

Stefano Gariazzo

IFT (CSIC-UAM) Madrid (ES)

stefano.gariazzo@ift.csic.es

Neutrino decoupling in standard and non-standard scenarios

Based on JCAP 04 (2021) 073, JCAP 07 (2019) 014, JCAP 03 (2023) 046

TAsP meeting, Turin, 18-19/01/2024

1 Cosmic Neutrino Background

2 Standard three neutrino scenario

3 Non-standard 1: light sterile neutrino

4 Non-standard 2: non-unitarity

Provide a state of the state of

5 **Conclusions**

History of the universe

S. Gariazzo

History of the universe

S. Gariazzo

1/15

History of the universe

S. Gariazzo

Relic neutrinos in cosmology: $N_{\rm eff}$

$$\widehat{\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma}}$$

 ρ_{γ} photon energy density, 7/8 for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling prediction: measurement:

instantaneous decoupling: $N_{\rm eff}~=~1$ for each u family

> 3 because of entropy transfer to photons when electrons become non-relativistic

recommended value (3
$$\nu$$
):
 $N_{\rm eff} = 3.04$
[Bennett+, 2020] [Akita+, 2020]
[Froustey+, 2020] [Cielo+, 2023]

TAsP, 18/01/2024

1 Cosmic Neutrino Background

- 2 Standard three neutrino scenario
- 3 Non-standard 1: light sterile neutrino

4 Non-standard 2: non-unitarity

5 **Conclusions**

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-, \nu e \leftrightarrow \nu e$)

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

 ν decouple mostly before $e^+e^- \to \gamma\gamma$ annihilation!

before BBN: neutrinos coupled to plasma ($\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$, $\nu e \leftrightarrow \nu e$)

[Bennett, SG+, JCAP 2021] [Sigl, Raffelt, 1993] ν oscillations in the early universe comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ $\begin{array}{ccc} \text{density matrix:} & \varrho(x,y) = \begin{pmatrix} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{\tau}} \end{pmatrix}$ off-diagonals to take into account coherency in the neutrino system ϱ evolution from $x H \frac{\mathrm{d}\varrho(y,x)}{\mathrm{d}x} = -ia[\mathcal{H}_{\mathrm{eff}},\varrho] + b\mathcal{I}$ *H* Hubble factor \rightarrow expansion (depends on universe content) effective Hamiltonian $\mathcal{H}_{eff} = \frac{\mathbb{M}_{F}}{2y} - \frac{2\sqrt{2}G_{F}ym_{e}^{6}}{x^{6}} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_{in}^{2}} + \frac{4}{3} \frac{\mathbb{E}_{\nu}}{m_{\gamma}^{2}}\right)$ vacuum oscillations + → matter effects \mathcal{I} collision integrals take into account $\nu - e$ scattering and pair annihilation, $\nu - \nu$ interactions

2D integrals over momentum, take most of the computation time

solve together with z evolution, from $x \frac{d\rho(x)}{dx} = \rho - 3P$

 $\rho,\,P$ total energy density and pressure, also take into account FTQED corrections

S. Gariazzo

"Neutrino decoupling in standard and non-standard scenarios"

TAsP, 18/01/2024

[Bennett, SG+, JCAP 2021] ν oscillations in the early universe [Sigl, Raffelt, 1993] comoving coordinates: a = 1/T $x \equiv m_e a$ $y \equiv p a$ $z \equiv T_{\gamma} a$ $w \equiv T_{\nu} a$ $\begin{array}{ll} \text{density matrix:} & \varrho(x,y) = \left(\begin{array}{cc} \varrho_{ee} \equiv f_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\ \varrho_{\mu e} & \varrho_{\mu\mu} \equiv f_{\nu_{\mu}} & \varrho_{\mu\tau} \\ \varrho_{\tau e} & \varrho_{\tau\mu} & \varrho_{\tau\tau} \equiv f_{\nu_{-}} \end{array} \right) \end{array}$ off-diagonals to take into account coherency in the neutrino system ρ evolution from $xH\frac{\mathrm{d}\rho(y,x)}{\mathrm{d}x} = -ia[\mathcal{H}_{\mathrm{eff}},\rho] + b\mathcal{I}$ FORTran-Evolved PrimordIAl Neutrino Oscillations (FortEPiaNO) https://bitbucket.org/ahep cosmo/fortepiano public vacuum oscillations + → matter effects \mathcal{I} collision integrals take into account $\nu - e$ scattering and pair annihilation, $\nu - \nu$ interactions 2D integrals over momentum, take most of the computation time solve together with z evolution, from $x \frac{d\rho(x)}{dx} = \rho - 3P$ ρ , P total energy density and pressure, also take into account FTQED corrections S. Gariazzo "Neutrino decoupling in standard and non-standard scenarios" TAsP, 18/01/2024 4/15

