

[•] Stefano Gariazzo

IFT (CSIC-UAM) Madrid (ES)

stefano.gariazzo@ift.csic.es

New neutrino physics with early universe probes

(Posthumous) FELLINI Seminar, 19/10/2023

A Active neutrinos Spoiler: "Sterile" will come later

Based on: JHEP 02 (2021) 071 and update

- Planck 2018
- JCAP 04 (2021) 073

The Standard Model of Particle Physics

S. Gariazzo

The Standard Model of Particle Physics

Neutrino oscillations

first discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations from atmospheric ν

first discovery of $\nu_e \rightarrow \nu_\mu, \nu_\tau$ oscillations from solar ν

Nobel prize in 2015

$$\left|P_{\nu_{\alpha}\to\nu_{\beta}}(L)=|\langle\nu_{\alpha}|\nu(L)\rangle|^{2}=\sum_{k,j}U_{\beta k}U_{\alpha k}^{*}U_{\beta j}^{*}U_{\alpha j}\exp\left(-i\frac{\Delta m_{kj}^{2}L}{2E}\right)\right|$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

S. Gariazzo

The mixing matrix

U can be parameterized using 3 angles $(\theta_{12}, \theta_{13}, \theta_{23})$ and max 3 (1 Dirac δ , 2 Majorana [\exists only for Majorana ν]) phases

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} M$$
mainly atmospheric mainly LBL reactors and and LBL LBL accelerator Acce

Majorana phases irrelevant for oscillation experiments -Relevant for example in neutrinoless double-beta decay

$$s_{ij} \equiv \sin \theta_{ij}; c_{ij} \equiv \cos \theta_{ij}$$

LBL = long baseline; VLBL = very long baseline;

S. Gariazzo

"New neutrino physics with early universe probes"

FELLINI Seminar, 19/10/2023

Three Neutrino Oscillations

$$u_{lpha} = \sum_{k=1}^{3} U_{lpha k} \nu_k \quad (lpha = e, \mu, \tau)$$

 $U_{\alpha k}$ described by 3 mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ and one CP phase δ

Current knowledge of the 3 active ν mixing: [JHEP 02 (2021) update]

History of the universe

History of the universe

History of the universe

The oldest picture of the Universe

The Cosmic Microwave Background, generated at $t \simeq 4 \times 10^5$ years COBE (1992) WMAP (2003) Planck (2013)

CMB spectra as of 2018

[Planck Collaboration, 2018]

0.05°

ĒΕ

BB

ΤE

lensing

4000

3000

 0.1°

S. Gariazzo

"New neutrino physics with early universe probes"

2000

Big Bang Nucleosynthesis (BBN)

temperature $T_{fr} \simeq 1$ MeV from nucleon freeze-out

much earlier than CMB!

strong probe for physics before the CMB

 $e.g. \ neutrinos!$

u affect universe expansion and reaction rates $(\nu_e/\bar{\nu}_e)$

at BBN time...

BBN concordance

S. Gariazzo

"New neutrino physics with early universe probes"

FELLINI Seminar, 19/10/2023

Big Bang Nucleosynthesis (BBN)

temperature $T_{fr} \simeq 1$ MeV from nucleon freeze-out

much earlier than CMB!

strong probe for physics before the CMB

e.g. neutrinos!

 $\nu \text{ affect}$ universe expansion
and
reaction rates $(\nu_e/\bar{\nu}_e)$

at BBN time...

S. Gariazzo

FELLINI Seminar, 19/10/2023

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

 ν decouple mostly before $e^+e^- \to \gamma\gamma$ annihilation!

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

[Bennett, SG+, JCAP 2021] [Sigl, Raffelt, 1993] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ $\begin{array}{ll} \text{density matrix:} & \varrho(x,y) = \left(\begin{array}{cc} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{-}} \end{array} \right) \end{array}$ off-diagonals to take into account coherency in the neutrino system ϱ evolution from $x H \frac{\mathrm{d}\varrho(y,x)}{\mathrm{d}x} = -ia[\mathcal{H}_{\mathrm{eff}},\varrho] + b\mathcal{I}$ *H* Hubble factor \rightarrow expansion (depends on universe content) effective Hamiltonian $\mathcal{H}_{eff} = \frac{\mathbb{M}_{F}}{2y} - \frac{2\sqrt{2}G_{F}ym_{e}^{6}}{x^{6}} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_{_{I\!M}}^{2}} + \frac{4}{3}\frac{\mathbb{E}_{\nu}}{m_{_{T}}^{2}}\right)$ → matter effects vacuum oscillations +

