Higgs Effective Field Theory

Giampiero Passarino

Dipartimento di Fisica Teorica, Università di Torino, Italy
INFN, Sezione di Torino, Italy

LL 2014, Weimar, 27 April – 2 May 2014
Combined limit

\[\frac{d\sigma_{\text{off}}}{d\sigma_{\text{peak}}} = \mu r \frac{d\sigma_{\text{peak}}}{d\sigma_{\text{peak}}} \quad r = \frac{\Gamma_H}{\Gamma_{\text{SM}H}} \qquad \text{assume } \mu = 1 \quad \Rightarrow \quad \text{measure } r \]

\[-2 \Delta \ln L = 8 \text{ TeV, } L = 19.7 \text{ fb}^{-1} \]

- Combined observed (expected) values
 - \(r = \frac{\Gamma}{\Gamma_{\text{SM}}} < 4.2 (8.5) \) at 95% CL
 (p-value = 0.02)
 - \(r = \frac{\Gamma}{\Gamma_{\text{SM}}} = 0.3^{+1.5}_{-0.3} \)

- equivalent to:
 - \(\Gamma < 17.4 (35.3) \text{ MeV} \) at 95% CL
 - \(\Gamma = (1.4^{+6.1}_{-1.4}) \text{ MeV} \)

BINGO!
The big picture @ 8TeV

- Peak at Z mass due to singly resonant diagrams.
- Interference is an important effect.
- Destructive at large mass, as expected.
- With the standard model width, σ_H, challenging to see enhancement/deficit due to Higgs channel.

CMS preliminary
$E = 8$ TeV, $L = 19.7$ fb$^{-1}$

$M^2_{VV} \frac{d\sigma}{dM_{VV}}$ [pb]

σ / σ_{SM}

$\sigma = \mu_H^2 - i \mu_H \gamma_H$

CPS required

8 TeV

$g_g g_V$

rising decay

dying line-shape

CPS required

by Gampier
We define an off-shell production cross-section (for all channels) as follows:

\[
\sigma_{ij \rightarrow \text{all}}^{\text{prop}} = \frac{1}{\pi} \sigma_{ij \rightarrow H} \frac{S^2}{|s - s_H|^2} \frac{\Gamma_H^{\text{tot}}}{\sqrt{s}}
\]

When the cross-section \(ij \rightarrow H \) refers to an off-shell Higgs boson the choice of the QCD scales should be made according to the virtuality and not to a fixed value. Therefore, for the PDFs and \(\sigma_{ij \rightarrow H + X} \) one should select \(\mu_F^2 = \mu_R^2 = z s / 4 \) (\(z s \) being the invariant mass of the detectable final state).
We define an off-shell production cross-section (for all channels) as follows:

\[
\sigma_{\text{prop}}^{ij \rightarrow \text{all}} = \frac{1}{2} \frac{1}{\alpha_s} \frac{1}{s - s_0} \frac{\Gamma_i^j}{\sqrt{s}}
\]

\(\sigma_{\text{prop}}^{ij \rightarrow \text{H}}\) When the cross-section \(\sigma_{\text{prop}}^{ij \rightarrow \text{H}}\) refers to an off-shell Higgs boson the choice of the QCD scales should be made according to the virtuality and not to a fixed value. Therefore, for the PDFs and \(\sigma_{\text{prop}}^{ij \rightarrow \text{H}}\), one should select \(\mu_F^2 = \mu_R^2 = \frac{z s}{4}\) (\(z s\) being the invariant mass of the detectable final state).
Let us consider the case of a light Higgs boson; here, the common belief was that

the product of on-shell production cross-section (say in gluon-gluon fusion) and branching ratios reproduces the correct result to great accuracy. The expectation is based on the well-known result

$$\Delta_H = \frac{1}{\left(s - M_H^2\right)^2 + \Gamma_H^2 M_H^2} = \frac{\pi}{M_H \Gamma_H} \delta\left(s - M_H^2\right) + \text{PV} \left[\frac{1}{\left(s - M_H^2\right)^2} \right]$$

where PV denotes the principal value (understood as a distribution). Furthermore s is the Higgs virtuality and M_H and Γ_H should be understood as $M_H = \mu_H$ and $\Gamma_H = \gamma_H$ and not as the corresponding on-shell values. In more simple terms,

the first term puts you on-shell and the second one gives you the off-shell tail

Δ_H is the Higgs propagator, there is no space for anything else in QFT (e.g. Breit-Wigner distributions).
Let us consider the case of a light Higgs boson; here, the common belief was that the product of on-shell production cross-section (say in gluon-gluon fusion) and branching ratios reproduces the correct result to great accuracy. The expectation is based on the well-known result:

\[\Delta H = \frac{1}{\pi} \frac{\int \sigma_{ij} \rightarrow H \left| s \right|^2}{\left| s - M^2_H \right|^2} + \Gamma_{\text{tot}} \sqrt{s} \]

where \(\sigma_{ij} \rightarrow H\) denotes the principal value of the relevant distribution. Furthermore, if the Higgs virtuality and \(M^2_H\) should be understood as \(\mu^2_F\) and \(\mu^2_R\), and not as the corresponding on-shell values, it means that:

- the first term puts you on-shell and the second one gives you the off-shell tail
- \(\Delta_H\) is the Higgs propagator, there is no space for anything else in QFT (e.g. Breit-Wigner distributions).

We define an off-shell production cross-section (for all channels) as follows:

\[\sigma_{\text{prop}}^{ij \rightarrow all} = \frac{1}{\pi} \frac{\int \sigma_{ij} \rightarrow H + X}{\left| s - s_{\text{ref}} \right|^2} \frac{z}{\sqrt{s}} \]

When the cross-section \(\sigma_{ij} \rightarrow H\) refers to an off-shell Higgs boson, the choice of the PDF scales should be made according to the virtuality and not to a fixed value. Therefore, for the PDFs and \(s_{\text{ref}}\) one should select \(\mu^2_F = \mu^2_R = z s/4\) (\(z\) being the invariant mass of the detectable final state).
A short History of beyond ZWA (don’t try fixing something that is already broken in the first place).

1. There is an enhanced Higgs tail Kauer - Passarino (arXiv:1206.4803):
 away from the narrow peak the propagator and the off-shell H width behave like
 \[\Delta_H \approx \frac{1}{(M_{VV}^2 - \mu_H^2)^2}, \quad \frac{\Gamma_{H \rightarrow VV}(M_{VV})}{M_{VV}} \sim G_F M_{VV}^2 \]

3. Observe that the enhanced tail is obviously \(\gamma_H\)-independent and that this could be exploited to constrain the Higgs width model-independently

4. Use a matrix element method (MEM) to construct a kinematic discriminant to sharpen the constraint
 Campbell, Ellis and Williams (arXiv:1311.3589)
A short History of beyond ZW A (and by living somewhere that is already broken in the first
place)

1. There is an enhanced Higgs tail [Kauer - Passarino (arXiv:1206.4803)] away from the narrow peak the propagator and the off-shell

H width behave like

\[\Delta H \approx \frac{1}{(M_{VV} - \mu_H)^2} \]

2. Introduce the notion of \(\infty \) degenerate solutions for the Higgs couplings to SM particles [Dixon - Li (arXiv:1305.3854), Caola - Melnikov (arXiv:1307.4935)]

Observe that the enhanced tail is obviously \(\gamma_H \)-independent and that this could be exploited to constrain the Higgs width model-independently

3. Use a matrix element method (MEM) to construct a kinematic discriminant to sharpen the constraint [Campbell, Ellis and Williams (arXiv:1311.3589)]

We define an off-shell production cross-section (for all channels) as follows:

\[\sigma_{\text{prop}}^ij \rightarrow \text{all} = \frac{1}{\pi} \sigma_{ij} \rightarrow H \frac{s}{(s - M_{ij})^2} \]

When the cross-section \(\sigma_{ij} \rightarrow H \) refers to an off-shell Higgs boson the choice of the \(QCD \) scales should be made according to the virtuality and not to a fixed value. Therefore, for the PDFs and \(\sigma_{ij} \rightarrow H \rightarrow X \) one should select

\[\mu_H^2 = \frac{1}{2} \mu_{ij}^2 = \mu_R^2 = \frac{z s}{4} \]

(\(z \) being the invariant mass of the detectable final state).

