C********************************************************************* C********************************************************************* C* ** C* December 1993 ** C* ** C* The Lund Monte Carlo for Jet Fragmentation and e+e- Physics ** C* ** C* JETSET version 7.4 ** C* ** C* Torbjorn Sjostrand ** C* Department of theoretical physics 2 ** C* University of Lund ** C* Solvegatan 14A, S-223 62 Lund, Sweden ** C* E-mail torbjorn thep.lu.se ** C* phone +46 - 46 - 222 48 16 ** C* ** C* LUSHOW is written together with Mats Bengtsson ** C* ** C* The latest program version and documentation is found on WWW ** C* http://thep.lu.se/tf2/staff/torbjorn/Welcome.html ** C* ** C* Copyright Torbjorn Sjostrand and CERN, Geneva 1993 ** C* ** C********************************************************************* C********************************************************************* C * C List of subprograms in order of appearance, with main purpose * C (S = subroutine, F = function, B = block data) * C * C S LU1ENT to fill one entry (= parton or particle) * C S LU2ENT to fill two entries * C S LU3ENT to fill three entries * C S LU4ENT to fill four entries * C S LUJOIN to connect entries with colour flow information * C S LUGIVE to fill (or query) commonblock variables * C S LUEXEC to administrate fragmentation and decay chain * C S LUPREP to rearrange showered partons along strings * C S LUSTRF to do string fragmentation of jet system * C S LUINDF to do independent fragmentation of one or many jets * C S LUDECY to do the decay of a particle * C S LUKFDI to select parton and hadron flavours in fragm * C S LUPTDI to select transverse momenta in fragm * C S LUZDIS to select longitudinal scaling variable in fragm * C S LUSHOW to do timelike parton shower evolution * C S LUBOEI to include Bose-Einstein effects (crudely) * C F ULMASS to give the mass of a particle or parton * C S LUNAME to give the name of a particle or parton * C F LUCHGE to give three times the electric charge * C F LUCOMP to compress standard KF flavour code to internal KC * C S LUERRM to write error messages and abort faulty run * C F ULALEM to give the alpha_electromagnetic value * C F ULALPS to give the alpha_strong value * C F ULANGL to give the angle from known x and y components * C F RLU to provide a random number generator * C S RLUGET to save the state of the random number generator * C S RLUSET to set the state of the random number generator * C S LUROBO to rotate and/or boost an event * C S LUEDIT to remove unwanted entries from record * C S LULIST to list event record or particle data * C S LULOGO to write a logo for JETSET and PYTHIA * C S LUUPDA to update particle data * C F KLU to provide integer-valued event information * C F PLU to provide real-valued event information * C S LUSPHE to perform sphericity analysis * C S LUTHRU to perform thrust analysis * C S LUCLUS to perform three-dimensional cluster analysis * C S LUCELL to perform cluster analysis in (eta, phi, E_T) * C S LUJMAS to give high and low jet mass of event * C S LUFOWO to give Fox-Wolfram moments * C S LUTABU to analyze events, with tabular output * C * C S LUEEVT to administrate the generation of an e+e- event * C S LUXTOT to give the total cross-section at given CM energy * C S LURADK to generate initial state photon radiation * C S LUXKFL to select flavour of primary qqbar pair * C S LUXJET to select (matrix element) jet multiplicity * C S LUX3JT to select kinematics of three-jet event * C S LUX4JT to select kinematics of four-jet event * C S LUXDIF to select angular orientation of event * C S LUONIA to perform generation of onium decay to gluons * C * C S LUHEPC to convert between /LUJETS/ and /HEPEVT/ records * C S LUTEST to test the proper functioning of the package * C B LUDATA to contain default values and particle data * C * C********************************************************************* SUBROUTINE LU1ENT(IP,KF,PE,THE,PHI) C...Purpose: to store one parton/particle in commonblock LUJETS. COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ C...Standard checks. MSTU(28)=0 IF(MSTU(12).GE.1) CALL LULIST(0) IPA=MAX(1,IABS(IP)) IF(IPA.GT.MSTU(4)) CALL LUERRM(21, &'(LU1ENT:) writing outside LUJETS memory') KC=LUCOMP(KF) IF(KC.EQ.0) CALL LUERRM(12,'(LU1ENT:) unknown flavour code') C...Find mass. Reset K, P and V vectors. PM=0. IF(MSTU(10).EQ.1) PM=P(IPA,5) IF(MSTU(10).GE.2) PM=ULMASS(KF) DO 100 J=1,5 K(IPA,J)=0 P(IPA,J)=0. V(IPA,J)=0. 100 CONTINUE C...Store parton/particle in K and P vectors. K(IPA,1)=1 IF(IP.LT.0) K(IPA,1)=2 K(IPA,2)=KF P(IPA,5)=PM P(IPA,4)=MAX(PE,PM) PA=SQRT(P(IPA,4)**2-P(IPA,5)**2) P(IPA,1)=PA*SIN(THE)*COS(PHI) P(IPA,2)=PA*SIN(THE)*SIN(PHI) P(IPA,3)=PA*COS(THE) C...Set N. ptionally fragment/decay. N=IPA IF(IP.EQ.0) CALL LUEXEC RETURN END C********************************************************************* SUBROUTINE LU2ENT(IP,KF1,KF2,PECM) C...Purpose: to store two partons/particles in their CM frame, C...with the first along the +z axis. COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ C...Standard checks. MSTU(28)=0 IF(MSTU(12).GE.1) CALL LULIST(0) IPA=MAX(1,IABS(IP)) IF(IPA.GT.MSTU(4)-1) CALL LUERRM(21, &'(LU2ENT:) writing outside LUJETS memory') KC1=LUCOMP(KF1) KC2=LUCOMP(KF2) IF(KC1.EQ.0.OR.KC2.EQ.0) CALL LUERRM(12, &'(LU2ENT:) unknown flavour code') C...Find masses. Reset K, P and V vectors. PM1=0. IF(MSTU(10).EQ.1) PM1=P(IPA,5) IF(MSTU(10).GE.2) PM1=ULMASS(KF1) PM2=0. IF(MSTU(10).EQ.1) PM2=P(IPA+1,5) IF(MSTU(10).GE.2) PM2=ULMASS(KF2) DO 110 I=IPA,IPA+1 DO 100 J=1,5 K(I,J)=0 P(I,J)=0. V(I,J)=0. 100 CONTINUE 110 CONTINUE C...Check flavours. KQ1=KCHG(KC1,2)*ISIGN(1,KF1) KQ2=KCHG(KC2,2)*ISIGN(1,KF2) IF(MSTU(19).EQ.1) THEN MSTU(19)=0 ELSE IF(KQ1+KQ2.NE.0.AND.KQ1+KQ2.NE.4) CALL LUERRM(2, & '(LU2ENT:) unphysical flavour combination') ENDIF K(IPA,2)=KF1 K(IPA+1,2)=KF2 C...Store partons/particles in K vectors for normal case. IF(IP.GE.0) THEN K(IPA,1)=1 IF(KQ1.NE.0.AND.KQ2.NE.0) K(IPA,1)=2 K(IPA+1,1)=1 C...Store partons in K vectors for parton shower evolution. ELSE K(IPA,1)=3 K(IPA+1,1)=3 K(IPA,4)=MSTU(5)*(IPA+1) K(IPA,5)=K(IPA,4) K(IPA+1,4)=MSTU(5)*IPA K(IPA+1,5)=K(IPA+1,4) ENDIF C...Check kinematics and store partons/particles in P vectors. IF(PECM.LE.PM1+PM2) CALL LUERRM(13, &'(LU2ENT:) energy smaller than sum of masses') PA=SQRT(MAX(0.,(PECM**2-PM1**2-PM2**2)**2-(2.*PM1*PM2)**2))/ &(2.*PECM) P(IPA,3)=PA P(IPA,4)=SQRT(PM1**2+PA**2) P(IPA,5)=PM1 P(IPA+1,3)=-PA P(IPA+1,4)=SQRT(PM2**2+PA**2) P(IPA+1,5)=PM2 C...Set N. ptionally fragment/decay. N=IPA+1 IF(IP.EQ.0) CALL LUEXEC RETURN END C********************************************************************* SUBROUTINE LU3ENT(IP,KF1,KF2,KF3,PECM,X1,X3) C...Purpose: to store three partons or particles in their CM frame, C...with the first along the +z axis and the third in the (x,z) C...plane with x > 0. COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ C...Standard checks. MSTU(28)=0 IF(MSTU(12).GE.1) CALL LULIST(0) IPA=MAX(1,IABS(IP)) IF(IPA.GT.MSTU(4)-2) CALL LUERRM(21, &'(LU3ENT:) writing outside LUJETS memory') KC1=LUCOMP(KF1) KC2=LUCOMP(KF2) KC3=LUCOMP(KF3) IF(KC1.EQ.0.OR.KC2.EQ.0.OR.KC3.EQ.0) CALL LUERRM(12, &'(LU3ENT:) unknown flavour code') C...Find masses. Reset K, P and V vectors. PM1=0. IF(MSTU(10).EQ.1) PM1=P(IPA,5) IF(MSTU(10).GE.2) PM1=ULMASS(KF1) PM2=0. IF(MSTU(10).EQ.1) PM2=P(IPA+1,5) IF(MSTU(10).GE.2) PM2=ULMASS(KF2) PM3=0. IF(MSTU(10).EQ.1) PM3=P(IPA+2,5) IF(MSTU(10).GE.2) PM3=ULMASS(KF3) DO 110 I=IPA,IPA+2 DO 100 J=1,5 K(I,J)=0 P(I,J)=0. V(I,J)=0. 100 CONTINUE 110 CONTINUE C...Check flavours. KQ1=KCHG(KC1,2)*ISIGN(1,KF1) KQ2=KCHG(KC2,2)*ISIGN(1,KF2) KQ3=KCHG(KC3,2)*ISIGN(1,KF3) IF(MSTU(19).EQ.1) THEN MSTU(19)=0 ELSEIF(KQ1.EQ.0.AND.KQ2.EQ.0.AND.KQ3.EQ.0) THEN ELSEIF(KQ1.NE.0.AND.KQ2.EQ.2.AND.(KQ1+KQ3.EQ.0.OR. &KQ1+KQ3.EQ.4)) THEN ELSE CALL LUERRM(2,'(LU3ENT:) unphysical flavour combination') ENDIF K(IPA,2)=KF1 K(IPA+1,2)=KF2 K(IPA+2,2)=KF3 C...Store partons/particles in K vectors for normal case. IF(IP.GE.0) THEN K(IPA,1)=1 IF(KQ1.NE.0.AND.(KQ2.NE.0.OR.KQ3.NE.0)) K(IPA,1)=2 K(IPA+1,1)=1 IF(KQ2.NE.0.AND.KQ3.NE.0) K(IPA+1,1)=2 K(IPA+2,1)=1 C...Store partons in K vectors for parton shower evolution. ELSE K(IPA,1)=3 K(IPA+1,1)=3 K(IPA+2,1)=3 KCS=4 IF(KQ1.EQ.-1) KCS=5 K(IPA,KCS)=MSTU(5)*(IPA+1) K(IPA,9-KCS)=MSTU(5)*(IPA+2) K(IPA+1,KCS)=MSTU(5)*(IPA+2) K(IPA+1,9-KCS)=MSTU(5)*IPA K(IPA+2,KCS)=MSTU(5)*IPA K(IPA+2,9-KCS)=MSTU(5)*(IPA+1) ENDIF C...Check kinematics. MKERR=0 IF(0.5*X1*PECM.LE.PM1.OR.0.5*(2.-X1-X3)*PECM.LE.PM2.OR. &0.5*X3*PECM.LE.PM3) MKERR=1 PA1=SQRT(MAX(1E-10,(0.5*X1*PECM)**2-PM1**2)) PA2=SQRT(MAX(1E-10,(0.5*(2.-X1-X3)*PECM)**2-PM2**2)) PA3=SQRT(MAX(1E-10,(0.5*X3*PECM)**2-PM3**2)) CTHE2=(PA3**2-PA1**2-PA2**2)/(2.*PA1*PA2) CTHE3=(PA2**2-PA1**2-PA3**2)/(2.*PA1*PA3) IF(ABS(CTHE2).GE.1.001.OR.ABS(CTHE3).GE.1.001) MKERR=1 CTHE3=MAX(-1.,MIN(1.,CTHE3)) IF(MKERR.NE.0) CALL LUERRM(13, &'(LU3ENT:) unphysical kinematical variable setup') C...Store partons/particles in P vectors. P(IPA,3)=PA1 P(IPA,4)=SQRT(PA1**2+PM1**2) P(IPA,5)=PM1 P(IPA+2,1)=PA3*SQRT(1.-CTHE3**2) P(IPA+2,3)=PA3*CTHE3 P(IPA+2,4)=SQRT(PA3**2+PM3**2) P(IPA+2,5)=PM3 P(IPA+1,1)=-P(IPA+2,1) P(IPA+1,3)=-P(IPA,3)-P(IPA+2,3) P(IPA+1,4)=SQRT(P(IPA+1,1)**2+P(IPA+1,3)**2+PM2**2) P(IPA+1,5)=PM2 C...Set N. ptionally fragment/decay. N=IPA+2 IF(IP.EQ.0) CALL LUEXEC RETURN END C********************************************************************* SUBROUTINE LU4ENT(IP,KF1,KF2,KF3,KF4,PECM,X1,X2,X4,X12,X14) C...Purpose: to store four partons or particles in their CM frame, with C...the first along the +z axis, the last in the xz plane with x > 0 C...and the second having y < 0 and y > 0 with equal probability. COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ C...Standard checks. MSTU(28)=0 IF(MSTU(12).GE.1) CALL LULIST(0) IPA=MAX(1,IABS(IP)) IF(IPA.GT.MSTU(4)-3) CALL LUERRM(21, &'(LU4ENT:) writing outside LUJETS momory') KC1=LUCOMP(KF1) KC2=LUCOMP(KF2) KC3=LUCOMP(KF3) KC4=LUCOMP(KF4) IF(KC1.EQ.0.OR.KC2.EQ.0.OR.KC3.EQ.0.OR.KC4.EQ.0) CALL LUERRM(12, &'(LU4ENT:) unknown flavour code') C...Find masses. Reset K, P and V vectors. PM1=0. IF(MSTU(10).EQ.1) PM1=P(IPA,5) IF(MSTU(10).GE.2) PM1=ULMASS(KF1) PM2=0. IF(MSTU(10).EQ.1) PM2=P(IPA+1,5) IF(MSTU(10).GE.2) PM2=ULMASS(KF2) PM3=0. IF(MSTU(10).EQ.1) PM3=P(IPA+2,5) IF(MSTU(10).GE.2) PM3=ULMASS(KF3) PM4=0. IF(MSTU(10).EQ.1) PM4=P(IPA+3,5) IF(MSTU(10).GE.2) PM4=ULMASS(KF4) DO 110 I=IPA,IPA+3 DO 100 J=1,5 K(I,J)=0 P(I,J)=0. V(I,J)=0. 100 CONTINUE 110 CONTINUE C...Check flavours. KQ1=KCHG(KC1,2)*ISIGN(1,KF1) KQ2=KCHG(KC2,2)*ISIGN(1,KF2) KQ3=KCHG(KC3,2)*ISIGN(1,KF3) KQ4=KCHG(KC4,2)*ISIGN(1,KF4) IF(MSTU(19).EQ.1) THEN MSTU(19)=0 ELSEIF(KQ1.EQ.0.AND.KQ2.EQ.0.AND.KQ3.EQ.0.AND.KQ4.EQ.0) THEN ELSEIF(KQ1.NE.0.AND.KQ2.EQ.2.AND.KQ3.EQ.2.AND.(KQ1+KQ4.EQ.0.OR. &KQ1+KQ4.EQ.4)) THEN ELSEIF(KQ1.NE.0.AND.KQ1+KQ2.EQ.0.AND.KQ3.NE.0.AND.KQ3+KQ4.EQ.0.) &THEN ELSE CALL LUERRM(2,'(LU4ENT:) unphysical flavour combination') ENDIF K(IPA,2)=KF1 K(IPA+1,2)=KF2 K(IPA+2,2)=KF3 K(IPA+3,2)=KF4 C...Store partons/particles in K vectors for normal case. IF(IP.GE.0) THEN K(IPA,1)=1 IF(KQ1.NE.0.AND.(KQ2.NE.0.OR.KQ3.NE.0.OR.KQ4.NE.0)) K(IPA,1)=2 K(IPA+1,1)=1 IF(KQ2.NE.0.AND.KQ1+KQ2.NE.0.AND.(KQ3.NE.0.OR.KQ4.NE.0)) & K(IPA+1,1)=2 K(IPA+2,1)=1 IF(KQ3.NE.0.AND.KQ4.NE.0) K(IPA+2,1)=2 K(IPA+3,1)=1 C...Store partons for parton shower evolution from q-g-g-qbar or C...g-g-g-g event. ELSEIF(KQ1+KQ2.NE.0) THEN K(IPA,1)=3 K(IPA+1,1)=3 K(IPA+2,1)=3 K(IPA+3,1)=3 KCS=4 IF(KQ1.EQ.-1) KCS=5 K(IPA,KCS)=MSTU(5)*(IPA+1) K(IPA,9-KCS)=MSTU(5)*(IPA+3) K(IPA+1,KCS)=MSTU(5)*(IPA+2) K(IPA+1,9-KCS)=MSTU(5)*IPA K(IPA+2,KCS)=MSTU(5)*(IPA+3) K(IPA+2,9-KCS)=MSTU(5)*(IPA+1) K(IPA+3,KCS)=MSTU(5)*IPA K(IPA+3,9-KCS)=MSTU(5)*(IPA+2) C...Store partons for parton shower evolution from q-qbar-q-qbar event. ELSE K(IPA,1)=3 K(IPA+1,1)=3 K(IPA+2,1)=3 K(IPA+3,1)=3 K(IPA,4)=MSTU(5)*(IPA+1) K(IPA,5)=K(IPA,4) K(IPA+1,4)=MSTU(5)*IPA K(IPA+1,5)=K(IPA+1,4) K(IPA+2,4)=MSTU(5)*(IPA+3) K(IPA+2,5)=K(IPA+2,4) K(IPA+3,4)=MSTU(5)*(IPA+2) K(IPA+3,5)=K(IPA+3,4) ENDIF C...Check kinematics. MKERR=0 IF(0.5*X1*PECM.LE.PM1.OR.0.5*X2*PECM.LE.PM2.OR.0.5*(2.-X1-X2-X4)* &PECM.LE.PM3.OR.0.5*X4*PECM.LE.PM4) MKERR=1 PA1=SQRT(MAX(1E-10,(0.5*X1*PECM)**2-PM1**2)) PA2=SQRT(MAX(1E-10,(0.5*X2*PECM)**2-PM2**2)) PA4=SQRT(MAX(1E-10,(0.5*X4*PECM)**2-PM4**2)) X24=X1+X2+X4-1.-X12-X14+(PM3**2-PM1**2-PM2**2-PM4**2)/PECM**2 CTHE4=(X1*X4-2.*X14)*PECM**2/(4.*PA1*PA4) IF(ABS(CTHE4).GE.1.002) MKERR=1 CTHE4=MAX(-1.,MIN(1.,CTHE4)) STHE4=SQRT(1.-CTHE4**2) CTHE2=(X1*X2-2.*X12)*PECM**2/(4.*PA1*PA2) IF(ABS(CTHE2).GE.1.002) MKERR=1 CTHE2=MAX(-1.,MIN(1.,CTHE2)) STHE2=SQRT(1.-CTHE2**2) CPHI2=((X2*X4-2.*X24)*PECM**2-4.*PA2*CTHE2*PA4*CTHE4)/ &MAX(1E-8*PECM**2,4.*PA2*STHE2*PA4*STHE4) IF(ABS(CPHI2).GE.1.05) MKERR=1 CPHI2=MAX(-1.,MIN(1.,CPHI2)) IF(MKERR.EQ.1) CALL LUERRM(13, &'(LU4ENT:) unphysical kinematical variable setup') C...Store partons/particles in P vectors. P(IPA,3)=PA1 P(IPA,4)=SQRT(PA1**2+PM1**2) P(IPA,5)=PM1 P(IPA+3,1)=PA4*STHE4 P(IPA+3,3)=PA4*CTHE4 P(IPA+3,4)=SQRT(PA4**2+PM4**2) P(IPA+3,5)=PM4 P(IPA+1,1)=PA2*STHE2*CPHI2 P(IPA+1,2)=PA2*STHE2*SQRT(1.-CPHI2**2)*(-1.)