

H2020 MSCA COFUND GA 754496

INFN. Turin section Turin (IT)

Istituto Nazionale di Fisica Nucleare

gariazzo@to.infn.it

http://personalpages.to.infn.it/~gariazzo/

Basics of CMB and structure formation

How neutrinos influence CMB and matter power spectrum

EuCAPT Astroneutrino Theory Workshop 2021, Prague (CZ) / online, 22/09/2021

C Cosmic Microwave Background

Based on:

- Lesgourgues+, Neutrino Cosmology
- Planck Collaboration, 2018

Photons in equilibrium have $f_{\gamma}(q) = [\exp(q/T) - 1]^{-1}$ $T_{\text{fluid/photon temperature, } q \text{ photon momentum}}$ while electrons (e) are free, γ scatter and cannot move freely when e and protons (p) form H atoms, γ s can break atomic bound H binding energy: $B_{\text{H}} = m_e + m_p - m_{\text{H}} \simeq 13.6 \text{ eV}$

 γ s start to move freely when they cannot break H bound anymore Notice: this depends on photon momentum distribution!

Photons in equilibrium have $f_{\gamma}(q) = [\exp(q/T) - 1]^{-1}$

while electrons (e) are free, γ scatter and cannot move freely when e and protons (p) form H atoms, γ s can break atomic bound H binding energy: $B_{\rm H} = m_e + m_p - m_{\rm H} \simeq 13.6 \text{ eV}$

 γs start to move freely when they cannot break H bound anymore

generic Saha equation:
$$\frac{n_c n_d}{n_a n_b} = \frac{\int d^3 q e^{-E_c/T} \int d^3 q e^{-E_d/T}}{\int d^3 q e^{-E_a/T} \int d^3 q e^{-E_b/T}}$$
(chemical equilibrium condition)

 n_i number densities, E_i energies, T fluid temperature, q momenta

Photons in equilibrium have $f_{\gamma}(q) = [\exp{(q/T)} - 1]^{-1}$

while electrons (e) are free, γ scatter and cannot move freely

when e and protons (p) form H atoms, γs can break atomic bound

H binding energy: $B_{\rm H} = m_e + m_p - m_{\rm H} \simeq 13.6 \, {\rm eV}$

 γ s start to move freely when they cannot break H bound anymore

Saha equation applied to $e + p \leftrightarrow \gamma + H$:

$$\left(\frac{n_p n_e}{n_{\rm H}} = \left(\frac{m_e T}{2\pi}\right)^{3/2} \exp\left(-\frac{B_{\rm H}}{T}\right)\right)$$

Photons in equilibrium have $f_{\gamma}(q) = [\exp{(q/T)} - 1]^{-1}$

while electrons (e) are free, γ scatter and cannot move freely when e and protons (p) form H atoms, γ s can break atomic bound H binding energy: $B_{\rm H} = m_e + m_p - m_{\rm H} \simeq 13.6 \text{ eV}$

 γs start to move freely when they cannot break H bound anymore

define
$$X_e \equiv \frac{n_e}{n_e + n_{\rm H}}$$
, use $Y_p \equiv \frac{m_{\rm He}n_{\rm He}}{m_{\rm N}n_{\rm B}} \sim 0.25$, $\eta_{\rm B} \equiv \frac{n_{\rm B} - n_{\rm B}}{n_{\gamma}} \sim 6 \times 10^{-10}$
$$\underbrace{\frac{X_e^2}{1 - X_e} = \frac{1}{\eta_{\rm B}(1 - Y_p)} \left(\frac{m_e}{T}\right)^{3/2} \frac{\sqrt{\pi}}{2^{5/2}\zeta(3)} \exp\left(-\frac{B_{\rm H}}{T}\right)}_{X_e^{4} \text{He mass fraction, } n_{\rm B} \text{ baryon-to-photon ratio, } \zeta(3) \simeq 1.202 \dots}$$

Photons in equilibrium have $f_{\gamma}(q) = [\exp{(q/T)} - 1]^{-1}$

while electrons (e) are free, γ scatter and cannot move freely when e and protons (p) form H atoms, γ s can break atomic bound H binding energy: $B_{\rm H} = m_e + m_p - m_{\rm H} \simeq 13.6$ eV