Let us consider the case of a light Higgs boson; here, the common belief was that the product of on-shell production cross-section (say in gluon-gluon fusion) and branching ratios reproduces the correct result to great accuracy. The expectation is based on the well-known result

\[\Delta H = \frac{1}{(s - M_H^2)^2} \]

\[\Gamma_H^2 \sim \frac{\pi}{M_H^2} \delta(s - M_{ij}^2) + \text{PV} \left(\frac{1}{(s - M_{ij}^2)} \right) \]

where \(\text{PV} \) denotes the principal value understood as a distribution. Furthermore as the Higgs virtuality \(\mu_H^2 \) and \(\mu_{ij}^2 \) should be understood as \(\mu_R^2 \) and \(\mu_{ij}^2 \) are not for the corresponding on-shell values, in more

\[\text{hence, terms.} \]

\[\Delta H \] is the Higgs propagator, there is no space for anything else in QFT (e.g. Breit-Wigner distributions).
OFF – SHELL IV

\[pp \rightarrow gg \rightarrow H \rightarrow e^+e^-\gamma \]

\[M_{e^+e^-\gamma} > 0.1 M(e^+e^-\gamma) \]

\[M_{e^+e^-} > 0.1 M(e^+e^-\gamma) \]

\[M_{e^+e^-} > 0.1 M(e^+e^-\gamma) \]

\[\sigma [fb] \]
Let us consider the case of a light Higgs boson; here, the common belief was that the product of on-shell production ... tail

\[\Delta H \text{ is the Higgs propagator, there is no space for anything else in QFT (e.g. Breit-Wigner distributions)}. \]

We define an off-shell production cross-section (for all channels) as follows:

\[\sigma_{\text{prop}}^{ij} = \frac{1}{2} \pi \frac{s^2}{(s - \mu^2)} \frac{\Gamma_{ij}^H}{\Gamma_{ij}^H} \]

\[R = \frac{1}{2} \pi \frac{s^2}{(s - \mu^2)} \frac{\Gamma_{ij}^H}{\Gamma_{ij}^H} \]

\[F = \frac{1}{2} \pi \frac{s^2}{(s - \mu^2)} \frac{\Gamma_{ij}^H}{\Gamma_{ij}^H} \]

\[s \text{ being the invariant mass of the detectable final state).} \]

\[\Delta \text{ is the Higgs propagator; there is no space for anything else in QFT (e.g. Breit-Wigner distributions).} \]

\[s - \Delta \text{ is the Higgs virtuality and not as the corresponding on-shell values. In more simple terms,} \]

\[\Gamma_{ij}^H \text{ refers to an off-shell Higgs} \]

\[\text{The expectation is based on the well-known result} \]

\[\text{Campbell, Ellis and Williams (arXiv:1311.3589)} \]

\[\text{We define an off-shell production cross-section (for all channels) as follows:} \]

\[\sigma_{\text{prop}}^{ij} = \frac{1}{2} \pi \frac{s^2}{(s - \mu^2)} \frac{\Gamma_{ij}^H}{\Gamma_{ij}^H} \]

\[R = \frac{1}{2} \pi \frac{s^2}{(s - \mu^2)} \frac{\Gamma_{ij}^H}{\Gamma_{ij}^H} \]

\[F = \frac{1}{2} \pi \frac{s^2}{(s - \mu^2)} \frac{\Gamma_{ij}^H}{\Gamma_{ij}^H} \]

\[s \text{ being the invariant mass of the detectable final state).} \]

\[\Delta \text{ is the Higgs propagator; there is no space for anything else in QFT (e.g. Breit-Wigner distributions).} \]
$\sigma_{i \rightarrow H \rightarrow f} = (\sigma \cdot \text{BR}) = \frac{\sigma_{i, \text{prod}}}{\gamma_H}$

$\sigma_{i \rightarrow H \rightarrow f} \propto \frac{g_i^2 g_i^2}{\gamma_H}$

$g_{i,f} = \xi \frac{g_{i,f}^{\text{SM}}}{\gamma_H}$

$\gamma_H = \xi^4 \frac{\gamma_H^{\text{SM}}}{\gamma_H}$

On the whole, we have a constraint in the multidimensional κ-space

$\kappa_g^2 = \kappa_g^2(\kappa_l, \kappa_b) \quad \kappa_H^2 = \kappa_H^2(\kappa_l, \forall f)$

Only on the assumption of degeneracy one can prove that off-shell effects measure γ_H

a combination of on-shell effects measuring $g_i^2 g_i^2 / \gamma_H$

and off-shell effects measuring $g_i^2 g_i^2$

gives information on γ_H

without prejudices
The only limit to our realization of tomorrow will be our doubts of today

Definition:
κ-language is BSM MI approach

Chapter II
Nature of ϕ^d

Corollary:
κ-language requires insertion of ϕ^d operators in SM loops

Chapter III
Ontology of HEFT

Main Theorem:
HEFT is a realization of κ-language

Chapter IV
Renorm. dim. reg. QFT role of Λ top? - down

Memo:
Skip meetings

Strategy: How to interpret κXκXκX?

1. measure κ

\[\frac{\Gamma^{\phi^d}(m_{\phi^d})}{\Gamma^{\phi^d}(m_{\phi^d})} = \frac{\kappa^2 \cdot \Gamma^{\phi^d}(m_{\phi^d}) + \kappa^2 \cdot \Gamma^{\phi^d}(m_{\phi^d}) + \kappa \cdot \Gamma^{\phi^d}(m_{\phi^d})}{\Gamma^{\phi^d}(m_{\phi^d}) + \Gamma^{\phi^d}(m_{\phi^d}) + \Gamma^{\phi^d}(m_{\phi^d})} \]

2. find $\Theta \Leftrightarrow \kappa$ (epistemological stop, true ESM believers stop here)

\[\mathcal{L}_{\text{ESM}} = \mathcal{L}_{\text{SM}} + \sum_{n>4} \sum_{i=1}^{N_{\phi^d}} \frac{a_n^i}{\Lambda^{d-n}} \phi^{(d-n)} \]

3. find $\{\mathcal{L}_{\text{ESM}}\}$ that produces Θ

is there a QFT behind degeneracy?
anntated DIAGRAMMATICIA

Figure 3: Example of one-loop SM diagrams with \mathcal{O}-insertions, contributing to the amplitude for $H \rightarrow \gamma \gamma$

\[\mathcal{O}(g^3 g_6) \]

\[H \rightarrow t, b \]

\[H \rightarrow W/\phi/X^\pm \]

\[H \rightarrow W/\phi \]

\[\kappa_f, A_{NF} \]

\[\kappa_W, A_{NF} \]

\[\text{mix under ren. with } \mathcal{O}(g g_6) \]

\[\mathcal{O}(g^3 g_6) \]

\[\mathcal{O}_{\phi W} \]

\[W \]

Figure 4: Example of one-loop \mathcal{O}-diagrams, contributing to the amplitude for $H \rightarrow \gamma \gamma$
\[A = \sum_{n=N}^{\infty} \sum_{l=0}^{n} \sum_{k=1}^{l} g^k \hat{g}_{l+k} A_{nlk} \]

PTG: \(T \) - generated in at least one extension of SM

\[A = \sum_{n=N}^{\infty} \sum_{l=0}^{n} \sum_{k=1}^{l} g^k \hat{g}_{l+k} A_{nlk} \]

\[g_{l+k} = \frac{1}{(\sqrt{2}G_F\Lambda^2)} \]

\[\frac{1}{(\sqrt{2}G_F\Lambda^2)} \approx \frac{g^2}{4\pi} \]

i.e. the contributions of \(d = 6 \) operators are \(\approx \) loop effects.

For higher scales, loop contributions tend to be more important.

PTG - operators versus LG - operators, cf. Einhorn, Wudka, ...

It can be argued that (at LO) the basis operator should be chosen from among the PTG operators.

A SM vertex with \(\mathcal{O}_{PTG}^{(6)} \) required \(\approx \) same order

\(1/\Lambda \) expansion \(\rightarrow \) power-counting \(\checkmark \)

LG \(\rightarrow \) low-energy analytic structure \(\times \)

\[\Lambda \approx 5 \text{ TeV} \]

w...
PROPOSITION: There are two ways of formulating HEFT

a) mass-dependent scheme(s) or **Wilsonian** HEFT

b) mass-independent scheme(s) or **Continuum** HEFT (CHEFT)

- only **a)** is conceptually consistent with the image of an EFT as a low-energy approximation to a high-energy theory

- however, inclusion of NLO corrections is only meaningful in **b)** since we cannot regularize with a cutoff and NLO requires regularization

There is an additional problem, CHEFT requires evolving our theory to lower scales until we get below the “heavy-mass” scale where we use $\mathcal{L} = \mathcal{L}_{\text{SM}} + d\mathcal{L}$, $d\mathcal{L}$ encoding matching corrections at the boundary. Therefore, CHEFT does not integrate out heavy degrees of freedom but removes them compensating for by an appropriate matching calculation.