**INT(RLU(0)+0.5) P(IPA+1,3)=PA2*CTHE2 P(IPA+1,4)=SQRT(PA2**2+PM2**2) P(IPA+1,5)=PM2 P(IPA+2,1)=-P(IPA+1,1)-P(IPA+3,1) P(IPA+2,2)=-P(IPA+1,2) P(IPA+2,3)=-P(IPA,3)-P(IPA+1,3)-P(IPA+3,3) P(IPA+2,4)=SQRT(P(IPA+2,1)**2+P(IPA+2,2)**2+P(IPA+2,3)**2+PM3**2) P(IPA+2,5)=PM3 C...Set N. ptionally fragment/decay. N=IPA+3 IF(IP.EQ.0) CALL LUEXEC RETURN END C********************************************************************* SUBROUTINE LUJOIN(NJOIN,IJOIN) C...Purpose: to connect a sequence of partons with colour flow indices, C...as required for subsequent shower evolution (or other operations). COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ DIMENSION IJOIN(*) C...Check that partons are of right types to be connected. IF(NJOIN.LT.2) GOTO 120 KQSUM=0 DO 100 IJN=1,NJOIN I=IJOIN(IJN) IF(I.LE.0.OR.I.GT.N) GOTO 120 IF(K(I,1).LT.1.OR.K(I,1).GT.3) GOTO 120 KC=LUCOMP(K(I,2)) IF(KC.EQ.0) GOTO 120 KQ=KCHG(KC,2)*ISIGN(1,K(I,2)) IF(KQ.EQ.0) GOTO 120 IF(IJN.NE.1.AND.IJN.NE.NJOIN.AND.KQ.NE.2) GOTO 120 IF(KQ.NE.2) KQSUM=KQSUM+KQ IF(IJN.EQ.1) KQS=KQ 100 CONTINUE IF(KQSUM.NE.0) GOTO 120 C...Connect the partons sequentially (closing for gluon loop). KCS=(9-KQS)/2 IF(KQS.EQ.2) KCS=INT(4.5+RLU(0)) DO 110 IJN=1,NJOIN I=IJOIN(IJN) K(I,1)=3 IF(IJN.NE.1) IP=IJOIN(IJN-1) IF(IJN.EQ.1) IP=IJOIN(NJOIN) IF(IJN.NE.NJOIN) IN=IJOIN(IJN+1) IF(IJN.EQ.NJOIN) IN=IJOIN(1) K(I,KCS)=MSTU(5)*IN K(I,9-KCS)=MSTU(5)*IP IF(IJN.EQ.1.AND.KQS.NE.2) K(I,9-KCS)=0 IF(IJN.EQ.NJOIN.AND.KQS.NE.2) K(I,KCS)=0 110 CONTINUE C...Error exit: no action taken. RETURN 120 CALL LUERRM(12, &'(LUJOIN:) given entries can not be joined by one string') RETURN END C********************************************************************* SUBROUTINE LUGIVE(CHIN) C...Purpose: to set values of commonblock variables (also in PYTHIA!). COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5) COMMON/LUDAT4/CHAF(500) CHARACTER CHAF*8 COMMON/LUDATR/MRLU(6),RRLU(100) COMMON/PYSUBS/MSEL,MSUB(200),KFIN(2,-40:40),CKIN(200) COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200) COMMON/PYINT1/MINT(400),VINT(400) COMMON/PYINT2/ISET(200),KFPR(200,2),COEF(200,20),ICOL(40,4,2) COMMON/PYINT3/XSFX(2,-40:40),ISIG(1000,3),SIGH(1000) COMMON/PYINT4/WIDP(21:40,0:40),WIDE(21:40,0:40),WIDS(21:40,3) COMMON/PYINT5/NGEN(0:200,3),XSEC(0:200,3) COMMON/PYINT6/PROC(0:200) COMMON/PYINT7/SIGT(0:6,0:6,0:5) CHARACTER PROC*28 SAVE /LUJETS/,/LUDAT1/,/LUDAT2/,/LUDAT3/,/LUDAT4/,/LUDATR/ SAVE /PYSUBS/,/PYPARS/,/PYINT1/,/PYINT2/,/PYINT3/,/PYINT4/, &/PYINT5/,/PYINT6/,/PYINT7/ CHARACTER CHIN*(*),CHFIX*104,CHBIT*104,CHOLD*8,CHNEW*8,CHOLD2*28, &CHNEW2*28,CHNAM*4,CHVAR(43)*4,CHALP(2)*26,CHIND*8,CHINI*10, &CHINR*16 DIMENSION MSVAR(43,8) C...For each variable to be translated give: name, C...integer/real/character, no. of indices, lower&upper index bounds. DATA CHVAR/'N','K','P','V','MSTU','PARU','MSTJ','PARJ','KCHG', &'PMAS','PARF','VCKM','MDCY','MDME','BRAT','KFDP','CHAF','MRLU', &'RRLU','MSEL','MSUB','KFIN','CKIN','MSTP','PARP','MSTI','PARI', &'MINT','VINT','ISET','KFPR','COEF','ICOL','XSFX','ISIG','SIGH', &'WIDP','WIDE','WIDS','NGEN','XSEC','PROC','SIGT'/ DATA ((MSVAR(I,J),J=1,8),I=1,43)/ 1,7*0, 1,2,1,4000,1,5,2*0, & 2,2,1,4000,1,5,2*0, 2,2,1,4000,1,5,2*0, 1,1,1,200,4*0, & 2,1,1,200,4*0, 1,1,1,200,4*0, 2,1,1,200,4*0, & 1,2,1,500,1,3,2*0, 2,2,1,500,1,4,2*0, 2,1,1,2000,4*0, & 2,2,1,4,1,4,2*0, 1,2,1,500,1,3,2*0, 1,2,1,2000,1,2,2*0, & 2,1,1,2000,4*0, 1,2,1,2000,1,5,2*0, 3,1,1,500,4*0, & 1,1,1,6,4*0, 2,1,1,100,4*0, & 1,7*0, 1,1,1,200,4*0, 1,2,1,2,-40,40,2*0, 2,1,1,200,4*0, & 1,1,1,200,4*0, 2,1,1,200,4*0, 1,1,1,200,4*0, 2,1,1,200,4*0, & 1,1,1,400,4*0, 2,1,1,400,4*0, 1,1,1,200,4*0, & 1,2,1,200,1,2,2*0, 2,2,1,200,1,20,2*0, 1,3,1,40,1,4,1,2, & 2,2,1,2,-40,40,2*0, 1,2,1,1000,1,3,2*0, 2,1,1,1000,4*0, & 2,2,21,40,0,40,2*0, 2,2,21,40,0,40,2*0, 2,2,21,40,1,3,2*0, & 1,2,0,200,1,3,2*0, 2,2,0,200,1,3,2*0, 4,1,0,200,4*0, & 2,3,0,6,0,6,0,5/ DATA CHALP/'abcdefghijklmnopqrstuvwxyz', &'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/ C...Length of character variable. Subdivide it into instructions. IF(MSTU(12).GE.1) CALL LULIST(0) CHBIT=CHIN//' ' LBIT=101 100 LBIT=LBIT-1 IF(CHBIT(LBIT:LBIT).EQ.' ') GOTO 100 LTOT=0 DO 110 LCOM=1,LBIT IF(CHBIT(LCOM:LCOM).EQ.' ') GOTO 110 LTOT=LTOT+1 CHFIX(LTOT:LTOT)=CHBIT(LCOM:LCOM) 110 CONTINUE LLOW=0 120 LHIG=LLOW+1 130 LHIG=LHIG+1 IF(LHIG.LE.LTOT.AND.CHFIX(LHIG:LHIG).NE.';') GOTO 130 LBIT=LHIG-LLOW-1 CHBIT(1:LBIT)=CHFIX(LLOW+1:LHIG-1) C...Identify commonblock variable. LNAM=1 140 LNAM=LNAM+1 IF(CHBIT(LNAM:LNAM).NE.'('.AND.CHBIT(LNAM:LNAM).NE.'='.AND. &LNAM.LE.4) GOTO 140 CHNAM=CHBIT(1:LNAM-1)//' ' DO 160 LCOM=1,LNAM-1 DO 150 LALP=1,26 IF(CHNAM(LCOM:LCOM).EQ.CHALP(1)(LALP:LALP)) CHNAM(LCOM:LCOM)= &CHALP(2)(LALP:LALP) 150 CONTINUE 160 CONTINUE IVAR=0 DO 170 IV=1,43 IF(CHNAM.EQ.CHVAR(IV)) IVAR=IV 170 CONTINUE IF(IVAR.EQ.0) THEN CALL LUERRM(18,'(LUGIVE:) do not recognize variable '//CHNAM) LLOW=LHIG IF(LLOW.LT.LTOT) GOTO 120 RETURN ENDIF C...Identify any indices. I1=0 I2=0 I3=0 NINDX=0 IF(CHBIT(LNAM:LNAM).EQ.'(') THEN LIND=LNAM 180 LIND=LIND+1 IF(CHBIT(LIND:LIND).NE.')'.AND.CHBIT(LIND:LIND).NE.',') GOTO 180 CHIND=' ' IF((CHBIT(LNAM+1:LNAM+1).EQ.'C'.OR.CHBIT(LNAM+1:LNAM+1).EQ.'c'). & AND.(IVAR.EQ.9.OR.IVAR.EQ.10.OR.IVAR.EQ.13.OR.IVAR.EQ.17)) THEN CHIND(LNAM-LIND+11:8)=CHBIT(LNAM+2:LIND-1) READ(CHIND,'(I8)') KF I1=LUCOMP(KF) ELSEIF(CHBIT(LNAM+1:LNAM+1).EQ.'C'.OR.CHBIT(LNAM+1:LNAM+1).EQ. & 'c') THEN CALL LUERRM(18,'(LUGIVE:) not allowed to use C index for '// & CHNAM) LLOW=LHIG IF(LLOW.LT.LTOT) GOTO 120 RETURN ELSE CHIND(LNAM-LIND+10:8)=CHBIT(LNAM+1:LIND-1) READ(CHIND,'(I8)') I1 ENDIF LNAM=LIND IF(CHBIT(LNAM:LNAM).EQ.')') LNAM=LNAM+1 NINDX=1 ENDIF IF(CHBIT(LNAM:LNAM).EQ.',') THEN LIND=LNAM 190 LIND=LIND+1 IF(CHBIT(LIND:LIND).NE.')'.AND.CHBIT(LIND:LIND).NE.',') GOTO 190 CHIND=' ' CHIND(LNAM-LIND+10:8)=CHBIT(LNAM+1:LIND-1) READ(CHIND,'(I8)') I2 LNAM=LIND IF(CHBIT(LNAM:LNAM).EQ.')') LNAM=LNAM+1 NINDX=2 ENDIF IF(CHBIT(LNAM:LNAM).EQ.',') THEN LIND=LNAM 200 LIND=LIND+1 IF(CHBIT(LIND:LIND).NE.')'.AND.CHBIT(LIND:LIND).NE.',') GOTO 200 CHIND=' ' CHIND(LNAM-LIND+10:8)=CHBIT(LNAM+1:LIND-1) READ(CHIND,'(I8)') I3 LNAM=LIND+1 NINDX=3 ENDIF C...Check that indices allowed. IERR=0 IF(NINDX.NE.MSVAR(IVAR,2)) IERR=1 IF(NINDX.GE.1.AND.(I1.LT.MSVAR(IVAR,3).OR.I1.GT.MSVAR(IVAR,4))) &IERR=2 IF(NINDX.GE.2.AND.(I2.LT.MSVAR(IVAR,5).OR.I2.GT.MSVAR(IVAR,6))) &IERR=3 IF(NINDX.EQ.3.AND.(I3.LT.MSVAR(IVAR,7).OR.I3.GT.MSVAR(IVAR,8))) &IERR=4 IF(CHBIT(LNAM:LNAM).NE.'=') IERR=5 IF(IERR.GE.1) THEN CALL LUERRM(18,'(LUGIVE:) unallowed indices for '// & CHBIT(1:LNAM-1)) LLOW=LHIG IF(LLOW.LT.LTOT) GOTO 120 RETURN ENDIF C...Save old value of variable. IF(IVAR.EQ.1) THEN IOLD=N ELSEIF(IVAR.EQ.2) THEN IOLD=K(I1,I2) ELSEIF(IVAR.EQ.3) THEN ROLD=P(I1,I2) ELSEIF(IVAR.EQ.4) THEN ROLD=V(I1,I2) ELSEIF(IVAR.EQ.5) THEN IOLD=MSTU(I1) ELSEIF(IVAR.EQ.6) THEN ROLD=PARU(I1) ELSEIF(IVAR.EQ.7) THEN IOLD=MSTJ(I1) ELSEIF(IVAR.EQ.8) THEN ROLD=PARJ(I1) ELSEIF(IVAR.EQ.9) THEN IOLD=KCHG(I1,I2) ELSEIF(IVAR.EQ.10) THEN ROLD=PMAS(I1,I2) ELSEIF(IVAR.EQ.11) THEN ROLD=PARF(I1) ELSEIF(IVAR.EQ.12) THEN ROLD=VCKM(I1,I2) ELSEIF(IVAR.EQ.13) THEN IOLD=MDCY(I1,I2) ELSEIF(IVAR.EQ.14) THEN IOLD=MDME(I1,I2) ELSEIF(IVAR.EQ.15) THEN ROLD=BRAT(I1) ELSEIF(IVAR.EQ.16) THEN IOLD=KFDP(I1,I2) ELSEIF(IVAR.EQ.17) THEN CHOLD=CHAF(I1) ELSEIF(IVAR.EQ.18) THEN IOLD=MRLU(I1) ELSEIF(IVAR.EQ.19) THEN ROLD=RRLU(I1) ELSEIF(IVAR.EQ.20) THEN IOLD=MSEL ELSEIF(IVAR.EQ.21) THEN IOLD=MSUB(I1) ELSEIF(IVAR.EQ.22) THEN IOLD=KFIN(I1,I2) ELSEIF(IVAR.EQ.23) THEN ROLD=CKIN(I1) ELSEIF(IVAR.EQ.24) THEN IOLD=MSTP(I1) ELSEIF(IVAR.EQ.25) THEN ROLD=PARP(I1) ELSEIF(IVAR.EQ.26) THEN IOLD=MSTI(I1) ELSEIF(IVAR.EQ.27) THEN ROLD=PARI(I1) ELSEIF(IVAR.EQ.28) THEN IOLD=MINT(I1) ELSEIF(IVAR.EQ.29) THEN ROLD=VINT(I1) ELSEIF(IVAR.EQ.30) THEN IOLD=ISET(I1) ELSEIF(IVAR.EQ.31) THEN IOLD=KFPR(I1,I2) ELSEIF(IVAR.EQ.32) THEN ROLD=COEF(I1,I2) ELSEIF(IVAR.EQ.33) THEN IOLD=ICOL(I1,I2,I3) ELSEIF(IVAR.EQ.34) THEN ROLD=XSFX(I1,I2) ELSEIF(IVAR.EQ.35) THEN IOLD=ISIG(I1,I2) ELSEIF(IVAR.EQ.36) THEN ROLD=SIGH(I1) ELSEIF(IVAR.EQ.37) THEN ROLD=WIDP(I1,I2) ELSEIF(IVAR.EQ.38) THEN ROLD=WIDE(I1,I2) ELSEIF(IVAR.EQ.39) THEN ROLD=WIDS(I1,I2) ELSEIF(IVAR.EQ.40) THEN IOLD=NGEN(I1,I2) ELSEIF(IVAR.EQ.41) THEN ROLD=XSEC(I1,I2) ELSEIF(IVAR.EQ.42) THEN CHOLD2=PROC(I1) ELSEIF(IVAR.EQ.43) THEN ROLD=SIGT(I1,I2,I3) ENDIF C...Print current value of variable. Loop back. IF(LNAM.GE.LBIT) THEN CHBIT(LNAM:14)=' ' CHBIT(15:60)=' has the value ' IF(MSVAR(IVAR,1).EQ.1) THEN WRITE(CHBIT(51:60),'(I10)') IOLD ELSEIF(MSVAR(IVAR,1).EQ.2) THEN WRITE(CHBIT(47:60),'(F14.5)') ROLD ELSEIF(MSVAR(IVAR,1).EQ.3) THEN CHBIT(53:60)=CHOLD ELSE CHBIT(33:60)=CHOLD ENDIF IF(MSTU(13).GE.1) WRITE(MSTU(11),5000) CHBIT(1:60) LLOW=LHIG IF(LLOW.LT.LTOT) GOTO 120 RETURN ENDIF C...Read in new variable value. IF(MSVAR(IVAR,1).EQ.1) THEN CHINI=' ' CHINI(LNAM-LBIT+11:10)=CHBIT(LNAM+1:LBIT) READ(CHINI,'(I10)') INEW ELSEIF(MSVAR(IVAR,1).EQ.2) THEN CHINR=' ' CHINR(LNAM-LBIT+17:16)=CHBIT(LNAM+1:LBIT) READ(CHINR,'(F16.2)') RNEW ELSEIF(MSVAR(IVAR,1).EQ.3) THEN CHNEW=CHBIT(LNAM+1:LBIT)//' ' ELSE CHNEW2=CHBIT(LNAM+1:LBIT)//' ' ENDIF C...Store new variable value. IF(IVAR.EQ.1) THEN N=INEW ELSEIF(IVAR.EQ.2) THEN K(I1,I2)=INEW ELSEIF(IVAR.EQ.3) THEN P(I1,I2)=RNEW ELSEIF(IVAR.EQ.4) THEN V(I1,I2)=RNEW ELSEIF(IVAR.EQ.5) THEN MSTU(I1)=INEW ELSEIF(IVAR.EQ.6) THEN PARU(I1)=RNEW ELSEIF(IVAR.EQ.7) THEN MSTJ(I1)=INEW ELSEIF(IVAR.EQ.8) THEN PARJ(I1)=RNEW ELSEIF(IVAR.EQ.9) THEN KCHG(I1,I2)=INEW ELSEIF(IVAR.EQ.10) THEN PMAS(I1,I2)=RNEW ELSEIF(IVAR.EQ.11) THEN PARF(I1)=RNEW ELSEIF(IVAR.EQ.12) THEN VCKM(I1,I2)=RNEW ELSEIF(IVAR.EQ.13) THEN MDCY(I1,I2)=INEW ELSEIF(IVAR.EQ.14) THEN MDME(I1,I2)=INEW ELSEIF(IVAR.EQ.15) THEN BRAT(I1)=RNEW ELSEIF(IVAR.EQ.16) THEN KFDP(I1,I2)=INEW ELSEIF(IVAR.EQ.17) THEN CHAF(I1)=CHNEW ELSEIF(IVAR.EQ.18) THEN MRLU(I1)=INEW ELSEIF(IVAR.EQ.19) THEN RRLU(I1)=RNEW ELSEIF(IVAR.EQ.20) THEN MSEL=INEW ELSEIF(IVAR.EQ.21) THEN MSUB(I1)=INEW ELSEIF(IVAR.EQ.22) THEN KFIN(I1,I2)=INEW ELSEIF(IVAR.EQ.23) THEN CKIN(I1)=RNEW ELSEIF(IVAR.EQ.24) THEN MSTP(I1)=INEW ELSEIF(IVAR.EQ.25) THEN PARP(I1)=RNEW ELSEIF(IVAR.EQ.26) THEN MSTI(I1)=INEW ELSEIF(IVAR.EQ.27) THEN PARI(I1)=RNEW ELSEIF(IVAR.EQ.28) THEN MINT(I1)=INEW ELSEIF(IVAR.EQ.29) THEN VINT(I1)=RNEW ELSEIF(IVAR.EQ.30) THEN ISET(I1)=INEW ELSEIF(IVAR.EQ.31) THEN KFPR(I1,I2)=INEW ELSEIF(IVAR.EQ.32) THEN COEF(I1,I2)=RNEW ELSEIF(IVAR.EQ.33) THEN ICOL(I1,I2,I3)=INEW ELSEIF(IVAR.EQ.34) THEN XSFX(I1,I2)=RNEW ELSEIF(IVAR.EQ.35) THEN ISIG(I1,I2)=INEW ELSEIF(IVAR.EQ.36) THEN SIGH(I1)=RNEW ELSEIF(IVAR.EQ.37) THEN WIDP(I1,I2)=RNEW ELSEIF(IVAR.EQ.38) THEN WIDE(I1,I2)=RNEW ELSEIF(IVAR.EQ.39) THEN WIDS(I1,I2)=RNEW ELSEIF(IVAR.EQ.40) THEN NGEN(I1,I2)=INEW ELSEIF(IVAR.EQ.41) THEN XSEC(I1,I2)=RNEW ELSEIF(IVAR.EQ.42) THEN PROC(I1)=CHNEW2 ELSEIF(IVAR.EQ.43) THEN SIGT(I1,I2,I3)=RNEW ENDIF C...Write old and new value. Loop back. CHBIT(LNAM:14)=' ' CHBIT(15:60)=' changed from to ' IF(MSVAR(IVAR,1).EQ.1) THEN WRITE(CHBIT(33:42),'(I10)') IOLD WRITE(CHBIT(51:60),'(I10)') INEW IF(MSTU(13).GE.1) WRITE(MSTU(11),5000) CHBIT(1:60) ELSEIF(MSVAR(IVAR,1).EQ.2) THEN WRITE(CHBIT(29:42),'(F14.5)') ROLD WRITE(CHBIT(47:60),'(F14.5)') RNEW IF(MSTU(13).GE.1) WRITE(MSTU(11),5000) CHBIT(1:60) ELSEIF(MSVAR(IVAR,1).EQ.3) THEN CHBIT(35:42)=CHOLD CHBIT(53:60)=CHNEW IF(MSTU(13).GE.1) WRITE(MSTU(11),5000) CHBIT(1:60) ELSE CHBIT(15:88)=' changed from '//CHOLD2//' to '//CHNEW2 IF(MSTU(13).GE.1) WRITE(MSTU(11),5100) CHBIT(1:88) ENDIF LLOW=LHIG IF(LLOW.LT.LTOT) GOTO 120 C...Format statement for output on unit MSTU(11) (by default 6). 5000 FORMAT(5X,A60) 5100 FORMAT(5X,A88) RETURN END C********************************************************************* SUBROUTINE LUEXEC C...Purpose: to administrate the fragmentation and decay chain. COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/,/LUDAT3/ DIMENSION PS(2,6) C...Initialize and reset. MSTU(24)=0 IF(MSTU(12).GE.1) CALL LULIST(0) MSTU(31)=MSTU(31)+1 MSTU(1)=0 MSTU(2)=0 MSTU(3)=0 IF(MSTU(17).LE.0) MSTU(90)=0 MCONS=1 C...Sum up momentum, energy and charge for starting entries. NSAV=N DO 110 I=1,2 DO 100 J=1,6 PS(I,J)=0. 100 CONTINUE 110 CONTINUE DO 130 I=1,N IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 130 DO 120 J=1,4 PS(1,J)=PS(1,J)+P(I,J) 120 CONTINUE PS(1,6)=PS(1,6)+LUCHGE(K(I,2)) 130 CONTINUE PARU(21)=PS(1,4) C...Prepare system for subsequent fragmentation/decay. CALL LUPREP(0) C...Loop through jet fragmentation and particle decays. MBE=0 140 MBE=MBE+1 IP=0 150 IP=IP+1 KC=0 IF(K(IP,1).GT.0.AND.K(IP,1).LE.10) KC=LUCOMP(K(IP,2)) IF(KC.EQ.0) THEN C...Particle decay if unstable and allowed. Save long-lived particle C...decays until second pass after Bose-Einstein effects. ELSEIF(KCHG(KC,2).EQ.0) THEN IF(MSTJ(21).GE.1.AND.MDCY(KC,1).GE.1.AND.(MSTJ(51).LE.0.OR.MBE & .EQ.2.OR.PMAS(KC,2).GE.PARJ(91).OR.IABS(K(IP,2)).EQ.311)) & CALL LUDECY(IP) C...Decay products may develop a shower. IF(MSTJ(92).GT.0) THEN IP1=MSTJ(92) QMAX=SQRT(MAX(0.,(P(IP1,4)+P(IP1+1,4))**2-(P(IP1,1)+P(IP1+1, & 1))**2-(P(IP1,2)+P(IP1+1,2))**2-(P(IP1,3)+P(IP1+1,3))**2)) CALL LUSHOW(IP1,IP1+1,QMAX) CALL LUPREP(IP1) MSTJ(92)=0 ELSEIF(MSTJ(92).LT.0) THEN IP1=-MSTJ(92) CALL LUSHOW(IP1,-3,P(IP,5)) CALL LUPREP(IP1) MSTJ(92)=0 ENDIF C...Jet fragmentation: string or independent fragmentation. ELSEIF(K(IP,1).EQ.1.OR.K(IP,1).EQ.2) THEN MFRAG=MSTJ(1) IF(MFRAG.GE.1.AND.K(IP,1).EQ.1) MFRAG=2 IF(MSTJ(21).GE.2.AND.K(IP,1).EQ.2.AND.N.GT.IP) THEN IF(K(IP+1,1).EQ.1.AND.K(IP+1,3).EQ.K(IP,3).AND. & K(IP,3).GT.0.AND.K(IP,3).LT.IP) THEN IF(KCHG(LUCOMP(K(K(IP,3),2)),2).EQ.0) MFRAG=MIN(1,MFRAG) ENDIF ENDIF IF(MFRAG.EQ.1) CALL LUSTRF(IP) IF(MFRAG.EQ.2) CALL LUINDF(IP) IF(MFRAG.EQ.2.AND.K(IP,1).EQ.1) MCONS=0 IF(MFRAG.EQ.2.AND.(MSTJ(3).LE.0.OR.MOD(MSTJ(3),5).EQ.0)) MCONS=0 ENDIF C...Loop back if enough space left in LUJETS and no error abort. IF(MSTU(24).NE.0.AND.MSTU(21).GE.2) THEN ELSEIF(IP.LT.N.AND.N.LT.MSTU(4)-20-MSTU(32)) THEN GOTO 150 ELSEIF(IP.LT.N) THEN CALL LUERRM(11,'(LUEXEC:) no more memory left in LUJETS') ENDIF C...Include simple Bose-Einstein effect parametrization if desired. IF(MBE.EQ.1.AND.MSTJ(51).GE.1) THEN CALL LUBOEI(NSAV) GOTO 140 ENDIF C...Check that momentum, energy and charge were conserved. DO 170 I=1,N IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 170 DO 160 J=1,4 PS(2,J)=PS(2,J)+P(I,J) 160 CONTINUE PS(2,6)=PS(2,6)+LUCHGE(K(I,2)) 170 CONTINUE PDEV=(ABS(PS(2,1)-PS(1,1))+ABS(PS(2,2)-PS(1,2))+ABS(PS(2,3)- &PS(1,3))+ABS(PS(2,4)-PS(1,4)))/(1.+ABS(PS(2,4))+ABS(PS(1,4))) IF(MCONS.EQ.1.AND.PDEV.GT.PARU(11)) CALL LUERRM(15, &'(LUEXEC:) four-momentum was not conserved') IF(MCONS.EQ.1.AND.ABS(PS(2,6)-PS(1,6)).GT.0.1) CALL LUERRM(15, &'(LUEXEC:) charge was not conserved') RETURN END C********************************************************************* SUBROUTINE LUPREP(IP) C...Purpose: to rearrange partons along strings, to allow small systems C...to collapse into one or two particles and to check flavours. IMPLICIT DOUBLE PRECISION(D) COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/,/LUDAT3/ DIMENSION DPS(5),DPC(5),UE(3) C...Rearrange parton shower product listing along strings: begin loop. I1=N DO 130 MQGST=1,2 DO 120 I=MAX(1,IP),N IF(K(I,1).NE.3) GOTO 120 KC=LUCOMP(K(I,2)) IF(KC.EQ.0) GOTO 120 KQ=KCHG(KC,2) IF(KQ.EQ.0.OR.(MQGST.EQ.1.AND.KQ.EQ.2)) GOTO 120 C...Pick up loose string end. KCS=4 IF(KQ*ISIGN(1,K(I,2)).LT.0) KCS=5 IA=I NSTP=0 100 NSTP=NSTP+1 IF(NSTP.GT.4*N) THEN CALL LUERRM(14,'(LUPREP:) caught in infinite loop') RETURN ENDIF C...Copy undecayed parton. IF(K(IA,1).EQ.3) THEN IF(I1.GE.MSTU(4)-MSTU(32)-5) THEN CALL LUERRM(11,'(LUPREP:) no more memory left in LUJETS') RETURN ENDIF I1=I1+1 K(I1,1)=2 IF(NSTP.GE.2.AND.IABS(K(IA,2)).NE.21) K(I1,1)=1 K(I1,2)=K(IA,2) K(I1,3)=IA K(I1,4)=0 K(I1,5)=0 DO 110 J=1,5 P(I1,J)=P(IA,J) V( nd invariant masses in parton systems. 320 NP=0 I KFN=0 KQS=0 DO 330 J=1,5 L DPS(J)=0. 330 CONTINUE P DO 360 I=MAX(1,IP),N ./ IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 360 F KC=LUCOMP(K(I,2)) IF(KC.EQ.0) GOTO 360 F$ KQ=KCHG(KC,2)*ISIGN(1,K(I,2)) IF(KQ.EQ.0) GOTO 360 ) NP=NP+1 IF(KQ.NE.2) THEN KFN=KFN+1 KQS=KQS+KQ E MSTJ(93)=1 . DPS(5)=DPS(5)+ULMASS(K(I,2)) ENDIF DO 340 J=1,4 DPS(J)=DPS(J)+P(I,J) L 340 CONTINUE IF(K(I,1).EQ.1) THEN IF(NP.NE.1.AND.