$\mathcal I$ collision integrals

take into account $\nu-e$ scattering and pair annihilation, $\nu-\nu$ interactions

2D integrals over momentum, take most of the computation time

solve together with z evolution, from $x \frac{d\rho(x)}{dx} = \rho - 3P$

 $\rho,\,P$ total energy density and pressure, also take into account FTQED corrections

S. Gariazzo

"New neutrino physics with early universe probes"

FELLINI Seminar, 19/10/2023

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe [Sigl, Raffelt, 1993] comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ $\begin{array}{cc} \text{density matrix:} & \varrho(x,y) = \left(\begin{array}{cc} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} \end{array} \right) \end{array}$ off-diagonals to take into account coherency in the neutrino system ϱ evolution from $xH\frac{\mathrm{d}\varrho(y,x)}{\mathrm{d}x} = -ia[\mathcal{H}_{\mathrm{eff}},\varrho] + b\mathcal{I}$ FORTran-Evolved PrimordIAl Neutrino Oscillations (FortEPiaNO) https://bitbucket.org/ahep cosmo/fortepiano public vacuum oscillations + → matter effects \mathcal{I} collision integrals take into account $\nu - e$ scattering and pair annihilation, $\nu - \nu$ interactions 2D integrals over momentum, take most of the computation time solve together with z evolution, from $x \frac{d\rho(x)}{dx} = \rho - 3P$ P total energy density and pressure, also take into account FTQED corrections S. Gariazzo "New neutrino physics with early universe probes" 11/40FELLINI Seminar, 19/10/2023

Distortion of the momentum distribution ($f_{\rm FD}$: Fermi-Dirac at equilibrium)

Distortion of the momentum distribution (f_{FD} : Fermi-Dirac at equilibrium)

$$N_{\text{eff}}^{\text{any time}} = \frac{8}{7} \left(\frac{T_{\gamma}}{T_{\nu}}\right)^4 \frac{\rho_{\nu}}{\rho_{\gamma}} = \frac{8}{7} \left(\frac{T_{\gamma}}{T_{\nu}}\right)^4 \frac{1}{\rho_{\gamma}} \sum_i g_i \int \frac{d^3 p}{(2\pi)^3} E(p) f_{\nu,i}(p)$$

[Bennett, SG+, JCAP 2021]

Effect of neutrino oscillations

S. Gariazzo

"New neutrino physics with early universe probes'

FELLINI Seminar, 19/10/2023

[Bennett, SG+, JCAP 2021]

Effect of neutrino oscillations

$N_{\rm eff}$ and CMB

I $N_{\rm eff}$ and BBN

BBN: production of light nuclei at $t \sim 1$ s to $t \sim O(10^2)$ s

temperature $T_{fr} \simeq 1 \text{ MeV}$ from nucleon freeze-out:

$$\Gamma_{n\leftrightarrow p} \sim G_F^2 T^5 = H \sim \sqrt{g_\star G_N} T^2$$

$$\downarrow$$

$$T_{fr} \simeq (g_\star G_N / G_F^4)^{1/6}$$

which controls element abundances

Σm_{ν} and CMB

Cosmological neutrino mass bounds (95% CL)

Cosmological neutrino mass bounds (95% CL)

Cosmological neutrino mass bounds (95% CL)

[PDU 40 (2023)]

standard factor

Is there a tension between cosmology and oscillations?

or will there be a tension?

several possible tests can be considered, similar results

 $\Sigma m_{\nu} \lesssim 0.1 \text{ eV} (95\%)$ $\Sigma m_{\nu} = 0.06 \pm 0.02 \text{ eV} (1\sigma)$ $\Sigma m_{\nu} = 0.00 \pm 0.02 \text{ eV} (1\sigma)$

currently only mild tension between cosmology and oscillations future NO can be at $\sim 2\sigma$ tension with IO future 0 can be at $\sim 2 - 3\sigma$ tension with NO, $\gtrsim 4\sigma$ with IO

currently only mild tension between cosmology and oscillations future NO can be at $\sim 2\sigma$ tension with IO future 0 can be at $\sim 2-3\sigma$ tension with NO, $\gtrsim 4\sigma$ with IO B Sterile neutrinos let's pretend they exist