Not quite the same as it is usually discussed (no theory approaching the boundary from above ...) cf. low-energy SM, weak effects on $g-2$ etc.
\[\text{dim} \phi = d/2 - 1 \]
\[\text{dim} \phi^d = N \phi \text{dim} \phi + N_{\text{der}} \]
For \(d \geq 3 \) there is a finite number of relevant + marginal operators
For \(d \geq 1 \) there is a finite number of irrelevant operators
Sounds good for finite dependence on high-energy theory

This assumes that high-energy theory is weakly coupled

Dimensional arguments work for LO HEFT

In NLO HEFT scaling may break down, implying appeal to a particular renormalization scheme

Ren. group should only be applied to EFTs that are nearly massless

Decoupling theorem fails for CHEFT, but, arguably this does not prevent them from supporting a well defined scheme, but decoupling must be inserted in the form of matching calculations (which we don’t have . . .)

Match Feynman diagrams \(\in \) HEFT with corresponding \(1(\text{light})\text{PI} \) diagrams \(\in \) high-energy theory
(and discover that Taylor-expanding is not always a good idea)
Having said that ... no space left for annotations

Renormalization

\[g = g_{ren} \left[1 + \frac{g_{ren}^2}{16 \pi^2} \left(dZ_g + g_6 dZ_g^{(6)} \right) \frac{1}{\varepsilon} \right] \]

\[M_W = M_{ren} \left[1 + \frac{1}{2} \frac{g_{ren}^2}{16 \pi^2} \left(dZ_{M_W} + g_6 dZ_{M_W}^{(6)} \right) \frac{1}{\varepsilon} \right] \]

etc.

Wilson coefficients \[\rightarrow \] \[W_i \]

\[W_i = \sum_j Z_{ij}^{wc} W_j^{ren} \]

\[Z_{ij}^{wc} = \delta_{ij} + \frac{g_{ren}^2}{16 \pi^2} dZ_{ij}^{wc} \frac{1}{\varepsilon} \]
Appendix C. Dimension-Six Basis Operators for the SM22.

<table>
<thead>
<tr>
<th>X^3 (LG)</th>
<th>φ^6 and φ^4D^2 (PTG)</th>
<th>$\psi^2\varphi^3$ (PTG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_G</td>
<td>$f^{ABC}G^{A\mu}G^{B\rho}G^{C\mu}$</td>
<td>Q_φ $(\varphi^\dagger\varphi)^3$</td>
</tr>
<tr>
<td>$Q_{\bar{G}}$</td>
<td>$f^{ABC}\bar{G}^{A\mu}G^{B\rho}G^{C\mu}$</td>
<td>$Q_\varphi\square$ $(\varphi^\dagger\varphi)\Box(\varphi^\dagger\varphi)$</td>
</tr>
<tr>
<td>Q_W</td>
<td>$\varepsilon^{IJK}W^I_\mu W^J_\nu W^K_\rho$</td>
<td>$Q_\varphi D$ $(\varphi^\dagger D^\mu\varphi)^* (\varphi^\dagger D_\mu\varphi)$</td>
</tr>
<tr>
<td>$Q_{\bar{W}}$</td>
<td>$\varepsilon^{IJK}\bar{W}^I_\mu W^J_\nu W^K_\rho$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X^2\varphi^2$ (LG)</th>
<th>$\psi^2X\varphi$ (LG)</th>
<th>$\psi^2\varphi^2D$ (PTG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_\varphi G$</td>
<td>$\varphi^\dagger\varphi G^A_{\mu\nu}G^{A\mu\nu}$</td>
<td>Q_{eW} $(\bar{l}p\sigma^{\mu\nu}e_r)^T\varphi W^I{\mu\nu}$</td>
</tr>
<tr>
<td>$Q_\varphi G$</td>
<td>$\varphi^\dagger\varphi \bar{G}^A_{\mu\nu}G^{A\mu\nu}$</td>
<td>Q_{eB} $(\bar{l}p\sigma^{\mu\nu}e_r)\varphi B^I{\mu\nu}$</td>
</tr>
<tr>
<td>$Q_\varphi W$</td>
<td>$\varphi^\dagger\varphi W^I_{\mu\nu}W^I_{\mu\nu}$</td>
<td>Q_{uG} $(\bar{q}u\sigma^{\mu\nu}u_r)^T\varphi G^A{\mu\nu}$</td>
</tr>
<tr>
<td>$Q_{\bar{W}}$</td>
<td>$\varphi^\dagger\varphi \bar{W}^I_{\mu\nu}W^I_{\mu\nu}$</td>
<td>Q_{uW} $(\bar{q}u\sigma^{\mu\nu}u_r)^T\varphi W^I{\mu\nu}$</td>
</tr>
<tr>
<td>$Q_\varphi B$</td>
<td>$\varphi^\dagger\varphi B^I_{\mu\nu}B^I_{\mu\nu}$</td>
<td>Q_{uB} $(\bar{q}u\sigma^{\mu\nu}u_r)^T\varphi B{\mu\nu}$</td>
</tr>
<tr>
<td>$Q_{\bar{B}}$</td>
<td>$\varphi^\dagger\varphi \bar{B}^I_{\mu\nu}B^I_{\mu\nu}$</td>
<td>Q_{dG} $(\bar{q}d\sigma^{\mu\nu}d_r)^T\varphi G^A{\mu\nu}$</td>
</tr>
<tr>
<td>$Q_\varphi WB$</td>
<td>$\varphi^\dagger\varphi W^I_{\mu\nu}B^I_{\mu\nu}$</td>
<td>Q_{dW} $(\bar{q}d\sigma^{\mu\nu}d_r)^T\varphi W^I{\mu\nu}$</td>
</tr>
<tr>
<td>$Q_{\bar{W}B}$</td>
<td>$\varphi^\dagger\varphi \bar{W}^I_{\mu\nu}B^I_{\mu\nu}$</td>
<td>Q_{dB} $(\bar{q}d\sigma^{\mu\nu}d_r)^T\varphi B{\mu\nu}$</td>
</tr>
</tbody>
</table>

Table C.1: Dimension-six operators other than the four-fermion ones.

22These tables are taken from [5], by permission of the authors.

Effective Lagrangians cannot be blithely used without acknowledging implications of their choice ex: non gauge-invariant, intended to be used in U-gauge ex: $H \rightarrow WW^*$ is virtual $W +$ something else, depending on the operator basis
✓ Tadpoles $\mapsto \beta_H$

$\Phi = \frac{Z_1}{2} \phi \Phi_R$
\[Tadpoles \mapsto \beta_H \]

\[\Phi = Z_\phi^{1/2} \Phi_R \text{ etc.} \]
✓ Tadpoles $\mapsto \beta_H$
✓ $\Phi = Z_\phi^{1/2} \Phi_R$ etc.

$$Z_\phi = 1 + \frac{g^2}{16\pi^2} \left(\delta Z^{(4)}_\phi + g_6 \delta Z^{(6)}_\phi \right)$$
✓ Tadpoles $\mapsto \beta_H$
✓ $\Phi = Z^{1/2}_\phi \Phi_R$ etc.

$$ Z_\phi = 1 + \frac{g^2}{16\pi^2} \left(\delta Z_\phi^{(4)} + g_6 \delta Z_\phi^{(6)} \right) $$
✓ Self-energies UV $\mathcal{O}^{(4)}, \mathcal{O}^{(6)}$-finite
✓ Tadpoles $\mapsto \beta_H$
✓ $\Phi = Z_{\phi}^{1/2} \Phi_R$ etc.

$Z_{\phi} = 1 + \frac{g^2}{16\pi^2} \left(\delta Z^{(4)}_{\phi} + g_6 \, \delta Z^{(6)}_{\phi} \right)$

✓ Self-energies UV $O^{(4)}, O^{(6)}$-finite

✍ μ-decay
✓ Tadpoles $\mapsto \beta_H$
✓ $\Phi = Z^{1/2}_\phi \Phi_R$ etc.

$Z_\phi = 1 + \frac{g^2}{16\pi^2} \left(\delta Z^{(4)}_\phi + g_6 \delta Z^{(6)}_\phi \right)$

✓ Self-energies UV
$\mathcal{O}^{(4)}, \mathcal{O}^{(6)}$-finite

✍ μ-decay
✓ $g \mapsto g_R$
\(\checkmark \) Tadpoles \(\mapsto \beta_H \)
\(\checkmark \) \(\Phi = Z_\phi^{1/2} \Phi_R \) etc.

\[Z_\phi = 1 + \frac{g^2}{16\pi^2} \left(\delta Z_\phi^{(4)} + g_6 \, \delta Z_\phi^{(6)} \right) \]

\(\checkmark \) Self-energies UV
\(\mathcal{O}^{(4)}, \mathcal{O}^{(6)} \)-finite

\(\blacklozenge \) \(\mu \)-decay
\(\checkmark \) \(g \rightarrow g_R \)

\(\checkmark \) Finite ren.

