_2(r) + \frac{2\pi^2}{15}}$ from continuity equation $\dot{\rho} = -3H(\rho + P)$ $\ell = e, \mu$ neutrino temperature w: same equation as z, but electrons always relativistic

initial conditions: $\varrho_{\alpha\alpha}$ = Fermi-Dirac at $x_{\rm in}$ \simeq 0.001, with w = z \simeq 1

Distortion of the momentum distribution ($f_{\rm FD}$: Fermi-Dirac at equilibrium)

Distortion of the momentum distribution (f_{FD} : Fermi-Dirac at equilibrium)

S. Gariazzo

INT 21-79W, 21/09/2021

6/20

$$N_{\text{eff}}^{\text{any time}} = \frac{8}{7} \left(\frac{T_{\gamma}}{T_{\nu}}\right)^4 \frac{\rho_{\nu}}{\rho_{\gamma}} = \frac{8}{7} \left(\frac{T_{\gamma}}{T_{\nu}}\right)^4 \frac{1}{\rho_{\gamma}} \sum_i g_i \int \frac{d^3 p}{(2\pi)^3} E(p) f_{\nu,i}(p)$$

S. Gariazzo

"Neutrino oscillations in the early universe: precision calculations" IN

6/20

Finite temperature QED

Finite temperature QED

Finite temperature QED

u decoupling strongly depends on interactions occurring at ${\cal T}\gtrsim 1$ MeV

→ finite temperature effects! 🛓

$N_{\text{eff}}^{\text{SM}}$ (no osc) $N_{\text{eff}}^{\text{SM}}$ (NO)				
N_{eff} (no osc) N_{eff} (NO)	A7SM	(ATSM.	(\mathbf{MO})
	IN a	(no osc)	IN or	(NO)
	- еп	()	- еп	()

Finite-temperature	Finite-temperature QED corrections			
(2)l/n	3.04361	3.04458		
(2)l/n + (2) ln	3.04358	3.04452		
(2)l/n + (3)	3.04264	3.04361		
$(2)h + (2) \ln + (3)$	3.04263	3.04360		

[Bennett, SG+, 2020]

 $\mathcal{O}(e^2)\sim 0.01$ and $\mathcal{O}(e^3)\sim -0.001$ are important!

Logarithmic term and following orders affect less than numerical parameters for configuring the y_i grid

[Bennett, SG+, JCAP 2021]

Encode the effect of $\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$ and $4^{(-)}_{\nu}$ interactions

first calculations by [Sigl&Raffelt, 1993]

computationally expensive

[Bennett, SG+, JCAP 2021]

Encode the effect of $\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$ and $4^{(-)}_{\nu}$ interactions

annihilation: $\nu(p_1) + \bar{\nu}(p_2) \leftrightarrow e^-(p_3) + e^+(p_4)$ gives: [de Salas+, JCAP 2016]

$$\begin{split} \mathcal{I}_{\nu\bar{\nu}\to e^-e^+} &= \frac{1}{2} \frac{2^5 G_{\rm F}^2}{2|\vec{p}_1|} \int \frac{d^3 \vec{p}_2}{(2\pi)^3 2|\vec{p}_2|} \frac{d^3 \vec{p}_3}{(2\pi)^3 2E_3} \frac{d^3 \vec{p}_4}{(2\pi)^3 2E_4} (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) \\ &\times \left\{ 4(p_1 \cdot p_4)(p_2 \cdot p_3) F_{\rm ann}^{LL}(\nu^{(1)}, \bar{\nu}^{(2)}, e^{(3)}, \bar{e}^{(4)}) \right. \\ &+ 4(p_1 \cdot p_3)(p_2 \cdot p_4) F_{\rm ann}^{RR}(\nu^{(1)}, \bar{\nu}^{(2)}, e^{(3)}, \bar{e}^{(4)}) \\ &+ 2(p_1 \cdot p_2) m_e^2 \left(F_{\rm ann}^{RL}(\nu^{(1)}, \bar{\nu}^{(2)}, e^{(3)}, \bar{e}^{(4)}) + F_{\rm ann}^{LR}(\nu^{(1)}, \bar{\nu}^{(2)}, e^{(3)}, \bar{e}^{(4)}) \right\}, \end{split}$$