(KFN.EQ.1.OR.KFN.GE.3.OR.KQS.NE.0)) CALL = & LUERRM(2,'(LUPREP:) unphysical flavour combination') C IF(NP.NE.1.AND.DPS(4)**2-DPS(1)**2-DPS(2)**2-DPS(3)**2.LT. I1 & (0.9*PARJ(32)+DPS(5))**2) CALL LUERRM(3, E2 & '(LUPREP:) too small mass in jet system') NP=0 . KFN=0 KQS=0 DO 350 J=1,5 I DPS(J)=0. 350 CONTINUE ENDIF 360 CONTINUE RETURN END G C********************************************************************* A Q SUBROUTINE LUSTRF(IP) H C...Purpose: to handle the fragmentation of an arbitrary colour singlet A C...jet system according to the Lund string fragmentation model. (# IMPLICIT DOUBLE PRECISION(D) c4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) M& SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ E DIMENSION DPS(5),KFL(3),PMQ(3),PX(3),PY(3),GAM(3),IE(2),PR(2), 9C &IN(9),DHM(4),DHG(4),DP(5,5),IRANK(2),MJU(4),IJU(3),PJU(5,5), A &TJU(5),KFJH(2),NJS(2),KFJS(2),PJS(4,5),MSTU9T(8),PARU9T(8) E+ C...Function: four-product of two vectors. 5H FOUR(I,J)=P(I,4)*P(J,4)-P(I,1)*P(J,1)-P(I,2)*P(J,2)-P(I,3)*P(J,3) B DFOUR(I,J)=DP(I,4)*DP(J,4)-DP(I,1)*DP(J,1)-DP(I,2)*DP(J,2)- &DP(I,3)*DP(J,3) t, C...Reset counters. Identify parton system. MSTJ(91)=0 T NSAV=N MSTU90=MSTU(90) NP=0 KQSUM=0 DO 100 J=1,5 s DPS(J)=0D0 100 CONTINUE MJU(1)=0 MJU(2)=0 6 I=IP-1 M 110 I=I+1 , IF(I.GT.MIN(N,MSTU(4)-MSTU(32))) THEN CALL LUERRM(12,'(LUSTRF:) failed to reconstruct jet system') ! IF(MSTU(21).GE.1) RETURN ENDIF IF(K(I,1).NE.1.AND.K(I,1).NE.2.AND.K(I,1).NE.41) GOTO 110 KC=LUCOMP(K(I,2)) IF(KC.EQ.0) GOTO 110 2$ KQ=KCHG(KC,2)*ISIGN(1,K(I,2)) IF(KQ.EQ.0) GOTO 110 ,/ IF(N+5*NP+11.GT.MSTU(4)-MSTU(32)-5) THEN LB CALL LUERRM(11,'(LUSTRF:) no more memory left in LUJETS') ! IF(MSTU(21).GE.1) RETURN ENDIF > C...Take copy of partons to be considered. Check flavour sum. NP=NP+1 DO 120 J=1,5 ) K(N+NP,J)=K(I,J) 1 P(N+NP,J)=P(I,J) & IF(J.NE.4) DPS(J)=DPS(J)+P(I,J) 120 CONTINUE : DPS(4)=DPS(4)+SQRT(DBLE(P(I,1))**2+DBLE(P(I,2))**2+ ' &DBLE(P(I,3))**2+DBLE(P(I,5))**2) K(N+NP,3)=I ! IF(KQ.NE.2) KQSUM=KQSUM+KQ IF(K(I,1).EQ.41) THEN KQSUM=KQSUM+2*KQ $ IF(KQSUM.EQ.KQ) MJU(1)=N+NP $ IF(KQSUM.NE.KQ) MJU(2)=N+NP ENDIF / IF(K(I,1).EQ.2.OR.K(I,1).EQ.41) GOTO 110 c IF(KQSUM.NE.0) THEN C CALL LUERRM(12,'(LUSTRF:) unphysical flavour combination') p! IF(MSTU(21).GE.1) RETURN t ENDIF F C...Boost copied system to CM frame (for better numerical precision). , IF(ABS(DPS(3)).LT.0.99D0*DPS(4)) THEN MBST=0 P MSTU(33)=1 B CALL LUDBRB(N+1,N+NP,0.,0.,-DPS(1)/DPS(4),-DPS(2)/DPS(4), & -DPS(3)/DPS(4)) ELSE c MBST=1 dC HHBZ=SQRT(MAX(1D-6,DPS(4)+DPS(3))/MAX(1D-6,DPS(4)-DPS(3))) t DO 130 I=N+1,N+NP , HHPMT=P(I,1)**2+P(I,2)**2+P(I,5)**2 IF(P(I,3).GT.0.) THEN HHPEZ=(P(I,4)+P(I,3))/HHBZ &) P(I,3)=0.5*(HHPEZ-HHPMT/HHPEZ) () P(I,4)=0.5*(HHPEZ+HHPMT/HHPEZ) ELSE r HHPEZ=(P(I,4)-P(I,3))*HHBZ * P(I,3)=-0.5*(HHPEZ-HHPMT/HHPEZ) ) P(I,4)=0.5*(HHPEZ+HHPMT/HHPEZ) ) ENDIF 130 CONTINUE ENDIF 2; C...Search for very nearby partons that may be recombined. NTRYR=0 PARU12=PARU(12) PARU13=PARU(13) MJU(3)=MJU(1) MJU(4)=MJU(2) NR=NP 140 IF(NR.GE.3) THEN PDRMIN=2.*PARU12 P DO 150 I=N+1,N+NR 8 IF(I.EQ.N+NR.AND.IABS(K(N+1,2)).NE.21) GOTO 150 I1=I+1 e IF(I.EQ.N+NR) I1=N+1 f3 IF(K(I,1).EQ.41.OR.K(I1,1).EQ.41) GOTO 150 EA IF(MJU(1).NE.0.AND.I1.LT.MJU(1).AND.IABS(K(I1,2)).NE.21) 1 & GOTO 150 H IF(MJU(2).NE.0.AND.I.GT.MJU(2).AND.IABS(K(I,2)).NE.21) GOTO 150 > PAP=SQRT((P(I,1)**2+P(I,2)**2+P(I,3)**2)*(P(I1,1)**2+ & P(I1,2)**2+P(I1,3)**2)) 9 PVP=P(I,1)*P(I1,1)+P(I,2)*P(I1,2)+P(I,3)*P(I1,3) ,A PDR=4.*(PAP-PVP)**2/MAX(1E-6,PARU13**2*PAP+2.*(PAP-PVP)) C IF(PDR.LT.PDRMIN) THEN IR=I F PDRMIN=PDR G ENDIF 150 CONTINUE G C...Recombine very nearby partons to avoid machine precision problems. 1 IF(PDRMIN.LT.PARU12.AND.IR.EQ.N+NR) THEN DO 160 J=1,4 .& P(N+1,J)=P(N+1,J)+P(N+NR,J) 160 CONTINUE LD P(N+1,5)=SQRT(MAX(0.,P(N+1,4)**2-P(N+1,1)**2-P(N+1,2)**2- & P(N+1,3)**2)) NR=NR-1 GOTO 140 m& ELSEIF(PDRMIN.LT.PARU12) THEN DO 170 J=1,4 e$ P(IR,J)=P(IR,J)+P(IR+1,J) 170 CONTINUE F P(IR,5)=SQRT(MAX(0.,P(IR,4)**2-P(IR,1)**2-P(IR,2)**2- & P(IR,3)**2)) N DO 190 I=IR+1,N+NR-1 , K(I,2)=K(I+1,2) DO 180 J=1,5 1 P(I,J)=P(I+1,J) 180 CONTINUE 1 190 CONTINUE 1- IF(IR.EQ.N+NR-1) K(IR,2)=K(N+NR,2) T NR=NR-1 + IF(MJU(1).GT.IR) MJU(1)=MJU(1)-1 + IF(MJU(2).GT.IR) MJU(2)=MJU(2)-1 P GOTO 140 P ENDIF ENDIF NTRYR=NTRYR+1 +D C...Reset particle counter. Skip ahead if no junctions are present; C...this is usually the case! NRS=MAX(5*NR+11,NP) NTRY=0 E 200 NTRY=NTRY+1 * IF(NTRY.GT.100.AND.NTRYR.LE.4) THEN PARU12=4.*PARU12 s PARU13=2.*PARU13 GOTO 140 * ELSEIF(NTRY.GT.100) THEN *< CALL LUERRM(14,'(LUSTRF:) caught in infinite loop') ! IF(MSTU(21).GE.1) RETURN a ENDIF I=N+NRS MSTU(90)=MSTU90 / IF(MJU(1).EQ.0.AND.MJU(2).EQ.0) GOTO 580 e DO 570 JT=1,2 NJS(JT)=0 IF(MJU(JT).EQ.0) GOTO 570 JS=3-2*JT ,I C...Find and sum up momentum on three sides of junction. Check flavours. DO 220 IU=1,3 IJU(IU)=0 DO 210 J=1,5 ) PJU(IU,J)=0. T 210 CONTINUE E 220 CONTINUE 0 IU=0 )8 DO 240 I1=N+1+(JT-1)*(NR-1),N+NR+(JT-1)*(1-NR),JS ) IF(K(I1,2).NE.21.AND.IU.LE.2) THEN e IU=IU+1 IJU(IU)=I1 l ENDIF DO 230 J=1,4 1 PJU(IU,J)=PJU(IU,J)+P(I1,J) 230 CONTINUE I 240 CONTINUE K DO 250 IU=1,3 = PJU(IU,5)=SQRT(PJU(IU,1)**2+PJU(IU,2)**2+PJU(IU,3)**2) 250 CONTINUE < IF(K(IJU(3),2)/100.NE.10*K(IJU(1),2)+K(IJU(2),2).AND. : &K(IJU(3),2)/100.NE.10*K(IJU(2),2)+K(IJU(1),2)) THEN C CALL LUERRM(12,'(LUSTRF:) unphysical flavour combination') T! IF(MSTU(21).GE.1) RETURN ENDIF R= C...Calculate (approximate) boost to rest frame of junction. C T12=(PJU(1,1)*PJU(2,1)+PJU(1,2)*PJU(2,2)+PJU(1,3)*PJU(2,3))/ T &(PJU(1,5)*PJU(2,5)) C T13=(PJU(1,1)*PJU(3,1)+PJU(1,2)*PJU(3,2)+PJU(1,3)*PJU(3,3))/ o &(PJU(1,5)*PJU(3,5)) C T23=(PJU(2,1)*PJU(3,1)+PJU(2,2)*PJU(3,2)+PJU(2,3)*PJU(3,3))/ &(PJU(2,5)*PJU(3,5)) 3 T11=SQRT((2./3.)*(1.-T12)*(1.-T13)/(1.-T23)) 3 T22=SQRT((2./3.)*(1.-T12)*(1.-T23)/(1.-T13)) 1- TSQ=SQRT((2.*T11*T22+T12-1.)*(1.+T12)) =) T1F=(TSQ-T22*(1.+T12))/(1.-T12**2) ) T2F=(TSQ-T11*(1.+T12))/(1.-T12**2) DO 260 J=1,3 TJU(J)=-(T1F*PJU(1,J)/PJU(1,5)+T2F*PJU(2,J)/PJU(2,5)) 260 CONTINUE B4 TJU(4)=SQRT(1.+TJU(1)**2+TJU(2)**2+TJU(3)**2) DO 270 IU=1,3 D PJU(IU,5)=TJU(4)*PJU(IU,4)-TJU(1)*PJU(IU,1)-TJU(2)*PJU(IU,2)- &TJU(3)*PJU(IU,3) 2 270 CONTINUE 0 ? C...Put junction at rest if motion could give inconsistencies. S6 IF(PJU(1,5)+PJU(2,5).GT.PJU(1,4)+PJU(2,4)) THEN DO 280 J=1,3 ( TJU(J)=0. 280 CONTINUE S TJU(4)=1. PJU(1,5)=PJU(1,4) PJU(2,5)=PJU(2,4) PJU(3,5)=PJU(3,4) ENDIF oD C...Start preparing for fragmentation of two strings from junction. ISTA=I T DO 550 IU=1,2 NS=IJU(IU+1)-IJU(IU) & U; C...Junction strings: find longitudinal string directions. DO 310 IS=1,NS ) IS1=IJU(IU)+IS-1 S IS2=IJU(IU)+IS ( DO 290 J=1,5 DP(1,J)=0.5*P(IS1,J) E# IF(IS.EQ.1) DP(1,J)=P(IS1,J) I DP(2,J)=0.5*P(IS2,J) K& IF(IS.EQ.NS) DP(2,J)=-PJU(IU,J) 290 CONTINUE IH IF(IS.EQ.NS) DP(2,4)=SQRT(PJU(IU,1)**2+PJU(IU,2)**2+PJU(IU,3)**2) IF(IS.EQ.NS) DP(2,5)=0. DP(3,5)=DFOUR(1,1) 1 DP(4,5)=DFOUR(2,2) c DHKC=DFOUR(1,2) - IF(DP(3,5)+2.*DHKC+DP(4,5).LE.0.) THEN Q7 DP(1,4)=SQRT(DP(1,1)**2+DP(1,2)**2+DP(1,3)**2) =7 DP(2,4)=SQRT(DP(2,1)**2+DP(2,2)**2+DP(2,3)**2) DP(3,5)=0D0 DP(4,5)=0D0 DHKC=DFOUR(1,2) ENDIF ) DHKS=SQRT(DHKC**2-DP(3,5)*DP(4,5)) ( DHK1=0.5*((DP(4,5)+DHKC)/DHKS-1.) ( DHK2=0.5*((DP(3,5)+DHKC)/DHKS-1.) IN1=N+NR+4*IS-3 - P(IN1,5)=SQRT(DP(3,5)+2.*DHKC+DP(4,5)) DO 300 J=1,4 4. P(IN1,J)=(1.+DHK1)*DP(1,J)-DHK2*DP(2,J) 0 P(IN1+1,J)=(1.+DHK2)*DP(2,J)-DHK1*DP(1,J) 300 CONTINUE 310 CONTINUE J 4E C...Junction strings: initialize flavour, momentum and starting pos. ) ISAV=I P MSTU91=MSTU(90) 320 NTRY=NTRY+1 * IF(NTRY.GT.100.AND.NTRYR.LE.4) THEN PARU12=4.*PARU12 F PARU13=2.*PARU13 GOTO 140 ELSEIF(NTRY.GT.100) THEN CALL LUERRM(14,'(LUSTRF:) caught in infinite loop') ! IF(MSTU(21).GE.1) RETURN 0 ENDIF I=ISAV N MSTU(90)=MSTU91 IRANKJ=0 # IE(1)=K(N+1+(JT/2)*(NP-1),3) IN(4)=N+NR+1 s IN(5)=IN(4)+1 IN(6)=N+NR+4*NS+1 DO 340 JQ=1,2 , DO 330 IN1=N+NR+2+JQ,N+NR+4*NS-2+JQ,4 P(IN1,1)=2-JQ P(IN1,2)=JQ-1 P(IN1,3)=1. 330 CONTINUE 340 CONTINUE KFL(1)=K(IJU(IU),2) PX(1)=0. PY(1)=0. C GAM(1)=0. DO 350 J=1,5 + PJU(IU+3,J)=0. m 350 CONTINUE o l: C...Junction strings: find initial transverse directions. DO 360 J=1,4 1 DP(1,J)=P(IN(4),J) DP(2,J)=P(IN(4)+1,J) DP(3,J)=0. N DP(4,J)=0. 360 CONTINUE I5 DP(1,4)=SQRT(DP(1,1)**2+DP(1,2)**2+DP(1,3)**2) ,5 DP(2,4)=SQRT(DP(2,1)**2+DP(2,2)**2+DP(2,3)**2) (. DP(5,1)=DP(1,1)/DP(1,4)-DP(2,1)/DP(2,4) . DP(5,2)=DP(1,2)/DP(1,4)-DP(2,2)/DP(2,4) . DP(5,3)=DP(1,3)/DP(1,4)-DP(2,3)/DP(2,4) 9 IF(DP(5,1)**2.LE.DP(5,2)**2+DP(5,3)**2) DP(3,1)=1. 9 IF(DP(5,1)**2.GT.DP(5,2)**2+DP(5,3)**2) DP(3,3)=1. 29 IF(DP(5,2)**2.LE.DP(5,1)**2+DP(5,3)**2) DP(4,2)=1. ,9 IF(DP(5,2)**2.GT.DP(5,1)**2+DP(5,3)**2) DP(4,3)=1. DHC12=DFOUR(1,2) DHCX1=DFOUR(3,1)/DHC12 DHCX2=DFOUR(3,2)/DHC12 ,0 DHCXX=1D0/SQRT(1D0+2D0*DHCX1*DHCX2*DHC12) DHCY1=DFOUR(4,1)/DHC12 ) DHCY2=DFOUR(4,2)/DHC12 K2 DHCYX=DHCXX*(DHCX1*DHCY2+DHCX2*DHCY1)*DHC12 9 DHCYY=1D0/SQRT(1D0+2D0*DHCY1*DHCY2*DHC12-DHCYX**2) G DO 370 J=1,4 : DP(3,J)=DHCXX*(DP(3,J)-DHCX2*DP(1,J)-DHCX1*DP(2,J)) P(IN(6),J)=DP(3,J) +? P(IN(6)+1,J)=DHCYY*(DP(4,J)-DHCY2*DP(1,J)-DHCY1*DP(2,J)- 2 &DHCYX*DP(3,J)) E 370 CONTINUE 4 C...Junction strings: produce new particle, origin. 380 I=I+1 . IF(2*I-NSAV.GE.MSTU(4)-MSTU(32)-5) THEN B CALL LUERRM(11,'(LUSTRF:) no more memory left in LUJETS') ! IF(MSTU(21).GE.1) RETURN 3 ENDIF IRANKJ=IRANKJ+1 K(I,1)=1 K(I,3)=IE(1) 2 K(I,4)=0 K(I,5)=0 - 3A C...Junction strings: generate flavour, hadron, pT, z and Gamma. * 390 CALL LUKFDI(KFL(1),0,KFL(3),K(I,2)) IF(K(I,2).EQ.0) GOTO 320 *C IF(MSTJ(12).GE.3.AND.IRANKJ.EQ.1.AND.IABS(KFL(1)).LE.10.AND. &IABS(KFL(3)).GT.10) THEN (( IF(RLU(0).GT.PARJ(19)) GOTO 390 ENDIF P(I,5)=ULMASS(K(I,2)) & CALL LUPTDI(KFL(1),PX(3),PY(3)) 8 PR(1)=P(I,5)**2+(PX(1)+PX(3))**2+(PY(1)+PY(3))**2 ) CALL LUZDIS(KFL(1),KFL(3),PR(1),Z) )6 IF(IABS(KFL(1)).GE.4.AND.IABS(KFL(1)).LE.8.AND. &MSTU(90).LT.8) THEN MSTU(90)=MSTU(90)+1 MSTU(90+MSTU(90))=I PARU(90+MSTU(90))=Z ENDIF GAM(3)=(1.-Z)*(GAM(1)+PR(1)/Z) DO 400 J=1,3 D IN(J)=IN(3+J) 400 CONTINUE &H C...Junction strings: stepping within or from 'low' string region easy. ; IF(IN(1)+1.EQ.IN(2).AND.Z*P(IN(1)+2,3)*P(IN(2)+2,3)* # &P(IN(1),5)**2.GE.PR(1)) THEN /$ P(IN(1)+2,4)=Z*P(IN(1)+2,3) 8 P(IN(2)+2,4)=PR(1)/(P(IN(1)+2,4)*P(IN(1),5)**2) DO 410 J=1,4 PC P(I,J)=(PX(1)+PX(3))*P(IN(3),J)+(PY(1)+PY(3))*P(IN(3)+1,J) 410 CONTINUE GOTO 500 I$ ELSEIF(IN(1)+1.EQ.IN(2)) THEN P(IN(2)+2,4)=P(IN(2)+2,3) P(IN(2)+2,1)=1. IN(2)=IN(2)+4 ( IF(IN(2).GT.N+NR+4*NS) GOTO 320 + IF(FOUR(IN(1),IN(2)).LE.1E-2) THEN i$ P(IN(1)+2,4)=P(IN(1)+2,3) P(IN(1)+2,1)=0. IN(1)=IN(1)+4 ENDIF ENDIF E6 C...Junction strings: find new transverse directions. 6 420 IF(IN(1).GT.N+NR+4*NS.OR.IN(2).GT.N+NR+4*NS.OR. &IN(1).GT.IN(2)) GOTO 320 0 IF(IN(1).NE.IN(4).OR.IN(2).NE.IN(5)) THEN DO 430 J=1,4 K DP(1,J)=P(IN(1),J) DP(2,J)=P(IN(2),J) DP(3,J)=0. a DP(4,J)=0. 430 CONTINUE s7 DP(1,4)=SQRT(DP(1,1)**2+DP(1,2)**2+DP(1,3)**2) 7 DP(2,4)=SQRT(DP(2,1)**2+DP(2,2)**2+DP(2,3)**2) 2 DHC12=DFOUR(1,2) F IF(DHC12.LE.1E-2) THEN I$ P(IN(1)+2,4)=P(IN(1)+2,3) P(IN(1)+2,1)=0. IN(1)=IN(1)+4 GOTO 420 ) ENDIF IN(3)=N+NR+4*NS+5 0 DP(5,1)=DP(1,1)/DP(1,4)-DP(2,1)/DP(2,4) 0 DP(5,2)=DP(1,2)/DP(1,4)-DP(2,2)/DP(2,4) 0 DP(5,3)=DP(1,3)/DP(1,4)-DP(2,3)/DP(2,4) ; IF(DP(5,1)**2.LE.DP(5,2)**2+DP(5,3)**2) DP(3,1)=1. -; IF(DP(5,1)**2.GT.DP(5,2)**2+DP(5,3)**2) DP(3,3)=1. ,; IF(DP(5,2)**2.LE.DP(5,1)**2+DP(5,3)**2) DP(4,2)=1. ; IF(DP(5,2)**2.GT.DP(5,1)**2+DP(5,3)**2) DP(4,3)=1. DHCX1=DFOUR(3,1)/DHC12 DHCX2=DFOUR(3,2)/DHC12 r2 DHCXX=1D0/SQRT(1D0+2D0*DHCX1*DHCX2*DHC12) DHCY1=DFOUR(4,1)/DHC12 P DHCY2=DFOUR(4,2)/DHC12 )4 DHCYX=DHCXX*(DHCX1*DHCY2+DHCX2*DHCY1)*DHC12 ; DHCYY=1D0/SQRT(1D0+2D0*DHCY1*DHCY2*DHC12-DHCYX**2) ) DO 440 J=1,4 < DP(3,J)=DHCXX*(DP(3,J)-DHCX2*DP(1,J)-DHCX1*DP(2,J)) P(IN(3),J)=DP(3,J) (A P(IN(3)+1,J)=DHCYY*(DP(4,J)-DHCY2*DP(1,J)-DHCY1*DP(2,J)- D & DHCYX*DP(3,J)) V 440 CONTINUE6 C...Express pT with respect to new axes, if sensible. A PXP=-(PX(3)*FOUR(IN(6),IN(3))+PY(3)*FOUR(IN(6)+1,IN(3))) LE PYP=-(PX(3)*FOUR(IN(6),IN(3)+1)+PY(3)*FOUR(IN(6)+1,IN(3)+1)) N> IF(ABS(PXP**2+PYP**2-PX(3)**2-PY(3)**2).LT.0.01) THEN PX(3)=PXP PY(3)=PYP ENDIF ENDIF IG C...Junction strings: sum up known four-momentum, coefficients for m2. ) DO 470 J=1,4 DHG(J)=0. C P(I,J)=PX(1)*P(IN(6),J)+PY(1)*P(IN(6)+1,J)+PX(3)*P(IN(3),J)+ L &PY(3)*P(IN(3)+1,J) +! DO 450 IN1=IN(4),IN(1)-4,4 N( P(I,J)=P(I,J)+P(IN1+2,3)*P(IN1,J) 450 CONTINUE -! DO 460 IN2=IN(5),IN(2)-4,4 c( P(I,J)=P(I,J)+P(IN2+2,3)*P(IN2,J) 460 CONTINUE 470 CONTINUE = DHM(1)=FOUR(I,I) DHM(2)=2.*FOUR(I,IN(1)) DHM(3)=2.*FOUR(I,IN(2)) DHM(4)=2.*FOUR(IN(1),IN(2)) .> C...Junction strings: find coefficients for Gamma expression. ! DO 490 IN2=IN(1)+1,IN(2),4 2 DO 480 IN1=IN(1),IN2-1,4 Q DHC=2.*FOUR(IN1,IN2) . DHG(1)=DHG(1)+P(IN1+2,1)*P(IN2+2,1)*DHC 4 IF(IN1.EQ.IN(1)) DHG(2)=DHG(2)-P(IN2+2,1)*DHC 4 IF(IN2.EQ.IN(2)) DHG(3)=DHG(3)+P(IN1+2,1)*DHC : IF(IN1.EQ.IN(1).AND.IN2.EQ.IN(2)) DHG(4)=DHG(4)-DHC 480 CONTINUE Q 490 CONTINUE FF C...Junction strings: solve (m2, Gamma) equation system for energies. ' DHS1=DHM(3)*DHG(4)-DHM(4)*DHG(3) n IF(ABS(DHS1).LT.1E-4) GOTO 320 D8 DHS2=DHM(4)*(GAM(3)-DHG(1))-DHM(2)*DHG(3)-DHG(4)* ' &(P(I,5)**2-DHM(1))+DHG(2)*DHM(3) U< DHS3=DHM(2)*(GAM(3)-DHG(1))-DHG(2)*(P(I,5)**2-DHM(1)) G P(IN(2)+2,4)=0.5*(SQRT(MAX(0D0,DHS2**2-4.*DHS1*DHS3))/ABS(DHS1)- 5 &DHS2/DHS1) 4 IF(DHM(2)+DHM(4)*P(IN(2)+2,4).LE.0.) GOTO 320 ; P(IN(1)+2,4)=(P(I,5)**2-DHM(1)-DHM(3)*P(IN(2)+2,4))/ *# &(DHM(2)+DHM(4)*P(IN(2)+2,4)) U E7 C...Junction strings: step to new region if necessary. , IF(P(IN(2)+2,4).GT.P(IN(2)+2,3)) THEN P(IN(2)+2,4)=P(IN(2)+2,3) P(IN(2)+2,1)=1. IN(2)=IN(2)+4 ( IF(IN(2).GT.N+NR+4*NS) GOTO 320 + IF(FOUR(IN(1),IN(2)).LE.1E-2) THEN ,$ P(IN(1)+2,4)=P(IN(1)+2,3) P(IN(1)+2,1)=0. IN(1)=IN(1)+4 ENDIF GOTO 420 /0 ELSEIF(P(IN(1)+2,4).GT.P(IN(1)+2,3)) THEN P(IN(1)+2,4)=P(IN(1)+2,3) P(IN(1)+2,1)=0. IN(1)=IN(1)+JS ( GOTO 820 ENDIF ND C...Junction strings: particle four-momentum, remainder, loop back. 500 DO 510 J=1,4 .D P(I,J)=P(I,J)+P(IN(1)+2,4)*P(IN(1),J)+P(IN(2)+2,4)*P(IN(2),J) PJU(IU+3,J)=PJU(IU+3,J)+P(I,J) ) 510 CONTINUE D$ IF(P(I,4).LT.P(I,5)) GOTO 320 9 PJU(IU+3,5)=TJU(4)*PJU(IU+3,4)-TJU(1)*PJU(IU+3,1)- , &TJU(2)*PJU(IU+3,2)-TJU(3)*PJU(IU+3,3) ( IF(PJU(IU+3,5).LT.PJU(IU,5)) THEN KFL(1)=-KFL(3) P PX(1)=-PX(3) N PY(1)=-PY(3) GAM(1)=GAM(3) IF(IN(3).NE.IN(6)) THEN DO 520 J=1,4 ) P(IN(6),J)=P(IN(3),J) $ P(IN(6)+1,J)=P(IN(3)+1,J) 520 CONTINUE M ENDIF DO 530 JQ=1,2 IN(3+JQ)=IN(JQ) 2 P(IN(JQ)+2,3)=P(IN(JQ)+2,3)-P(IN(JQ)+2,4) ; P(IN(JQ)+2,1)=P(IN(JQ)+2,1)-(3-2*JQ)*P(IN(JQ)+2,4) * 530 CONTINUE GOTO 380 ENDIF N> C...Junction strings: save quantities left after each string. & IF(IABS(KFL(1)).GT.10) GOTO 320 I=I-1 KFJH(IU)=KFL(1) DO 540 J=1,4 .' PJU(IU+3,J)=PJU(IU+3,J)-P(I+1,J) C 540 CONTINUE 550 CONTINUE E C...Junction strings: put together to new effective string endpoint. NJS(JT)=I-ISTA P# KFJS(JT)=K(K(MJU(JT+2),3),2) 6 KFLS=2*INT(RLU(0)+3.*PARJ(4)/(1.+3.