Neutrino momentum distribution and $N_{\rm eff}$ [Bennett, SG+, JCAP 2021]

Distortion of the momentum distribution (f_{FD} : Fermi-Dirac at equilibrium)

Neutrino momentum distribution and $N_{\rm eff}$ [Bennett, SG+, JCAP 2021]

S. Gariazzo

Neutrino momentum distribution and $N_{\rm eff}$ [Bennett, SG+, JCAP 2021]

$$N_{\text{eff}}^{\text{any time}} = \frac{8}{7} \left(\frac{T_{\gamma}}{T_{\nu}}\right)^4 \frac{\rho_{\nu}}{\rho_{\gamma}} = \frac{8}{7} \left(\frac{T_{\gamma}}{T_{\nu}}\right)^4 \frac{1}{\rho_{\gamma}} \sum_i g_i \int \frac{d^3 p}{(2\pi)^3} E(p) f_{\nu,i}(p)$$

S. Gariazzo

"Neutrino decoupling in standard and non-standard scenarios"

[Bennett, SG+, JCAP 2021]

Effect of neutrino oscillations

[Bennett, SG+, JCAP 2021]

Effect of neutrino oscillations

6/15

Full 3ν mixing results:

S. Gariazzo

Full 3ν mixing results:

Full 3ν mixing results:

Full 3ν mixing results:

S. Gariazzo

Full 3ν mixing results:

1 Cosmic Neutrino Background

2 Standard three neutrino scenario

3 Non-standard 1: light sterile neutrino

4 Non-standard 2: non-unitarity

5 **Conclusions**

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

 $\frac{\nu \text{ oscillations in the early universe}}{\text{comoving coordinates: } a = 1/T \quad x \equiv m_e \text{ a} \quad y \equiv p \text{ a}} \begin{bmatrix} \text{Bennett, SG+, JCAP 2021} \\ [Sigl, Raffelt, 1993] \\ z \equiv T_{\gamma} \text{ a} \quad w \equiv T_{\nu} \text{ a} \end{bmatrix}$ $\frac{e_{ee} \equiv f_{\nu_e}}{e_{\mu e}} e_{\mu\mu} \equiv f_{\nu\mu} e_{\mu\tau} e_{\mu\tau$

nsity matrix:
$$\rho(x, y) = \begin{pmatrix} \rho_{\mu}e & \rho_{\mu} & \rho_{\mu} & \rho_{\mu}r \\ \rho_{\tau e} & \rho_{\tau \mu} & \rho_{\tau \tau} & \rho_{\tau s} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s s} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s s} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s s} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \mu} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s e} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} & \rho_{s \tau} \\ \rho_{s \tau} & \rho_{s \tau} & \rho_{s$$

$$\varrho$$
 evolution from $xH\frac{\mathrm{d}\varrho(y,x)}{\mathrm{d}x} = -ia[\mathcal{H}_{\mathrm{eff}},\varrho] + b\mathcal{I}$

H Hubble factor \rightarrow expansion (depends on universe content)

effective Hamiltonian
$$\mathcal{H}_{\text{eff}} = \frac{\mathbb{M}_{\text{F}}}{2y} - \frac{2\sqrt{2}G_{\text{F}}ym_{e}^{6}}{x^{6}} \left(\frac{\mathbb{E}_{\ell} + \mathbb{P}_{\ell}}{m_{W}^{2}} + \frac{4}{3}\frac{\mathbb{E}_{\nu}}{m_{Z}^{2}}\right)$$

vacuum oscillations \longleftarrow matter effects

$\mathcal I$ collision integrals

take into account $\nu-e$ scattering and pair annihilation, $\nu-\nu$ interactions

2D integrals over momentum, take most of the computation time

solve together with z evolution, from
$$x \frac{d\rho(x)}{dx} = \rho - 3P$$

 $\rho,\,P$ total energy density and pressure, also take into account FTQED corrections

S. Gariazzo

 \propto

S. Gariazzo

[SG+, JCAP 07 (2019) 014]

$N_{\rm eff}$ and the new mixing parameters

[SG+, JCAP 07 (2019) 014]

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Warning: tension between reactor experiments and CMB bounds!