 γs start to move freely when they cannot break H bound anymore

define
$$X_e \equiv \frac{n_e}{n_e + n_{\rm H}}$$
, use $Y_\rho \equiv \frac{m_{\rm He}n_{\rm He}}{m_{\rm N}n_{\rm B}} \sim 0.25$, $\eta_{\rm B} \equiv \frac{n_{\rm B} - n_{\rm B}}{n_{\gamma}} \sim 6 \times 10^{-10}$
$$\underbrace{\left(\frac{X_e^2}{1 - X_e} = \frac{1}{\eta_{\rm B}(1 - Y_\rho)} \left(\frac{m_e}{T}\right)^{3/2} \frac{\sqrt{\pi}}{2^{5/2}\zeta(3)} \exp\left(-\frac{B_{\rm H}}{T}\right)\right)}_{Y_\rho^{-4} \text{He mass fraction, } \eta_{\rm B} \text{ baryon-to-photon ratio, } \zeta(3) \simeq 1.202\ldots}$$

For $T \simeq B_{\rm H}$, X_e is close to 1: too many high- $E \gamma s$ break H!

Fraction of free electrons decreases rapidly at $T \simeq 0.3$ eV

At that point (last scattering) photons start to move freely!

Beyond homogeneous and isotropic universe: add perturbations!

metric: $g_{\mu\nu} = \overline{g}_{\mu\nu} + \delta g_{\mu\nu}$ extend FLRW: $ds^2 = a^2(\eta)[-(1 + 2\psi(\eta, \vec{x}))d\eta^2 + (1 - 2\phi(\eta, \vec{x}))d\vec{x}^2]$

Cosmology with perturbations

Newtonian gauge: ψ (Newtonian potential), ϕ metric perturbations

only scalar, no vector/tensor perturbations!

Beyond homogeneous and isotropic universe: add perturbations!

metric: $g_{\mu\nu} = \overline{g}_{\mu\nu} + \delta g_{\mu\nu}$ extend FLRW: $ds^2 = a^2(\eta)[-(1+2\psi(\eta,\vec{x}))d\eta^2 + (1-2\phi(\eta,\vec{x}))d\vec{x}^2]$

stress-energy tensor:
$$T_{\mu\nu} = \overline{T}_{\mu\nu} + \delta T_{\mu\nu}$$

4 scalars define the T perturbations:

 $\delta = \delta \rho / \bar{\rho}$ density contrast θ related to bulk velocity divergence

Cosmology with perturbations

 δP pressure perturbations

 σ anisotropic stress

Beyond homogeneous and isotropic universe: add perturbations!

metric: $g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$ extend FLRW: $ds^2 = a^2(\eta)[-(1+2\psi(\eta,\vec{x}))d\eta^2 + (1-2\phi(\eta,\vec{x}))d\vec{x}^2]$

stress-energy tensor:
$$\ T_{\mu
u}=ar{ au}_{\mu
u}+\delta au_{\mu
u}$$

4 scalars define the T perturbations:

 $\delta = \delta \rho / \bar{\rho}$ density contrast θ related to bulk velocity divergence

Cosmology with perturbations

 δP pressure perturbations σ anisotropic stress

Einstein equations (Fourier space): $k^2\phi + 3\frac{a'}{a}\left(\phi' + \frac{a'}{a}\psi\right) = -4\pi Ga^2 \sum_i \delta\rho_i$ and $k^2(\phi - \psi) = 12\pi Ga^2 \sum_i (\bar{\rho}_i + \bar{p}_i)\sigma_i$

Beyond homogeneous and isotropic universe: add perturbations!

metric: $g_{\mu\nu} = \overline{g}_{\mu\nu} + \delta g_{\mu\nu}$ extend FLRW: $ds^2 = a^2(\eta)[-(1+2\psi(\eta,\vec{x}))d\eta^2 + (1-2\phi(\eta,\vec{x}))d\vec{x}^2]$

stress-energy tensor:
$$\, {\cal T}_{\mu
u} = ar{{\cal T}}_{\mu
u} + \delta \, {\cal T}_{\mu
u}$$

4 scalars define the T perturbations:

 $\delta = \delta \rho / \bar{\rho}$ density contrast θ related to bulk velocity divergence

Cosmology with perturbations

 δP pressure perturbations σ anisotropic stress

Einstein equations (Fourier space):

$$k^2\phi + 3\frac{a'}{a}\left(\phi' + \frac{a'}{a}\psi\right) = -4\pi Ga^2 \sum_i \delta\rho_i \text{ and } k^2(\phi - \psi) = 12\pi Ga^2 \sum_i (\bar{\rho}_i + \bar{p}_i)\sigma_i$$