\(\mu \)-decay

Finite ren.
Tadpoles $\mapsto \beta_H$

$\Phi = Z_\phi^{1/2} \Phi_R$ etc.

$Z_\phi = 1 + \frac{g^2}{16\pi^2} \left(\delta Z_\phi^{(4)} + g_6 \delta Z_\phi^{(6)} \right)$

Self-energies UV
$
\mathcal{O}^{(4)}, \mathcal{O}^{(6)}$-finite

μ-decay

g $\mapsto g_R$

Finite ren.

$M_R^2 = M_W^2 \left[1 + \frac{g_R^2}{16\pi^2} \left(\text{Re} \Sigma_{WW} - \delta Z_M \right) \right]$

etc Propagators finite and μ_R-independent
\[\begin{align*}
\textbf{H}-\text{propagator} \\
\Delta^{-1}_H &= Z_H \left(-s + Z_{m_H} M_H^2\right) - \frac{1}{(2\pi)^4 i} \Sigma_{HH} \\
Z_H &= 1 + \frac{g_R^2}{16\pi^2} \left(\delta Z_H^{(4)} + g_6 \delta Z_H^{(6)} \right) \frac{1}{\epsilon} \\
\delta Z_H^{(4)} &= 16 \left[\frac{1}{288} \left(82 - \frac{16}{c_\theta^2} - 25 \frac{s_\theta}{c_\theta} - 14 s_\theta^2 - 14 s_\theta c_\theta \right) \\
&\quad - \frac{3}{32} \left(m_b^2 + m_t^2 \right) \frac{m_b^2 + m_t^2}{M^2} \right] \\
\delta Z_H^{(6)} &= \frac{1}{6\sqrt{2}} \left[\frac{5}{c_\theta^2} + 12 - 18 \frac{m_b^2 + m_t^2}{M^2} - 21 \frac{m_H^2}{M^2} \right] a_{\phi \square} \\
&\quad + \text{etc}
\end{align*} \]
EXAMPLE finite ren.

\[m_H^2 = M_H^2 \left[1 + \frac{g_R^2}{16 \pi^2} \left(dM_H^{(4)} + g_6 dM_H^{(6)} \right) \right] \]

\[
\frac{M_H^2}{16} dM_H^{(4)} = \frac{1}{16} M_W^2 \left(\frac{1}{c_\theta^4} + 2 \right) \\
- \frac{3}{32} \frac{M_t^2}{M_W^2} (M_H^2 - 4 M_t^2) B_0 \left(-M_H^2 ; M_t, M_t \right) \\
- \frac{3}{32} \frac{M_b^2}{M_W^2} (M_H^2 - 4 M_b^2) B_0 \left(-M_H^2 ; M_b, M_b \right) \\
- \frac{9}{128} \frac{M_H^4}{M_W^2} B_0 \left(-M_H^2 ; M_H, M_H \right) \\
- \frac{1}{64} \left(\frac{M_H^4}{M_W^2} - 4 M_H^2 - 12 M_W^2 \right) B_0 \left(-M_H^2 ; M_W, M_W \right) \\
- \frac{1}{128} \left(\frac{M_H^4}{M_W^2} - 4 \frac{M_H^2}{c_\theta^2} + 12 \frac{M_W^2}{c_\theta^4} \right) B_0 \left(-M_H^2 ; M_Z, M_Z \right) \]
\(\nu_H = \text{Higgs virtuality} \)
\(v_H = \text{Higgs virtuality}\)

- Requires \(Z_H, Z_g, Z_g, Z_{gs}\)
- It is \(O^4\)-finite but not \(O^6\)-finite
$v_H = \text{Higgs virtuality}$

✓ requires Z_H, Z_g, Z_g, Z_{gs}
✓ It is $\mathcal{O}(4)$-finite but not $\mathcal{O}(6)$-finite
✓ involves $a_{\phi D}, a_{\phi \Box}, a_{t\phi}, a_{b\phi}, a_{\phi W}, a_{\phi g}, a_{tg}, a_{bg}$

$a_{tg} = W_1 \quad a_{bg} = W_2 \quad a_{\phi g} = W_3$

$a_{b\phi} + \frac{1}{4} a_{\phi D} - a_{\phi W} - a_{\phi \Box} = W_4$

$a_{t\phi} - \frac{1}{4} a_{\phi D} + a_{\phi W} + a_{\phi \Box} = W_5$
\

\[\nu_H = \text{Higgs virtuality} \]

\[a_{tg} = W_1 \quad a_{bg} = W_2 \quad a_{\phi g} = W_3 \]

\[a_{\phi D} + \frac{1}{4} a_{\phi W} - a_{\phi \Box} = W_4 \]

\[a_{t\phi} - \frac{1}{4} a_{\phi D} + a_{\Phi W} + a_{\phi \Box} = W_5 \]

\[a_{b\phi} + \frac{1}{4} a_{\phi D} - a_{\Phi W} - a_{\phi \Box} = W_4 \]

\[a_{t\phi} - \frac{1}{4} a_{\phi D} + a_{\Phi W} + a_{\phi \Box} = W_5 \]

\[\text{\checkmark \ requires extra renormalization} \]

\[W_i = \sum_j Z_{ij}^{\text{mix}} W_j^R (\mu_R) \]

\[Z_{ij}^{\text{mix}} = \delta_{ij} + \frac{ggS}{16\pi^2} \delta Z_{ij}^{\text{mix}} \frac{1}{\bar{\epsilon}} \]

\[\delta Z_{31(2)}^{\text{mix}} = -\frac{1}{2\sqrt{2}} \frac{M_t(b)}{M_W} \]
Define building blocks

\[\frac{8 \pi^2}{i g_s^2} \frac{M_W}{M_q^2} A_q^{\text{LO}} = 2 \left(4 M_q^2 - v_H \right) C_0 (-v_H, 0, 0 ; M_q, M_q, M_q) \]

\[\frac{32 \pi^2}{i g_s^2} \frac{M_W^2}{M_q} A_q^{\text{nf}} = 8 M_q^4 C_0 (-v_H, 0, 0 ; M_q, M_q, M_q) \]

+ \[v_H \left[1 - B_0 (-v_H ; M_q, M_q) \right] - 4 M_q^2 \]
Define (process dependent) κ-factors

$$\kappa_b = 1 + g_6 \left[\frac{1}{2} \frac{M_b}{M_W} W_2^R - \frac{1}{\sqrt{2}} W_4^R \right]$$

$$\kappa_t = 1 + g_6 \left[\frac{1}{2} \frac{M_t}{M_W} W_1^R - \frac{1}{\sqrt{2}} W_5^R \right]$$
Define (process dependent) κ-factors

\[
\kappa_b = 1 + g_6 \left[\frac{1}{2} \frac{M_b}{M_W} W_2^R - \frac{1}{\sqrt{2}} W_4^R \right]
\]

\[
\kappa_t = 1 + g_6 \left[\frac{1}{2} \frac{M_t}{M_W} W_1^R - \frac{1}{\sqrt{2}} W_5^R \right]
\]

Obtain the $4+6$ amplitude

\[
A^{(4+6)} = g \sum_{q=b,t} \kappa_q A_q^{\text{LO}} + i g_6 g_s \frac{M_H^2}{M_W} W_3^R
\]

\[
+ g_6 g \left[W_1^R A_t^{\text{nf}} + W_2^R A_b^{\text{nf}} \right]
\]
Define (process dependent) κ-factors

\[
\kappa_b = 1 + g_6 \left[\frac{1}{2} \frac{M_b}{M_W} W_2^R - \frac{1}{\sqrt{2}} W_4^R \right]
\]

\[
\kappa_t = 1 + g_6 \left[\frac{1}{2} \frac{M_t}{M_W} W_1^R - \frac{1}{\sqrt{2}} W_5^R \right]
\]

Obtain the 4+6 amplitude

\[
A^{(4+6)} = g \sum_{q=b,t} \kappa_q A_{q}^{LO} + ig_6 g_S \frac{M_H^2}{M_W} W_3^R
\]

\[
+ g_6 g \left[W_1^R A_t^{nf} + W_2^R A_b^{nf} \right]
\]