[Bennett, SG+, JCAP 2021]

Encode the effect of $\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$ and $4^{(-)}_{\nu}$ interactions

scattering:
$$\nu(p_1) + e^{\pm}(p_2) \leftrightarrow \nu(p_3) + e^{\pm}(p_4)$$
 gives:
[de Salas+, JCAP 2016]

$$\begin{split} \mathcal{I}_{\nu e^- \to \nu e^-} &= \frac{1}{2} \frac{2^5 G_{\rm F}^2}{2 |\vec{p}_1|} \int \frac{d^3 \vec{p}_2}{(2\pi)^3 2 E_2} \frac{d^3 \vec{p}_3}{(2\pi)^3 2 |\vec{p}_3|} \frac{d^3 \vec{p}_4}{(2\pi)^3 2 E_4} (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) \\ &\times \left\{ 4(p_1 \cdot p_4)(p_2 \cdot p_3) F_{\rm sc}^{RC}(\nu^{(1)}, e^{(2)}, \nu^{(3)}, e^{(4)}) \right. \\ &+ 4(p_1 \cdot p_2)(p_3 \cdot p_4) F_{\rm sc}^{LL}(\nu^{(1)}, e^{(2)}, \nu^{(3)}, e^{(4)}) \\ &- 2(p_1 \cdot p_3) m_e^2 \left(F_{\rm sc}^{RL}(\nu^{(1)}, e^{(2)}, \nu^{(3)}, e^{(4)}) + F_{\rm sc}^{LR}(\nu^{(1)}, e^{(2)}, \nu^{(3)}, e^{(4)}) \right) \right\}, \\ \mathcal{I}_{\nu e^+ \to \nu e^+} &= \frac{1}{2} \frac{2^5 G_{\rm F}^2}{2 |\vec{p}_1|} \int \frac{d^3 \vec{p}_2}{(2\pi)^3 2 E_2} \frac{d^3 \vec{p}_3}{(2\pi)^3 2 |\vec{p}_3|} \frac{d^3 \vec{p}_4}{(2\pi)^3 2 E_4} (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) \\ &\times \left\{ 4(p_1 \cdot p_4)(p_2 \cdot p_3) F_{\rm sc}^{LL}(\nu^{(1)}, \bar{e}^{(2)}, \nu^{(3)}, \bar{e}^{(4)}) \\ &+ 4(p_1 \cdot p_2)(p_3 \cdot p_4) F_{\rm sc}^{RR}(\nu^{(1)}, \bar{e}^{(2)}, \nu^{(3)}, \bar{e}^{(4)}) \right\} \end{split}$$

$$-2(p_1 \cdot p_3)m_e^2\left(F_{\rm sc}^{RL}(\nu^{(1)},\bar{e}^{(2)},\nu^{(3)},\bar{e}^{(4)})+F_{\rm sc}^{LR}(\nu^{(1)},\bar{e}^{(2)},\nu^{(3)},\bar{e}^{(4)})\right)\right\}.$$