Perturbed photon distribution:

$$f_{\gamma}(\eta, \vec{x}, \vec{p}) = \left[\exp\left(\frac{y}{a(\eta)\overline{T}(\eta)\{1 + \Theta_{\gamma}(\eta, \vec{x}, \hat{n})\}}\right) - 1 \right]^{-1}$$

$$\Theta_{\gamma}' + \hat{n} \cdot \vec{\nabla} \Theta_{\gamma} - \phi' + \hat{n} \cdot \vec{\nabla} \psi = \mathsf{an}_{e} \sigma_{T} (\Theta_{\gamma 0} - \Theta_{\gamma} + \hat{n} \cdot \vec{\mathbf{v}_{B}})$$

Cosmic Microwave Background (CMB)

Predicted in 1948 [Alpher, Herman]: blackbody background radiation at $T \simeq 5$ K Discovery (accidental): [Penzias, Wilson 1964] ------ Nobel prize 1978 perfect black body spectrum at $T_{\rm CMB} = 2.72548 \pm 0.00057$ K [Fixsen, 2009] Anisotropies at the level of 10^{-5} : very high precision measurements are needed. Improvement of the CMB experiments in 20 years: COBE (1992) WMAP (2003) Planck (2013)

Simplest assumption: only Gaussian fluctuations in the Early Universe

linear theory preserves gaussianity

all Gaussian fluctuations can be described by two-point correlation function

 $\langle A(\eta, \vec{k}) A^*(\eta, \vec{k}') \rangle$

Simplest assumption: only Gaussian fluctuations in the Early Universe

linear theory preserves gaussianity

all Gaussian fluctuations can be described by two-point correlation function $\langle A(\eta, \vec{k})A^*(\eta, \vec{k}') \rangle$

stochastic gaussian field \rightarrow uncorrelated wavevectors \rightarrow Fourier transform equal $\delta^{(3)}(\vec{k} - \vec{k}')$ times power spectrum P_A Also defined as: $\mathcal{P}_A(k) = \frac{k^3}{2\pi^2} P_A(k)$

Simplest assumption: only Gaussian fluctuations in the Early Universe

linear theory preserves gaussianity

all Gaussian fluctuations can be described by two-point correlation function $\langle A(\eta, \vec{k})A^*(\eta, \vec{k}') \rangle$

stochastic gaussian field \rightarrow uncorrelated wavevectors \rightarrow Fourier transform equal $\delta^{(3)}(\vec{k} - \vec{k}')$ times power spectrum P_A Also defined as: $\mathcal{P}_A(k) = \frac{k^3}{2\pi^2} P_A(k)$

Curvature perturbations: $\mathcal{R} = \psi - \frac{1}{3} \frac{\delta \rho_{\text{tot}}}{\bar{\rho}_{\text{tot}} + \bar{P}_{\text{tot}}}$ Inflation predicts $\mathcal{P}_{\mathcal{R}}(k) = A_s (k/k_0)^{n_s - 1}$ as initial spectrum

Simplest assumption: only Gaussian fluctuations in the Early Universe

linear theory preserves gaussianity

all Gaussian fluctuations can be described by two-point correlation function $\langle A(\eta, \vec{k}) A^*(\eta, \vec{k}') \rangle$

stochastic gaussian field \rightarrow uncorrelated wavevectors \rightarrow Fourier transform equal $\delta^{(3)}(\vec{k} - \vec{k}')$ times power spectrum P_A Also defined as: $\mathcal{P}_A(k) = \frac{k^3}{2\pi^2} P_A(k)$

Curvature perturbations: $\mathcal{R} = \psi - \frac{1}{3} \frac{\delta \rho_{\text{tot}}}{\bar{\rho}_{\text{tot}} + \bar{P}_{\text{tot}}}$ Inflation predicts $\mathcal{P}_{\mathcal{R}}(k) = A_s (k/k_0)^{n_s - 1}$ as initial spectrum

Expression for the power spectrum of photon temperature perturbations:

$$\langle \Theta_{\gamma l}(\eta, \vec{k}) \Theta^*_{\gamma l}(\eta, \vec{k}') \rangle = \frac{2\pi^2}{k^3} \mathcal{P}_{\mathcal{R}}(k) [\Theta_{\gamma l}(\eta, k)]^2 \delta^{(3)}(\vec{k} - \vec{k}')$$

 $\Theta_{\gamma l}(\eta, k) \equiv [\Theta_{\gamma l}(\eta, \vec{k}) / \mathcal{R}(\eta_{\rm in}, \vec{k})]$ transfer function

Planck DR3 results - Temperature

Cosmological parameters

ACDM model described

by 6 base parameters:

 $\omega_b = \Omega_b h^2$ baryon density today;

- $\omega_c = \Omega_c h^2$ CDM density today;
 - $\tau\,$ optical depth to reionization;
 - θ angular scale of acoustic peaks;

n_s tilt and

. . .