Derive true relation

\[
A^{(4+6)} (gg \rightarrow H) = g_g \left(v_H \right) A^{(4)} (gg \rightarrow H)
\]
Define (process dependent) κ-factors

$$
\kappa_b = 1 + g_6 \left[\frac{1}{2} \frac{M_b}{M_W} W_2^R - \frac{1}{\sqrt{2}} W_4^R \right]
$$

$$
\kappa_t = 1 + g_6 \left[\frac{1}{2} \frac{M_t}{M_W} W_1^R - \frac{1}{\sqrt{2}} W_5^R \right]
$$

Obtain the 4+6 amplitude

$$
A^{(4+6)} = g \sum_{q=b,t} \kappa_q A_q^{LO} + i g_6 g_S \frac{M_H^2}{M_W} W_3^R
$$

$$
+ g_6 g \left[W_1^R A_t^{nf} + W_2^R A_b^{nf} \right]
$$

Derive true relation

$$
A^{(4+6)} (gg \rightarrow H) = g_g \left(\nu_H \right) A^{(4)} (gg \rightarrow H)
$$

Effective (running) scaling (g_i) is not a κ (constant) parameter (unless $\Theta^{(6)} = 0$ and $\kappa_b = \kappa_t$)
Non-factorizable not included

\[\Gamma_{gg} \]

![Graph showing \(\Gamma_{gg} \) as a function of H virtuality [GeV].]

- \(\kappa_t = 1.5 \)
- \(\kappa_b = 1.5 \)
- \(\kappa_t = 0.5 \)
Non-factorizable not included
✓ SCALE dependence (no subtraction point)
\checkmark \text{SCALE dependence (no subtraction point)}

\checkmark \text{Consider } H \rightarrow \gamma \gamma

\[Z_{ij}^{\text{mix}} = \delta_{ij} + \frac{g_R^2}{16 \pi^2} \left[\delta Z_{ij}^{\text{mix}} \frac{1}{\varepsilon} + \Delta_{ij} \ln \frac{M_H^2}{\mu_R^2} \right] \]

\[W_1 = a_{\gamma \gamma} = s_\theta c_\theta a_{\phiWB} + c_\theta^2 a_{\phiB} + s_\theta^2 a_{\phiW} \]

\[M_W^2 \Delta_{11} = \frac{1}{4} \left[8 s_\theta^2 \left(2 s_\theta^2 - c_\theta^2 \right) M_W^2 + \left(4 s_\theta^2 c_\theta^2 - 5 \right) M_H^2 \right] \]
 SCALE dependence (no subtraction point)

Consider $H \rightarrow \gamma\gamma$

$$Z_{ij}^{\text{mix}} = \delta_{ij} + \frac{g_R^2}{16 \pi^2} \left[\delta Z_{ij}^{\text{mix}} \frac{1}{\varepsilon} + \Delta_{ij} \ln \frac{M_H^2}{\mu^2_R} \right]$$

$$W_1 = a_{\gamma\gamma} = s_\theta c_\theta a_{\Phi WB} + c^2_{\theta} a_{\Phi B} + s^2_{\theta} a_{\Phi W}$$

$$M_W^2 \Delta_{11} = \frac{1}{4} \left[8 s^2_\theta \left(2 s^2_\theta - c^2_\theta \right) M_W^2 + \left(4 s^2_\theta c^2_\theta - 5 \right) M_H^2 \right]$$

 etc
toy model: S dark Higgs field

$$\mathcal{L} = \mathcal{L}_{\text{SM}} - \frac{1}{2} \partial_\mu S \partial_\mu S - \frac{1}{2} M_S^2 S^2 + \mu_S \Phi^\dagger \Phi S$$

$$I_{\text{DR}}^{\text{eff}} = \frac{3}{4} g \frac{M_H^2}{M_W \Lambda^2} \left[\left(\frac{1}{2} s - 3 M_H^2 \right) \left(\frac{1}{\varepsilon} - \ln \frac{-s-i0}{\mu_R^2} \right) + \text{finite part} \right]$$

$$I_{\text{full}} = -\frac{3}{2} g \frac{M_H^2 \mu_S^2}{M_W M_S^2} \left[1 - \frac{1}{4} \frac{s}{M_S^2} - \left(1 - \frac{1}{2} \frac{s}{M_S^2} \right) \ln \frac{-s-i0}{M_S^2} \right] + \mathcal{O} \left(\frac{s^2}{M_S^4} \right)$$

full starts at $\mathcal{O}(\mu_S^2/M_S^2)$
eff starts at $\mathcal{O}(s/\Lambda^2)$

large mass expansion of *full* follows from Mellin-Barnes expansion and not from Taylor expansion
✓ Background? Consider $\bar{u}u \rightarrow ZZ$
The following Wilson coefficients appear:

\[
W_1 = a_{\gamma\gamma} = s_\theta c_\theta \ a_{\Phi WB} + c_\theta^2 \ a_{\Phi B} + s_\theta^2 \ a_{\Phi W} \\
W_2 = a_{ZZ} = -s_\theta c_\theta \ a_{\Phi WB} + s_\theta^2 \ a_{\Phi B} + c_\theta^2 \ a_{\Phi W} \\
W_3 = a_{\gamma Z} = 2 s_\theta c_\theta \left(a_{\Phi W} - a_{\Phi B} \right) + \left(c_\theta^2 - s_\theta^2 \right) \ a_{\Phi WB} \\
W_4 = a_{\phi D} \\
W_5 = a_{\phi q}^{(3)} + a_{\phi q}^{(1)} - a_{\phi u} \\
W_6 = a_{\phi q}^{(3)} + a_{\phi q}^{(1)} + a_{\phi u}
\]
Background? Consider $\bar{u}u \to ZZ$

The following Wilson coefficients appear:

- $W_1 = a_{\gamma\gamma} = s_\theta c_\theta \ a_{\Phi WB} + c_\theta^2 \ a_{\Phi B} + s_\theta^2 \ a_{\Phi W}$
- $W_2 = a_{ZZ} = -s_\theta c_\theta \ a_{\Phi WB} + s_\theta^2 \ a_{\Phi B} + c_\theta^2 \ a_{\Phi W}$
- $W_3 = a_{\gamma Z} = 2 \ s_\theta \ c_\theta \ (a_{\Phi W} - a_{\Phi B}) + \ (c_\theta^2 - s_\theta^2) \ a_{\Phi WB}$
- $W_4 = a_{\Phi D}$
- $W_5 = a_{\phi q}^{(3)} + a_{\phi q}^{(1)} - a_{\phi u}$
- $W_6 = a_{\phi q}^{(3)} + a_{\phi q}^{(1)} + a_{\phi u}$

Define

$$A^{LO} = \frac{M_Z^4}{t^2} + \frac{M_Z^4}{u^2} - \frac{t}{u} - \frac{u}{t} - 4 \frac{M_Z^2 s}{tu}$$
✓ Obtain the result ($\bar{u}u \rightarrow ZZ$)

\[
\sum_{\text{spin}} \left| A^{(4+6)} \right|^2 = g^4 A^{\text{LO}} \left[F^{\text{LO}}(s_\theta) + \frac{g_6}{\sqrt{2}} \sum_{i=1}^{6} F^i(s_\theta) W_i \right]
\]
✓ Obtain the result $(\bar{u}u \rightarrow ZZ)$

$$\sum_{\text{spin}} \left| A^{(4+6)} \right|^2 = g^4 A^{\text{LO}} \left[F^{\text{LO}}(s_\theta) + \frac{g_6}{\sqrt{2}} \sum_{i=1}^{6} F^i(s_\theta) W_i \right]$$

✓ Background changes!
Obtain the result ($\bar{u}u \to ZZ$)

$$\sum_{\text{spin}} \left| A^{(4+6)} \right|^2 = g^4 A^{\text{LO}} \left[F^{\text{LO}}(s_\theta) + \frac{g_6}{\sqrt{2}} \sum_{i=1}^{6} F^i(s_\theta) W_i \right]$$

Background changes!

Note that

$$F^{\text{LO}} \approx -0.57 \quad F^1 \approx +2.18 \quad F^2 \approx -3.31$$

$$F^3 \approx +4.07 \quad F^4 \approx -2.46 \quad F^4 \approx -2.46 \quad F^6 \approx -5.81$$
CONCLUSIONS

FUTURE (Moriod EW 2014)

\[L = L_4 + \sum_{n>4} \sum_{i=1}^{N_n} \frac{a_n^2}{\Lambda_n^{d-n}} \phi_i (d=n) \]

TH is improving with NLO \(\kappa \)-language

NLO \(\kappa \)-language is NOT a simple scaling
Thanks for your attention
Backup Slides
Large Scale
φ, χ

renormalization group

L_H(χ, φ) + L(φ)

µ = M
particle mass

MATCHING

L(φ) + δL(φ)

renormalization group

Low Energy
φ

Figure 4: The general form of a matching calculation.

terms.