And so on for neutrino-neutrino terms

Collision terms

 $\begin{array}{rcl} & \mbox{Encode the effect of } \nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^{+}e^{-}, \ \nu e \leftrightarrow \nu e \ \mbox{and } 4^{(-)}_{\nu} \ \mbox{interactions} \\ & \mbox{switch to comoving coordinates, you get:} \\ & \ensuremath{\mathcal{I}}[\varrho(y)] &= \ \frac{G_{F}^{2}}{(2\pi)^{3}y^{2}} (\mathcal{I}_{sc}^{u} + \mathcal{I}_{ann}^{u} + \mathcal{I}_{\nu\nu}^{u} + \mathcal{I}_{\nu\bar{\nu}}^{u}) \\ & \ensuremath{\mathcal{I}}_{sc}^{u} &= \ \int dy_{2} dy_{3} \frac{y_{2}}{E_{2}} \left\{ (\Pi_{2}^{s}(y, y_{4}) + \Pi_{2}^{s}(y, y_{2})) \left[F_{sc}^{LL}(\ldots) + F_{sc}^{RR}(\ldots) \right] - 2x^{2}\Pi_{1}^{s} \left[F_{sc}^{RL}(\ldots) + F_{sc}^{LR}(\ldots) \right] \right\} \\ & \ensuremath{\mathcal{I}}_{ann}^{u} &= \ \int dy_{2} dy_{3} \frac{y_{3}}{E_{3}} \left\{ \Pi_{2}^{s}(y, y_{4}) F_{ann}^{LL}(\ldots) + \Pi_{2}^{s}(y, y_{3}) F_{ann}^{RR}(\ldots) + x^{2}\Pi_{1}^{s} \left[F_{ann}^{RL}(\ldots) + F_{ann}^{LR}(\ldots) \right] \right\} \\ & \ensuremath{\mathcal{I}}_{\nu\nu}^{u} &= \ \frac{1}{4} \int dy_{2} dy_{3} \Pi_{2}^{\nu}(y, y_{2}) F_{\nu\nu} \left(\varrho^{(1)}, \varrho^{(2)}, \varrho^{(3)}, \varrho^{(4)} \right) \\ & \ensuremath{\mathcal{I}}_{\nu\bar{\nu}}^{u} &= \ \frac{1}{4} \int dy_{2} dy_{3} \Pi_{2}^{\nu}(y, y_{4}) F_{\nu\bar{\nu}\bar{\nu}} \left(\varrho^{(1)}, \varrho^{(2)}, \varrho^{(3)}, \varrho^{(4)} \right) \end{array}$

 Π functions are combinations of (y,y_2,y_3,y_4) that emerge from $\int \mathrm{d}^3\vec{p}$ See literature for their expressions

Collision terms

Encode the effect of $\nu_{lpha} \bar{\nu}_{lpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$ and $4^{(-)}_{\ \nu}$ interactions

F functions encode phase space distributions:

$$\begin{split} F^{ab}_{sc} \left(\varrho^{(1)}, f^{(2)}_{e}, \varrho^{(3)}, f^{(4)}_{e} \right) &= f^{(4)}_{e} (1 - f^{(2)}_{e}) \left[G^{a} \Phi^{3,b,1}_{1} + \Phi^{1,b,3}_{2} G^{a} \right] - f^{(2)}_{e} (1 - f^{(4)}_{e}) \left[\Phi^{1,b,3}_{1} G^{a} + G^{a} \Phi^{3,b,1}_{2} \right] \\ F^{ab}_{ann} \left(\varrho^{(1)}, \varrho^{(2)}, f^{(3)}_{e}, f^{(4)}_{e} \right) &= f^{(3)}_{e} f^{(4)}_{e} \left[G^{a} \Phi^{2,b,1}_{2} + \Phi^{1,b,2}_{4} G^{a} \right] - (1 - f^{(3)}_{e}) (1 - f^{(4)}_{e}) \left[G^{a} \Phi^{2,b,1}_{3} + \Phi^{3,b,2}_{3} G^{a} \right] \\ F_{\nu\nu} \left(\varrho^{(1)}, \varrho^{(2)}, \varrho^{(3)}, \varrho^{(4)} \right) &= \Phi^{1,5,3}_{2} G_{5} \left[\Phi^{2,5,4}_{2} G_{5} + \operatorname{Tr}(\cdots) \right] - \Phi^{1,5,3}_{1} G_{5} \left[\Phi^{2,5,4}_{1} G_{5} + \operatorname{Tr}(\cdots) \right] \\ + \Phi^{1,5,2}_{2} G_{5} \left[\Phi^{4,5,3}_{3} G_{5} + \operatorname{Tr}(\cdots) \right] - \Phi^{1,5,2}_{3} G_{5} \left[\Phi^{4,5,3}_{4} G_{5} + \operatorname{Tr}(\cdots) \right] \\ + \Phi^{2,1,5,3}_{2} G_{5} \left[\Phi^{4,5,2}_{1} G_{5} + \operatorname{Tr}(\cdots) \right] - \Phi^{1,5,3}_{1} G_{5} \left[\Phi^{4,5,2}_{2} G_{5} + \operatorname{Tr}(\cdots) \right] \\ + \Phi^{2,1,5,3}_{e} G_{5} \left[\Phi^{4,5,2}_{1} G_{5} + \operatorname{Tr}(\cdots) \right] - \Phi^{1,5,3}_{1} G_{5} \left[\Phi^{4,5,2}_{4} G_{5} + \operatorname{Tr}(\cdots) \right] \\ + \Phi^{2,1,5,3}_{e} G_{5} \left[\Phi^{4,5,2}_{1} G_{5} + \operatorname{Tr}(\cdots) \right] - \Phi^{1,5,3}_{1} G_{5} \left[\Phi^{4,5,2}_{2} G_{5} + \operatorname{Tr}(\cdots) \right] \\ + \Phi^{2,1,5,3}_{e} G_{5} \left[\Phi^{4,5,2}_{1} G_{5} + \operatorname{Tr}(\cdots) \right] - \Phi^{1,5,3}_{1} G_{5} \left[\Phi^{4,5,2}_{2} G_{5} + \operatorname{Tr}(\cdots) \right] \\ + \Phi^{2,1,5,3}_{e} G_{5} \left[\Phi^{4,5,2}_{1} G_{5} + \operatorname{Tr}(\cdots) \right] - \Phi^{1,5,3}_{1} G_{5} \left[\Phi^{4,5,2}_{2} G_{5} + \operatorname{Tr}(\cdots) \right] \\ + \Phi^{2,1,5,3}_{e} G_{5} \left[\Phi^{4,5,2}_{1} G_{5} + \operatorname{Tr}(\cdots) \right] - \Phi^{1,5,2}_{1} G_{5} \left[\Phi^{4,5,2}_{2} G_{5} + \operatorname{Tr}(\cdots) \right] \\ + \Phi^{2,1,5,3}_{e} G_{5} \left[\Phi^{4,5,2}_{1} G_{5} + \operatorname{Tr}(\cdots) \right] - \Phi^{1,5,3}_{1} G_{5} \left[\Phi^{4,5,2}_{2} G_{5} + \operatorname{Tr}(\cdots) \right] \\ + \Phi^{2,1,5,3}_{e} G_{5} \left[\Phi^{4,5,2}_{1} G_{5} + \operatorname{Tr}(\cdots) \right] + h.c.$$

Convenient definitions:

Interaction strenghts $(a, b \in [L, R])$:

$$\begin{array}{lll} \Phi_{1}^{\alpha,i,\beta} &=& \varrho^{(\alpha)}G^{i}(1-\varrho^{(\beta)})\\ \Phi_{2}^{\alpha,i,\beta} &=& (1-\varrho^{(\alpha)})G^{i}\varrho^{(\beta)}\\ \Phi_{3}^{\alpha,i,\beta} &=& \varrho^{(\alpha)}G^{i}\varrho^{(\beta)}\\ \Phi_{4}^{\alpha,i,\beta} &=& (1-\varrho^{(\alpha)})G^{i}(1-\varrho^{(\beta)}) \end{array}$$