*PARJ(4)))+1 $ IF(KFJH(1).EQ.KFJH(2)) KFLS=3 ; IF(ISTA.NE.I) KFJS(JT)=ISIGN(1000*MAX(IABS(KFJH(1)), ; &IABS(KFJH(2)))+100*MIN(IABS(KFJH(1)),IABS(KFJH(2)))+ &KFLS,KFJH(1)) DO 560 J=1,4 S/ PJS(JT,J)=PJU(1,J)+PJU(2,J)+P(MJU(JT),J) I$ PJS(JT+2,J)=PJU(4,J)+PJU(5,J) 560 CONTINUE .D PJS(JT,5)=SQRT(MAX(0.,PJS(JT,4)**2-PJS(JT,1)**2-PJS(JT,2)**2- &PJS(JT,3)**2)) T 570 CONTINUE B C...Open versus closed strings. Choose breakup region for latter. + 580 IF(MJU(1).NE.0.AND.MJU(2).NE.0) THEN . NS=MJU(2)-MJU(1) NB=MJU(1)-N ELSEIF(MJU(1).NE.0) THEN + NS=N+NR-MJU(1) 4 NB=MJU(1)-N ELSEIF(MJU(2).NE.0) THEN NS=MJU(2)-N NB=1 R( ELSEIF(IABS(K(N+1,2)).NE.21) THEN NS=NR-1 NB=1 N ELSE NS=NR+1 W2SUM=0. DO 590 IS=1,NR T6 P(N+NR+IS,1)=0.5*FOUR(N+IS,N+IS+1-NR*(IS/NR)) ! W2SUM=W2SUM+P(N+NR+IS,1) 590 CONTINUE W2RAN=RLU(0)*W2SUM NB=0 600 NB=NB+1 ! W2SUM=W2SUM-P(N+NR+NB,1) *1 IF(W2SUM.GT.W2RAN.AND.NB.LT.NR) GOTO 600 H ENDIF G C...Find longitudinal string directions (i.e. lightlike four-vectors). r DO 630 IS=1,NS r& IS1=N+IS+NB-1-NR*((IS+NB-2)/NR) $ IS2=N+IS+NB-NR*((IS+NB-1)/NR) DO 610 J=1,5 DP(1,J)=P(IS1,J) 3 IF(IABS(K(IS1,2)).EQ.21) DP(1,J)=0.5*DP(1,J) *2 IF(IS1.EQ.MJU(1)) DP(1,J)=PJS(1,J)-PJS(3,J) DP(2,J)=P(IS2,J) .3 IF(IABS(K(IS2,2)).EQ.21) DP(2,J)=0.5*DP(2,J) +2 IF(IS2.EQ.MJU(2)) DP(2,J)=PJS(2,J)-PJS(4,J) 610 CONTINUE DP(3,5)=DFOUR(1,1) . DP(4,5)=DFOUR(2,2) . DHKC=DFOUR(1,2) - IF(DP(3,5)+2.*DHKC+DP(4,5).LE.0.) THEN D DP(3,5)=DP(1,5)**2 DP(4,5)=DP(2,5)**2 +B DP(1,4)=SQRT(DP(1,1)**2+DP(1,2)**2+DP(1,3)**2+DP(1,5)**2) B DP(2,4)=SQRT(DP(2,1)**2+DP(2,2)**2+DP(2,3)**2+DP(2,5)**2) DHKC=DFOUR(1,2) ENDIF ) DHKS=SQRT(DHKC**2-DP(3,5)*DP(4,5)) M( DHK1=0.5*((DP(4,5)+DHKC)/DHKS-1.) ( DHK2=0.5*((DP(3,5)+DHKC)/DHKS-1.) IN1=N+NR+4*IS-3 - P(IN1,5)=SQRT(DP(3,5)+2.*DHKC+DP(4,5)) p DO 620 J=1,4 F. P(IN1,J)=(1.+DHK1)*DP(1,J)-DHK2*DP(2,J) 0 P(IN1+1,J)=(1.+DHK2)*DP(2,J)-DHK1*DP(1,J) 620 CONTINUE 630 CONTINUE C...Begin initialization: sum up energy, set starting position. ISAV=I * MSTU91=MSTU(90) 640 NTRY=NTRY+1 * IF(NTRY.GT.100.AND.NTRYR.LE.4) THEN PARU12=4.*PARU12 PARU13=2.*PARU13 R GOTO 140 ELSEIF(NTRY.GT.100) THEN M< CALL LUERRM(14,'(LUSTRF:) caught in infinite loop') ! IF(MSTU(21).GE.1) RETURN 1 ENDIF I=ISAV MSTU(90)=MSTU91 DO 660 J=1,4 P P(N+NRS,J)=0. DO 650 IS=1,NR T& P(N+NRS,J)=P(N+NRS,J)+P(N+IS,J) 650 CONTINUE 660 CONTINUE DO 680 JT=1,2 IRANK(JT)=0 ) IF(MJU(JT).NE.0) IRANK(JT)=NJS(JT) ) IF(NS.GT.NR) IRANK(JT)=1 $ IE(JT)=K(N+1+(JT/2)*(NP-1),3) ( IN(3*JT+1)=N+NR+1+4*(JT/2)*(NS-1) IN(3*JT+2)=IN(3*JT+1)+1 IN(3*JT+3)=N+NR+4*NS+2*JT-1 , DO 670 IN1=N+NR+2+JT,N+NR+4*NS-2+JT,4 P(IN1,1)=2-JT P(IN1,2)=JT-1 P(IN1,3)=1. 670 CONTINUE 4 680 CONTINUE A9 C...Initialize flavour and pT variables for open string. 1 IF(NS.LT.NR) THEN PX(1)=0. PY(1)=0. lF IF(NS.EQ.1.AND.MJU(1)+MJU(2).EQ.0) CALL LUPTDI(0,PX(1),PY(1)) PX(2)=-PX(1) PY(2)=-PY(1) A DO 690 JT=1,2 KFL(JT)=K(IE(JT),2) * IF(MJU(JT).NE.0) KFL(JT)=KFJS(JT) MSTJ(93)=1 PMQ(JT)=ULMASS(KFL(JT)) GAM(JT)=0. t 690 CONTINUE . B C...Closed string: random initial breakup flavour, pT and vertex. ELSE TA KFL(3)=INT(1.+(2.+PARJ(2))*RLU(0))*(-1)**INT(RLU(0)+0.5) =+ CALL LUKFDI(KFL(3),0,KFL(1),KDUMP) KFL(2)=-KFL(1) .6 IF(IABS(KFL(1)).GT.10.AND.RLU(0).GT.0.5) THEN / KFL(2)=-(KFL(1)+ISIGN(10000,KFL(1))) =( ELSEIF(IABS(KFL(1)).GT.10) THEN / KFL(1)=-(KFL(2)+ISIGN(10000,KFL(2))) 5 ENDIF ( CALL LUPTDI(KFL(1),PX(1),PY(1)) PX(2)=-PX(1) U PY(2)=-PY(1) 1( PR3=MIN(25.,0.1*P(N+NR+1,5)**2) ) 700 CALL LUZDIS(KFL(1),KFL(2),PR3,Z) ZR=PR3/(Z*P(N+NR+1,5)**2) IF(ZR.GE.1.) GOTO 700 DO 710 JT=1,2 MSTJ(93)=1 I PMQ(JT)=ULMASS(KFL(JT)) GAM(JT)=PR3*(1.-Z)/Z o# IN1=N+NR+3+4*(JT/2)*(NS-1) U P(IN1,JT)=1.-Z J P(IN1,3-JT)=JT-1 *( P(IN1,3)=(2-JT)*(1.-Z)+(JT-1)*Z P(IN1+1,JT)=ZR * P(IN1+1,3-JT)=2-JT *, P(IN1+1,3)=(2-JT)*(1.-ZR)+(JT-1)*ZR 710 CONTINUE 3 ENDIF F C...Find initial transverse directions (i.e. spacelike four-vectors). DO 750 JT=1,2 IF(JT.EQ.1.OR.NS.EQ.NR-1) THEN IN1=IN(3*JT+1) 2 IN3=IN(3*JT+3) DO 720 J=1,4 J DP(1,J)=P(IN1,J) 6 DP(2,J)=P(IN1+1,J) = DP(3,J)=0. , DP(4,J)=0. * 720 CONTINUE 7 DP(1,4)=SQRT(DP(1,1)**2+DP(1,2)**2+DP(1,3)**2) (7 DP(2,4)=SQRT(DP(2,1)**2+DP(2,2)**2+DP(2,3)**2) m0 DP(5,1)=DP(1,1)/DP(1,4)-DP(2,1)/ (2,4) 0 DP(5,2)=DP(1,2)/DP(1,4)-DP(2,2)/DP(2,4) 0 DP(5,3)=DP(1,3)/DP(1,4)-DP(2,3)/DP(2,4) ; IF(DP(5,1)**2.LE.DP(5,2)**2+DP(5,3)**2) DP(3,1)=1. *; IF(DP(5,1)**2.GT.DP(5,2)**2+DP(5,3)**2) DP(3,3)=1. ; IF(DP(5,2)**2.LE.DP(5,1)**2+DP(5,3)**2) DP(4,2)=1. 8; IF(DP(5,2)**2.GT.DP(5,1)**2+DP(5,3)**2) DP(4,3)=1. v DHC12=DFOUR(1,2) e DHCX1=DFOUR(3,1)/DHC12 3 DHCX2=DFOUR(3,2)/DHC12 F2 DHCXX=1D0/SQRT(1D0+2D0*DHCX1*DHCX2*DHC12) DHCY1=DFOUR(4,1)/DHC12 ) DHCY2=DFOUR(4,2)/DHC12 24 DHCYX=DHCXX*(DHCX1*DHCY2+DHCX2*DHCY1)*DHC12 ; DHCYY=1D0/SQRT(1D0+2D0*DHCY1*DHCY2*DHC12-DHCYX**2) * DO 730 J=1,4 H< DP(3,J)=DHCXX*(DP(3,J)-DHCX2*DP(1,J)-DHCX1*DP(2,J)) P(IN3,J)=DP(3,J) (? P(IN3+1,J)=DHCYY*(DP(4,J)-DHCY2*DP(1,J)-DHCY1*DP(2,J)- 2 & DHCYX*DP(3,J)) 730 CONTINUE r ELSE DO 740 J=1,4 . P(IN3+2,J)=P(IN3,J) P(IN3+3,J)=P(IN3+1,J) 740 CONTINUE 3 ENDIF 750 CONTINUE < C...Remove energy used up in junction string fragmentation. IF(MJU(1)+MJU(2).GT.0) THEN DO 770 JT=1,2 IF(NJS(JT).EQ.0) GOTO 770 DO 760 J=1,4 * P(N+NRS,J)=P(N+NRS,J)-PJS(JT+2,J) 760 CONTINUE F 770 CONTINUE I ENDIF ( C...Produce new particle: side, origin. 780 I=I+1 . IF(2*I-NSAV.GE.MSTU(4)-MSTU(32)-5) THEN B CALL LUERRM(11,'(LUSTRF:) no more memory left in LUJETS') ! IF(MSTU(21).GE.1) RETURN 0 ENDIF JT=1.5+RLU(0) ( IF(IABS(KFL(3-JT)).GT.10) JT=3-JT IF(IABS(KFL(3-JT)).GE.4.AND.IABS(KFL(3-JT)).LE.8) JT=3-JT JR=3-JT JS=3-2*JT IRANK(JT)=IRANK(JT)+1 K(I,1)=1 U K(I,3)=IE(JT) K(I,4)=0 3 K(I,5)=0 C...Generate flavour, hadron and pT. + 790 CALL LUKFDI(KFL(JT),0,KFL(3),K(I,2)) IF(K(I,2).EQ.0) GOTO 640 AG IF(MSTJ(12).GE.3.AND.IRANK(JT).EQ.1.AND.IABS(KFL(JT)).LE.10.AND. &IABS(KFL(3)).GT.10) THEN ( IF(RLU(0).GT.PARJ(19)) GOTO 790 ENDIF P(I,5)=ULMASS(K(I,2)) ' CALL LUPTDI(KFL(JT),PX(3),PY(3)) ; PR(JT)=P(I,5)**2+(PX(JT)+PX(3))**2+(PY(JT)+PY(3))**2 N ), C...Final hadrons for small invariant mass. MSTJ(93)=1 PMQ(3)=ULMASS(KFL(3)) PARJST=PARJ(33) ( IF(MSTJ(11).EQ.2) PARJST=PARJ(34) 0 WMIN=PARJST+PMQ(1)+PMQ(2)+PARJ(36)*PMQ(3) ; IF(IABS(KFL(JT)).GT.10.AND.IABS(KFL(3)).GT.10) WMIN= &WMIN-0.5*PARJ(36)*PMQ(3) C WREM2=FOUR(N+NRS,N+NRS) ! IF(WREM2.LT.0.10) GOTO 640 9 IF(WREM2.LT.MAX(WMIN*(1.+(2.*RLU(0)-1.)*PARJ(37)), =+ &PARJ(32)+PMQ(1)+PMQ(2))**2) GOTO 940 = C...Choose z, which gives Gamma. Shift z for heavy flavours. K+ CALL LUZDIS(KFL(JT),KFL(3),PR(JT),Z) I8 IF(IABS(KFL(JT)).GE.4.AND.IABS(KFL(JT)).LE.8.AND. &MSTU(90).LT.8) THEN MSTU(90)=MSTU(90)+1 MSTU(90+MSTU(90))=I PARU(90+MSTU(90))=Z ENDIF KFL1A=IABS(KFL(1)) = KFL2A=IABS(KFL(2)) = IF(MAX(MOD(KFL1A,10),MOD(KFL1A/1000,10),MOD(KFL2A,10), - &MOD(KFL2A/1000,10)).GE.4) THEN G PR(JR)=(PMQ(JR)+PMQ(3))**2+(PX(JR)-PX(3))**2+(PY(JR)-PY(3))**2 oA PW12=SQRT(MAX(0.,(WREM2-PR(1)-PR(2))**2-4.*PR(1)*PR(2))) : Z=(WREM2+PR(JT)-PR(JR)+PW12*(2.*Z-1.))/(2.*WREM2) G PR(JR)=(PMQ(JR)+PARJST)**2+(PX(JR)-PX(3))**2+(PY(JR)-PY(3))**2 L7 IF((1.-Z)*(WREM2-PR(JT)/Z).LT.PR(JR)) GOTO 940 B ENDIF ' GAM(3)=(1.-Z)*(GAM(JT)+PR(JT)/Z) DO 800 J=1,3 1 IN(J)=IN(3*JT+J) 800 CONTINUE U6 C...Stepping within or from 'low' string region easy. ; IF(IN(1)+1.EQ.IN(2).AND.Z*P(IN(1)+2,3)*P(IN(2)+2,3)* I$ &P(IN(1),5)**2.GE.PR(JT)) THEN & P(IN(JT)+2,4)=Z*P(IN(JT)+2,3) ; P(IN(JR)+2,4)=PR(JT)/(P(IN(JT)+2,4)*P(IN(1),5)**2) W DO 810 J=1,4 .E P(I,J)=(PX(JT)+PX(3))*P(IN(3),J)+(PY(JT)+PY(3))*P(IN(3)+1,J) n 810 CONTINUE o GOTO 900 $ ELSEIF(IN(1)+1.EQ.IN(2)) THEN $ P(IN(JR)+2,4)=P(IN(JR)+2,3) P(IN(JR)+2,JT)=1. IN(JR)=IN(JR)+4*JS =. IF(JS*IN(JR).GT.JS*IN(4*JR)) GOTO 640 + IF(FOUR(IN(1),IN(2)).LE.1E-2) THEN 1& P(IN(JT)+2,4)=P(IN(JT)+2,3) P(IN(JT)+2,JT)=0. IN(JT)=IN(JT)+4*JS + ENDIF ENDIF =D C...Find new transverse directions (i.e. spacelike string vectors). D 820 IF(JS*IN(1).GT.JS*IN(3*JR+1).OR.JS*IN(2).GT.JS*IN(3*JR+2).OR. &IN(1).GT.IN(2)) GOTO 640 : IF(IN(1).NE.IN(3*JT+1).OR.IN(2).NE.IN(3*JT+2)) THEN DO 830 J=1,4 + DP(1,J)=P(IN(1),J) * DP(2,J)=P(IN(2),J) ( DP(3,J)=0. ( DP(4,J)=0. 830 CONTINUE 17 DP(1,4)=SQRT(DP(1,1)**2+DP(1,2)**2+DP(1,3)**2) 57 DP(2,4)=SQRT(DP(2,1)**2+DP(2,2)**2+DP(2,3)**2) 2 DHC12=DFOUR(1,2) . IF(DHC12.LE.1E-2) THEN & P(IN(JT)+2,4)=P(IN(JT)+2,3) P(IN(JT)+2,JT)=0. IN(JT)=IN(JT)+4*JS * GOTO 820 + ENDIF IN(3)=N+NR+4*NS+5 0 DP(5,1)=DP(1,1)/DP(1,4)-DP(2,1)/DP(2,4) 0 DP(5,2)=DP(1,2)/DP(1,4)-DP(2,2)/DP(2,4) 0 DP(5,3)=DP(1,3)/DP(1,4)-DP(2,3)/DP(2,4) ; IF(DP(5,1)**2.LE.DP(5,2)**2+DP(5,3)**2) DP(3,1)=1. ; IF(DP(5,1)**2.GT.DP(5,2)**2+DP(5,3)**2) DP(3,3)=1. 1; IF(DP(5,2)**2.LE.DP(5,1)**2+DP(5,3)**2) DP(4,2)=1. 4; IF(DP(5,2)**2.GT.DP(5,1)**2+DP(5,3)**2) DP(4,3)=1. E DHCX1=DFOUR(3,1)/DHC12 DHCX2=DFOUR(3,2)/DHC12 2 DHCXX=1D0/SQRT(1D0+2D0*DHCX1*DHCX2*DHC12) DHCY1=DFOUR(4,1)/DHC12 P DHCY2=DFOUR(4,2)/DHC12 N4 DHCYX=DHCXX*(DHCX1*DHCY2+DHCX2*DHCY1)*DHC12 ; DHCYY=1D0/SQRT(1D0+2D0*DHCY1*DHCY2*DHC12-DHCYX**2) DO 840 J=1,4 1< DP(3,J)=DHCXX*(DP(3,J)-DHCX2*DP(1,J)-DHCX1*DP(2,J)) P(IN(3),J)=DP(3,J) NA P(IN(3)+1,J)=DHCYY*(DP(4,J)-DHCY2*DP(1,J)-DHCY1*DP(2,J)- & DHCYX*DP(3,J)) * 840 CONTINUE6 C...Express pT with respect to new axes, if sensible. 2 PXP=-(PX(3)*FOUR(IN(3*JT+3),IN(3))+PY(3)* & FOUR(IN(3*JT+3)+1,IN(3))) 4 PYP=-(PX(3)*FOUR(IN(3*JT+3),IN(3)+1)+PY(3)* $ & FOUR(IN(3*JT+3)+1,IN(3)+1)) > IF(ABS(PXP**2+PYP**2-PX(3)**2-PY(3)**2).LT.0.01) THEN PX(3)=PXP PY(3)=PYP ENDIF ENDIF (F C...Sum up known four-momentum. Gives coefficients for m2 expression. DO 870 J=1,4 M DHG(J)=0. > P(I,J)=PX(JT)*P(IN(3*JT+3),J)+PY(JT)*P(IN(3*JT+3)+1,J)+ * &PX(3)*P(IN(3),J)+PY(3)*P(IN(3)+1,J) , DO 850 IN1=IN(3*JT+1),IN(1)-4*JS,4*JS ( P(I,J)=P(I,J)+P(IN1+2,3)*P(IN1,J) 850 CONTINUE L, DO 860 IN2=IN(3*JT+2),IN(2)-4*JS,4*JS ( P(I,J)=P(I,J)+P(IN2+2,3)*P(IN2,J) 860 CONTINUE . 870 CONTINUE DHM(1)=FOUR(I,I) 0 DHM(2)=2.*FOUR(I,IN(1)) DHM(3)=2.*FOUR(I,IN(2)) DHM(4)=2.*FOUR(IN(1),IN(2)) ), C...Find coefficients for Gamma expression. ! DO 890 IN2=IN(1)+1,IN(2),4 ) DO 880 IN1=IN(1),IN2-1,4 DHC=2.*FOUR(IN1,IN2) *0 DHG(1)=DHG(1)+P(IN1+2,JT)*P(IN2+2,JT)*DHC 8 IF(IN1.EQ.IN(1)) DHG(2)=DHG(2)-JS*P(IN2+2,JT)*DHC 8 IF(IN2.EQ.IN(2)) DHG(3)=DHG(3)+JS*P(IN1+2,JT)*DHC : IF(IN1.EQ.IN(1).AND.IN2.EQ.IN(2)) DHG(4)=DHG(4)-DHC 880 CONTINUE + 890 CONTINUE - U: C...Solve (m2, Gamma) equation system for energies taken. - DHS1=DHM(JR+1)*DHG(4)-DHM(4)*DHG(JR+1) ( IF(ABS(DHS1).LT.1E-4) GOTO 640 -> DHS2=DHM(4)*(GAM(3)-DHG(1))-DHM(JT+1)*DHG(JR+1)-DHG(4)* - &(P(I,5)**2-DHM(1))+DHG(JT+1)*DHM(JR+1) sB DHS3=DHM(JT+1)*(GAM(3)-DHG(1))-DHG(JT+1)*(P(I,5)**2-DHM(1)) H P(IN(JR)+2,4)=0.5*(SQRT(MAX(0D0,DHS2**2-4.*DHS1*DHS3))/ABS(DHS1)- &DHS2/DHS1) 8 IF(DHM(JT+1)+DHM(4)*P(IN(JR)+2,4).LE.0.) GOTO 640 P(IN(JT)+2,4)=(P(I,5)**2-DHM(1)-DHM(JR+1)*P(IN(JR)+2,4))/ ' &(DHM(JT+1)+DHM(4)*P(IN(JR)+2,4)) C...Step to new region if necessary. U. IF(P(IN(JR)+2,4).GT.P(IN(JR)+2,3)) THEN $ P(IN(JR)+2,4)=P(IN(JR)+2,3) P(IN(JR)+2,JT)=1. IN(JR)=IN(JR)+4*JS ). IF(JS*IN(JR).GT.JS*IN(4*JR)) GOTO 640 + IF(FOUR(IN(1),IN(2)).LE.1E-2) THEN & P(IN(JT)+2,4)=P(IN(JT)+2,3) P(IN(JT)+2,JT)=0. IN(JT)=IN(JT)+4*JS 8 ENDIF GOTO 820 2 ELSEIF(P(IN(JT)+2,4).GT.P(IN(JT)+2,3)) THEN $ P(IN(JT)+2,4)=P(IN(JT)+2,3) P(IN(JT)+2,JT)=0. IN(JT)=IN(JT)+4*JS s GOTO 820 n ENDIF T C...Four-momentum of particle. Remaining quantities. Loop back. 900 DO 910 J=1,4 nD P(I,J)=P(I,J)+P(IN(1)+2,4)*P(IN(1),J)+P(IN(2)+2,4)*P(IN(2),J) # P(N+NRS,J)=P(N+NRS,J)-P(I,J) 910 CONTINUE $ IF(P(I,4).LT.P(I,5)) GOTO 640 KFL(JT)=-KFL(3) PMQ(JT)=PMQ(3) . PX(JT)=-PX(3) PY(JT)=-PY(3) GAM(JT)=GAM(3) E# IF(IN(3).NE.IN(3*JT+3)) THEN J DO 920 J=1,4 +# P(IN(3*JT+3),J)=P(IN(3),J) (' P(IN(3*JT+3)+1,J)=P(IN(3)+1,J) 920 CONTINUE ) ENDIF DO 930 JQ=1,2 IN(3*JT+JQ)=IN(JQ) .0 P(IN(JQ)+2,3)=P(IN(JQ)+2,3)-P(IN(JQ)+2,4) > P(IN(JQ)+2,JT)=P(IN(JQ)+2,JT)-JS*(3-2*JQ)*P(IN(JQ)+2,4) 930 CONTINUE GOTO 780 / C...Final hadron: side, flavour, hadron, mass. 940 I=I+1 K(I,1)=1 - K(I,3)=IE(JR) K(I,4)=0 ( K(I,5)=0 .1 CALL LUKFDI(KFL(JR),-KFL(3),KFLDMP,K(I,2)) IF(K(I,2).EQ.0) GOTO 640 S P(I,5)=ULMASS(K(I,2)) ; PR(JR)=P(I,5)**2+(PX(JR)-PX(3))**2+(PY(JR)-PY(3))**2 * 2: C...Final two hadrons: find common setup of four-vectors. JQ=1 D IF(P(IN(4)+2,3)*P(IN(5)+2,3)*FOUR(IN(4),IN(5)).LT.P(IN(7),3)* ) &P(IN(8),3)*FOUR(IN(7),IN(8))) JQ=2 ( DHC12=FOUR(IN(3*JQ+1),IN(3*JQ+2)) ( DHR1=FOUR(N+NRS,IN(3*JQ+2))/DHC12 ( DHR2=FOUR(N+NRS,IN(3*JQ+1))/DHC12 0 IF(IN(4).NE.IN(7).OR.IN(5).NE.IN(8)) THEN 0 PX(3-JQ)=-FOUR(N+NRS,IN(3*JQ+3))-PX(JQ) 2 PY(3-JQ)=-FOUR(N+NRS,IN(3*JQ+3)+1)-PY(JQ) A PR(3-JQ)=P(I+(JT+JQ-3)**2-1,5)**2+(PX(3-JQ)+(2*JQ-3)*JS* 2 & PX(3))**2+(PY(3-JQ)+(2*JQ-3)*JS*PY(3))**2 ENDIF +9 C...Solve kinematics for final two hadrons, if possible. 4 WREM2=WREM2+(PX(1)+PX(2))**2+(PY(1)+PY(2))**2 / FD=(SQRT(PR(1))+SQRT(PR(2)))/SQRT(WREM2) -C IF(MJU(1)+MJU(2).NE.0.AND.I.EQ.ISAV+2.AND.FD.GE.1.) GOTO 200 ( IF(FD.GE.1.) GOTO 640 FA=WREM2+PR(JT)-PR(JR) A IF(MSTJ(11).NE.2) PREV=0.5*EXP(MAX(-50.,LOG(FD)*PARJ(38)* &(PR(1)+PR(2))**2)) r. IF(MSTJ(11).EQ.2) PREV=0.5*FD**PARJ(39) D FB=SIGN(SQRT(MAX(0.,FA**2-4.*WREM2*PR(JT))),JS*(RLU(0)-PREV)) KFL1A=IABS(KFL(1)) KFL2A=IABS(KFL(2)) T= IF(MAX(MOD(KFL1A,10),MOD(KFL1A/1000,10),MOD(KFL2A,10), ; &MOD(KFL2A/1000,10)).GE.6) FB=SIGN(SQRT(MAX(0.,FA**2- # &4.*WREM2*PR(JT))),FLOAT(JS)) 4 DO 950 J=1,4 1> P(I-1,J)=(PX(JT)+PX(3))*P(IN(3*JQ+3),J)+(PY(JT)+PY(3))* ; &P(IN(3*JQ+3)+1,J)+0.5*(DHR1*(FA+FB)*P(IN(3*JQ+1),J)+ P* &DHR2*(FA-FB)*P(IN(3*JQ+2),J))/WREM2 ! P(I,J)=P(N+NRS,J)-P(I-1,J) F 950 CONTINUE< IF(P(I-1,4).LT.P(I-1,5).OR.P(I,4).LT.P(I,5)) GOTO 640 *8 C...Mark jets as fragmented and give daughter pointers. N=I-NRS+1 DO 960 I=NSAV+1,NSAV+NP IM=K(I,3) K(IM,1)=K(IM,1)+10 D IF(MSTU(16).NE.2) THEN ( K(IM,4)=NSAV+1 = K(IM,5)=NSAV+1 ELSE D K(IM,4)=NSAV+2 H K(IM,5)=N ENDIF 960 CONTINUE 2 C/ C...Document string system. Move up particles. X NSAV=NSAV+1 K(NSAV,1)=11 K(NSAV,2)=92 , K(NSAV,3)=IP , K(NSAV,4)=NSAV+1 P K(NSAV,5)=N DO 970 J=1,4 J P(NSAV,J)=DPS(J) V(NSAV,J)=V(IP,J) 970 CONTINUE eG P(NSAV,5)=SQRT(MAX(0D0,DPS(4)**2-DPS(1)**2-DPS(2)**2-DPS(3)**2)) V(NSAV,5)=0. 1 DO 990 I=NSAV+1,N DO 980 J=1,5 K(I,J)=K(I+NRS-1,J) P(I,J)=P(I+NRS-1,J) V(I,J)=0. 