In this region, the physics is described by a set fields, χ, describing the heaviest particles, of mass M, and a set of light particle fields, φ, describing all the lighter particles. The Lagrangian has the form

\[L_H(χ, φ) + L(φ) , \]

where \(L(φ) \) contains all the terms that depend only on the light fields, and \(L_H(χ, φ) \) is everything else. As long as no particle masses are encountered, this evolution is described by the renormalization group. However, when µ goes below the mass, M, of the heavy particles, you should change the effective theory to a new theory without the heavy particles. In the process, the parameters of the theory change, and new, nonrenormalizable interactions may be introduced. Thus the Lagrangian of the effective theory below M has the form

\[L(φ) + δL(φ) , \]

(3.16)
Increasing COMPLEXITY

✓ $H \rightarrow \gamma\gamma$

① 3 LO amplitudes $A_t^{LO}, A_b^{LO}, A_W^{LO}$, 3 κ-factors

② 6 Wilson coefficients & non-factorizable amplitudes
Increasing COMPLEXITY

✓ $H \rightarrow \gamma\gamma$

1. 3 LO amplitudes $A^\text{LO}_t, A^\text{LO}_b, A^\text{LO}_W$, 3 κ-factors
2. 6 Wilson coefficients & non-factorizable amplitudes

✓ $H \rightarrow ZZ$

1. 1 LO amplitude
2. 6 NLO amplitudes, 6 κ-factors

\[
\delta^{\mu\nu} \sum_{i=t,b,B} A^\text{NLO}_{i,D} + p_2^\mu p_1^\nu \sum_{i=t,b,B} A^\text{NLO}_{i,P}
\]

2. 16 Wilson coefficients & non-factorizable amplitudes
Increasing COMPLEXITY

✓ $H \rightarrow \gamma\gamma$

1. 3 LO amplitudes $A_t^{\text{LO}}, A_b^{\text{LO}}, A_W^{\text{LO}}$, 3 κ-factors

2. 6 Wilson coefficients & non-factorizable amplitudes

✓ $H \rightarrow ZZ$

1. 1 LO amplitude

2. 6 NLO amplitudes, 6 κ-factors

\[\delta^{\mu\nu} \sum_{i=t,b,B} A_{i,D}^{\text{NLO}} + p_2^{\mu} p_1^{\nu} \sum_{i=t,b,B} A_{i,P}^{\text{NLO}} \]

2. 16 Wilson coefficients & non-factorizable amplitudes

✓ etc.
finite renormalization

\[g^{2}_{\text{exp}} = G^{2} \left[1 + 2 \frac{G^{2}}{16 \pi^2} \left(dG^{(4)} + g_{6} dG^{(6)} \right) \right] \]

\[G^{2} = 4 \sqrt{2} \, G_{F} \, M_{W}^{2} \]

\[\checkmark \, \text{d}G^{(4,6)} \, \text{from} \, \mu \,-\text{decay} \]
\[g^2 \text{ finite renormalization} \]

\[g_{\text{exp}}^2 = G^2 \left[1 + 2 \frac{G^2}{16 \pi^2} \left(dG^{(4)} + g_6 dG^{(6)} \right) \right] \quad G^2 = 4 \sqrt{2} G_F M_W^2 \]

- $dG^{(4,6)}$ from μ-decay
- Involving $\Sigma_{WW}(0)$ (easy)
$g_\text{finite renormalization}$

\[g_\text{exp}^2 = G^2 \left[1 + 2 \frac{G^2}{16 \pi^2} \left(dG^{(4)} + g_6 dG^{(6)} \right) \right] \quad G^2 = 4 \sqrt{2} G_F M_W^2 \]

- $dG^{(4,6)}$ from μ-decay
- Involving $\Sigma_{WW}(0)$ (easy)
- $\not\!X$ and vertices & boxes (not easy with $O(6)$-insertions)
H wave function renormalization \(1 - \frac{1}{2} \frac{g_{\exp}^2}{16 \pi^2} \delta \mathcal{Z}_H\)

\[
\delta \mathcal{Z}^{(4)}_H = \left. \frac{3}{2} \frac{M_t^2}{M_W^2} B_0^f \left(-M_H^2 ; M_t, M_t \right) \right. + \left. \frac{3}{2} \frac{M_b^2}{M_W^2} B_0^f \left(-M_H^2 ; M_b, M_b \right) \right.
\]

\[
- B_0^f \left(-M_H^2 ; M_W, M_W \right) - 1/2 \frac{1}{c_\theta^2} B_0^f \left(-M_H^2 ; M_Z, M_Z \right)
\]

\[
+ \left. \frac{3}{2} \left(M_H^2 - 4 M_t^2 \right) \frac{M_t^2}{M_W^2} B_0^p \left(-M_H^2 ; M_t, M_t \right) \right. + \left. \frac{3}{2} \left(M_H^2 - 4 M_b^2 \right) \frac{M_b^2}{M_W^2} B_0^p \left(-M_H^2 ; M_b, M_b \right) \right.
\]

\[
+ \left. \frac{1}{4} \left(\frac{M_H^4}{M_W^2} - 4 M_H^2 + 12 M_W^2 \right) B_0^p \left(-M_H^2 ; M_W, M_W \right) + \frac{1}{8} \left(\frac{M_H^4}{M_W^2} - 4 \frac{M_H^2}{c_\theta^2} + 12 \frac{M_Z^2}{c_\theta^2} \right) B_0^p \left(-M_H^2 ; M_Z, M_Z \right) \right.
\]

\[
+ \left. \frac{9}{8} \frac{M_H^4}{M_W^2} B_0^p \left(-M_H^2 ; M_H, M_H \right) \right.
\]

etc.
Fine points on PTG versus LG $\mathcal{O}^{(6)}$ operators

✓ Proposition: if we assume that the high-energy theory is

1. weakly-coupled and
2. renormalizable
Fine points on PTG versus LG $\mathcal{O}^{(6)}$ operators

✓ Proposition: if we assume that the high-energy theory is

① weakly-coupled and

② renormalizable

✓ it follows that the PTG/LG classification of arXiv:1307.0478 (used here) is correct.
Fine points on PTG versus LG $\mathcal{O}^{(6)}$ operators

✓ Proposition: if we assume that the high-energy theory is

 ① weakly-coupled and
 ② renormalizable

✓ it follows that the PTG/LG classification of arXiv:1307.0478 (used here) is correct.

✓ If we do not assume the above but work always in some EFT context (i.e., also the next high-energy theory is EFT, possibly involving some strongly interacting theory) then classification changes, see Eqs. (A1-A2) of arXiv:1305.0017v2
Wilson Coefficients

<table>
<thead>
<tr>
<th>(W)</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_1)</td>
<td>(a_{\gamma \gamma} = s_\theta c_\theta \ a_{\phi WB} + c_\theta^2 \ a_{\phi B} + s_\theta^2 \ a_{\phi W})</td>
</tr>
<tr>
<td>(W_2)</td>
<td>(a_{ZZ} = -s_\theta c_\theta \ a_{\phi WB} + s_\theta^2 \ a_{\phi B} + c_\theta^2 \ a_{\phi W})</td>
</tr>
<tr>
<td>(W_3)</td>
<td>(a_{\gamma Z} = 2 s_\theta c_\theta \left(a_{\phi W} - a_{\phi B} \right) + \left(c_\theta^2 - s_\theta^2 \right) \ a_{\phi WB})</td>
</tr>
</tbody>
</table>

Subscripts:

- \(\phi \) for \(\phi \)-type
- \(D \) for \(D \)-type
- \(b \) for \(b \)-type
- \(t \) for \(t \)-type

Additional Equations

- \(a_{\gamma W} = s_\theta \ a_{\gamma WB} + c_\theta \ a_{\gamma BW} \)
- \(a_{q W} = s_\theta \ a_{q WB} - c_\theta \ a_{q BW} \)
\[W_{12} = a_{\phi bA} \]
\[W_{14} = a_{\phi tA} \]

\[W_{13} = a_{\phi bV} \]
\[W_{15} = a_{\phi tV} \]

\[a_{\phi bV} = a_{\phi q}^{(3)} - a_{\phi b} - a_{\phi q}^{(1)} \]

\[a_{\phi tV} = a_{\phi q}^{(3)} - a_{\phi t} - a_{\phi q}^{(1)} \]

\[a_{\phi bA} = a_{\phi q}^{(3)} + a_{\phi b} - a_{\phi q}^{(1)} \]

\[a_{\phi tA} = a_{\phi q}^{(3)} + a_{\phi t} - a_{\phi q}^{(1)} \]
$\Sigma_{\gamma\gamma}(s) = \Pi_{\gamma\gamma}(s) s$