S. Gariazzo

$$\begin{array}{lll} G^R &=& {\rm diag}(g_R,g_R,g_R)\\ G^L &=& {\rm diag}(g_L,\tilde{g}_L,\tilde{g}_L)\\ G^S &=& {\rm diag}(1,1,1)\\ & g_R &=& \sin^2\theta_W \\ g_L &=& \sin^2\theta_W + \frac{1}{2}\\ g_R &=& \sin^2\theta_W + \frac{1}{2} \end{array}$$

 θ_W weak mixing angle

[Bennett, SG+, JCAP 2021]

Encode the effect of $\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$ and $4^{(-)}_{\nu}$ interactions Sometimes one can avoid integrals: damping approximations!

$$\mathcal{I}^{\boldsymbol{u}}_{\alpha\beta}(\varrho) \quad = \quad -D^{\boldsymbol{u}}_{\alpha\beta}\varrho_{\alpha\beta}$$

i.e. the collision term is proportional to the density matrix

$$\begin{aligned} \left\{ D^{u}(y) \right\}_{\alpha\beta} &= \frac{1}{2} \left[\left\{ R^{u}(y) \right\}_{\alpha} + \left\{ R^{u}(y) \right\}_{\beta} \right] \\ \left\{ R^{u}_{\nu\nu}(y) \right\}_{\alpha} &= 2 \int dy_{2} dy_{3} \left[\Pi^{\nu}_{2}(y, y_{2}) + 2\Pi^{\nu}_{2}(y, y_{4}) \right] \times \left([1 - f_{2}] f_{3} f_{4} + f_{2} [1 - f_{3}] [1 - f_{4}] \right) \\ &\equiv \mathcal{D}^{u}(y, z) \\ \left\{ R^{u}_{\nu e}(y) \right\}_{\alpha} &= \frac{1}{4} \left[(2 \sin^{2} \theta_{W} \pm 1)^{2}_{\alpha} + 4 \sin^{4} \theta_{W} \right] \mathcal{D}^{u}(y, z) \\ \\ \text{"+" for } \alpha = e \text{ and "-" for } \alpha = \mu, \tau & f_{i} \equiv f_{eq}(y_{i}) \end{aligned}$$

For relativistic Fermi–Dirac distributions: $\mathcal{D}^{u}(y,z) = 2y^{3}z^{4}d(y/z)$ $d(s) \approx d_{0}e^{-1.01s} + d_{\infty}(1 - e^{-0.01s}) + (e^{-0.01s} - e^{-1.01s}) \left[\frac{a_{0} + a_{1}\ln(s) + a_{2}\ln^{2}(s)}{1 + b_{1}\ln(s) + b_{2}\ln^{2}(s)} \right]$

Effect of neutrino oscillations

9/20

Effect of neutrino oscillations

Sampling the y momenta

Discretize neutrino momenta to compute integrals and evolution

two sampling methods for y_i , with $i = 1, \ldots, N_y$:

linear spacing, Newton-Cotes (NC) integration Gauss-Laguerre (GL) optimized for computing $\int_{0}^{\infty} dy f(y)e^{-y}$

Need to define range ($y_{\min} \leq y \leq y_{\max}$) and number of nodes N_y

Sampling the y momenta

Discretize neutrino momenta to compute integrals and evolution

two sampling methods for y_i , with $i = 1, \ldots, N_y$:

linear spacing, Newton-Cotes (NC) integration

Need to define range ($y_{\min} \le y \le y_{\max}$) and number of nodes N_y

Sampling the y momenta

Discretize neutrino momenta to compute integrals and evolution

How precise is $N_{\text{eff}} = 3.04...?$

Long list of previous works... always less than 3ν mixing

[Mangano+, 2005]: $N_{\rm eff} = 3.046$ 1st with 3ν mixing (still most cited value)

[de Salas+, 2016]: $N_{\rm eff} = 3.045$

 $[SG+, 2019]: N_{eff} = 3.044$ FortEPiaNO code

[Bennett+, 2019]: $N_{\rm eff} = 3.043$ (no full calculation)