980 CONTINUE 990 CONTINUE 2 MSTU91=MSTU(90) ! DO 1000 IZ=MSTU90+1,MSTU91 n* MSTU9T(IZ)=MSTU(90+IZ)-NRS+1-NSAV+N PARU9T(IZ)=PARU(90+IZ) 0 1000 CONTINUE MSTU(90)=MSTU90 3D C...Order particles in rank along the chain. Update mother pointer. DO 1020 I=NSAV+1,N . DO 1010 J=1,5 K(I-NSAV+N,J)=K(I,J) P(I-NSAV+N,J)=P(I,J) U 1010 CONTINUE 1020 CONTINUE F I1=NSAV DO 1050 I=N+1,2*N-NSAV )$ IF(K(I,3).NE.IE(1)) GOTO 1050 I1=I1+1 DO 1030 J=1,5 K(I1,J)=K(I,J) 4 P(I1,J)=P(I,J) A 1030 CONTINUE 9 IF(MSTU(16).NE.2) K(I1,3)=NSAV 0! DO 1040 IZ=MSTU90+1,MSTU91 IF(MSTU9T(IZ).EQ.I) THEN MSTU(90)=MSTU(90)+1 MSTU(90+MSTU(90))=I1 0 PARU(90+MSTU(90))=PARU9T(IZ) ENDIF 1040 CONTINUE n 1050 CONTINUE i DO 1080 I=2*N-NSAV,N+1,-1 $ IF(K(I,3).EQ.IE(1)) GOTO 1080 I1=I1+1 DO 1060 J=1,5 K(I1,J)=K(I,J) N P(I1,J)=P(I,J) ) 1060 CONTINUE IF(MSTU(16).NE.2) K(I1,3)=NSAV )! DO 1070 IZ=MSTU90+1,MSTU91 1 IF(MSTU9T(IZ).EQ.I) THEN ) MSTU(90)=MSTU(90)+1 MSTU(90+MSTU(90))=I1 PARU(90+MSTU(90))=PARU9T(IZ) 1 ENDIF 1070 CONTINUE 2 1080 CONTINUE 3 9 C...Boost back particle system. Set production vertices. F IF(MBST.EQ.0) THEN MSTU(33)=1 N CALL LUDBRB(NSAV+1,N,0.,0.,DPS(1)/DPS(4),DPS(2)/DPS(4), & DPS(3)/DPS(4)) ELSE N DO 1090 I=NSAV+1,N , HHPMT=P(I,1)**2+P(I,2)**2+P(I,5)**2 IF(P(I,3).GT.0.) THEN HHPEZ=(P(I,4)+P(I,3))*HHBZ R) P(I,3)=0.5*(HHPEZ-HHPMT/HHPEZ) ) P(I,4)=0.5*(HHPEZ+HHPMT/HHPEZ) ) ELSE HHPEZ=(P(I,4)-P(I,3))/HHBZ ,* P(I,3)=-0.5*(HHPEZ-HHPMT/HHPEZ) ) P(I,4)=0.5*(HHPEZ+HHPMT/HHPEZ) ENDIF 1090 CONTINUE ENDIF DO 1110 I=NSAV+1,N DO 1100 J=1,4 V(I,J)=V(IP,J) ) 1100 CONTINUE = 1110 CONTINUE RETURN 2 END G C********************************************************************* 1 N SUBROUTINE LUINDF(IP) F C...Purpose: to handle the fragmentation of a jet system (or a single 8 C...jet) according to independent fragmentation models. # IMPLICIT DOUBLE PRECISION(D) 14 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) P& SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ = DIMENSION DPS(5),PSI(4),NFI(3),NFL(3),IFET(3),KFLF(3), U &KFLO(2),PXO(2),PYO(2),WO(2) )I C...Reset counters. Identify parton system and take copy. Check flavour. = NSAV=N 2 MSTU90=MSTU(90) NJET=0 KQSUM=0 DO 100 J=1,5 D DPS(J)=0. 100 CONTINUE I=IP-1 D 110 I=I+1 , IF(I.GT.MIN(N,MSTU(4)-MSTU(32))) THEN CALL LUERRM(12,'(LUINDF:) failed to reconstruct jet system') (! IF(MSTU(21).GE.1) RETURN ( ENDIF / IF(K(I,1).NE.1.AND.K(I,1).NE.2) GOTO 110 V KC=LUCOMP(K(I,2)) IF(KC.EQ.0) GOTO 110 w$ KQ=KCHG(KC,2)*ISIGN(1,K(I,2)) IF(KQ.EQ.0) GOTO 110 NJET=NJET+1 ! IF(KQ.NE.2) KQSUM=KQSUM+KQ ( DO 120 J=1,5 ) K(NSAV+NJET,J)=K(I,J) P(NSAV+NJET,J)=P(I,J) DPS(J)=DPS(J)+P(I,J) 120 CONTINUE K(NSAV+NJET,3)=I N6 IF(K(I,1).EQ.2.OR.(MSTJ(3).LE.5.AND.N.GT.I.AND. &K(I+1,1).EQ.2)) GOTO 110 r( IF(NJET.NE.1.AND.KQSUM.NE.0) THEN C CALL LUERRM(12,'(LUINDF:) unphysical flavour combination') J! IF(MSTU(21).GE.1) RETURN ENDIF (F C...Boost copied system to CM frame. Find CM energy and sum flavours. IF(NJET.NE.1) THEN I MSTU(33)=1 0; CALL LUDBRB(NSAV+1,NSAV+NJET,0.,0.,-DPS(1)/DPS(4), ,' & -DPS(2)/DPS(4),-DPS(3)/DPS(4)) J ENDIF PECM=0. DO 130 J=1,3 ( NFI(J)=0 2 130 CONTINUE DO 140 I=NSAV+1,NSAV+NJET PECM=PECM+P(I,4) KFA=IABS(K(I,2)) 4 IF(KFA.LE.3) THEN * NFI(KFA)=NFI(KFA)+ISIGN(1,K(I,2)) ELSEIF(KFA.GT.1000) THEN P KFLA=MOD(KFA/1000,10) KFLB=MOD(KFA/100,10) : IF(KFLA.LE.3) NFI(KFLA)=NFI(KFLA)+ISIGN(1,K(I,2)) : IF(KFLB.LE.3) NFI(KFLB)=NFI(KFLB)+ISIGN(1,K(I,2)) ENDIF 140 CONTINUE )- C...Loop over attempts made. Reset counters. NTRY=0 ( 150 NTRY=NTRY+1 IF(NTRY.GT.200) THEN < CALL LUERRM(14,'(LUINDF:) caught in infinite loop') ! IF(MSTU(21).GE.1) RETURN ( ENDIF N=NSAV+NJET MSTU(90)=MSTU90 DO 160 J=1,3 2 NFL(J)=NFI(J) IFET(J)=0 KFLF(J)=0 160 CONTINUE X ) C...Loop over jets to be fragmented. 3 DO 230 IP1=NSAV+1,NSAV+NJET MSTJ(91)=0 NSAV1=N MSTU91=MSTU(90) C< C...Initial flavour and momentum values. Jet along +z axis. KFLH=IABS(K(IP1,2)) , IF(KFLH.GT.10) KFLH=MOD(KFLH/1000,10) KFLO(2)=0 < WF=P(IP1,4)+SQRT(P(IP1,1)**2+P(IP1,2)**2+P(IP1,3)**2) I- C...Initial values for quark or diquark jet. d$ 170 IF(IABS(K(IP1,2)).NE.21) THEN NSTR=1 + KFLO(1)=K(IP1,2) CALL LUPTDI(0,PXO(1),PYO(1)) ) WO(1)=WF 7< C...Initial values for gluon treated like random quark jet. ELSEIF(MSTJ(2).LE.2) THEN NSTR=1 $ IF(MSTJ(2).EQ.2) MSTJ(91)=1 B KFLO(1)=INT(1.+(2.+PARJ(2))*RLU(0))*(-1)**INT(RLU(0)+0.5) CALL LUPTDI(0,PXO(1),PYO(1)) WO(1)=WF T D C...Initial values for gluon treated like quark-antiquark jet pair, E C...sharing energy according to Altarelli-Parisi splitting function. G ELSE K NSTR=2 T$ IF(MSTJ(2).EQ.4) MSTJ(91)=1 B KFLO(1)=INT(1.+(2.+PARJ(2))*RLU(0))*(-1)**INT(RLU(0)+0.5) KFLO(2)=-KFLO(1) CALL LUPTDI(0,PXO(1),PYO(1)) PXO(2)=-PXO(1) A PYO(2)=-PYO(1) )! WO(1)=WF*RLU(0)**(1./3.) WO(2)=WF-WO(1) 2 ENDIF J1 C...Initial values for rank, flavour, pT and W+. K DO 220 ISTR=1,NSTR 180 I=N MSTU(90)=MSTU91 IRANK=0 KFL1=KFLO(ISTR) PX1=PXO(ISTR) PY1=PYO(ISTR) W=WO(ISTR) 5 25 C...New hadron. Generate flavour and hadron species. a 190 I=I+1 , IF(I.GE.MSTU(4)-MSTU(32)-NJET-5) THEN B CALL LUERRM(11,'(LUINDF:) no more memory left in LUJETS') ! IF(MSTU(21).GE.1) RETURN R ENDIF IRANK=IRANK+1 K(I,1)=1 ( K(I,3)=IP1 ( K(I,4)=0 I K(I,5)=0 0& 200 CALL LUKFDI(KFL1,0,KFL2,K(I,2)) IF(K(I,2).EQ.0) GOTO 180 . IF(MSTJ(12).GE.3.AND.IRANK.EQ.1.AND.IABS(KFL1).LE.10.AND. &IABS(KFL2).GT.10) THEN +( IF(RLU(0).GT.PARJ(19)) GOTO 200 ENDIF .. C...Find hadron mass. Generate four-momentum. P(I,5)=ULMASS(K(I,2)) CALL LUPTDI(KFL1,PX2,PY2) P(I,1)=PX1+PX2 P(I,2)=PY1+PY2 E' PR=P(I,5)**2+P(I,1)**2+P(I,2)**2 CALL LUZDIS(KFL1,KFL2,PR,Z) MZSAV=0 E IF(IABS(KFL1).GE.4.AND.IABS(KFL1).LE.8.AND.MSTU(90).LT.8) THEN MZSAV=1 MSTU(90)=MSTU(90)+1 MSTU(90+MSTU(90))=I PARU(90+MSTU(90))=Z ENDIF ( P(I,3)=0.5*(Z*W-PR/MAX(1E-4,Z*W)) ( P(I,4)=0.5*(Z*W+PR/MAX(1E-4,Z*W)) 8 IF(MSTJ(3).GE.1.AND.IRANK.EQ.1.AND.KFLH.GE.4.AND. &P(I,3).LE.0.001) THEN . IF(W.GE.P(I,5)+0.5*PARJ(32)) GOTO 180 P(I,3)=0.0001 P(I,4)=SQRT(PR) Z=P(I,4)/W L ENDIF 0$ C...Remaining flavour and momentum. KFL1=-KFL2 PX1=-PX2 1 PY1=-PY2 = W=(1.-Z)*W DO 210 J=1,5 t V(I,J)=0. 210 CONTINUE r oE C...Check if pL acceptable. Go back for new hadron if enough energy. - IF(MSTJ(3).GE.0.AND.P(I,3).LT.0.) THEN ( I=I-1 + IF(MZSAV.EQ.1) MSTU(90)=MSTU(90)-1 ( ENDIF ! IF(W.GT.PARJ(31)) GOTO 190 4 N=I 220 CONTINUE IF(MOD(MSTJ(3),5).EQ.4.AND.N.EQ.NSAV1) WF=WF+0.1*PARJ(32) 6 IF(MOD(MSTJ(3),5).EQ.4.AND.N.EQ.NSAV1) GOTO 170 ! C...Rotate jet to new direction. 9 THE=ULAN (P(IP1,3),SQRT(P(IP1,1)**2+P(IP1,2)**2)) $ PHI=ULANGL(P(IP1,1),P(IP1,2)) MSTU(33)=1 F1 CALL LUDBRB(NSAV1+1,N,THE,PHI,0D0,0D0,0D0) ) K(K(IP1,3),4)=NSAV1+1 K(K(IP1,3),5)=N A C...End of jet generation loop. Skip conservation in some cases. d 230 CONTINUE i- IF(NJET.EQ.1.OR.MSTJ(3).LE.0) GOTO 490 2< IF(MOD(MSTJ(3),5).NE.0.AND.N-NSAV-NJET.LT.2) GOTO 150 = C...Subtract off produced hadron flavours, finished if zero. DO 240 I=NSAV+NJET+1,N KFA=IABS(K(I,2)) KFLA=MOD(KFA/1000,10) KFLB=MOD(KFA/100,10) KFLC=MOD(KFA/10,10) IF(KFLA.EQ.0) THENE IF(KFLB.LE.3) NFL(KFLB)=NFL(KFLB)-ISIGN(1,K(I,2))*(-1)**KFLB PE IF(KFLC.LE.3) NFL(KFLC)=NFL(KFLC)+ISIGN(1,K(I,2))*(-1)**KFLB ) ELSE F: IF(KFLA.LE.3) NFL(KFLA)=NFL(KFLA)-ISIGN(1,K(I,2)) : IF(KFLB.LE.3) NFL(KFLB)=NFL(KFLB)-ISIGN(1,K(I,2)) : IF(KFLC.LE.3) NFL(KFLC)=NFL(KFLC)-ISIGN(1,K(I,2)) ENDIF 240 CONTINUE 1 NREQ=(IABS(NFL(1))+IABS(NFL(2))+IABS(NFL(3))-IABS(NFL(1)+ 5 &NFL(2)+NFL(3)))/2+IABS(NFL(1)+NFL(2)+NFL(3))/3 P IF(NREQ.EQ.0) GOTO 320 E (F C...Take away flavour of low-momentum particles until enough freedom. NREM=0 3 250 IREM=0 P2MIN=PECM**2 DO 260 I=NSAV+NJET+1,N ' P2=P(I,1)**2+P(I,2)**2+P(I,3)**2 3- IF(K(I,1).EQ.1.AND.P2.LT.P2MIN) IREM=I C/ IF(K(I,1).EQ.1.AND.P2.LT.P2MIN) P2MIN=P2 H 260 CONTINUE 2 IF(IREM.EQ.0) GOTO 150 K(IREM,1)=7 KFA=IABS(K(IREM,2)) KFLA=MOD(KFA/1000,10) KFLB=MOD(KFA/100,10) H KFLC=MOD(KFA/10,10) - IF(KFLA.GE.4.OR.KFLB.GE.4) K(IREM,1)=8 IF(K(IREM,1).EQ.8) GOTO 250 IF(KFLA.EQ.0) THEN C+ ISGN=ISIGN(1,K(IREM,2))*(-1)**KFLB / IF(KFLB.LE.3) NFL(KFLB)=NFL(KFLB)+ISGN H/ IF(KFLC.LE.3) NFL(KFLC)=NFL(KFLC)-ISGN ELSE .= IF(KFLA.LE.3) NFL(KFLA)=NFL(KFLA)+ISIGN(1,K(IREM,2)) X= IF(KFLB.LE.3) NFL(KFLB)=NFL(KFLB)+ISIGN(1,K(IREM,2)) 3= IF(KFLC.LE.3) NFL(KFLC)=NFL(KFLC)+ISIGN(1,K(IREM,2)) ) ENDIF NREM=NREM+1 NREQ=(IABS(NFL(1))+IABS(NFL(2))+IABS(NFL(3))-IABS(NFL(1)+ 5 &NFL(2)+NFL(3)))/2+IABS(NFL(1)+NFL(2)+NFL(3))/3 IF(NREQ.GT.NREM) GOTO 250 DO 270 I=NSAV+NJET+1,N IF(K(I,1).EQ.8) K(I,1)=1 270 CONTINUE 4 > C...Find combination of existing and new flavours for hadron. 280 NFET=2 + IF(NFL(1)+NFL(2)+NFL(3).NE.0) NFET=3 IF(NREQ.LT.NREM) NFET=1 = IF(IABS(NFL(1))+IABS(NFL(2))+IABS(NFL(3)).EQ.0) NFET=0 DO 290 J=1,NFET IFET(J)=1+(IABS(NFL(1))+IABS(NFL(2))+IABS(NFL(3)))*RLU(0) KFLF(J)=ISIGN(1,NFL(1)) : IF(IFET(J).GT.IABS(NFL(1))) KFLF(J)=ISIGN(2,NFL(2)) G IF(IFET(J).GT.IABS(NFL(1))+IABS(NFL(2))) KFLF(J)=ISIGN(3,NFL(3)) ) 290 CONTINUE cE IF(NFET.EQ.2.AND.(IFET(1).EQ.IFET(2).OR.KFLF(1)*KFLF(2).GT.0)) &GOTO 280 IE IF(NFET.EQ.3.AND.(IFET(1).EQ.IFET(2).OR.IFET(1).EQ.IFET(3).OR. +D &IFET(2).EQ.IFET(3).OR.KFLF(1)*KFLF(2).LT.0.OR.KFLF(1)*KFLF(3) > &.LT.0.OR.KFLF(1)*(NFL(1)+NFL(2)+NFL(3)).LT.0)) GOTO 280 7 IF(NFET.EQ.0) KFLF(1)=1+INT((2.+PARJ(2))*RLU(0)) 4 IF(NFET.EQ.0) KFLF(2)=-KFLF(1) EG IF(NFET.EQ.1) KFLF(2)=ISIGN(1+INT((2.+PARJ(2))*RLU(0)),-KFLF(1)) IF(NFET.LE.2) KFLF(3)=0 IF(KFLF(3).NE.0) THEN ; KFLFC=ISIGN(1000*MAX(IABS(KFLF(1)),IABS(KFLF(3)))+ 18 & 100*MIN(IABS(KFLF(1)),IABS(KFLF(3)))+1,KFLF(1)) ? IF(KFLF(1).EQ.KFLF(3).OR.(1.+3.*PARJ(4))*RLU(0).GT.1.) )# & KFLFC=KFLFC+ISIGN(2,KFLFC) * ELSE , KFLFC=KFLF(1) ENDIF + CALL LUKFDI(KFLFC,KFLF(2),KFLDMP,KF) ( IF(KF.EQ.0) GOTO 280 DO 300 J=1,MAX(2,NFET) D= NFL(IABS(KFLF(J)))=NFL(IABS(KFLF(J)))-ISIGN(1,KFLF(J)) J 300 CONTINUE . t1 C...Store hadron at random among free positions. +( NPOS=MIN(1+INT(RLU(0)*NREM),NREM) DO 310 I=NSAV+NJET+1,N IF(K(I,1).EQ.7) NPOS=NPOS-1 , IF(K(I,1).EQ.1.OR.NPOS.NE.0) GOTO 310 K(I,1)=1 K(I,2)=KF P(I,5)=ULMASS(K(I,2)) ; P(I,4)=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2+P(I,5)**2) ) 310 CONTINUE NREM=NREM-1 NREQ=(IABS(NFL(1))+IABS(NFL(2))+IABS(NFL(3))-IABS(NFL(1)+ 5 &NFL(2)+NFL(3)))/2+IABS(NFL(1)+NFL(2)+NFL(3))/3 3 IF(NREM.GT.0) GOTO 280 B C...Compensate for missing momentum in global scheme (3 options). ; 320 IF(MOD(MSTJ(3),5).NE.0.AND.MOD(MSTJ(3),5).NE.4) THEN DO 340 J=1,3 PSI(J)=0. DO 330 I=NSAV+NJET+1,N ) PSI(J)=PSI(J)+P(I,J) P 330 CONTINUE 340 CONTINUE - PSI(4)=PSI(1)**2+PSI(2)**2+PSI(3)**2 T PWS=0. DO 350 I=NSAV+NJET+1,N X/ IF(MOD(MSTJ(3),5).EQ.1) PWS=PWS+P(I,4) EG IF(MOD(MSTJ(3),5).EQ.2) PWS=PWS+SQRT(P(I,5)**2+(PSI(1)*P(I,1)+ (0 & PSI(2)*P(I,2)+PSI(3)*P(I,3))**2/PSI(4)) + IF(MOD(MSTJ(3),5).EQ.3) PWS=PWS+1. 350 CONTINUE 0 DO 370 I=NSAV+NJET+1,N )* IF(MOD(MSTJ(3),5).EQ.1) PW=P(I,4) B IF(MOD(MSTJ(3),5).EQ.2) PW=SQRT(P(I,5)**2+(PSI(1)*P(I,1)+ 0 & PSI(2)*P(I,2)+PSI(3)*P(I,3))**2/PSI(4)) & IF(MOD(MSTJ(3),5).EQ.3) PW=1. DO 360 J=1,3 $ P(I,J)=P(I,J)-PSI(J)*PW/PWS 360 CONTINUE = P(I,4)=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2+P(I,5)**2) 370 CONTINUE Q A C...Compensate for missing momentum withing each jet separately. X' ELSEIF(MOD(MSTJ(3),5).EQ.4) THEN . DO 390 I=N+1,N+NJET K(I,1)=0 c DO 380 J=1,5 P(I,J)=0. 380 CONTINUE 390 CONTINUE 7 DO 410 I=NSAV+NJET+1,N 7 IR1=K(I,3) IR2=N+IR1-NSAV N K(IR2,1)=K(IR2,1)+1 ? PLS=(P(I,1)*P(IR1,1)+P(I,2)*P(IR1,2)+P(I,3)*P(IR1,3))/ . & (P(IR1,1)**2+P(IR1,2)**2+P(IR1,3)**2) DO 400 J=1,3 R. P(IR2,J)=P(IR2,J)+P(I,J)-PLS*P(IR1,J) 400 CONTINUE +! P(IR2,4)=P(IR2,4)+P(I,4) T P(IR2,5)=P(IR2,5)+PLS 410 CONTINUE PSS=0. Q DO 420 I=N+1,N+NJET ? IF(K(I,1).NE.0) PSS=PSS+P(I,4)/(PECM*(0.8*P(I,5)+0.2)) i 420 CONTINUE = DO 440 I=NSAV+NJET+1,N 2 IR1=K(I,3) T IR2=N+IR1-NSAV (? PLS=(P(I,1)*P(IR1,1)+P(I,2)*P(IR1,2)+P(I,3)*P(IR1,3))/ .. & (P(IR1,1)**2+P(IR1,2)**2+P(IR1,3)**2) DO 430 J=1,3 )D P(I,J)=P(I,J)-P(IR2,J)/K(IR2,1)+(1./(P(IR2,5)*PSS)-1.)*PLS* & P(IR1,J) * 430 CONTINUE= P(I,4)=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2+P(I,5)**2) A 440 CONTINUE ) ENDIF )+ C...Scale momenta for energy conservation. A# IF(MOD(MSTJ(3),5).NE.0) THEN 1 PMS=0. , PES=0. , PQS=0. 2 DO 450 I=NSAV+NJET+1,N X PMS=PMS+P(I,5) E PES=PES+P(I,4) ! PQS=PQS+P(I,5)**2/P(I,4) ) 450 CONTINUE! IF(PMS.GE.PECM) GOTO 150 & NECO=0 + 460 NECO=NECO+1 PFAC=(PECM-PQS)/(PES-PQS) PES=0. R PQS=0. ) DO 480 I=NSAV+NJET+1,N T DO 470 J=1,3 4 P(I,J)=PFAC*P(I,J) I 470 CONTINUE = P(I,4)=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2+P(I,5)**2) PES=PES+P(I,4) I! PQS=PQS+P(I,5)**2/P(I,4) 480 CONTINUE 1? IF(NECO.LT.10.AND.ABS(PECM-PES).GT.2E-6*PECM) GOTO 460 ENDIF S? C...Origin of produced particles and parton daughter pointers. 490 DO 500 I=NSAV+NJET+1,N 2& IF(MSTU(16).NE.2) K(I,3)=NSAV+1 + IF(MSTU(16).EQ.2) K(I,3)=K(K(I,3),3) S 500 CONTINUE DO 510 I=NSAV+1,NSAV+NJET I1=K(I,3) K(I1,1)=K(I1,1)+10 = IF(MSTU(16).NE.2) THEN K(I1,4)=NSAV+1 K(I1,5)=NSAV+1 ELSE K(I1,4)=K(I1,4)-NJET+1 * K(I1,5)=K(I1,5)-NJET+1 )$ IF(K(I1,5).LT.K(I1,4)) THEN K(I1,4)=0 K(I1,5)=0 ENDIF ENDIF 510 CONTINUE D C...Document independent fragmentation system. Remove copy of jets. NSAV=NSAV+1 K(NSAV,1)=11 K(NSAV,2)=93 0 K(NSAV,3)=IP K(NSAV,4)=NSAV+1 ) K(NSAV,5)=N-NJET+1 DO 520 J=1,4 P(NSAV,J)=DPS(J) n V(NSAV,J)=V(IP,J) 520 CONTINUE G P(NSAV,5)=SQRT(MAX(0D0,DPS(4)**2-DPS(1)**2-DPS(2)**2-DPS(3)**2)) , V(NSAV,5)=0. N DO 540 I=NSAV+NJET,N DO 530 J=1,5 K(I-NJET+1,J)=K(I,J) = P(I-NJET+1,J)=P(I,J) 3 V(I-NJET+1,J)=V(I,J) 530 CONTINUE 540 CONTINUE N=N-NJET+1 DO 550 IZ=MSTU90+1,MSTU(90) MSTU(90+IZ)=MSTU(90+IZ)-NJET+1 S 550 CONTINUE 4 Z9 C...Boost back particle system. Set production vertices. > IF(NJET.NE.1) CALL LUDBRB(NSAV+1,N,0.,0.,DPS(1)/DPS(4), # &DPS(2)/DPS(4),DPS(3)/DPS(4)) DO 570 I=NSAV+1,N DO 560 J=1,4 V(I,J)=V(IP,J) 1 560 CONTINUE I 570 CONTINUE 8 RETURN + END 6G C********************************************************************* SUBROUTINE LUDECY(IP) V8 C...Purpose: to handle the decay of unstable particles. 4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) aE COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5) N/ SAVE /LUJETS/,/LUDAT1/,/LUDAT2/,/LUDAT3/ VG DIMENSION VDCY(4),KFLO(4),KFL1(4),PV(10,5),RORD(10),UE(3),BE(3), &WTCOR(10),PTAU(4),PCMTAU(4) ! DOUBLE PRECISION DBETAU(3) + DATA WTCOR/2.,5.,15.,60.,250.,1500.,1.2E4,1.2E5,150.,16./ (A C...Functions: momentum in two-particle decays, four-product and 5 C...matrix element times phase space in weak decays. ? PAWT(A,B,C)=SQRT((A**2-(B+C)**2)*(A**2-(B-C)**2))/(2.*A) PH FOUR(I,J)=P(I,4)*P(J,4)-P(I,1)*P(J,1)-P(I,2)*P(J,2)-P(I,3)*P(J,3) 4 HMEPS(HA)=((1.-HRQ-HA)**2+3.*HA*(1.+HRQ-HA))* &SQRT((1.-HRQ-HA)**2-4.*HRQ*HA) ) I C...Initial values. NTRY=0 N NSAV=N KFA=IABS(K(IP,2)) KFS=ISIGN(1,K(IP,2)) * KC=LUCOMP(KFA) * MSTJ(92)=0 0 C...Choose lifetime and determine decay vertex. IF(K(IP,1).EQ.5) THEN V(IP,5)=0. l ELSEIF(K(IP,1).NE.4) THEN ( V(IP,5)=-PMAS(KC,4)*LOG(RLU(0)) ENDIF DO 100 J=1,4 N. VDCY(J)=V(IP,J)+V(IP,5)*P(IP,J)/P(IP,5) 100 CONTINUE U 0, C...Determine whether decay allowed or not. MOUT=0 0 IF(MSTJ(22).EQ.2) THEN (* IF(PMAS(KC,4).GT.PARJ(71)) MOUT=1 ! ELSEIF(MSTJ(22).EQ.3) THEN FC IF(VDCY(1)**2+VDCY(2)**2+VDCY(3)**2.GT.PARJ(72)**2) MOUT=1 )! ELSEIF(MSTJ(22).EQ.4) THEN o8 IF(VDCY(1)**2+VDCY(2)**2.GT.PARJ(73)**2) MOUT=1 , IF(ABS(VDCY(3)).GT.PARJ(74)) MOUT=1 ENDIF * IF(MOUT.EQ.1.AND.K(IP,1).NE.5) THEN K(IP,1)=4 RETURN ENDIF ID C...Interface to external tau decay library (for tau polarization). + IF(KFA.EQ.15.AND.MSTJ(28).GE.1) THEN T 1. C...Starting values for pointers and momenta. ITAU=IP DO 110 J=1,4 C PTAU(J)=P(ITAU,J) PCMTAU(J)=P(ITAU,J) 110 CONTINUE )8 C...Iterate to find position and code of mother of tau. IMTAU=ITAU Q 120 IMTAU=K(IMTAU,3) 5 IF(IMTAU.EQ.0) THEN ? C...If no known origin then impossible to do anything further. KFORIG=0 S IORIG=0 F- ELSEIF(K(IMTAU,2).EQ.K(ITAU,2)) THEN : C...If tau -> tau + gamma then add gamma energy and loop. ) IF(K(K(IMTAU,4),2).EQ.22) THEN I DO 130 J=1,4 m0 PCMTAU(J)=PCMTAU(J)+P(K(IMTAU,4),J) 130 CONTINUE o- ELSEIF(K(K(IMTAU,5),2).EQ.22) THEN n DO 140 J=1,4 N0 PCMTAU(J)=PCMTAU(J)+P(K(IMTAU,5),J) 140 CONTINUE J ENDIF GOTO 120 S /- ELSEIF(IABS(K(IMTAU,2)).GT.100) THENH C...If coming from weak decay of hadron then W is not stored in record, : C...but can be reconstructed by adding neutrino momentum. & KFORIG=-ISIGN(24,K(ITAU,2)) IORIG=0 * DO 160 II=K(IMTAU,4),K(IMTAU,5) 5 IF(K(II,2)*ISIGN(1,K(ITAU,2)).EQ.