$\Pi_{\gamma\gamma}(s) = \frac{g^2 s_\theta^2}{16 \pi^2} \Pi_{\gamma\gamma}^{(4)}(s) + \frac{g^2 g_6}{16 \sqrt{2} \pi^2} \sum_{i=1}^{11} \Pi_{\gamma\gamma i}^{(6)}(s) W_i$

$\Pi_{\gamma\gamma}^{(4)}(0) = 3 a_0^f(M_W) + \frac{1}{9} \left[1 - 4 a_0^f(M_b) - 16 a_0^f(M_t) \right]$
\[\Pi^{(6)}_{\gamma\gamma 1}(0) = -\left(1 - 8s^2 + 2s^4 \right)a^f_0(M_W) \]
\[- \frac{1}{2}\frac{M_H^2}{M_W^2}a^f_0(M_H) - \frac{1}{2}\frac{1}{c^2_\theta}a^f_0(M_Z) \]
\[- \frac{4}{9}s^2_\theta \left[16\left(1 - \frac{1}{2}s^2_\theta\right)a^f_0(M_t) + 4\left(1 - \frac{1}{2}s^2_\theta\right)a^f_0(M_b) + 17\left(1 - \frac{35}{34}s^2_\theta\right)\right] \]
\[\Pi^{(6)}_{\gamma\gamma 2}(0) = s_\theta c_\theta \left\{ \frac{2}{9}\left[35 + 16a^f_0(M_t) + 4a^f_0(M_b)\right] - 2a^f_0(M_W) \right\} \]
\[\Pi^{(6)}_{\gamma\gamma 3}(0) = s_\theta c_\theta \left\{ 4\left(1 - \frac{35}{18}c^2_\theta\right) + 4\left(1 - \frac{1}{2}s^2_\theta\right)a^f_0(M_W) \right. \]
\[- \frac{8}{9}c^2_\theta \left[4a^f_0(M_t) + a^f_0(M_b)\right] \} \]
\[\Pi^{(6)}_{\gamma\gamma 4}(0) = c^2_\theta \left\{ -\frac{3}{2}a^f_0(M_W) + \frac{1}{18}\left[16a^f_0(M_t) + 4a^f_0(M_b) - 1\right] \right\} \]
\[\Pi^{(6)}_{\gamma\gamma 6}(0) = -2\frac{M_b^2}{M_W^2}s_\theta \left[a^f_0(M_b) + 1\right] \]
\[\Pi^{(6)}_{\gamma\gamma 8}(0) = -4\left(c^2_\theta - s^2_\theta\right)s_\theta \frac{M_b^2}{M_W^2}\left[a^f_0(M_t) + 1\right] \]
\[\Pi^{(6)}_{\gamma\gamma 9}(0) = 8s^2_\theta c_\theta \frac{M_t^2}{M_W^2}\left[a^f_0(M_t) + 1\right] \]
\[\Sigma_{Z\gamma}(s) = \Pi_{Z\gamma}(s) s \]

\[\Pi_{Z\gamma}(s) = \frac{g^2}{16 \pi^2} \frac{s_{\theta}}{c_{\theta}} \Pi_{Z\gamma}^{(4)}(s) + \frac{g^2 g_6}{16 \sqrt{2} \pi^2} \sum_{i=1}^{15} \Pi_{Z\gamma i}^{(6)}(s) W_i - \frac{g_6}{\sqrt{2}} W_3 \]

\[\Pi_{Z\gamma}^{(4)}(0) = \frac{1}{6} \left(19 - 18 s_{\theta}^2 \right) a_0^f(M_W) - \frac{2}{9} \left(3 - 8 s_{\theta}^2 \right) a_0^f(M_t) \]

\[- \frac{1}{9} \left(3 - 4 s_{\theta}^2 \right) a_0^f(M_b) + \frac{1}{18} \left(21 - 2 s_{\theta}^2 \right) \]
\[
\begin{align*}
\Pi^{(6)}_{Z\gamma 1}(0) &= \frac{s_{\theta}}{c_{\theta}} \left[\frac{1}{3} \left(1 + 6 c_{\theta}^4 \right) a_0^f (M_W) + \frac{4}{9} \left(5 - 8 c_{\theta}^4 \right) a_0^f (M_t) \\ + \frac{2}{9} \left(1 - 4 c_{\theta}^4 \right) a_0^f (M_b) - \frac{1}{9} \left(33 - 122 s_{\theta}^2 + 70 s_{\theta}^4 \right) \right] \\
\Pi^{(6)}_{Z\gamma 2}(0) &= s_{\theta} c_{\theta} \left[+2 \left(3 - c_{\theta}^2 \right) a_0^f (M_W) - \frac{32}{9} s_{\theta}^2 a_0^f (M_t) \\ - \frac{8}{9} s_{\theta}^2 a_0^f (M_b) - \frac{2}{9} \left(8 - 35 c_{\theta}^2 \right) \right] \\
\Pi^{(6)}_{Z\gamma 3}(0) &= -\frac{1}{18} \left(33 - 174 s_{\theta}^2 + 140 s_{\theta}^4 \right) + \frac{1}{3} \left(2 - 9 s_{\theta}^2 + 6 s_{\theta}^4 \right) a_0^f (M_W) \\ - \frac{1}{4} \frac{M_H^2}{M_W^2} a_0^f (M_H) - \frac{1}{4} \frac{1}{c_{\theta}^2} a_0^f (M_Z) - \frac{2}{9} \left(3 - 24 s_{\theta}^2 + 16 s_{\theta}^4 \right) a_0^f (M_t) - \frac{1}{9} \left(3 - 12 s_{\theta}^2 + 8 s_{\theta}^4 \right) a_0^f (M_b) \\
\Pi^{(6)}_{Z\gamma 4}(0) &= \frac{1}{s_{\theta} c_{\theta}} \left[-\frac{1}{24} \left(19 - 56 s_{\theta}^2 + 36 s_{\theta}^4 \right) a_0^f (M_W) + \frac{1}{18} \left(3 - 24 s_{\theta}^2 + 16 s_{\theta}^4 \right) a_0^f (M_t) \\ + \frac{1}{36} \left(3 - 12 s_{\theta}^2 + 8 s_{\theta}^4 \right) a_0^f (M_b) - \frac{1}{72} \left(21 + 4 s_{\theta}^4 \right) \right] \\
\Pi^{(6)}_{Z\gamma 6}(0) &= \frac{1}{4 c_{\theta}} \frac{M_b^2}{M_W^2} \left(1 - 4 c_{\theta}^2 \right) \left[a_0^f (M_b) - 1 \right] \\
\Pi^{(6)}_{Z\gamma 7}(0) &= -\frac{M_b^2}{4 c_{\theta}} \frac{M_W^2}{s_{\theta}^2} \left[a_0^f (M_b) + 1 \right] \\
\Pi^{(6)}_{Z\gamma 8}(0) &= -\frac{1}{4 c_{\theta}} \frac{M_t^2}{M_W^2} \left(5 - 34 c_{\theta}^2 + 32 c_{\theta}^4 \right) \left[a_0^f (M_t) - 1 \right] \\
\Pi^{(6)}_{Z\gamma 9}(0) &= \frac{1}{2} \frac{s_{\theta}}{c_{\theta}} \frac{M_t^2}{M_W^2} \left(7 - 16 s_{\theta}^2 \right) \left[a_0^f (M_t) + 1 \right]
\end{align*}
\]
\[\Pi^{(6)}_{Z\gamma 13}(0) = -\frac{2}{3} \frac{s_\theta}{c_\theta} \frac{M_b^2}{M_W^2} \left[a_0^f(M_b) + 1 \right] \]

\[\Pi^{(6)}_{Z\gamma 15}(0) = -\frac{4}{3} \frac{s_\theta}{c_\theta} \frac{M_t^2}{M_W^2} \left[a_0^f(M_t) + 1 \right] \]
STU: building blocks $Z-Z$

$$\Sigma_{ZZ}(s) = S_{ZZ} + \Pi_{ZZ} s + O(s^2)$$

$$S_{ZZ} = \frac{g^2}{16 \pi^2 c_\theta^2} S_{ZZ}^{(4)} + \frac{g^2 g_6}{16 \sqrt{2} \pi^2} \sum_{i=1}^{15} S_{ZZ_i}^{(6)} W_i$$