 A_s amplitude of the power spectrum of initial curvature perturbations.

Other quantities can be studied:

 H_0 Hubble parameter today;

 σ_8 mean matter fluctuations at small scales;

[Planck Collaboration, 2018]

Cosmological parameters

ACDM model described

by 6 base parameters:

 $\omega_b = \Omega_b h^2$ baryon density today;

- $\omega_c = \Omega_c h^2$ CDM density today;
 - $\tau\,$ optical depth to reionization;
 - heta angular scale of acoustic peaks;

n_s tilt and

 A_s amplitude of the power spectrum of initial curvature perturbations.

Other quantities can be studied:

- H₀ Hubble parameter today;
- σ_8 mean matter fluctuations at small scales;

[Planck Collaboration, 2018]

CMB spectra as of 2018

[Planck Collaboration, 2018]

0.05°

ĒΕ

BB

ΤE

lensing

4000

3000

 0.1°

S. Gariazzo

"Basics of CMB and structure formation"

EuCAPT 2021, 22/09/2021

2000

7/21

Planck DR3 results - Polarization

- TE cross-correlation and EE auto-correlation measured with high precision;
- ACDM explains very well the data;
- Note: in the plots, the red curve is the prediction based on the TT only best-fit for ACDM model → very good consistency between temperature and polarization spectra.

Based on:

- Lesgourgues+,Neutrino Cosmology
- Planck Collaboration, 2018

What about evolution of matter density perturbations?

$$\langle \delta(\eta, \vec{k}) \delta^*(\eta, \vec{k}') \rangle = \delta^{(3)}(\vec{k} - \vec{k}') P(\eta, k)$$

goal: determine matter power spectrum

What about evolution of matter density perturbations?

$$\langle \delta(\eta, \vec{k}) \delta^*(\eta, \vec{k}') \rangle = \delta^{(3)}(\vec{k} - \vec{k}') P(\eta, k)$$

goal: determine matter power spectrum

fluctuations with wavelengths k smaller or larger than the casual horizon behave differently!

large scales small k

superhorizon

grow with expansion of the universe (no gravity effect)

sub-horizon growth from gravitational collapse

small scales

large k

balance between expansion and gravitational interactions

What about evolution of matter density perturbations?

$$\langle \delta(\eta, \vec{k}) \delta^*(\eta, \vec{k}') \rangle = \delta^{(3)}(\vec{k} - \vec{k}') P(\eta, k)$$

goal: determine matter power spectrum

fluctuations with wavelengths *k* smaller or larger than the casual horizon behave differently!

large scales
small ksuperhorizonsmall scales
small scalesgrow with expansion of the
universe (no gravity effect)growth from gravitational collapse
balance between expansion
and gravitational interactions

moreover: evolution is different during RD, MD, ΛD

What about evolution of matter density perturbations?

$$\langle \delta(\eta, \vec{k}) \delta^*(\eta, \vec{k}') \rangle = \delta^{(3)}(\vec{k} - \vec{k}') P(\eta, k)$$

goal: determine matter power spectrum

fluctuations with wavelengths *k* smaller or larger than the casual horizon behave differently!

large scales small k superhorizon

sub-horizon and large

small scales large k

grow with expansion of the universe (no gravity effect)

growth from gravitational collapse

balance between expansion and gravitational interactions

moreover: evolution is different during RD, MD, ΛD

approximated P(a, k) with negligible baryon fraction:

$$P(a,k) = \left(\frac{a}{a_0}\frac{a_M\delta_C(a,k)}{a\delta_C(a_M,k)}\right)^2 \frac{k\mathcal{P}_{\mathcal{R}}(k)}{\left(\Omega_m a_0^2 H_0^2\right)^2} \times \begin{cases} \frac{8\pi^2}{25} & (a_0H_0 < k < k_{eq}) \\ \frac{k_{eq}^4}{2k^4} \left(\alpha + \beta \ln\left(\frac{k}{k_{eq}}\right)\right)^2 & (k > k_{eq}) \end{cases}$$

(Linear) matter power spectrum

"Basics of CMB and structure formation"

O Other observables

Based on:

 Planck Collaboration, 2018

Tension I: the Hubble parameter H_0

[Planck Collaboration, 2018]

$$v = H_0 d,$$

with $H_0 = H(z = 0)$

Local measurements: H(z = 0),local and independent on evolution (model independent, but systematics?)

CMB measurements

(probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics)

68% CL error bars

Tension I: the Hubble parameter H_0

Local measurements: H(z = 0), local and independent on evolution (model independent, but systematics?)