Based on:

- JPG 43 (2016) 033001
- JHEP 06 (2017) 135
- PLB 782 (2018) 13-21
- JCAP 07 (2019) 014
- PRD 104 (2021) 123524

JCAP 03 (2023) 046

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

[SG+, JPG 43 (2016) 033001]

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{k j}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

Short BaseLine (SBL) oscillations: $\frac{\Delta m_{41}^2 L}{E} \simeq 1$

At SBL, oscillations due to Δm_{21}^2 and $|\Delta m_{31}^2|$ do not develop

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

S. Gariazzo

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

20/40

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

ν_s at reactors in 2020

sensitivity

10-2

 $sin_{ee}^2 2\theta$

10-1

100

exclusion

[Neutrino-4, PZETF 2020]

[SoLiD, JINST 2021]

S. Gariazzo

10 10-2 CL, Exclusion, 95% CL CL, Sensitivity, 95% CL

SBL + Gallium Anomaly (RAA), 95% CL

10

 $sin^2 2\theta_{14}$

"New neutrino physics with early universe probes"

FELLINI Seminar, 19/10/2023

21/40

Neutrino-4

claimed > 3σ preference for 3+1 over 3ν case

> best fit incompatible with other reactor experiments

Neutrino-4

energy resolution smearing not properly taken into account?

Neutrino-4

[Giunti+, PLB 2021]

proper energy resolution treatment moves best-fit $\rightarrow \sin^2 2\vartheta \simeq 1$

need to take into account violation of Wilk's theorem ↓ relaxed constraints

Reactor antineutrino spectrum and RAA

[Giunti+, PLB 2022]

When the RAA was discovered:

conversion method (ILL data) and ab initio calculations in agreement

[Huber, 2011], [Mueller+, 2011] spectra

Reactor antineutrino spectrum and RAA

[Giunti+, PLB 2022]

Revised *ab initio* calculation: [Estienne, Fallot+, PRL 123 (2019)]

Reactor antineutrino spectrum and RAA

[Giunti+, PLB 2022]

Conversion method on new measurements of electron spectrum at Kurchatov Institute (KI) (updates ILL measurements from the 80's):

[Kopeikin+, PRD 2021]

[PRL 121 (2018) 221801]

MiniBooNE

[PRL 121 (2018) 221801]

MiniBooNE

[IceCube, PRL 2020]

IceCube 8 yr update

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

 $sterile \implies$ no weak/em interactions in the thermal plasma

need to produce it through oscillations, but matter effects may block them time

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma need to produce it through oscillations, but matter effects may block them when are they enough to allow full equilibrium of active-sterile states?

$$0 \longleftarrow \Delta N_{\rm eff} = N_{\rm eff}^{4\nu} - N_{\rm eff}^{3\nu} \longrightarrow \simeq 1$$
no sterile production active&sterile in equilibrium

$$\frac{\Delta m_{as}^2}{\text{eV}^2} \sin^4 (2\vartheta_{as}) \simeq 10^{-5} \ln^2 (1 - \Delta N_{\text{eff}}) \qquad (1+1 \text{ approx.})$$
[Dolgov&Villante, 2004]

e.g.:
$$\Delta m_{as}^2 = 1 \ {
m eV}^2$$
, $\sin^2 \left(2 \vartheta_{as} \right) \simeq 10^{-3} \Longrightarrow \Delta N_{
m eff} \simeq 1$

$$N_{\rm eff}^{3\nu} = 3.044$$
 [JCAP 2021]

[SG+, JCAP 07 (2019) 014]

Four neutrinos \longrightarrow new oscillations in the early Universe

sterile \implies no weak/em interactions in the thermal plasma need to produce it through oscillations, but matter effects may block them when are they enough to allow full equilibrium of active-sterile states?

$$0 \longleftarrow \Delta N_{\rm eff} = N_{\rm eff}^{4\nu} - N_{\rm eff}^{3\nu} \longrightarrow \simeq 1$$

no sterile production active&sterile in equilibrium

$$\frac{\Delta m_{as}^2}{\text{eV}^2} \sin^4 (2\vartheta_{as}) \simeq 10^{-5} \ln^2 (1 - \Delta N_{\text{eff}}) \qquad (1+1 \text{ approx.})$$
[Dolgov&Villante, 2004]

e.g.:
$$\Delta m^2_{as} = 1 \; {
m eV}^2$$
, $\sin^2 \left(2 artheta_{as} \right) \simeq 10^{-3} \Longrightarrow \Delta N_{
m eff} \simeq 1$

Full calculation: use numerical code!