-16) THEN DO 150 J=1,4 ( PCMTAU(J)=PCMTAU(J)+P(II,J) 150 CONTINUE ENDIF 160 CONTINUE ( ELSE NA C...If coming from resonance decay then find latest copy of this t* C...resonance (may not completely agree). KFORIG=K(IMTAU,2) IORIG=IMTAU ! DO 170 II=IMTAU+1,IP-1 9 IF(K(II,2).EQ.KFORIG.AND.K(II,3).EQ.IORIG.AND. =? & ABS(P(II,5)-P(IORIG,5)).LT.1E-5*P(IORIG,5)) IORIG=II F 170 CONTINUE F DO 180 J=1,4 PCMTAU(J)=P(IORIG,J) o 180 CONTINUE n ENDIF 0 C...Boost tau to rest frame of production process (where known) ( C...and rotate it to sit along +z axis. DO 190 J=1,3 t& DBETAU(J)=PCMTAU(J)/PCMTAU(4) 190 CONTINUE . IF(KFORIG.NE.0) CALL LUDBRB(ITAU,ITAU,0.,0.,-DBETAU(1), & -DBETAU(2),-DBETAU(3)) I+ PHITAU=ULANGL(P(ITAU,1),P(ITAU,2)) o6 CALL LUDBRB(ITAU,ITAU,0.,-PHITAU,0D0,0D0,0D0) + THETAU=ULANGL(P(ITAU,3),P(ITAU,1)) 6 CALL LUDBRB(ITAU,ITAU,-THETAU,0.,0D0,0D0,0D0) C...Call tau decay routine (if meaningful) and fill extra info. . IF(KFORIG.NE.0.OR.MSTJ(28).EQ.2) THEN 0 CALL LUTAUD(ITAU,IORIG,KFORIG,NDECAY) ' DO 200 II=NSAV+1,NSAV+NDECAY * K(II,1)=1 K(II,3)=IP ) K(II,4)=0 K(II,5)=0 200 CONTINUE t N=NSAV+NDECAY ENDIF h- C...Boost back decay tau and decay products. t DO 210 J=1,4 P(ITAU,J)=PTAU(J) 210 CONTINUE .. IF(KFORIG.NE.0.OR.MSTJ(28).EQ.2) THEN : CALL LUDBRB(NSAV+1,N,THETAU,PHITAU,0D0,0D0,0D0) IF(KFORIG.NE.0) CALL LUDBRB(NSAV+1,N,0.,0.,DBETAU(1), & DBETAU(2),DBETAU(3)) , C...Skip past ordinary tau decay treatment. MMAT=0 MBST=0 a ND=0 a GOTO 660 ENDIF ENDIF =3 C...B-B~ mixing: flip sign of meson appropriately. 1 MMIX=0 < IF((KFA.EQ.511.OR.KFA.EQ.531).AND.MSTJ(26).GE.1) THEN XBBMIX=PARJ(76) ' IF(KFA.EQ.531) XBBMIX=PARJ(77) =C IF(SIN(0.5*XBBMIX*V(IP,5)/PMAS(KC,4))**2.GT.RLU(0)) MMIX=1 R IF(MMIX.EQ.1) KFS=-KFS f ENDIF D C...Check existence of decay channels. Particle/antiparticle rules. KCA=KC ( IF(MDCY(KC,2).GT.0) THEN ) MDMDCY=MDME(MDCY(KC,2),2) 5 IF(MDMDCY.GT.80.AND.MDMDCY.LE.90) KCA=MDMDCY 1 ENDIF 4 IF(MDCY(KCA,2).LE.0.OR.MDCY(KCA,3).LE.0) THEN < CALL LUERRM(9,'(LUDECY:) no decay channel defined') RETURN ENDIF F IF(MOD(KFA/1000,10).EQ.0.AND.(KCA.EQ.85.OR.KCA.EQ.87)) KFS=-KFS IF(KCHG(KC,3).EQ.0) THEN KFSP=1 , KFSN=0 # IF(RLU(0).GT.0.5) KFS=-KFS 2 ELSEIF(KFS.GT.0) THEN KFSP=1 K KFSN=0 ELSE KFSP=0 E KFSN=1 . ENDIF .4 C...Sum branching ratios of allowed decay channels. 220 NOPE=0 BRSU=0. 7 DO 230 IDL=MDCY(KCA,2),MDCY(KCA,2)+MDCY(KCA,3)-1 (9 IF(MDME(IDL,1).NE.1.AND.KFSP*MDME(IDL,1).NE.2.AND. M& &KFSN*MDME(IDL,1).NE.3) GOTO 230 & IF(MDME(IDL,2).GT.100) GOTO 230 NOPE=NOPE+1 BRSU=BRSU+BRAT(IDL) 230 CONTINUE IF(NOPE.EQ.0) THEN E CALL LUERRM(2,'(LUDECY:) all decay channels closed by user') . RETURN ENDIF - C...Select decay channel among allowed ones. P 240 RBR=BRSU*RLU(0) IDL=MDCY(KCA,2)-1 250 IDL=IDL+1 9 IF(MDME(IDL,1).NE.1.AND.KFSP*MDME(IDL,1).NE.2.AND. &KFSN*MDME(IDL,1).NE.3) THEN 6 IF(IDL.LT.MDCY(KCA,2)+MDCY(KCA,3)-1) GOTO 250 & ELSEIF(MDME(IDL,2).GT.100) THEN 6 IF(IDL.LT.MDCY(KCA,2)+MDCY(KCA,3)-1) GOTO 250 ELSE IDC=IDL RBR=RBR-BRAT(IDL) D IF(IDL.LT.MDCY(KCA,2)+MDCY(KCA,3)-1.AND.RBR.GT.0.) GOTO 250 ENDIF TD C...Start readout of decay channel: matrix element, reset counters. MMAT=MDME(IDC,2) 1 260 NTRY=NTRY+1 IF(NTRY.GT.1000) THEN < CALL LUERRM(14,'(LUDECY:) caught in infinite loop') ! IF(MSTU(21).GE.1) RETURN + ENDIF I=N NP=0 NQ=0 t MBST=0 cF IF(MMAT.GE.11.AND.MMAT.NE.46.AND.P(IP,4).GT.20.*P(IP,5)) MBST=1 DO 270 J=1,4 2 PV(1,J)=0. ($ IF(MBST.EQ.0) PV(1,J)=P(IP,J) 270 CONTINUE t$ IF(MBST.EQ.1) PV(1,4)=P(IP,5) PV(1,5)=P(IP,5) PS=0. PSQ=0. MREM=0 2 MHADDY=0 M IF(KFA.GT.80) MHADDY=1 D A? C...Read out decay products. Convert to standard flavour code. E JTMAX=5 ( IF(MDME(IDC+1,2).EQ.101) JTMAX=10 DO 280 JT=1,JTMAX IF(JT.LE.5) KP=KFDP(IDC,JT) & IF(JT.GE.6) KP=KFDP(IDC+1,JT-5) IF(KP.EQ.0) GOTO 280 A KPA=IABS(KP) ( KCP=LUCOMP(KPA) IF(KPA.GT.80) MHADDY=1 (< IF(KCHG(KCP,3).EQ.0.AND.KPA.NE.81.AND.KPA.NE.82) THEN KFP=KP N+ ELSEIF(KPA.NE.81.AND.KPA.NE.82) THEN 1 KFP=KFS*KP N7 ELSEIF(KPA.EQ.81.AND.MOD(KFA/1000,10).EQ.0) THEN + KFP=-KFS*MOD(KFA/10,10) C ELSEIF(KPA.EQ.81.AND.MOD(KFA/100,10).GE.MOD(KFA/10,10)) THEN ( KFP=KFS*(100*MOD(KFA/10,100)+3) ELSEIF(KPA.EQ.81) THEN *< KFP=KFS*(1000*MOD(KFA/10,10)+100*MOD(KFA/100,10)+1) ELSEIF(KP.EQ.82) THEN B CALL LUKFDI(-KFS*INT(1.+(2.+PARJ(2))*RLU(0)),0,KFP,KDUMP) IF(KFP.EQ.0) GOTO 260 MSTJ(93)=1 8 IF(PV(1,5).LT.PARJ(32)+2.*ULMASS(KFP)) GOTO 260 ELSEIF(KP.EQ.-82) THEN KFP=-KFP 15 IF(IABS(KFP).GT.10) KFP=KFP+ISIGN(10000,KFP) 4 ENDIF 1 IF(KPA.EQ.81.OR.KPA.EQ.82) KCP=LUCOMP(KFP) C...Add decay product to event record or to quark flavour list. KFPA=IABS(KFP) 3 KQP=KCHG(KCP,2) 6 IF(MMAT.GE.11.AND.MMAT.LE.30.AND.KQP.NE.0) THEN NQ=NQ+1 KFLO(NQ)=KFP F MSTJ(93)=2 ,! PSQ=PSQ+ULMASS(KFLO(NQ)) G ELSEIF((MMAT.EQ.42.OR.MMAT.EQ.43.OR.MMAT.EQ.48).AND.NP.EQ.3.AND. = &MOD(NQ,2).EQ.1) THEN ) NQ=NQ-1 PS=PS-P(I,5) K(I,1)=1 I KFI=K(I,2) 3+ CALL LUKFDI(KFP,KFI,KFLDMP,K(I,2)) S! IF(K(I,2).EQ.0) GOTO 260 F MSTJ(93)=1 5 P(I,5)=ULMASS(K(I,2)) PS=PS+P(I,5) 8 ELSE I=I+1 NP=NP+1 , IF(MMAT.NE.33.AND.KQP.NE.0) NQ=NQ+1 9 IF(MMAT.EQ.33.AND.KQP.NE.0.AND.KQP.NE.2) NQ=NQ+1 F K(I,1)=1+MOD(NQ,2) )9 IF(MMAT.EQ.4.AND.JT.LE.2.AND.KFP.EQ.21) K(I,1)=2 Q+ IF(MMAT.EQ.4.AND.JT.EQ.3) K(I,1)=1 F K(I,2)=KFP + K(I,3)=IP K(I,4)=0 K(I,5)=0 F P(I,5)=ULMASS(KFP) A6 IF(MMAT.EQ.45.AND.KFPA.EQ.89) P(I,5)=PARJ(32) PS=PS+P(I,5) ( ENDIF 280 CONTINUE 9' C...Check masses for resonance decays. T IF(MHADDY.EQ.0) THEN F, IF(PS+PARJ(64).GT.PV(1,5)) GOTO 240 ENDIF .4 C...Choose decay multiplicity in phase space model. ) 290 IF(MMAT.GE.11.AND.MMAT.LE.30) THEN 1 PSP=PS &> CNDE=PARJ(61)*LOG(MAX((PV(1,5)-PS-PSQ)/PARJ(62),1.1)) * IF(MMAT.EQ.12) CNDE=CNDE+PARJ(63) 300 NTRY=NTRY+1 IF(NTRY.GT.1000) THEN > CALL LUERRM(14,'(LUDECY:) caught in infinite loop') # IF(MSTU(21).GE.1) RETURN ENDIF IF(MMAT.LE.20) THEN 7 GAUSS=SQRT(-2.*CNDE*LOG(MAX(1E-10,RLU(0))))* I & SIN(PARU(2)*RLU(0)) + ND=0.5+0.5*NP+0.25*NQ+CNDE+GAUSS (< IF(ND.LT.NP+NQ/2.OR.ND.LT.2.OR.ND.GT.10) GOTO 300 . IF(MMAT.EQ.13.AND.ND.EQ.2) GOTO 300 . IF(MMAT.EQ.14.AND.ND.LE.3) GOTO 300 . IF(MMAT.EQ.15.AND.ND.LE.4) GOTO 300 ELSE N ND=MMAT-20 K ENDIF F' C...Form hadrons from flavour content. E DO 310 JT=1,4 KFL1(JT)=KFLO(JT) 310 CONTINUE M# IF(ND.EQ.NP+NQ/2) GOTO 330 DO 320 I=N+NP+1,N+ND-NQ/2 JT=1+INT((NQ-1)*RLU(0)) , CALL LUKFDI(KFL1(JT),0,KFL2,K(I,2)) ! IF(K(I,2).EQ.0) GOTO 300 , KFL1(JT)=-KFL2 320 CONTINUE * 330 JT=2 , JT2=3 JT3=4 0 IF(NQ.EQ.4.AND.RLU(0).LT.PARJ(66)) JT=4 < IF(JT.EQ.4.AND.ISIGN(1,KFL1(1)*(10-IABS(KFL1(1))))* 9 & ISIGN(1,KFL1(JT)*(10-IABS(KFL1(JT)))).GT.0) JT=3 IF(JT.EQ.3) JT2=2 IF(JT.EQ.4) JT3=2 > CALL LUKFDI(KFL1(1),KFL1(JT),KFLDMP,K(N+ND-NQ/2+1,2)) + IF(K(N+ND-NQ/2+1,2).EQ.0) GOTO 300 F IF(NQ.EQ.4) CALL LUKFDI(KFL1(JT2),KFL1(JT3),KFLDMP,K(N+ND,2)) 0 IF(NQ.EQ.4.AND.K(N+ND,2).EQ.0) GOTO 300 : C...Check that sum of decay product masses not too large. PS=PSP 3 DO 340 I=N+NP+1,N+ND F K(I,1)=1 1 K(I,3)=IP K(I,4)=0 ( K(I,5)=0 + P(I,5)=ULMASS(K(I,2)) PS=PS+P(I,5) + 340 CONTINUE S, IF(PS+PARJ(64).GT.PV(1,5)) GOTO 300 .9 C...Rescale energy to subtract off spectator quark mass. D ELSEIF((MMAT.EQ.31.OR.MMAT.EQ.33.OR.MMAT.EQ.44.OR.MMAT.EQ.45) &.AND.NP.GE.3) THEN 1 PS=PS-P(N+NP,5) ) PQT=(P(N+NP,5)+PARJ(65))/PV(1,5) DO 350 J=1,5 P(N+NP,J)=PQT*PV(1,J) ! PV(1,J)=(1.-PQT)*PV(1,J) 350 CONTINUE , IF(PS+PARJ(64).GT.PV(1,5)) GOTO 260 ND=NP-1 MREM=1 E , C...Phase space factors imposed in W decay. ELSEIF(MMAT.EQ.46) THEN MSTJ(93)=1 . PSMC=ULMASS(K(N+1,2)) MSTJ(93)=1 (# PSMC=PSMC+ULMASS(K(N+2,2)) 6 IF(MAX(PS,PSMC)+PARJ(32).GT.PV(1,5)) GOTO 240 HR1=(P(N+1,5)/PV(1,5))**2 HR2=(P(N+2,5)/PV(1,5))**2 F IF((1.-HR1-HR2)*(2.+HR1+HR2)*SQRT((1.-HR1-HR2)**2-4.*HR1*HR2) & .LT.2.*RLU(0)) GOTO 240 ND=NP 2 C...Fully specified final state: check mass broadening effects. ELSE (8 IF(NP.GE.2.AND.PS+PARJ(64).GT.PV(1,5)) GOTO 260 ND=NP ENDIF )= C...Select W mass in decay Q -> W + q, without W propagator. , IF(MMAT.EQ.45.AND.MSTJ(25).LE.0) THEN HLQ=(PARJ(32)/PV(1,5))**2 0 HUQ=(1.-(P(N+2,5)+PARJ(64))/PV(1,5))**2 HRQ=(P(N+2,5)/PV(1,5))**2 360 HW=HLQ+RLU(0)*(HUQ-HLQ) ) IF(HMEPS(HW).LT.RLU(0)) GOTO 360 , P(N+1,5)=PV(1,5)*SQRT(HW) 2I C...Ditto, including W propagator. Divide mass range into three regions. 2 ELSEIF(MMAT.EQ.45) THEN $ HQW=(PV(1,5)/PMAS(24,1))**2 HLW=(PARJ(32)/PMAS(24,1))**2 )8 HUW=((PV(1,5)-P(N+2,5)-PARJ(64))/PMAS(24,1))**2 HRQ=(P(N+2,5)/PV(1,5))**2 ! HG=PMAS(24,2)/PMAS(24,1) ( HATL=ATAN((HLW-1.)/HG) . HM=MIN(1.,HUW-0.001) Q. HMV1=HMEPS(HM/HQW)/((HM-1.)**2+HG**2) 370 HM=HM-HG . HMV2=HMEPS(HM/HQW)/((HM-1.)**2+HG**2) / IF(HMV2.GT.HMV1.AND.HM-HG.GT.HLW) THEN HMV1=HMV2 GOTO 370 ENDIF - HMV=MIN(2.*HMV1,HMEPS(HM/HQW)/HG**2) = HM1=1.-SQRT(1./HMV-HG**2) * IF(HM1.GT.HLW.AND.HM1.LT.HM) THEN HM=HM1 A ELSEIF(HMV2.LE.HMV1) THEN ( HM=MAX(HLW,HM-MIN(0.1,1.-HM)) ENDIF HATM=ATAN((HM-1.)/HG) HWT1=(HATM-HATL)/HG HWT2=HMV*(MIN(1.,HUW)-HM) HWT3=0. IF(HUW.GT.1.) THEN 0! HATU=ATAN((HUW-1.)/HG) HMP1=HMEPS(1./HQW) a HWT3=HMP1*HATU/HG ENDIF 2E C...Select mass region and W mass there. Accept according to weight. ) 380 HREG=RLU(0)*(HWT1+HWT2+HWT3) IF(HREG.LE.HWT1) THEN 0 HW=1.+HG*TAN(HATL+RLU(0)*(HATM-HATL)) HACC=HMEPS(HW/HQW) ' ELSEIF(HREG.LE.HWT1+HWT2) THEN ( HW=HM+RLU(0)*(MIN(1.,HUW)-HM) 4 HACC=HMEPS(HW/HQW)/((HW-1.)**2+HG**2)/HMV ELSE 4$ HW=1.+HG*TAN(RLU(0)*HATU) HACC=HMEPS(HW/HQW)/HMP1 ENDIF $ IF(HACC.LT.RLU(0)) GOTO 380 P(N+1,5)=PMAS(24,1)*SQRT(HW) ENDIF VG C...Determine position of grandmother, number of sisters, Q -> W sign. NM=0 V KFAS=0 MSGN=0 -' IF(MMAT.EQ.3.OR.MMAT.EQ.46) THEN S IM=K(IP,3) IF(IM.LT.0.OR.IM.GE.IP) IM=0 . IF(MMAT.EQ.46.AND.MSTJ(27).EQ.1) THEN IM=0 2> ELSEIF(MMAT.EQ.46.AND.MSTJ(27).GE.2.AND.IM.NE.0) THEN ! IF(K(IM,2).EQ.94) THEN = IM=K(K(IM,3),3) ) IF(IM.LT.0.OR.IM.GE.IP) IM=0 3 ENDIF ENDIF ' IF(IM.NE.0) KFAM=IABS(K(IM,2)) 1' IF(IM.NE.0.AND.MMAT.EQ.3) THEN -/ DO 390 IL=MAX(IP-2,IM+1),MIN(IP+2,N) r$ IF(K(IL,3).EQ.IM) NM=NM+1 1 IF(K(IL,3).EQ.IM.AND.IL.NE.IP) ISIS=IL D 390 CONTINUE &= IF(NM.NE.2.OR.KFAM.LE.100.OR.MOD(KFAM,10).NE.1.OR. ' & MOD(KFAM/1000,10).NE.0) NM=0 IF(NM.EQ.2) THEN! KFAS=IABS(K(ISIS,2)) 5 IF((KFAS.LE.100.OR.MOD(KFAS,10).NE.1.OR. *9 & MOD(KFAS/1000,10).NE.0).AND.KFAS.NE.22) NM=0 ENDIF , ELSEIF(IM.NE.0.AND.MMAT.EQ.46) THEN ( MSGN=ISIGN(1,K(IM,2)*K(IP,2)) ; IF(KFAM.GT.100.AND.MOD(KFAM/1000,10).EQ.0) MSGN= 2& & MSGN*(-1)**MOD(KFAM/100,10) ENDIF ENDIF ' C...Kinematics of one-particle decays. , IF(ND.EQ.1) THEN ) DO 400 J=1,4 , P(N+1,J)=P(IP,J) V 400 CONTINUE D GOTO 660 4 ENDIF 00 C...Calculate maximum weight ND-particle decay. PV(ND,5)=P(N+ND,5) D IF(ND.GE.3) THEN C WTMAX=1./WTCOR(ND-2) E PMAX=PV(1,5)-PS+P(N+ND,5) PMIN=0. DO 410 IL=ND-1,1,-1 PMAX=PMAX+P(N+IL,5) PMIN=PMIN+P(N+IL+1,5) . WTMAX=WTMAX*PAWT(PMAX,PMIN,P(N+IL,5)) 410 CONTINUE ENDIF (- C...Find virtual gamma mass in Dalitz decay. P 420 IF(ND.EQ.2) THEN ( ELSEIF(MMAT.EQ.2) THEN ) PMES=4.*PMAS(11,1)**2 PMRHO2=PMAS(131,1)**2 PGRHO2=PMAS(131,2)**2 , 430 PMST=PMES*(P(IP,5)**2/PMES)**RLU(0) 9 WT=(1+0.5*PMES/PMST)*SQRT(MAX(0.,1.-PMES/PMST))* 4 & (1.-PMST/P(IP,5)**2)**3*(1.+PGRHO2/PMRHO2)/ , & ((1.-PMST/PMRHO2)**2+PGRHO2/PMRHO2) IF(WT.LT.RLU(0)) GOTO 430 3 PV(2,5)=MAX(2.00001*PMAS(11,1),SQRT(PMST)) N 6 C...M-generator gives weight. If rejected, try again. ELSE 440 RORD(1)=1. 0 DO 470 IL1=2,ND-1 RSAV=RLU(0) DO 450 IL2=IL1-1,1,-1 ' IF(RSAV.LE.RORD(IL2)) GOTO 460 R RORD(IL2+1)=RORD(IL2) 450 CONTINUE 460 RORD(IL2+1)=RSAV 2 470 CONTINUE P RORD(ND)=0. WT=1. DO 480 IL=ND-1,1,-1 I PV(IL,5)=PV(IL+1,5)+P(N+IL,5)+(RORD(IL)-RORD(IL+1))*(PV(1,5)-PS) P2 WT=WT*PAWT(PV(IL,5),PV(IL+1,5),P(N+IL,5)) 480 CONTINUE E( IF(WT.LT.RLU(0)*WTMAX) GOTO 440 ENDIF 8 C...Perform two-particle decays in respective CM frame. 490 DO 510 IL=1,ND-1 E- PA=PAWT(PV(IL,5),PV(IL+1,5),P(N+IL,5)) g UE(3)=2.*RLU(0)-1. m PHI=PARU(2)*RLU(0) ' UE(1)=SQRT(1.-UE(3)**2)*COS(PHI) T' UE(2)=SQRT(1.-UE(3)**2)*SIN(PHI) 1 DO 500 J=1,3 . P(N+IL,J)=PA*UE(J) a PV(IL+1,J)=-PA*UE(J) 500 CONTINUE Q) P(N+IL,4)=SQRT(PA**2+P(N+IL,5)**2) F+ PV(IL+1,4)=SQRT(PA**2+PV(IL+1,5)**2) e 510 CONTINUE o y3 C...Lorentz transform decay products to lab frame. I DO 520 J=1,4 E P(N+ND,J)=PV(ND,J) 520 CONTINUE u DO 560 IL=ND-1,1,-1 DO 530 J=1,3 BE(J)=PV(IL,J)/PV(IL,4) 530 CONTINUE GA=PV(IL,4)/PV(IL,5) DO 550 I=N+IL,N+ND (1 BEP=BE(1)*P(I,1)+BE(2)*P(I,2)+BE(3)*P(I,3) E DO 540 J=1,3 .5 P(I,J)=P(I,J)+GA*(GA*BEP/(1.+GA)+P(I,4))*BE(J) T 540 CONTINUE P(I,4)=GA*(P(I,4)+BEP) 1 550 CONTINUE 560 CONTINUE L N: C...Check that no infinite loop in matrix element weight. NTRY=NTRY+1 IF(NTRY.GT.800) GOTO 590 . C...Matrix elements for omega and phi decays. IF(MMAT.EQ.1) THEN 0G WT=(P(N+1,5)*P(N+2,5)*P(N+3,5))**2-(P(N+1,5)*FOUR(N+2,N+3))**2 A & -(P(N+2,5)*FOUR(N+1,N+3))**2-(P(N+3,5)*FOUR(N+1,N+2))**2 06 & +2.*FOUR(N+1,N+2)*FOUR(N+1,N+3)*FOUR(N+2,N+3) A IF(MAX(WT*WTCOR(9)/P(IP,5)**6,0.001).LT.RLU(0)) GOTO 420 Q A C...Matrix elements for pi0 or eta Dalitz decay to gamma e+ e-. ELSEIF(MMAT.EQ.2) THEN & FOUR12=FOUR(N+1,N+2) 1 FOUR13=FOUR(N+1,N+3) F2 WT=(PMST-0.5*PMES)*(FOUR12**2+FOUR13**2)+ 1 & PMES*(FOUR12*FOUR13+FOUR12**2+FOUR13**2) ,A IF(WT.LT.RLU(0)*0.25*PMST*(P(IP,5)**2-PMST)**2) GOTO 490 Q C...Matrix element for S0 -> S1 + V1 -> S1 + S2 + S3 (S scalar, A C...V vector), of form cos**2(theta02) in V1 rest frame, and for B C...S0 -> gamma + V1 -> gamma + S2 + S3, of form sin**2(theta02). ) ELSEIF(MMAT.EQ.3.AND.NM.EQ.2) THEN ( FOUR10=FOUR(IP,IM) FOUR12=FOUR(IP,N+1) FOUR02=FOUR(IM,N+1) PMS1=P(IP,5)**2 PMS0=P(IM,5)**2 PMS2=P(N+1,5)**2 ; IF(KFAS.NE.22) HNUM=(FOUR10*FOUR12-PMS1*FOUR02)**2 .; IF(KFAS.EQ.22) HNUM=PMS1*(2.*FOUR10*FOUR12*FOUR02- ME & PMS1*FOUR02**2-PMS0*FOUR12**2-PMS2*FOUR10**2+PMS1*PMS0*PMS2) . HNUM=MAX(1E-6*PMS1**2*PMS0*PMS2,HNUM) 9 HDEN=(FOUR10**2-PMS1*PMS0)*(FOUR12**2-PMS1*PMS2) J) IF(HNUM.LT.RLU(0)*HDEN) GOTO 490 > C...Matrix element for onium -> g + g + g or gamma + g + g. ELSEIF(MMAT.EQ.4) THEN ' HX1=2.*FOUR(IP,N+1)/P(IP,5)**2 F' HX2=2.*FOUR(IP,N+2)/P(IP,5)**2 ' HX3=2.*FOUR(IP,N+3)/P(IP,5)**2 S< WT=((1.-HX1)/(HX2*HX3))**2+((1.-HX2)/(HX1*HX3))**2+ & ((1.-HX3)/(HX1*HX2))**2 IF(WT.LT.2.*RLU(0)) GOTO 420 )F IF(K(IP+1,2).EQ.22.AND.(1.-HX1)*P(IP,5)**2.LT.4.