Comparing constraints

Cosmological constraints are stronger than most other probes

But much more model dependent (as all the cosmological constraints)!

Warning: tension between reactor experiments and CMB bounds!

1 Cosmic Neutrino Background

2 Standard three neutrino scenario

3 Non-standard 1: light sterile neutrino

4 Non-standard 2: non-unitarity

5 **Conclusions**

[JCAP 03 (2023)]

Non-unitarity of the 3×3 mixing matrix

Consider we have N_{ν} neutrino states

Unitary
$$N_{\nu} \times N_{\nu}$$
 mixing matrix: $V = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \\ \vdots & \ddots \end{pmatrix}$

the 3×3 sector (N)

describing mixing among lightest neutrinos is non-unitary

$$N = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} U$$

 α_{ii} real, α_{ij} $(i \neq j)$ complex \Rightarrow CP violation

 $U = R^{23}R^{13}R^{12}$ is the standard unitary mixing matrix

[JCAP 03 (2023)]

Non-unitarity of the 3×3 mixing matrix

Consider we have N_{ν} neutrino states

Jnitary
$$N_{\nu} \times N_{\nu}$$
 mixing matrix: $V = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} & \dots & V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\pi 1} & V_{\pi 2} & V_{\pi 3} & \dots & V_{\pi 1} & V_{\pi 2} & V_{\pi 3} \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix}$

the 3×3 sector (*N*) describing mixing among lightest neutrinos is non-unitary

Neutrino interactions depend only on kinematically accessible states Oscillations depend on all states

Oscillations with states n > 3 much heavier than $n \le 3$ are averaged out at experiments

l

Non-unitarity and neutrino decoupling

Neutrino density matrix evolution in mass basis:

$$\frac{\mathrm{d}\varrho(y)}{\mathrm{d}x}\Big|_{\mathrm{M}} = \sqrt{\frac{3m_{\mathrm{Pl}}^2}{8\pi\rho}} \left\{ -i\frac{x^2}{m_e^3} \left[\frac{\mathbb{M}_{\mathrm{M}}}{2y} - \frac{2\sqrt{2}G_F y m_e^6}{x^6} \mathcal{E}_{\mathrm{M}}, \varrho \right] + \frac{m_e^3}{x^4} \mathcal{I}(\varrho) \right\}$$

Unitary case

interactions: $(Y_L)_{ab} \equiv \tilde{g}_L \mathbb{I} + (U^{\dagger})_{ea} U_{eb}$ $(Y_R)_{ab} \equiv g_R \mathbb{I}$ Non-unitary case

interactions:

$$\begin{array}{lcl} (Y_L)_{ab} &\equiv & \tilde{g}_L(V^{\dagger}V)_{ab} + (V^{\dagger})_{ea}V_{eb} \\ (Y_R)_{ab} &\equiv & g_R(V^{\dagger}V)_{ab} \end{array}$$

 matter effects: $\mathcal{E}_{\rm NU} \equiv \frac{\rho_e + P_e}{m_W^2} (Y_L - Y_R)$

Fermi constant: $G_F^{\mu} = G_F$ $G_F^{\mu} = G_F \sqrt{\alpha_{11}^2 (\alpha_{22}^2 + |\alpha_{21}|^2)}$ $G_F^{\mu} = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-2} \text{ [CODATA]}$ $\mathcal{I}(\varrho) \propto G_F^2$

[JCAP 03 (2023)]

Non-unitarity parameters and $N_{\rm eff}$

[JCAP 03 (2023)]

Non-unitarity parameters and $N_{\rm eff}$

[JCAP 03 (2023)]

S. Gariazzo

"Neutrino decoupling in standard and non-standard scenarios" TAs

TAsP, 18/01/2024

14/15

1 Cosmic Neutrino Background

- 2 Standard three neutrino scenario
- 3 Non-standard 1: light sterile neutrino
- 4 Non-standard 2: non-unitarity

Conclusions

1

2

3

Neutrinos in the early universe - probe lowest energies

Active neutrinos: precision calculations

Non-standard scenarios: complementary bounds

Conclusions

1

2

3

Non-standard scenarios: complementary bounds

S. Gariazzo

"Neutrino decoupling in standard and non-standard scenarios"