[Akita+, 2020]: $N_{\rm eff} = 3.044 \pm 0.0005$

[Froustey+, 2020]: $N_{\rm eff} = 3.0440 \pm \mathcal{O}(10^{-4})$

[Bennett, SG+, 2020]: $N_{\rm eff} = 3.0440 \pm 0.0002$

FortEPiaNO improved S. Gariazzo "Neutrino oscillations

"Neutrino oscillations in the early universe: precision calculations"

INT 21-79W, 21/09/2021

11/20

updated collision terms more efficient and precise code, N > 3 neutrinos allowed, minor differences in numerical integrals

finite-*T* QED corrections at $O(e^3)$!

further terms should be almost negligible

equations in mass and flavor basis approximated $\nu\nu$ collisions

full $\nu\nu$ interactions 1st estimate effect of CP-violating phase

1st full discussion on effect of oscillation parameters, full estimation of current numerical and physical uncertainty $N_{\rm eff}$ and CMB

1 Active neutrinos

2 (Light) Sterile neutrinos

3 Conclusions

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

 $\underbrace{\operatorname{density\ matrix:}\ \varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu\mu} & \varrho_{\mu\tau} & \varrho_{\mus} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} & \varrho_{\taus} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \equiv f_{\nu_{s}} \end{pmatrix}}_{\underbrace{\operatorname{d}\varrho(y,x)}{\operatorname{d}x} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_W^2} + \frac{4\mathbb{E}_{\nu}}{3m_Z^2} \right), \varrho \right] + \frac{m_e^3 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \right\}}$

 $m_{\rm P1}$ Planck mass – ρ_T total energy density – $m_{W,Z}$ mass of the W, Z bosons – $G_{\rm F}$ Fermi constant – [.,.] commutator

take into account matter effects in oscillations

take into account neutrino-electron scattering and pair annihilation, plus neutrino-neutrino interactions

sterile neutrino never take part into interactions

$$\begin{aligned} \text{density matrix: } \varrho(x,y) &= \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} & \varrho_{\mu\tau} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} & \varrho_{\tau s} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \equiv f_{\nu_{s}} \end{pmatrix} \\ \hline \frac{\mathrm{d}\varrho(y,x)}{\mathrm{d}x} &= \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho_{\mathrm{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{F}}}{2y} - \frac{2\sqrt{2}G_{\mathrm{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_W^2} + \frac{4\mathbb{E}_{\nu}}{3m_Z^2} \right), \varrho \right] + \frac{m_e^3 G_{\mathrm{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \\ \downarrow^{\mathrm{mpl}} \text{Planck mass } -\rho_{\tau} \text{ total energy density } - m_{W,Z} \text{ mass of the } W, Z \text{ bosons } - G_{\mathrm{F}} \text{ Fermi constant } - [...] \text{ commutator} \\ \mathbb{M}_{\mathrm{F}} &= U\mathbb{M}U^{\dagger} \qquad \mathbb{E}_{\ell} = \mathrm{diag}(\rho_{e}, \rho_{\mu}, 0, 0) \qquad \mathbb{E}_{\nu} = S_a \left(\int dyy^3 \varrho \right) S_a \\ \mathcal{I}(\varrho) \text{ collision integrals} \\ from \text{ continuity} \\ equation \\ \dot{\rho} &= -3H(\rho + P) \end{cases} \qquad \boxed{\frac{\mathrm{d}z}{\mathrm{d}x}} = \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^2}{r} J(r_{\ell}) \right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^{\infty} dy \, y^3 \sum_{\alpha=e}^s \frac{\mathrm{d}\varrho_{\alpha\alpha}}{\mathrm{d}x} \\ \sum_{\ell=e,\mu} \left[r_{\ell}^2 J(r_{\ell}) + Y(r_{\ell}) \right] + G_2(r) + \frac{2\pi^2}{15} \\ \end{array}$$