FORTran-Evolved PrimordIAl Neutrino Oscillations (FortEPiaNO) https://bitbucket.org/ahep_cosmo/fortepiano_public

S. Gariazzo

I $N_{\rm eff}$ and the new mixing parameters

[SG+, JCAP 07 (2019) 014]

[SG+, JCAP 07 (2019) 014]

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Warning: tension between reactor experiments and CMB bounds!

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Warning: tension between reactor experiments and CMB bounds!

[JCAP 03 (2023)]

Non-unitarity of the 3×3 mixing matrix

Consider we have N_{ν} neutrino states

Unitary
$$N_{\nu} \times N_{\nu}$$
 mixing matrix: $V = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} & \dots \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} & V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \\ \vdots & \ddots \end{pmatrix}$

the 3×3 sector (N)

describing mixing among lightest neutrinos is non-unitary

$$N = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} U$$

 α_{ii} real, α_{ij} $(i \neq j)$ complex \Rightarrow CP violation

 $U = R^{23}R^{13}R^{12}$ is the standard unitary mixing matrix

[JCAP 03 (2023)]

Non-unitarity of the 3×3 mixing matrix

Consider we have N_{ν} neutrino states

Unitary $N_{\nu} \times N_{\nu}$ mixing matrix: $V = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} & \dots \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} & \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} & \\ \vdots & & \ddots \end{pmatrix}$

the 3×3 sector (N) describing mixing among lightest neutrinos is non-unitary

Neutrino interactions depend only on kinematically accessible states Oscillations depend on all states

Oscillations with states n > 3 much heavier than $n \le 3$ are averaged out at experiments

Non-unitarity and neutrino decoupling

Neutrino density matrix evolution in mass basis:

$$\frac{\mathrm{d}\varrho(y)}{\mathrm{d}x}\Big|_{\mathrm{M}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{M}}}{2y} - \frac{2\sqrt{2}G_F ym_e^6}{x^6} \mathcal{E}_{\mathrm{M}}, \varrho \right] + \frac{m_e^3}{x^4} \mathcal{I}(\varrho) \right\}$$

Unitary case

interactions: $(Y_L)_{ab} \equiv \tilde{g}_L \mathbb{I} + (U^{\dagger})_{ea} U_{eb}$ $(Y_R)_{ab} \equiv g_R \mathbb{I}$ Non-unitary case

interactions:

$$\begin{array}{lcl} (Y_L)_{ab} &\equiv & \tilde{g}_L(V^{\dagger}V)_{ab} + (V^{\dagger})_{ea}V_{eb} \\ (Y_R)_{ab} &\equiv & g_R(V^{\dagger}V)_{ab} \end{array}$$

 matter effects: $\mathcal{E}_{\rm NU} \equiv \frac{\rho_e + P_e}{m_W^2} (Y_L - Y_R)$

Fermi constant: $G_F^{\mu} = G_F$ $G_F^{\mu} = G_F \sqrt{\alpha_{11}^2 (\alpha_{22}^2 + |\alpha_{21}|^2)}$ $G_F^{\mu} = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-2} \text{ [CODATA]}$ $\mathcal{I}(\varrho) \propto G_F^2$

[JCAP 03 (2023)]

Non-unitarity parameters and $N_{\rm eff}$

[JCAP 03 (2023)]

Non-unitarity parameters and $N_{\rm eff}$

[JCAP 03 (2023)]

Confidence regions from future CMB measurements with $\delta \textit{N}_{\rm eff}=0.02$

S. Gariazzo

C Non-standard cosmology

beyond non-standard neutrino physics

Based on: arxiv:2308.15531 (1st secondment) in preparation (2nd secondment)

Additional particles in the early universe?

Sterile neutrinos are coupled via oscillations to the thermal plasma

(photons, electrons, neutrinos, (muons), ...)