*PARJ(32)**2) & GOTO 420 - )E C...Effective matrix element for nu spectrum in tau -> nu + hadrons. ELSEIF(MMAT.EQ.41) THEN ' HX1=2.*FOUR(IP,N+1)/P(IP,5)**2 L) HXM=MIN(0.75,2.*(1.-PS/P(IP,5))) .? IF(HX1*(3.-2.*HX1).LT.RLU(0)*HXM*(3.-2.*HXM)) GOTO 420 W sD C...Matrix elements for weak decays (only semileptonic for c and b) D ELSEIF((MMAT.EQ.42.OR.MMAT.EQ.43.OR.MMAT.EQ.44.OR.MMAT.EQ.48) &.AND.ND.EQ.3) THEN V4 IF(MBST.EQ.0) WT=FOUR(IP,N+1)*FOUR(N+2,N+3) 8 IF(MBST.EQ.1) WT=P(IP,5)*P(N+1,4)*FOUR(N+2,N+3) ? IF(WT.LT.RLU(0)*P(IP,5)*PV(1,5)**3/WTCOR(10)) GOTO 420 iH ELSEIF(MMAT.EQ.42.OR.MMAT.EQ.43.OR.MMAT.EQ.44.OR.MMAT.EQ.48) THEN DO 580 J=1,4 P(N+NP+1,J)=0. 4 DO 570 IS=N+3,N+NP 2( P(N+NP+1,J)=P(N+NP+1,J)+P(IS,J) 570 CONTINUE P 580 CONTINUE 7 IF(MBST.EQ.0) WT=FOUR(IP,N+1)*FOUR(N+2,N+NP+1) S; IF(MBST.EQ.1) WT=P(IP,5)*P(N+1,4)*FOUR(N+2,N+NP+1) ,? IF(WT.LT.RLU(0)*P(IP,5)*PV(1,5)**3/WTCOR(10)) GOTO 420 7 C...Angular distribution in W decay. (, ELSEIF(MMAT.EQ.46.AND.MSGN.NE.0) THEN 5 IF(MSGN.GT.0) WT=FOUR(IM,N+1)*FOUR(N+2,IP+1) 5 IF(MSGN.LT.0) WT=FOUR(IM,N+2)*FOUR(N+1,IP+1) P7 IF(WT.LT.RLU(0)*P(IM,5)**4/WTCOR(10)) GOTO 490 ENDIF L. C...Scale back energy and reattach spectator. 590 IF(MREM.EQ.1) THEN DO 600 J=1,5 W! PV(1,J)=PV(1,J)/(1.-PQT) 600 CONTINUE ND=ND+1 MREM=0 T ENDIF WG C...Low invariant mass for system with spectator quark gives particle, 0 C...not two jets. Readjust momenta accordingly. 6 IF((MMAT.EQ.31.OR.MMAT.EQ.45).AND.ND.EQ.3) THEN MSTJ(93)=1 t PM2=ULMASS(K(N+2,2)) A MSTJ(93)=1 i PM3=ULMASS(K(N+3,2)) T8 IF(P(N+2,5)**2+P(N+3,5)**2+2.*FOUR(N+2,N+3).GE. ( & (PARJ(32)+PM2+PM3)**2) GOTO 660 K(N+2,1)=1 / KFTEMP=K(N+2,2) 5 CALL LUKFDI(KFTEMP,K(N+3,2),KFLDMP,K(N+2,2)) H# IF(K(N+2,2).EQ.0) GOTO 260 ) P(N+2,5)=ULMASS(K(N+2,2)) PS=P(N+1,5)+P(N+2,5) U PV(2,5)=P(N+2,5) H MMAT=0 ND=2 GOTO 490 T ELSEIF(MMAT.EQ.44) THEN MSTJ(93)=1 H PM3=ULMASS(K(N+3,2)) e MSTJ(93)=1 n PM4=ULMASS(K(N+4,2)) >8 IF(P(N+3,5)**2+P(N+4,5)**2+2.*FOUR(N+3,N+4).GE. ( & (PARJ(32)+PM3+PM4)**2) GOTO 630 K(N+3,1)=1 KFTEMP=K(N+3,2) 5 CALL LUKFDI(KFTEMP,K(N+4,2),KFLDMP,K(N+3,2)) T# IF(K(N+3,2).EQ.0) GOTO 260 F P(N+3,5)=ULMASS(K(N+3,2)) DO 610 J=1,3 # P(N+3,J)=P(N+3,J)+P(N+4,J) 610 CONTINUE G P(N+3,4)=SQRT(P(N+3,1)**2+P(N+3,2)**2+P(N+3,3)**2+P(N+3,5)**2) # HA=P(N+1,4)**2-P(N+2,4)**2 2( HB=HA-(P(N+1,5)**2-P(N+2,5)**2) : HC=(P(N+1,1)-P(N+2,1))**2+(P(N+1,2)-P(N+2,2))**2+ & (P(N+1,3)-P(N+2,3))**2 ! HD=(PV(1,4)-P(N+3,4))**2 E7 HE=HA**2-2.*HD*(P(N+1,4)**2+P(N+2,4)**2)+HD**2 2 HF=HD*HC-HB**2 A HG=HD*HC-HA*HB * HH=(SQRT(HG**2+HE*HF)-HG)/(2.*HF) DO 620 J=1,3 $ PCOR=HH*(P(N+1,J)-P(N+2,J)) P(N+1,J)=P(N+1,J)+PCOR , P(N+2,J)=P(N+2,J)-PCOR F 620 CONTINUEG P(N+1,4)=SQRT(P(N+1,1)**2+P(N+1,2)**2+P(N+1,3)**2+P(N+1,5)**2) QG P(N+2,4)=SQRT(P(N+2,1)**2+P(N+2,2)**2+P(N+2,3)**2+P(N+2,5)**2) T ND=ND-1 ENDIF GI C...Check invariant mass of W jets. May give one particle or start over. 630 IF((MMAT.EQ.42.OR.MMAT.EQ.43.OR.MMAT.EQ.44.OR.MMAT.EQ.48) & &.AND.IABS(K(N+1,2)).LT.10) THEN C PMR=SQRT(MAX(0.,P(N+1,5)**2+P(N+2,5)**2+2.*FOUR(N+1,N+2))) MSTJ(93)=1 a PM1=ULMASS(K(N+1,2)) MSTJ(93)=1 N PM2=ULMASS(K(N+2,2)) C- IF(PMR.GT.PARJ(32)+PM1+PM2) GOTO 640 P KFLDUM=INT(1.5+RLU(0)) NA CALL LUKFDI(K(N+1,2),-ISIGN(KFLDUM,K(N+1,2)),KFLDMP,KF1) A CALL LUKFDI(K(N+2,2),-ISIGN(KFLDUM,K(N+2,2)),KFLDMP,KF2) N* IF(KF1.EQ.0.OR.KF2.EQ.0) GOTO 260 $ PSM=ULMASS(KF1)+ULMASS(KF2) H IF((MMAT.EQ.42.OR.MMAT.EQ.48).AND.PMR.GT.PARJ(64)+PSM) GOTO 640 < IF(MMAT.GE.43.AND.PMR.GT.0.2*PARJ(32)+PSM) GOTO 640 IF(MMAT.EQ.48) GOTO 420 * IF(ND.EQ.4.OR.KFA.EQ.15) GOTO 260 K(N+1,1)=1 S KFTEMP=K(N+1,2) 5 CALL LUKFDI(KFTEMP,K(N+2,2),KFLDMP,K(N+1,2)) P# IF(K(N+1,2).EQ.0) GOTO 260 2 P(N+1,5)=ULMASS(K(N+1,2)) K(N+2,2)=K(N+3,2) P(N+2,5)=P(N+3,5) PS=P(N+1,5)+P(N+2,5) a, IF(PS+PARJ(64).GT.PV(1,5)) GOTO 260 PV(2,5)=P(N+3,5) = MMAT=0 4 ND=2 GOTO 490 ENDIF I/ C...Phase space decay of partons from W decay. C 640 IF((MMAT.EQ.42.OR.MMAT.EQ.48).AND.IABS(K(N+1,2)).LT.10) THEN KFLO(1)=K(N+1,2) KFLO(2)=K(N+2,2) 0 K(N+1,1)=K(N+3,1) K(N+1,2)=K(N+3,2) DO 650 J=1,5 ( PV(1,J)=P(N+1,J)+P(N+2,J) P(N+1,J)=P(N+3,J) 650 CONTINUE ) PV(1,5)=PMR N=N+1 NP=0 U NQ=2 PS=0. MSTJ(93)=2 w PSQ=ULMASS(KFLO(1)) MSTJ(93)=2 PSQ=PSQ+ULMASS(KFLO(2)) MMAT=11 GOTO 290 ENDIF ., C...Boost back for rapidly moving particle. 660 N=N+ND * IF(MBST.EQ.1) THEN T DO 670 J=1,3 1 BE(J)=P(IP,J)/P(IP,4) 670 CONTINUE GA=P(IP,4)/P(IP,5) DO 690 I=NSAV+1,N 3 BEP=BE(1)*P(I,1)+BE(2)*P(I,2)+BE(3)*P(I,3) R DO 680 J=1,3 e7 P(I,J)=P(I,J)+GA*(GA*BEP/(1.+GA)+P(I,4))*BE(J) c 680 CONTINUE P(I,4)=GA*(P(I,4)+BEP) D 690 CONTINUE 2 ENDIF & C...Fill in position of decay vertex. DO 710 I=NSAV+1,N DO 700 J=1,4 T V(I,J)=VDCY(J) 4 700 CONTINUE V(I,5)=0. 710 CONTINUE E *2 C...Set up for parton shower evolution from jets. A IF(MSTJ(23).GE.1.AND.MMAT.EQ.4.AND.K(NSAV+1,2).EQ.21) THEN K(NSAV+1,1)=3 K(NSAV+2,1)=3 K(NSAV+3,1)=3 K(NSAV+1,4)=MSTU(5)*(NSAV+2) B K(NSAV+1,5)=MSTU(5)*(NSAV+3) m K(NSAV+2,4)=MSTU(5)*(NSAV+3) K(NSAV+2,5)=MSTU(5)*(NSAV+1) r K(NSAV+3,4)=MSTU(5)*(NSAV+1) m K(NSAV+3,5)=MSTU(5)*(NSAV+2) ) MSTJ(92)=-(NSAV+1) / ELSEIF(MSTJ(23).GE.1.AND.MMAT.EQ.4) THEN F K(NSAV+2,1)=3 K(NSAV+3,1)=3 K(NSAV+2,4)=MSTU(5)*(NSAV+3) T K(NSAV+2,5)=MSTU(5)*(NSAV+3) K(NSAV+3,4)=MSTU(5)*(NSAV+2) K(NSAV+3,5)=MSTU(5)*(NSAV+2) m MSTJ(92)=NSAV+2 H ELSEIF(MSTJ(23).GE.1.AND.(MMAT.EQ.32.OR.MMAT.EQ.44.OR.MMAT.EQ.46) E &.AND.IABS(K(NSAV+1,2)).LE.10.AND.IABS(K(NSAV+2,2)).LE.10) THEN 0 K(NSAV+1,1)=3 K(NSAV+2,1)=3 K(NSAV+1,4)=MSTU(5)*(NSAV+2) K(NSAV+1,5)=MSTU(5)*(NSAV+2) I K(NSAV+2,4)=MSTU(5)*(NSAV+1) K(NSAV+2,5)=MSTU(5)*(NSAV+1) T MSTJ(92)=NSAV+1 H ELSEIF(MSTJ(23).GE.1.AND.(MMAT.EQ.32.OR.MMAT.EQ.44.OR.MMAT.EQ.46) E &.AND.IABS(K(NSAV+1,2)).LE.20.AND.IABS(K(NSAV+2,2)).LE.20) THEN MSTJ(92)=NSAV+1 G ELSEIF(MSTJ(23).GE.1.AND.MMAT.EQ.33.AND.IABS(K(NSAV+2,2)).EQ.21) . &THEN D K(NSAV+1,1)=3 K(NSAV+2,1)=3 K(NSAV+3,1)=3 KCP=LUCOMP(K(NSAV+1,2)) - KQP=KCHG(KCP,2)*ISIGN(1,K(NSAV+1,2)) U JCON=4 IF(KQP.LT.0) JCON=5 ( K(NSAV+1,JCON)=MSTU(5)*(NSAV+2) * K(NSAV+2,9-JCON)=MSTU(5)*(NSAV+1) ( K(NSAV+2,JCON)=MSTU(5)*(NSAV+3) * K(NSAV+3,9-JCON)=MSTU(5)*(NSAV+2) MSTJ(92)=NSAV+1 0 ELSEIF(MSTJ(23).GE.1.AND.MMAT.EQ.33) THEN K(NSAV+1,1)=3 K(NSAV+3,1)=3 K(NSAV+1,4)=MSTU(5)*(NSAV+3) K(NSAV+1,5)=MSTU(5)*(NSAV+3) K(NSAV+3,4)=MSTU(5)*(NSAV+1) K(NSAV+3,5)=MSTU(5)*(NSAV+1) c MSTJ(92)=NSAV+1 6 C...Set up for parton shower evolution in t -> W + b. < ELSEIF(MSTJ(27).GE.1.AND.MMAT.EQ.45.AND.ND.EQ.3) THEN K(NSAV+2,1)=3 K(NSAV+3,1)=3 K(NSAV+2,4)=MSTU(5)*(NSAV+3) K(NSAV+2,5)=MSTU(5)*(NSAV+3) K(NSAV+3,4)=MSTU(5)*(NSAV+2) . K(NSAV+3,5)=MSTU(5)*(NSAV+2) t MSTJ(92)=NSAV+1 ENDIF ; C...Mark decayed particle; special option for B-B~ mixing. IF(K(IP,1).EQ.5) K(IP,1)=15 # IF(K(IP,1).LE.10) K(IP,1)=11 MC IF(MMIX.EQ.1.AND.MSTJ(26).EQ.2.AND.K(IP,1).EQ.11) K(IP,1)=12 K(IP,4)=NSAV+1 K(IP,5)=N 3 RETURN 7 END FG C********************************************************************* I Q+ SUBROUTINE LUKFDI(KFL1,KFL2,KFL3,KF) x eF C...Purpose: to generate a new flavour pair and combine off a hadron. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUDAT1/,/LUDAT2/ . R6 C...Default flavour values. Input consistency checks. KF1A=IABS(KFL1) KF2A=IABS(KFL2) KFL3=0 KF=0 K IF(KF1A.EQ.0) RETURN 8 IF(KF2A.NE.0) THEN IF(KF1A.LE.10.AND.KF2A.LE.10.AND.KFL1*KFL2.GT.0) RETURN - IF(KF1A.GT.10.AND.KF2A.GT.10) RETURN A IF((KF1A.GT.10.OR.KF2A.GT.10).AND.KFL1*KFL2.LT.0) RETURN L ENDIF P= C...Check if tabulated flavour probabilities are to be used. i IF(MSTJ(15).EQ.1) THEN KTAB1=-1 / IF(KF1A.GE.1.AND.KF1A.LE.6) KTAB1=KF1A , KFL1A=MOD(KF1A/1000,10) KFL1B=MOD(KF1A/100,10) N KFL1S=MOD(KF1A,10) DD IF(KFL1A.GE.1.AND.KFL1A.LE.4.AND.KFL1B.GE.1.AND.KFL1B.LE.4) 4 & KTAB1=6+KFL1A*(KFL1A-2)+2*KFL1B+(KFL1S-1)/2 G IF(KFL1A.GE.1.AND.KFL1A.LE.4.AND.KFL1A.EQ.KFL1B) KTAB1=KTAB1-1 y/ IF(KF1A.GE.1.AND.KF1A.LE.6) KFL1A=KF1A KTAB2=0 IF(KF2A.NE.0) THEN a KTAB2=-1 1 IF(KF2A.GE.1.AND.KF2A.LE.6) KTAB2=KF2A D KFL2A=MOD(KF2A/1000,10) ! KFL2B=MOD(KF2A/100,10) KFL2S=MOD(KF2A,10) F IF(KFL2A.GE.1.AND.KFL2A.LE.4.AND.KFL2B.GE.1.AND.KFL2B.LE.4) 6 & KTAB2=6+KFL2A*(KFL2A-2)+2*KFL2B+(KFL2S-1)/2 I IF(KFL2A.GE.1.AND.KFL2A.LE.4.AND.KFL2A.EQ.KFL2B) KTAB2=KTAB2-1 R ENDIF / IF(KTAB1.GE.0.AND.KTAB2.GE.0) GOTO 150 0 ENDIF < C...Parameters and breaking diquark parameter combinations. 100 PAR2=PARJ(2) PAR3=PARJ(3) ) PAR4=3.*PARJ(4) IF(MSTJ(12).GE.2) THEN PAR3M=SQRT(PARJ(3)) $ PAR4M=1./(3.*SQRT(PARJ(4))) . PARDM=PARJ(7)/(PARJ(7)+PAR3M*PARJ(6)) > PARS0=PARJ(5)*(2.+(1.+PAR2*PAR3M*PARJ(7))*(1.+PAR4M)) D PARS1=PARJ(7)*PARS0/(2.*PAR3M)+PARJ(5)*(PARJ(6)*(1.+PAR4M)+ $ & PAR2*PAR3M*PARJ(6)*PARJ(7)) I PARS2=PARJ(5)*2.*PARJ(6)*PARJ(7)*(PAR2*PARJ(7)+(1.+PAR4M)/PAR3M) = PARSM=MAX(PARS0,PARS1,PARS2) 3 PAR4=PAR4*(1.+PARSM)/(1.+PARSM/(3.*PAR4M)) 0 ENDIF G3 C...Choice of whether to generate meson or baryon. n 110 MBARY=0 KFDA=0 E IF(KF1A.LE.10) THEN F IF(KF2A.EQ.0.AND.MSTJ(12).GE.1.AND.(1.+PARJ(1))*RLU(0).GT.1.) & MBARY=1 IF(KF2A.GT.10) MBARY=2 +3 IF(KF2A.GT.10.AND.KF2A.LE.10000) KFDA=KF2A S ELSE MBARY=2 $ IF(KF1A.LE.10000) KFDA=KF1A ENDIF .; C...Possibility of process diquark -> meson + new diquark. + IF(KFDA.NE.0.AND.MSTJ(12).GE.2) THEN KFLDA=MOD(KFDA/1000,10) KFLDB=MOD(KFDA/100,10) H KFLDS=MOD(KFDA,10) A WTDQ=PARS0 F- IF(MAX(KFLDA,KFLDB).EQ.3) WTDQ=PARS1 )- IF(MIN(KFLDA,KFLDB).EQ.3) WTDQ=PARS2 3, IF(KFLDS.EQ.1) WTDQ=WTDQ/(3.*PAR4M) , IF((1.+WTDQ)*RLU(0).GT.1.) MBARY=-1 - IF(MBARY.EQ.-1.AND.KF2A.NE.0) RETURN L ENDIF 12 C...Flavour for meson, possibly with new flavour. IF(MBARY.LE.0) THEN KFS=ISIGN(1,KFL1) IF(MBARY.EQ.0) THEN B IF(KF2A.EQ.0) KFL3=ISIGN(1+INT((2.+PAR2)*RLU(0)),-KFL1) ) KFLA=MAX(KF1A,KF2A+IABS(KFL3)) ,) KFLB=MIN(KF1A,KF2A+IABS(KFL3)) .$ IF(KFLA.NE.KF1A) KFS=-KFS 6 C...Splitting of diquark into meson plus new diquark. ELSE B KFL1A=MOD(KF1A/1000,10) ! KFL1B=MOD(KF1A/100,10) D4 120 KFL1D=KFL1A+INT(RLU(0)+0.5)*(KFL1B-KFL1A) KFL1E=KFL1A+KFL1B-KFL1D B IF((KFL1D.EQ.3.AND.RLU(0).GT.PARDM).OR.(KFL1E.EQ.3.AND. ! & RLU(0).LT.PARDM)) THEN $ KFL1D=KFL1A+KFL1B-KFL1D $ KFL1E=KFL1A+KFL1B-KFL1E ENDIF 6 KFL3A=1+INT((2.+PAR2*PAR3M*PARJ(7))*RLU(0)) H IF((KFL1E.NE.KFL3A.AND.RLU(0).GT.(1.+PAR4M)/MAX(2.,1.+PAR4M)) B & .OR.(KFL1E.EQ.KFL3A.AND.RLU(0).GT.2./MAX(2.,1.+PAR4M))) & GOTO 120 N KFLDS=3 A IF(KFL1E.NE.KFL3A) KFLDS=2*INT(RLU(0)+1./(1.+PAR4M))+1 AG KFL3=ISIGN(10000+1000*MAX(KFL1E,KFL3A)+100*MIN(KFL1E,KFL3A)+ 4 & KFLDS,-KFL1) 1 KFLA=MAX(KFL1D,KFL3A) KFLB=MIN(KFL1D,KFL3A) IF(KFLA.NE.KFL1D) KFS=-KFS ENDIF B C...Form meson, with spin and flavour mixing for diagonal states. 0 IF(KFLA.LE.2) KMUL=INT(PARJ(11)+RLU(0)) 0 IF(KFLA.EQ.3) KMUL=INT(PARJ(12)+RLU(0)) 0 IF(KFLA.GE.4) KMUL=INT(PARJ(13)+RLU(0)) . IF(KMUL.EQ.0.AND.PARJ(14).GT.0.) THEN ( IF(RLU(0).LT.PARJ(14)) KMUL=2 D ELSEIF(KMUL.EQ.1.AND.PARJ(15)+PARJ(16)+PARJ(17).GT.0.) THEN RMUL=RLU(0) & IF(RMUL.LT.PARJ(15)) KMUL=3 = IF(KMUL.EQ.1.AND.RMUL.LT.PARJ(15)+PARJ(16)) KMUL=4 NF (KMUL.EQ.1.AND.RMUL.LT.PARJ(15)+PARJ(16)+PARJ(17)) KMUL=5 ENDIF KFLS=3 a* IF(KMUL.EQ.0.OR.KMUL.EQ.3) KFLS=1 IF(KMUL.EQ.5) KFLS=5 I IF(KFLA.NE.KFLB) THEN 4 KF=(100*KFLA+10*KFLB+KFLS)*KFS*(-1)**KFLA ELSE RMIX=RLU(0) IMIX=2*KFLA+10*KMUL : IF(KFLA.LE.3) KF=110*(1+INT(RMIX+PARF(IMIX-1))+ & INT(RMIX+PARF(IMIX)))+KFLS N) IF(KFLA.GE.4) KF=110*KFLA+KFLS 1 ENDIF 9 IF(KMUL.EQ.2.OR.KMUL.EQ.3) KF=KF+ISIGN(10000,KF) , IF(KMUL.EQ.4) KF=KF+ISIGN(20000,KF) m0 C...Optional extra suppression of eta and eta'. IF(KF.EQ.221) THEN * IF(RLU(0).GT.PARJ(25)) GOTO 110 ELSEIF(KF.EQ.331) THEN * IF(RLU(0).GT.PARJ(26)) GOTO 110 ENDIF + C...Generate diquark flavour. ELSE 2* 130 IF(KF1A.LE.10.AND.KF2A.EQ.0) THEN KFLA=KF1A , 140 KFLB=1+INT((2.+PAR2*PAR3)*RLU(0)) , KFLC=1+INT((2.+PAR2*PAR3)*RLU(0)) KFLDS=1 # IF(KFLB.GE.KFLC) KFLDS=3 a8 IF(KFLDS.EQ.1.AND.PAR4*RLU(0).GT.1.) GOTO 140 5 IF(KFLDS.EQ.3.AND.PAR4.LT.RLU(0)) GOTO 140 H KFL3=ISIGN(1000*MAX(KFLB,KFLC)+100*MIN(KFLB,KFLC)+KFLDS,KFL1) 2 C...Take diquark flavour from input. 0 ELSEIF(KF1A.LE.10) THEN KFLA=KF1A ! KFLB=MOD(KF2A/1000,10) 1 KFLC=MOD(KF2A/100,10) KFLDS=MOD(KF2A,10) r< C...Generate (or take from input) quark to go with diquark. ELSE (A IF(KF2A.EQ.0) KFL3=ISIGN(1+INT((2.+PAR2)*RLU(0)),KFL1) R KFLA=KF2A+IABS(KFL3) F! KFLB=MOD(KF1A/1000,10) M KFLC=MOD(KF1A/100,10) KFLDS=MOD(KF1A,10) ENDIF ? C...SU(6) factors for formation of baryon. Try again if fails. KBARY=KFLDS 0 IF(KFLDS.EQ.3.AND.KFLB.NE.KFLC) KBARY=5 8 IF(KFLA.NE.KFLB.AND.KFLA.NE.KFLC) KBARY=KBARY+1 2 WT=PARF(60+KBARY)+PARJ(18)*PARF(70+KBARY) . IF(MBARY.EQ.1.AND.MSTJ(12).GE.2) THEN WTDQ=PARS0 U- IF(MAX(KFLB,KFLC).EQ.3) WTDQ=PARS1 e- IF(MIN(KFLB,KFLC).EQ.3) WTDQ=PARS2 . IF(KFLDS.EQ.1) WTDQ=WTDQ/(3.*PAR4M) ? IF(KFLDS.EQ.1) WT=WT*(1.+WTDQ)/(1.+PARSM/(3.*PAR4M)) 24 IF(KFLDS.EQ.3) WT=WT*(1.+WTDQ)/(1.+PARSM) ENDIF 0 IF(KF2A.EQ.0.AND.WT.LT.RLU(0)) GOTO 130 3< C...Form baryon. Distinguish Lambda- and Sigmalike baryons. ! KFLD=MAX(KFLA,KFLB,KFLC) *! KFLF=MIN(KFLA,KFLB,KFLC) & KFLE=KFLA+KFLB+KFLC-KFLD-KFLF KFLS=2 p? IF((PARF(60+KBARY)+PARJ(18)*PARF(70+KBARY))*RLU(0).GT. & PARF(60+KBARY)) KFLS=4 5 KFLL=0 X= IF(KFLS.EQ.2.AND.KFLD.GT.KFLE.AND.KFLE.GT.KFLF) THEN .1 IF(KFLDS.EQ.1.AND.KFLA.EQ.KFLD) KFLL=1 e IF(KFLDS.EQ.1.AND.KFLA.NE.KFLD) KFLL=INT(0.25+RLU(0)) IF(KFLDS.EQ.3.AND.KFLA.NE.KFLD) KFLL=INT(0.75+RLU(0)) ENDIF E IF(KFLL.EQ.0) KF=ISIGN(1000*KFLD+100*KFLE+10*KFLF+KFLS,KFL1) FE IF(KFLL.EQ.1) KF=ISIGN(1000*KFLD+100*KFLF+10*KFLE+KFLS,KFL1) * ENDIF RETURN B C...Use tabulated probabilities to select new flavour and hadron. , 150 IF(KTAB2.EQ.0.AND.MSTJ(12).LE.0) THEN KT3L=1 KT3U=6 =? ELSEIF(KTAB2.EQ.0.AND.KTAB1.GE.7.AND.MSTJ(12).LE.1) THEN T KT3L=1 KT3U=6 ELSEIF(KTAB2.EQ.0) THEN KT3L=1 KT3U=22 ELSE ) KT3L=KTAB2 N KT3U=KTAB2 . ENDIF RFL=0. W DO 170 KTS=0,2 DO 160 KT3=KT3L,KT3U , RFL=RFL+PARF(120+80*KTAB1+25*KTS+KT3) 160 CONTINUE 170 CONTINUE RFL=RLU(0)*RFL I DO 190 KTS=0,2 . KTABS=KTS DO 180 KT3=KT3L,KT3U KTAB3=KT3 , RFL=RFL-PARF(120+80*KTAB1+25*KTS+KT3) IF(RFL.LE.0.) GOTO 200 e 180 CONTINUE 190 CONTINUE Q 200 CONTINUE 3 C...Reconstruct flavour of produced quark/diquark. 0 IF(KTAB3.LE.6) THEN KFL3A=KTAB3 KFL3B=0 , KFL3=ISIGN(KFL3A,KFL1*(2*KTAB1-13)) ELSE v KFL3A=1 IF(KTAB3.GE.8) KFL3A=2 a IF(KTAB3.GE.11) KFL3A=3 IF(KTAB3.GE.16) KFL3A=4 * KFL3B=(KTAB3-6-KFL3A*(KFL3A-2))/2 $ KFL3=1000*KFL3A+100*KFL3B+1 G IF(KFL3A.EQ.KFL3B.OR.KTAB3.NE.6+KFL3A*(KFL3A-2)+2*KFL3B) KFL3= 2 & KFL3+2 &+ KFL3=ISIGN(KFL3,KFL1*(13-2*KTAB1)) ( ENDIF C...Reconstruct meson code. ? IF(KFL3A.EQ.KFL1A.AND.KFL3B.EQ.KFL1B.AND.