14/20

$$\begin{aligned} \text{density matrix: } \varrho(x,y) &= \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} & \varrho_{es} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} & \varrho_{\mu\tau} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} & \varrho_{\taus} \\ \varrho_{se} & \varrho_{s\mu} & \varrho_{s\tau} & \varrho_{ss} \equiv f_{\nu_{s}} \end{pmatrix} \\ \\ \hline \frac{d\varrho(y,x)}{dx} &= \sqrt{\frac{3m_{\text{Pl}}^2}{8\pi\rho_{\text{T}}}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\text{F}}}{2y} - \frac{2\sqrt{2}G_{\text{F}}y}{x^6/m_e^6} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_W^2} + \frac{4\mathbb{E}_{\nu}}{3m_Z^2} \right), \varrho \right] + \frac{m_e^3 G_{\text{F}}^2}{(2\pi)^3 x^4 y^2} \mathcal{I}(\varrho) \\ \hline m_{\text{Pl}} \text{ Planck mass } -\rho_T \text{ total energy density } - m_{W,Z} \text{ mass of the } W, Z \text{ bosons } - G_{\text{F}} \text{ Fermi constant } - [.,.] \text{ commutator} \\ \mathbb{M}_{\text{F}} &= U\mathbb{M}U^{\dagger} \qquad \mathbb{E}_{\ell} = \text{diag}(\rho_e, \rho_\mu, 0, 0) \qquad \mathbb{E}_{\nu} = S_a \left(\int dyy^3 \varrho \right) S_a \\ \mathcal{I}(\varrho) \text{ collision integrals} \\ \\ \text{from continuity} \\ \text{equation} \\ \dot{\rho} &= -3H(\rho + P) \end{cases} \qquad \boxed{\frac{dz}{dx} = \frac{\sum_{e,\mu} \left[\frac{r_\ell^2}{r} J(r_\ell) \right] + G_1(r) - \frac{1}{2\pi^2 z^3} \int_0^\infty dy \, y^3 \sum_{\alpha=e}^s \frac{d\varrho_{\alpha\alpha}}{dx}}{\sum_{\ell=e,\mu} \left[r_\ell^2 J(r_\ell) + Y(r_\ell) \right] + G_2(r) + \frac{2\pi^2}{15}} \end{aligned}$$

initial conditions: $\rho_{\alpha\alpha}(z_{\rm in})$ = FD for active neutrinos, zero for steriles

S. Gariazzo

"Neutrino oscillations in the early universe: precision calculations"

INT 21-79W, 21/09/2021

15/20

S. Gariazzo

 $N_{\rm eff}$ and the new mixing parameters

[SG+, JCAP 07 (2019) 014]

$N_{\rm eff}$ and the new mixing parameters

[SG+, JCAP 07 (2019) 014]

Cosmological constraints on $|U_{\alpha 4}|^2$

[arxiv:2003.02289]

Use multi-angle results from FortEPiaNO to derive constraints on $|U_{\alpha 4}|^2$:

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Warning: tension between reactor experiments and CMB bounds!

Collision terms with sterile neutrinos

Full collision integrals can be computed also with sterile neutrinos

Equations unchanged – except phase space F, where the couplings enter:

$$\begin{split} & F_{e^{b}}^{ab}\left(\varrho^{(1)}, f_{e}^{(2)}, \varrho^{(3)}, f_{e}^{(4)}\right) &= f_{e}^{(4)}(1 - f_{e}^{(2)}) \left[G^{a} \Phi_{1}^{3,b,1} + \Phi_{2}^{1,b,3} G^{a}\right] - f_{e}^{(2)}(1 - f_{e}^{(4)}) \left[\Phi_{1}^{1,b,3} G^{a} + G^{a} \Phi_{2}^{3,b,1}\right] \\ & F_{ann}^{ab}\left(\varrho^{(1)}, \varrho^{(2)}, f_{e}^{(3)}, f_{e}^{(4)}\right) &= f_{e}^{(3)} f_{e}^{(4)} \left[G^{a} \Phi_{4}^{2,b,1} + \Phi_{4}^{1,b,2} G^{a}\right] - (1 - f_{e}^{(3)})(1 - f_{e}^{(4)}) \left[G^{a} \Phi_{3}^{2,b,1} + \Phi_{3}^{1,b,2} G^{a}\right] \\ & F_{\nu\nu}\left(\varrho^{(1)}, \varrho^{(2)}, \varrho^{(3)}, \varrho^{(4)}\right) &= \Phi_{2}^{1,5,3} G_{S} \left[\Phi_{2}^{2,5,4} G_{S} + \text{Tr}(\cdots)\right] - \Phi_{1}^{1,5,3} G_{S} \left[\Phi_{1}^{2,5,4} G_{S} + \text{Tr}(\cdots)\right] + \text{h.c.} \\ & F_{\nu\bar{\nu}}\left(\varrho^{(1)}, \varrho^{(2)}, \varrho^{(3)}, \varrho^{(4)}\right) &= \Phi_{4}^{1,5,2} G_{S} \left[\Phi_{3}^{4,5,3} G_{S} + \text{Tr}(\cdots)\right] - \Phi_{3}^{1,5,2} G_{S} \left[\Phi_{4}^{4,5,2} G_{S} + \text{Tr}(\cdots)\right] - \Phi_{1}^{1,5,3} G_{S} \left[\Phi_{4}^{4,5,2} G_{S} + \text{Tr}(\cdots)\right] \\ & + \Phi_{2}^{1,5,3} G_{S} \left[\Phi_{1}^{4,5,2} G_{S} + \text{Tr}(\cdots)\right] - \Phi_{1}^{1,5,3} G_{S} \left[\Phi_{2}^{4,5,2} G_{S} + \text{Tr}(\cdots)\right] + \text{h.c.} \end{split}$$

Interaction strenghts $(a, b \in [L, R])$:

Remember also:

(B)

· a i B

Damping approximations also affected!

 $\left\{D^{u}(y)\right\}_{\alpha\beta} = \frac{1}{2}\left[\left\{R^{u}(y)\right\}_{\alpha} + \left\{R^{u}(y)\right\}_{\beta}\right], \text{ but } \left\{R^{u}_{\nu\nu}(y)\right\}_{s} = \left\{R^{u}_{\nu e}(y)\right\}_{s} = 0$

[in preparation]

Collision terms with sterile neutrinos

[in preparation]

Full collision integrals can be computed also with sterile neutrinos

S. Gariazzo

"Neutrino oscillations in the early universe: precision calculations'

1 Active neutrinos

2 (Light) Sterile neutrinos

3 Conclusions

Conclusions

3

1

0.01 0.1

(Courtesy P. F. de Salas)

TI Mell

Sterile neutrino hints - new physics?

2.5

3.5 4.0

N_e

Conclusions

Neutrinos in the early universe – probe lowest energies 1 Riess et al. (2018) Ň. 101 osc. Sur so 1 eV 0.01 0.1 Ν., Courtesy P. F. de Salas TI Mell 2 Active neutrinos – precision T [MeV] 100 3.0445 NO no oscillatione 1.15 NO 3.0440 ⇒ 3.0435 € 1.10 \$ 100 1.07 3.0430 1.050 3.01 1.02 3.0425 0.0 0.4 0.6 0.8 1.0 sin²θ Sterile neutrino hints - new physics? 3 $|U_{04}|^2 = 10^{-3}, |U_{24}|^2 =$ • v.: 12.84×10³⁰ POT 101 T 11 27v10²⁰ PO1 10¹ [eV²] $(\Delta m_{40}^2/eV)$ ŝ 10-2 10-6 10-5 10-4 10-3 10-2 10 $\log_{10} |U_{e4}|^2$ Thanks for your attention!

S. Gariazzo