What if we add a decoupled particle?

let us assume a non-standard evolution of the energy density: $ar{
ho}_{
m US} \propto a^{n+4}$

n = 0
ightarrow radiation; n = -1
ightarrow matter; n = -2
ightarrow curvature, . . .

effect on early universe phenomena is purely gravitational

total energy density: $\rho = \rho_{\gamma} + \rho_e + \rho_{\nu} + \delta \rho_{\text{FTQED}} + \rho_{\text{US}}$ Hubble factor: $H^2 = 8\pi \rho / (3M_{\text{Pl}}^2)$

[arxiv:2308.15531]

Additional particles in the early universe?

Sterile neutrinos are coupled via oscillations to the thermal plasma

(photons, electrons, neutrinos, (muons), ...)

What if we add a decoupled particle?

let us assume a non-standard evolution of the energy density: $ar{
ho}_{
m US} \propto a^{n+4}$

n = 0
ightarrow radiation; n = -1
ightarrow matter; n = -2
ightarrow curvature, . . .

effect on early universe phenomena is purely gravitational

total energy density: $\rho = \rho_{\gamma} + \rho_e + \rho_{\nu} + \delta \rho_{\text{FTQED}} + \rho_{\text{US}}$ Hubble factor: $H^2 = 8\pi \rho / (3M_{\text{Pl}}^2)$

neutrino decoupling:
$$\frac{\mathrm{d}\varrho(y)}{\mathrm{d}x} = \frac{1}{xH} \left\{ -i\frac{x^3}{m_e^3} \left[\mathcal{H}_{\mathrm{eff}}, \varrho \right] + \frac{m_e^3}{x^3} \mathcal{I}(\varrho) \right\}$$
BBN abundances:
$$\frac{dX_i}{dx} = \frac{\Gamma_i}{xH}$$

 $X_i = n_i/N_B$ abundance relative to total baryons, Γ_i effective reaction rate for nuclide i

[arxiv:2308.15531]

Results from $N_{\rm eff}$

S. Gariazzo

consider $\rho_{\rm US}~=~\rho_{\rm rad}$ at $x_{\rm C}~=~m_e/\,T_{\rm C}$ for the new particle

Results from $N_{\rm eff}$

consider $\rho_{\rm US}~=~\rho_{\rm rad}$ at $x_{\rm C}~=~m_e/\,T_{\rm C}$ for the new particle

Results from BBN

consider $\rho_{\rm US}~=~\rho_{\rm rad}$ at $x_{\rm C}~=~m_e/\,T_{\rm C}$ for the new particle

Compare to current measurements (Deuterium, Helium):

error bands (gray) are current constraints on the abundances even current precision can strongly constrain $T_{\rm C}$

calculations performed during and after the secondment, with D. Aristizabal and A. Villanueva (UTFSM, Chile)

Scenarios with low reheating temperature

Reheating: phase ending inflation

during inflation, the inflaton (non-rel. scalar) dominates the energy density

during reheating: inflaton decays into standard model particles

 \implies photons, electrons, ... are populated directly

radiation domination begins after reheating

Scenarios with low reheating temperature

Reheating: phase ending inflation

during inflation, the inflaton (non-rel. scalar) dominates the energy density

during reheating: inflaton decays into standard model particles

 \implies photons, electrons, ... are populated directly

radiation domination begins after reheating

neutrinos are populated by weak interactions with electrons! if reheating occurs too late, neutrinos are not generated and $N_{\rm eff} < 3$

Scenarios with low reheating temperature

Reheating: phase ending inflation

during inflation, the inflaton (non-rel. scalar) dominates the energy density

during reheating: inflaton decays into standard model particles

 \implies photons, electrons, ... are populated directly

radiation domination begins after reheating

neutrinos are populated by weak interactions with electrons! if reheating occurs too late, neutrinos are not generated and $N_{\rm eff} < 3$

Low reheating temperature: when reheating occurs at $T_{\rm rh} \lesssim 20$ MeV

notice: if ${\cal T}_{\rm rh} \lesssim 3$ MeV, BBN is broken!

3 neutrino oscillations start to be affected when $\,{\cal T}_{\rm rh}\lesssim 8$ MeV

what about sterile neutrinos?