CMB measurements

S. Gariazzo

(probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics)

Using HST Cepheids: [Efstathiou 2013] $H_0 = 72.5 \pm 2.5 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ [Riess+, 2019] $H_0 = 74.03 \pm 1.42 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ GW: [Abbott+, 2017] $H_0 = 70^{+12}_{-8} \text{ Km s}^{-1} \text{ Mpc}^{-1}$ (ACDM model - CMB data only) [Planck 2013]: $H_0 = 67.3 \pm 1.2 \text{ Km s}^{-1} \text{ Mpc}^{-1}$

[Planck 2018]: $H_0 = 67.27 \pm 0.60 \,\mathrm{Km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$

68% CL error bars

Tension I: the Hubble parameter H_0

Local measurements: H(z = 0), local and independent on evolution (model independent, but systematics?)

CMB measurements

S. Gariazzo

(probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics)

Riess2011 Efstathiou2013 Riess2016 Riess2019 GW170817+EM (2017) WMAP 9yr + ACT + SPT -- ACDM Planck2013 -- ACDM Planck2015 -- ACDM Planck2018 -- ACDM Planck2018 + lens \pm BAO -- Λ CDM+ N_{eff} Planck2018 + lens + BAO -- $\Lambda CDM + \Omega_k$ Planck2018 + lens + BAO -- wCDM 55 45 50 60 65 70 75 85 90 80 H_0 [Km s⁻¹ Mpc⁻¹]

Using HST Cepheids: [Efstathiou 2013] $H_0 = 72.5 \pm 2.5 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ [Riess+, 2019] $H_0 = 74.03 \pm 1.42 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ GW: [Abbott+, 2017] $H_0 = 70^{+12}_{-8} \text{ Km s}^{-1} \text{ Mpc}^{-1}$ (ACDM model - CMB data only) [Planck 2013]: $H_0 = 67.3 \pm 1.2 \text{ Km s}^{-1} \text{ Mpc}^{-1}$

[Planck 2018]: $H_0 = 67.27 \pm 0.60 \,\mathrm{Km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$

68% CL error bars

Tension II (?): the matter distribution at small scales Assuming ACDM model:

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today;

 Ω_m : total matter density today divided by the critical density

S. Gariazzo

12/21

N Neutrinos in cosmology

Impact of neutrinos on CMB and $P_m(k)$?

Based on: Lesgourgues+, Neutrino Cosmology

History of the universe

History of the universe

History of the universe

Additional Radiation in the Early Universe

Starting configuration:

If we increase N_{eff} , all the other parameters fixed:

If we increase N_{eff} , plus ω_m to fix z_{eq} :

- Contribution from early ISW effect restored (first peak)
- different slope of the Sachs-Wolfe plateau, peak positions, envelope of high- ℓ peaks \Rightarrow due to later z_{Λ}

If we increase N_{eff} , plus ω_m , ω_{Λ} to fix z_{eq} , z_{Λ} :

- peak positions recovered;
- slope of the Sachs-Wolfe plateau recovered;
- peak amplitude not recovered!

S. Gariazzo

EuCAPT 2021, 22/09/2021

17/21

$$k_{fs}(z) \equiv \sqrt{rac{3}{2}} rac{H(z)}{(1+z)\sigma_{v,
u}(z)} \simeq 0.7 \left(rac{m_{
u}}{1 ext{ eV}}
ight) \sqrt{rac{\Omega_M}{1+z}} h/ ext{Mpc}$$

 ρ energy density of a given fluid $\delta = \delta \rho / \rho$ perturbation (single fluid) $c_{\rm s}$ sound speed of the fluid $\sigma_{v,\nu}(z) \nu$ velocity dispersion H = H(z) Hubble factor at redshift z h reduced Hubble factor today

"Basics of CMB and structure formation"

Free-streaming - II

Damping occurs for all $k \gtrsim k_{nr}$

 k_{nr} : corresponding to ν non-relativistic transition [Lesgourgues+, Neutrino Cosmology] (fixed $h, \omega_m, \omega_b, \omega_\Lambda$)

Expected constraints from future surveys:

- Planck CMB + DES: $\sigma(m_{\nu}) \simeq 0.04$ –0.06 eV [Font-Ribera+, 2014]
- Planck CMB + Euclid: $\sigma(m_{\nu}) \simeq 0.03$ eV [Audren+, 2013]

(Linear) matter power spectrum with ν s

[Chabanier+, 2019]

S. Gariazzo

EuCAPT 2021, 22/09/2021

21/21