$$\Pi_{ZZ} = \frac{g^2}{16 \pi^2 c_\theta^2} \Pi_{ZZ}^{(4)} + \frac{g^2 g_6}{16 \sqrt{2} \pi^2} \sum_{i=1}^{15} \Pi_{ZZ_i}^{(6)} W_i$$
\[
S_{ZZ}^{(4)} = \left(M_Z^2 - \frac{1}{3} M_H^2 + \frac{1}{12} \frac{M_W^4}{M_Z^2} \right) B_0^f \left(-M_Z^2 ; M_H, M_Z \right) \\
+ \frac{1}{18} \left[\left(7 - 16 c_\theta^2 - 64 c_\theta^2 s_\theta^2 \right) M_t^2 + \left(17 - 8 c_\theta^2 - 32 c_\theta^2 s_\theta^2 \right) M_Z^2 \right] B_0^f \left(-M_Z^2 ; M_t, M_t \right) \\
+ \frac{1}{18} \left[\left(5 + 4 c_\theta^2 - 8 c_\theta^2 s_\theta^2 \right) M_b^2 - \left(17 - 8 c_\theta^2 + 16 c_\theta^2 s_\theta^2 \right) M_b^2 \right] B_0^f \left(-M_Z^2 ; M_b, M_b \right) \\
+ \frac{1}{12} \left(M_Z^4 - 2 M_W^2 M_Z^2 + M_H^4 \right) B_0^f \left(0 ; M_H, M_Z \right) + \frac{2}{3} \left(M_Z^2 + \frac{M_Z^4}{M_H^2 - M_Z^2} - \frac{3}{8} M_H^2 + \frac{1}{8} \frac{M_W^4}{M_Z^2} \right) a_0^f \left(M_H \right) \\
+ \frac{1}{4} \left(\frac{M_t^2}{M_H^2 - M_Z^2} - \frac{1}{3} M_H^2 \right) a_0^f \left(M_Z \right) - \frac{4}{27} \left(2 + c_\theta^2 - 5 c_\theta^2 s_\theta^2 \right) M_Z^2 \\

\Pi_{ZZ}^{(4)} = \frac{5}{6} \left(M_Z^2 - \frac{1}{5} M_H^2 \right) B_0^p \left(0 ; M_H, M_Z \right) + \frac{1}{18} \left(7 - 16 c_\theta^2 - 64 c_\theta^2 s_\theta^2 \right) M_t^2 B_0^p \left(0 ; M_t, M_t \right) \\
- \frac{1}{18} \left(17 - 8 c_\theta^2 + 16 c_\theta^2 s_\theta^2 \right) M_b^2 B_0^p \left(0 ; M_b, M_b \right) + \frac{1}{3} \left[5 M_Z^2 c_\theta^2 - 4 \left(5 - 3 s_\theta^2 \right) M_Z^2 c_\theta^6 \right] B_0^p \left(0 ; M_W, M_W \right) \\
- \frac{1}{24} \left(M_Z^4 - 2 M_W^2 M_Z^2 + M_H^4 \right) B_8^f \left(0 ; M_H, M_Z \right) + \frac{1}{12} \left(1 + \frac{M_Z^2}{M_H^2 - M_Z^2} \right) a_0^f \left(M_H \right) \\
- \frac{1}{12} \frac{M_Z^2}{M_H^2 - M_Z^2} a_0^f \left(M_Z \right) + \frac{4}{27} \left(2 + c_\theta^2 - 5 c_\theta^2 s_\theta^2 \right)
KEEP CALM TO BE CONTINUED
The life and death of μ_R

✓ γ bare propagator

$$\Delta^{-1}_\gamma = -s - \frac{g^2}{16 \pi^2} \Sigma_{\gamma\gamma}(s)$$

$$\Sigma_{\gamma\gamma}(s) = \left(D^{(4)} + g_6 D^{(6)}\right) \frac{1}{\epsilon} + \sum_{x \in \mathcal{X}} \left(L_i^{(4)} + g_6 L_i^{(6)}\right) \ln \frac{x}{\mu_R^2} + \Sigma_{\gamma\gamma}^{\text{rest}}$$

$$\{ \mathcal{X} \} = \{ s, m^2, m_0^2, m_H^2, m_t^2, m_b^2 \}$$
The life and death of $\mu_{\mathbf{R}}$

✓ γ bare propagator

$$\Delta^{-1}_{\gamma} = -s - \frac{g^2}{16\pi^2} \Sigma_{\gamma\gamma}(s)$$

$$\Sigma_{\gamma\gamma}(s) = \left(D^{(4)} + g_6 D^{(6)}\right) \frac{1}{\varepsilon} + \sum_{x \in \mathcal{X}} \left(L_i^{(4)} + g_6 L_i^{(6)}\right) \ln \frac{x}{\mu_R^2} + \Sigma_{\gamma\gamma}^{\text{rest}}$$

$$\mathcal{X} = \{s, m^2, m_0^2, m_H^2, m_t^2, m_b^2\}$$

✓ γ renormalized propagator

$$\left.\Delta^{-1}_{\gamma}\right|_{\text{ren}} = -Z_\gamma s - \frac{g^2}{16\pi^2} \Sigma_{\gamma\gamma}(s)$$

$$= -s - \frac{g^2}{16\pi^2} \Sigma_{\gamma\gamma}^{\text{ren}}(s)$$
The life and death of μ_R

$$\Sigma^{\text{ren}}_{\gamma\gamma}(s) = \sum_{x \in \mathcal{X}} \left(L^{(4)}_i + g_6 L^{(6)}_i \right) \ln \frac{x}{\mu_R^2} + \Sigma^{\text{rest}}_{\gamma\gamma}$$

✓ finite renormalization

$$\Sigma^{\text{ren}}_{\gamma\gamma}(s) = \Pi^{\text{ren}}_{\gamma\gamma}(s) s$$

$$\frac{\partial}{\partial \mu_R} \left[\Pi^{\text{ren}}_{\gamma\gamma}(s) - \Pi^{\text{ren}}_{\gamma\gamma}(0) \right] = 0$$
The life and death of μ_R

$$\Sigma_{\gamma\gamma}^{\text{ren}}(s) = \sum_{x \in X} \left(L_i^{(4)} + g_6 L_i^{(6)} \right) \ln \frac{x}{\mu_R^2} + \Sigma_{\gamma\gamma}^{\text{rest}}$$

✓ finite renormalization

$$\Sigma_{\gamma\gamma}^{\text{ren}}(s) = \Pi_{\gamma\gamma}^{\text{ren}}(s) s$$

$$\frac{\partial}{\partial \mu_R} \left[\Pi_{\gamma\gamma}^{\text{ren}}(s) - \Pi_{\gamma\gamma}^{\text{ren}}(0) \right] = 0$$

✓ including $\mathcal{O}^{(6)}$ contribution. There is no μ_R problem when a subtraction point is available.
\(\mathcal{O}^{(6)} \rightarrow \mathcal{O}^{(4)} \rightarrow \text{field(parameter) redefinition} \)

\[
\mathcal{L} = -\partial_\mu K^\dagger \partial^\mu K - \mu^2 K^\dagger K
- \frac{1}{2} \lambda (K^\dagger K)^2
- \frac{1}{2} \frac{M_0^2 \phi_0^2 - M^2 \phi^+ \phi^- + g^2 a_\phi \Lambda^2}{\Lambda^2} (K^\dagger K)^3
- g \frac{a_\phi \square}{\Lambda^2} K^\dagger K \Box K^\dagger K
- g \frac{a_{\phi D}}{\Lambda^2} \left| K^\dagger \partial^\mu K \right|^2
\]

\[
\sqrt{2} K_1 = H + 2 \frac{M}{g} + i \phi_0 \quad K_2 = i \phi^-
\]
Requires

\[\mu^2 = \beta_H - 2 \frac{\lambda}{g^2} M^2 \quad \lambda = \frac{1}{4} g^2 \frac{M_H^2}{M^2} \]

\[H \rightarrow \left[1 - (a_{\phi D} - 4 a_{\phi \Box}) \frac{M_H^2}{g^2 \Lambda^2} \right] H \]

\[M_H \rightarrow \left[1 + (a_{\phi D} - 4 a_{\phi \Box} + 24 a_{\phi}) \frac{M_H^2}{g^2 \Lambda^2} \right] M_H \]

e.tc. with non-trivial effects on the S -matrix