I $N_{\rm eff}$ with low reheating

Need to edit equations for inflaton energy density and its contribution:

$$\begin{aligned} \frac{\mathrm{d}\varrho(y)}{\mathrm{d}x} &= \text{unchanged} \\ \frac{\mathrm{d}\rho_{\phi}}{\mathrm{d}x} &= -\frac{x\rho_{\phi}\Gamma_{\phi}}{m_{e}^{2}}\sqrt{\frac{3m_{\mathrm{Pl}}^{2}}{8\pi\rho_{\mathrm{tot}}}} \\ \frac{\mathrm{d}z}{\mathrm{d}x} &= \frac{\sum_{\ell=e,\mu} \left[\frac{r_{\ell}^{2}}{r}J_{2}(r_{\ell})\right] + G_{1}(r) - \frac{1}{2z^{3}}\sum_{\alpha=e}^{s}\frac{\mathrm{d}\rho_{\nu_{\alpha}}}{\mathrm{d}x} - \frac{x}{2z^{3}}\frac{\mathrm{d}\rho_{\phi}}{\mathrm{d}x}}{\sum_{\ell=e,\mu} \left[r_{\ell}^{2}J_{2}(r_{\ell}) + J_{4}(r_{\ell})\right] + G_{2}(r) + \frac{2\pi^{2}}{15}} \\ \rho_{\mathrm{tot}} &= \sum_{i=\gamma,\nu_{j},e,\mu} \rho_{i} + \delta\rho(x,z) + x\rho_{\phi} \\ \Gamma_{\phi} &\simeq \left(\frac{T_{\mathrm{rh}}}{0.7\,\mathrm{MeV}}\right)^{2}\,\mathrm{sec}^{-1} \end{aligned}$$

$N_{\rm eff}$ with low reheating

[in preparation]

 $N_{\rm eff}$ as a function of $T_{\rm rh}$ (3 or 3+1 neutrinos):

"New neutrino physics with early universe probes"

FELLINI Seminar, 19/10/2023

N_{eff} with low reheating

sterile case with varying mixing angle/mass splitting:

S. Gariazzo

"New neutrino physics with early universe probes"

BBN and low reheating

[in preparation]

S. Gariazzo

FELLINI Seminar, 19/10/2023

BBN and low reheating

$\Delta m_{41}^{2} \stackrel{\text{\tiny{so}}}{=} 10 \text{ eV}^2$ 0.1 eV² 0.5 20 T_{RH}(MeV) $|U_{e4}|^2 = 10^{-5}$ preliminary 0.0222 0.0224 0.0226 0.0228 0.0220 $\Omega_b h^2$ BBN + Planck1820 T_{RH}(MeV) $|U_{e4}|^2 = 10^{-4}$ 5 0.0218 0.0220 0.0222 0.0224 0.0226 0.0228 0.0226

0.0216 S. Gariazzo

 $\Omega_b h$

20

50

20

(VBM)HRT

7_{RH}(MeV)

"New neutrino physics with early universe probes"

FELLINI Seminar, 19/10/2023

[in preparation]

A few words on my FELLINI experience

Scientific production

- Secondments
 - 6 months at UTFSM, Santiago de Chile with prof. Aristizabal-Sierra (arxiv:2308.15531)
 - 6 months at IFIC, Valencia (Spain) with dr. Sergio Pastor (work on low-reheating scenarios in progress)
- Publications
 - 1 book chapter (arxiv:2306.15067, for the book "Hubble Constant Tension", Springer, expected in 2024)
 - 15 scientific papers on peer-reviewed journals (1 still under review)
 - 1 invited short review
- Dissemination
 - 12 talks at international workshops, conferences (including FELLINI general meetings)
 - 1 poster presentation at ICRC 2023
 - 3 lecture series at 3 international schools
 - 6+1 seminars at institutions in 5 different countries
- Public codes
 - FortEPiaNO (neutrino decoupling)
 - PArthENoPE v3 (BBN)

Other Activities

Training

- English course at UniTO
- Machine learning hackathon at INFN
- Machine learning course on Coursera
- Course on project management at INFN
- Course on HTCondor for system admins at INFN
- Course "RESPECT" on inclusivity at INFN
- Outreach
 - Participation at European Researchers' Nights
 - Participation with INFN Turin at Salone Internazionale del Libro (Turin)
- Funding applications based on my FELLINI project
 - ERC Starting Grant (scored B)
 - CIDEGENT (Spain)
 - La Caixa Foundation "Junior Leader" COFUND Fellowship (Spain/Portugal) – started on 1/10 at IFT (CSIC-UAM, Madrid)
 - FIS (in preparation)

What do we know about neutrinos?

What do we know about neutrinos?