(KFL3A.LE.3.OR. . &KFL3B.NE.0)) THEN C RFL=RLU(0)*(PARF(143+80*KTAB1+25*KTABS)+PARF(144+80*KTAB1+ V/ & 25*KTABS)+PARF(145+80*KTAB1+25*KTABS)) KF=110+2*KTABS+1 IF(RFL.GT.PARF(143+80*KTAB1+25*KTABS)) KF=220+2*KTABS+1 A IF(RFL.GT.PARF(143+80*KTAB1+25*KTABS)+PARF(144+80*KTAB1+ $ & 25*KTABS)) KF=330+2*KTABS+1 - ELSEIF(KTAB1.LE.6.AND.KTAB3.LE.6) THEN * KFLA=MAX(KTAB1,KTAB3) KFLB=MIN(KTAB1,KTAB3) KFS=ISIGN(1,KFL1) IF(KFLA.NE.KF1A) KFS=-KFS 7 KF=(100*KFLA+10*KFLB+2*KTABS+1)*KFS*(-1)**KFLA ,- ELSEIF(KTAB1.GE.7.AND.KTAB3.GE.7) THEN P KFS=ISIGN(1,KFL1) IF(KFL1A.EQ.KFL3A) THEN KFLA=MAX(KFL1B,KFL3B) KFLB=MIN(KFL1B,KFL3B) IF(KFLA.NE.KFL1B) KFS=-KFS N$ ELSEIF(KFL1A.EQ.KFL3B) THEN KFLA=KFL3A N KFLB=KFL1B KFS=-KFS ,$ ELSEIF(KFL1B.EQ.KFL3A) THEN KFLA=KFL1A 2 KFLB=KFL3B +$ ELSEIF(KFL1B.EQ.KFL3B) THEN KFLA=MAX(KFL1A,KFL3A) KFLB=MIN(KFL1A,KFL3A) IF(KFLA.NE.KFL1A) KFS=-KFS ELSE JG CALL LUERRM(2,'(LUKFDI:) no matching flavours for qq -> qq') - GOTO 100 N ENDIF 7 KF=(100*KFLA+10*KFLB+2*KTABS+1)*KFS*(-1)**KFLA * Q C...Reconstruct baryon code. ) ELSE * IF(KTAB1.GE.7) THEN KFLA=KFL3A KFLB=KFL1A n KFLC=KFL1B ELSE r KFLA=KFL1A KFLB=KFL3A . KFLC=KFL3B 4 ENDIF ! KFLD=MAX(KFLA,KFLB,KFLC) T! KFLF=MIN(KFLA,KFLB,KFLC) ,& KFLE=KFLA+KFLB+KFLC-KFLD-KFLF C IF(KTABS.EQ.0) KF=ISIGN(1000*KFLD+100*KFLF+10*KFLE+2,KFL1) )I IF(KTABS.GE.1) KF=ISIGN(1000*KFLD+100*KFLE+10*KFLF+2*KTABS,KFL1) ENDIF ; C...Check that constructed flavour code is an allowed one. ( IF(KFL2.NE.0) KFL3=0 KC=LUCOMP(KF) IF(KC.EQ.0) THEN NH CALL LUERRM(2,'(LUKFDI:) user-defined flavour probabilities '// & 'failed') GOTO 100 F ENDIF M RETURN M END SG C********************************************************************* # SUBROUTINE LUPTDI(KFL,PX,PY) FF C...Purpose: to generate transverse momentum according to a Gaussian. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) SAVE /LUDAT1/ Q9 C...Generate p_T and azimuthal angle, gives p_x and p_y. KFLA=IABS(KFL) 0 PT=PARJ(21)*SQRT(-LOG(MAX(1E-10,RLU(0)))) , IF(PARJ(23).GT.RLU(0)) PT=PARJ(24)*PT ' IF(MSTJ(91).EQ.1) PT=PARJ(22)*PT , IF(KFLA.EQ.0.AND.MSTJ(13).LE.0) PT=0. PHI=PARU(2)*RLU(0) PX=PT*COS(PHI) f PY=PT*SIN(PHI) F M RETURN T END SG C********************************************************************* + )( SUBROUTINE LUZDIS(KFL1,KFL2,PR,Z) , C...Purpose: to generate the longitudinal splitting variable z. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUDAT1/,/LUDAT2/ w * C...Check if heavy flavour fragmentation. KFLA=IABS(KFL1) KFLB=IABS(KFL2) KFLH=KFLA , IF(KFLA.GE.10) KFLH=MOD(KFLA/1000,10) rD C...Lund symmetric scaling function: determine parameters of shape. < IF(MSTJ(11).EQ.1.OR.(MSTJ(11).EQ.3.AND.KFLH.LE.3).OR. &MSTJ(11).GE.4) THEN FA=PARJ(41) & IF(MSTJ(91).EQ.1) FA=PARJ(43) & IF(KFLB.GE.10) FA=FA+PARJ(45) FBB=PARJ(42) ' IF(MSTJ(91).EQ.1) FBB=PARJ(44) 4 FB=FBB*PR FC=1. & IF(KFLA.GE.10) FC=FC-PARJ(45) & IF(KFLB.GE.10) FC=FC+PARJ(45) ; IF(MSTJ(11).GE.4.AND.KFLH.GE.4.AND.KFLH.LE.5) THEN FRED=PARJ(46) 8 IF(MSTJ(11).EQ.5.AND.KFLH.EQ.5) FRED=PARJ(47) + FC=FC+FRED*FBB*PARF(100+KFLH)**2 u? ELSEIF(MSTJ(11).GE.4.AND.KFLH.GE.6.AND.KFLH.LE.8) THEN + FRED=PARJ(46) * IF(MSTJ(11).EQ.5) FRED=PARJ(48) ) FC=FC+FRED*FBB*PMAS(KFLH,1)**2 S ENDIF MC=1 V$ IF(ABS(FC-1.).GT.0.01) MC=2 2E C...Determine position of maximum. Special cases for a = 0 or a = c. IF(FA.LT.0.02) THEN MA=1 3 ZMAX=1. IF(FC.GT.FB) ZMAX=FB/FC ( ELSEIF(ABS(FC-FA).LT.0.01) THEN MA=2 S ZMAX=FB/(FB+FC) ELSE MA=3 5= ZMAX=0.5*(FB+FC-SQRT((FB-FC)**2+4.*FA*FB))/(FC-FA) (D IF(ZMAX.GT.0.9999.AND.FB.GT.100.) ZMAX=MIN(ZMAX,1.-FA/FB) ENDIF AA C...Subdivide z range if distribution very peaked near endpoint. M MMAX=2 & IF(ZMAX.LT.0.1) THEN D MMAX=1 L ZDIV=2.75*ZMAX V IF(MC.EQ.1) THEN = FINT=1.-LOG(ZDIV) ELSE ZDIVC=ZDIV**(1.-FC) * FINT=1.+(1.-1./ZDIVC)/(FC-1.) ENDIF / ELSEIF(ZMAX.GT.0.85.AND.FB.GT.1.) THEN MMAX=3 1# FSCB=SQRT(4.+(FC/FB)**2) T? ZDIV=FSCB-1./ZMAX-(FC/FB)*LOG(ZMAX*0.5*(FSCB+FC/FB)) )5 IF(MA.GE.2) ZDIV=ZDIV+(FA/FB)*LOG(1.-ZMAX) M& ZDIV=MIN(ZMAX,MAX(0.,ZDIV)) FINT=1.+FB*(1.-ZDIV) ENDIF =9 C...Choice of z, preweighted for peaks at low or high z. 100 Z=RLU(0) , FPRE=1. IF(MMAX.EQ.1) THEN IF(FINT*RLU(0).LE.1.) THEN L Z=ZDIV*Z ( ELSEIF(MC.EQ.1) THEN Z=ZDIV**Z FPRE=ZDIV/Z ELSE T4 Z=1./(ZDIVC+Z*(1.-ZDIVC))**(1./(1.-FC)) FPRE=(ZDIV/Z)**FC ENDIF ELSEIF(MMAX.EQ.3) THEN IF(FINT*RLU(0).LE.1.) THEN 1 Z=ZDIV+LOG(Z)/FB 5 FPRE=EXP(FB*(Z-ZDIV)) ELSE Z=ZDIV+Z*(1.-ZDIV) + ENDIF ENDIF A, C...Weighting according to correct formula. ( IF(Z.LE.0..OR.Z.GE.1.) GOTO 100 . FEXP=FC*LOG(ZMAX/Z)+FB*(1./ZMAX-1./Z) 7 IF(MA.GE.2) FEXP=FEXP+FA*LOG((1.-Z)/(1.-ZMAX)) V* FVAL=EXP(MAX(-50.,MIN(50.,FEXP))) ) IF(FVAL.LT.RLU(0)*FPRE) GOTO 100 C C...Generate z according to Field-Feynman, SLAC, (1-z)**c R z**c. A ELSE FC=PARJ(50+MAX(1,KFLH)) & IF(MSTJ(91).EQ.1) FC=PARJ(59) 110 Z=RLU(0) n' IF(FC.GE.0..AND.FC.LE.1.) THEN + IF(FC.GT.RLU(0)) Z=1.-Z**(1./3.) F+ ELSEIF(FC.GT.-1.AND.FC.LT.0.) THEN 1H IF(-4.*FC*Z*(1.-Z)**2.LT.RLU(0)*((1.-Z)**2-FC*Z)**2) GOTO 110 ELSE ' IF(FC.GT.0.) Z=1.-Z**(1./FC) * IF(FC.LT.0.) Z=Z**(-1./FC) ENDIF ENDIF , RETURN END G C********************************************************************* T S& SUBROUTINE LUSHOW(IP1,IP2,QMAX) E C...Purpose: to generate timelike parton showers from given partons. A# IMPLICIT DOUBLE PRECISION(D) l4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) & SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ ? DIMENSION PMTH(5,50),PS(5),PMA(4),PMSD(4),IEP(4),IPA(4), UC &KFLA(4),KFLD(4),KFL(4),ITRY(4),ISI(4),ISL(4),DP(4),DPT(5,4), NC &KSH(0:40),KCII(2),NIIS(2),IIIS(2,2),THEIIS(2,2),PHIIIS(2,2), e &ISII(2) ) C...Initialization of cutoff masses etc. 1C IF(MSTJ(41).LE.0.OR.(MSTJ(41).EQ.1.AND.QMAX.LE.PARJ(82)).OR. - &QMAX.LE.MIN(PARJ(82),PARJ(83))) RETURN ) DO 100 IFL=0,40 KSH(IFL)=0 F 100 CONTINUE F KSH(21)=1 PMTH(1,21)=ULMASS(21) 6 PMTH(2,21)=SQRT(PMTH(1,21)**2+0.25*PARJ(82)**2) PMTH(3,21)=2.*PMTH(2,21) K PMTH(4,21)=PMTH(3,21) PMTH(5,21)=PMTH(3,21) PMTH(1,22)=ULMASS(22) 6 PMTH(2,22)=SQRT(PMTH(1,22)**2+0.25*PARJ(83)**2) PMTH(3,22)=2.*PMTH(2,22) K PMTH(4,22)=PMTH(3,22) PMTH(5,22)=PMTH(3,22) PMQTH1=PARJ(82) 6 IF(MSTJ(41).GE.2) PMQTH1=MIN(PARJ(82),PARJ(83)) PMQTH2=PMTH(2,21) : IF(MSTJ(41).GE.2) PMQTH2=MIN(PMTH(2,21),PMTH(2,22)) DO 110 IFL=1,8 1 KSH(IFL)=1 K PMTH(1,IFL)=ULMASS(IFL) 6 PMTH(2,IFL)=SQRT(PMTH(1,IFL)**2+0.25*PMQTH1**2) PMTH(3,IFL)=PMTH(2,IFL)+PMQTH2 C PMTH(4,IFL)=SQRT(PMTH(1,IFL)**2+0.25*PARJ(82)**2)+PMTH(2,21) nC PMTH(5,IFL)=SQRT(PMTH(1,IFL)**2+0.25*PARJ(83)**2)+PMTH(2,22) A 110 CONTINUE M DO 120 IFL=11,17,2 # IF(MSTJ(41).GE.2) KSH(IFL)=1 = PMTH(1,IFL)=ULMASS(IFL) 8 PMTH(2,IFL)=SQRT(PMTH(1,IFL)**2+0.25*PARJ(83)**2) ) PMTH(3,IFL)=PMTH(2,IFL)+PMTH(2,22) PMTH(4,IFL)=PMTH(3,IFL) PMTH(5,IFL)=PMTH(3,IFL) 120 CONTINUE A/ PT2MIN=MAX(0.5*PARJ(82),1.1*PARJ(81))**2 * ALAMS=PARJ(81)**2 ALFM=LOG(PT2MIN/ALAMS) 2 C...Store positions of shower initiating partons. H IF(IP1.GT.0.AND.IP1.LE.MIN(N,MSTU(4)-MSTU(32)).AND.IP2.EQ.0) THEN NPA=1 IPA(1)=IP1 B ELSEIF(MIN(IP1,IP2).GT.0.AND.MAX(IP1,IP2).LE.MIN(N,MSTU(4)- &MSTU(32))) THEN NPA=2 IPA(1)=IP1 IPA(2)=IP2 F ELSEIF(IP1.GT.0.AND.IP1.LE.MIN(N,MSTU(4)-MSTU(32)).AND.IP2.LT.0 &.AND.IP2.GE.-3) THEN NPA=IABS(IP2) DO 130 I=1,NPA IPA(I)=IP1+I-1 b 130 CONTINUE q ELSE CALL LUERRM(12, < & '(LUSHOW:) failed to reconstruct showering system') ! IF(MSTU(21).GE.1) RETURN 0 ENDIF F1 C...Check on phase space available for emission. F IREJ=0 B DO 140 J=1,5 PS(J)=0. L 140 CONTINUE PM=0. DO 160 I=1,NPA D KFLA(I)=IABS(K(IPA(I),2)) PMA(I)=P(IPA(I),5) -; C...Special cutoff masses for t, l, h with variable masses.I IFLA=KFLA(I), IF(KFLA(I).GE.6.AND.KFLA(I).LE.8) THEN, IFLA=37+KFLA(I)+ISIGN(2,K(IPA(I),2)) PMTH(1,IFLA)=PMA(I)E: PMTH(2,IFLA)=SQRT(PMTH(1,IFLA)**2+0.25*PMQTH1**2) ) PMTH(3,IFLA)=PMTH(2,IFLA)+PMQTH2 BG PMTH(4,IFLA)=SQRT(PMTH(1,IFLA)**2+0.25*PARJ(82)**2)+PMTH(2,21) .G PMTH(5,IFLA)=SQRT(PMTH(1,IFLA)**2+0.25*PARJ(83)**2)+PMTH(2,22) a ENDIF IF(KFLA(I).LE.40) THEN A1 IF(KSH(KFLA(I)).EQ.1) PMA(I)=PMTH(3,IFLA)2 ENDIF PM=PM+PMA(I) K IF(KFLA(I).GT.40) THEN F IREJ=IREJ+1 ELSE 1< IF(KSH(KFLA(I)).EQ.0.OR.PMA(I).GT.QMAX) IREJ=IREJ+1 ENDIF DO 150 J=1,4 PS(J)=PS(J)+P(IPA(I),J) 150 CONTINUE + 160 CONTINUE IF(IREJ.EQ.NPA) RETURN +> PS(5)=SQRT(MAX(0.,PS(4)**2-PS(1)**2-PS(2)**2-PS(3)**2)) IF(NPA.EQ.1) PS(5)=PS(4) .$ IF(PS(5).LE.PM+PMQTH1) RETURN 3/ C...Check if 3-jet matrix elements to be used. M3JC=0 * IF(NPA.EQ.2.AND.MSTJ(47).GE.1) THEN ? IF(KFLA(1).GE.1.AND.KFLA(1).LE.8.AND.KFLA(2).GE.1.AND. 0 & KFLA(2).LE.8) M3JC=1 K IF((KFLA(1).EQ.11.OR.KFLA(1).EQ.13.OR.KFLA(1).EQ.15.OR. 6 & KFLA(1).EQ.17).AND.KFLA(2).EQ.KFLA(1)) M3JC=1 IF((KFLA(1).EQ.11.OR.KFLA(1).EQ.13.OR.KFLA(1).EQ.15.OR. 8 & KFLA(1).EQ.17).AND.KFLA(2).EQ.KFLA(1)+1) M3JC=1 IF((KFLA(1).EQ.12.OR.KFLA(1).EQ.14.OR.KFLA(1).EQ.16.OR. 8 & KFLA(1).EQ.18).AND.KFLA(2).EQ.KFLA(1)-1) M3JC=1 2 IF(MSTJ(47).EQ.2.OR.MSTJ(47).EQ.4) M3JC=1 M3JCM=0 D IF(M3JC.EQ.1.AND.MSTJ(47).GE.3.AND.KFLA(1).EQ.KFLA(2)) THEN M3JCM=1 , QME=(2.*PMTH(1,KFLA(1))/PS(5))**2 ENDIF ENDIF 5 C...Find if interference with initial state partons. MIIS=0 E IF(MSTJ(50).GE.1.AND.MSTJ(50).LE.3.AND.NPA.EQ.2) MIIS=MSTJ(50) IF(MIIS.NE.0) THEN DO 180 I=1,2 . KCII(I)=0 KCA=LUCOMP(KFLA(I)) > IF(KCA.NE.0) KCII(I)=KCHG(KCA,2)*ISIGN(1,K(IPA(I),2)) NIIS(I)=0 IF(KCII(I).NE.0) THEN DO 170 J=1,2 X2 ICSI=MOD(K(IPA(I),3+J)/MSTU(5),MSTU(5)) B IF(ICSI.GT.0.AND.ICSI.NE.IPA(1).AND.ICSI.NE.IPA(2).AND. 9 & (KCII(I).EQ.(-1)**(J+1).OR.KCII(I).EQ.2)) THEN NIIS(I)=NIIS(I)+1 ! IIIS(I,NIIS(I))=ICSI F ENDIF 170 CONTINUE ENDIF 180 CONTINUE t( IF(NIIS(1)+NIIS(2).EQ.0) MIIS=0 ENDIF U4 C...Boost interfering initial partons to rest frame 6 C...and reconstruct their polar and azimuthal angles. IF(MIIS.NE.0) THEN e DO 200 I=1,2 DO 190 J=1,5 1 K(N+I,J)=K(IPA(I),J) P(N+I,J)=P(IPA(I),J) F V(N+I,J)=0. 190 CONTINUE 200 CONTINUE R DO 220 I=3,2+NIIS(1) D DO 210 J=1,5 . K(N+I,J)=K(IIIS(1,I-2),J) P(N+I,J)=P(IIIS(1,I-2),J) V(N+I,J)=0. 210 CONTINUE . 220 CONTINUE - DO 240 I=3+NIIS(1),2+NIIS(1)+NIIS(2) N DO 230 J=1,5 * K(N+I,J)=K(IIIS(2,I-2-NIIS(1)),J) * P(N+I,J)=P(IIIS(2,I-2-NIIS(1)),J) V(N+I,J)=0. 230 CONTINUE 0 240 CONTINUE FF CALL LUDBRB(N+1,N+2+NIIS(1)+NIIS(2),0.,0.,-DBLE(PS(1)/PS(4)), / & -DBLE(PS(2)/PS(4)),-DBLE(PS(3)/PS(4))) & PHI=ULANGL(P(N+1,1),P(N+1,2)) A CALL LUDBRB(N+1,N+2 IS(1)+NIIS(2),0.,-PHI,0D0,0D0,0D0) K& THE=ULANGL(P(N+1,3),P(N+1,1)) A CALL LUDBRB(N+1,N+2+NIIS(1)+NIIS(2),-THE,0.,0D0,0D0,0D0) DO 250 I=3,2+NIIS(1) E THEIIS(1,I-2)=ULANGL(P(N+I,3),SQRT(P(N+I,1)**2+P(N+I,2)**2)) F0 PHIIIS(1,I-2)=ULANGL(P(N+I,1),P(N+I,2)) 250 CONTINUE L- DO 260 I=3+NIIS(1),2+NIIS(1)+NIIS(2) 7 THEIIS(2,I-2-NIIS(1))=PARU(1)-ULANGL(P(N+I,3), F' & SQRT(P(N+I,1)**2+P(N+I,2)**2)) 8 PHIIIS(2,I-2-NIIS(1))=ULANGL(P(N+I,1),P(N+I,2)) 260 CONTINUE ENDIF .B C...Define imagined single initiator of shower for parton system. NS=N K' IF(N.GT.MSTU(4)-MSTU(32)-5) THEN PB CALL LUERRM(11,'(LUSHOW:) no more memory left in LUJETS') ! IF(MSTU(21).GE.1) RETURN D ENDIF IF(NPA.GE.2) THEN K(N+1,1)=11 K(N+1,2)=21 K(N+1,3)=0 M K(N+1,4)=0 K(N+1,5)=0 , P(N+1,1)=0. P(N+1,2)=0. P(N+1,3)=0. P(N+1,4)=PS(5) + P(N+1,5)=PS(5) B V(N+1,5)=PS(5)**2 N=N+1 ENDIF ' C...Loop over partons that may branch. T NEP=NPA IM=NS IF(NPA.EQ.1) IM=NS-1 . 270 IM=IM+1 IF(N.GT.NS) THEN S IF(IM.GT.N) GOTO 510 T KFLM=IABS(K(IM,2)) K IF(KFLM.GT.40) GOTO 270 $ IF(KSH(KFLM).EQ.0) GOTO 270 IFLM=KFLMFB IF(KFLM.GE.6.AND.KFLM.LE.8) IFLM=37+KFLM+ISIGN(2,K(IM,2)) - IF(P(IM,5).LT.PMTH(2,IFLM)) GOTO 270 ) IGM=K(IM,3) ELSE IGM=-1 e ENDIF + IF(N+NEP.GT.MSTU(4)-MSTU(32)-5) THEN FB CALL LUERRM(11,'(LUSHOW:) no more memory left in LUJETS') ! IF(MSTU(21).GE.1) RETURN T ENDIF (3 C...Position of aunt (sister to branching parton). C...Origin and flavour of daughters. IAU=0 IF(IGM.GT.0) THEN & IF(K(IM-1,3).EQ.IGM) IAU=IM-1 4 IF(N.GE.IM+1.AND.K(IM+1,3).EQ.IGM) IAU=IM+1 ENDIF IF(IGM.GE.0) THEN K(IM,4)=N+1 DO 280 I=1,NEP K(N+I,3)=IM 280 CONTINUE L ELSE K(N+1,3)=IPA(1) ENDIF IF(IGM.LE.0) THEN DO 290 I=1,NEP K(N+I,2)=K(IPA(I),2) K 290 CONTINUE R ELSEIF(KFLM.NE.21) THEN K(N+1,2)=K(IM,2) K(N+2,2)=K(IM,5) o! ELSEIF(K(IM,5).EQ.21) THEN i K(N+1,2)=21 K(N+2,2)=21 ELSE K(N+1,2)=K(IM,5) K(N+2,2)=-K(IM,5) ENDIF L, C...Reset flags on daughers and tries made. DO 300 IP=1,NEP K(N+IP,1)=3 K(N+IP,4)=0 K(N+IP,5)=0 KFLD(IP)=IABS(K(N+IP,2)) )4 IF(KCHG(LUCOMP(KFLD(IP)),2).EQ.0) K(N+IP,1)=1 ITRY(IP)=0 K ISL(IP)=0 ISI(IP)=0 IF(KFLD(IP).LE.40) THEN ) IF(KSH(KFLD(IP)).EQ.1) ISI(IP)=1 ENDIF 300 CONTINUE e ISLM=0 F C...Maximum virtuality of daughters. ( IF(IGM.LE.0) THEN DO 310 I=1,NPA D IF(NPA.GE.3) P(N+I,4)=(PS(4)*P(IPA(I),4)-PS(1)*P(IPA(I),1)- 3 & PS(2)*P(IPA(I),2)-PS(3)*P(IPA(I),3))/PS(5) 1! P(N+I,5)=MIN(QMAX,PS(5)) A5 IF(NPA.GE.3) P(N+I,5)=MIN(P(N+I,5),P(N+I,4)) F- IF(ISI(I).EQ.0) P(N+I,5)=P(IPA(I),5) * 310 CONTINUE 5 ELSE 3& IF(MSTJ(43).LE.2) PEM=V(IM,2) & IF(MSTJ(43).GE.3) PEM=P(IM,4) * P(N+1,5)=MIN(P(IM,5),V(IM,1)*PEM) / P(N+2,5)=MIN(P(IM,5),(1.-V(IM,1))*PEM) K/ IF(K(N+2,2).EQ.22) P(N+2,5)=PMTH(1,22) A ENDIF DO 320 I=1,NEP K PMSD(I)=P(N+I,5) IF(ISI(I).EQ.1) THEN F IFLD=KFLD(I): IF(KFLD(I).GE.6.AND.KFLD(I).LE.8) IFLD=37+KFLD(I)+ & ISIGN(2,K(N+I,2)) ; IF(P(N+I,5).LE.PMTH(3,IFLD)) P(N+I,5)=PMTH(1,IFLD) . ENDIF V(N+I,5)=P(N+I,5)**2 320 CONTINUE / C...Choose one of the daughters for evolution. T 330 INUM=0 IF(NEP.EQ.1) INUM=1 DO 340 I=1,NEP F+ IF(INUM.EQ.0.AND.ISL(I).EQ.1) INUM=I L 340 CONTINUE DO 350 I=1,NEP A: IF(INUM.EQ.0.AND.ITRY(I).EQ.0.AND.ISI(I).EQ.1) THEN IFLD=KFLD(I): IF(KFLD(I).GE.6.AND.KFLD(I).LE.8) IFLD=37+KFLD(I)+ & ISIGN(2,K(N+I,2)) , IF(P(N+I,5).GE.PMTH(2,IFLD)) INUM=I ENDIF 350 CONTINUE c IF(INUM.EQ.0) THEN RMAX=0. DO 360 I=1,NEP 3 IF(ISI(I).EQ.1.AND.PMSD(I).GE.PMQTH2) THEN K RPM=P(N+I,5)/PMSD(I) IFLD=KFLD(I IF(KFLD(I).GE.6.AND.KFLD(I).LE.8) IFLD=37+KFLD(I)+ & ISIGN(2,K(N+I,2)) < IF(RPM.GT.RMAX.AND.P(N+I,5).GE.PMTH(2,IFLD)) THEN RMAX=RPM K INUM=I 0 ENDIF ENDIF 360 CONTINUE G ENDIF 06 C...Store information on choice of evolving daughter. INUM=MAX(1,INUM) t IEP(1)=N+INUM DO 370 I=2,NEP F IEP(I)=IEP(I-1)+1 IF(IEP(I).GT.N+NEP) IEP(I)=N+1 N 370 CONTINUE L DO 380 I=1,NEP - KFL(I)=IABS(K(IEP(I),2)) 380 CONTINUE ' ITRY(INUM)=ITRY(INUM)+1 ! IF(ITRY(INUM).GT.200) THEN < CALL LUERRM(14,'(LUSHOW:) caught in infinite loop') ! IF(MSTU(21).GE.1) RETURN ENDIF Z=0.5 IF(KFL(1).GT.40) GOTO 430 $ IF(KSH(KFL(1)).EQ.0) GOTO 430 IFL=KFL(1)4 IF(KFL(1).GE.6.AND.KFL(1).LE.8) IFL=37+KFL(1)+ &ISIGN(2,K(IEP(1),2)) p. IF(P(IEP(1),5).LT.PMTH(2,IFL)) GOTO 430 = C...Select side for interference with initial state partons. ), IF(MIIS.GE.1.AND.IEP(1).LE.NS+3) THEN III=IEP(1)-NS-1 ISII(III)=0 9 IF(IABS(KCII(III)).EQ.1.AND.NIIS(III).EQ.1) THEN ISII(III)=1 7 ELSEIF(KCII(III).EQ.2.AND.NIIS(III).EQ.1) THEN ( IF(RLU(0).GT.0.5) ISII(III)=1 7 ELSEIF(KCII(III).EQ.2.AND.NIIS(III).EQ.2) THEN U ISII(III)=1 ( IF(RLU(0).GT.0.5) ISII(III)=2 ENDIF ENDIF z C...Calculate allowed z range. , IF(NEP.EQ.1) THEN PMED=PS(4) D- ELSEIF(IGM.EQ.0.OR.MSTJ(43).LE.2) THEN ) PMED=P(IM,5) , ELSE ' IF(INUM.EQ.1) PMED=V(IM,1)*PEM n, IF(INUM.EQ.2) PMED=(1.-V(IM,1))*PEM ENDIF $ IF(MOD(MSTJ(43),2).EQ.1) THEN ZC=PMTH(2,21)/PMED d ZCE=PMTH(2,22)/PMED ELSE m= ZC=0.5*(1.-SQRT(MAX(0.,1.-(2.*PMTH(2,21)/PMED)**2))) K/ IF(ZC.LT.1E-4) ZC=(PMTH(2,21)/PMED)**2 > ZCE=0.5*(1.-SQRT(MAX(0.,1.-(2.*PMTH(2,22)/PMED)**2))) 1 IF(ZCE.LT.1E-4) ZCE=(PMTH(2,22)/PMED)**2 ) ENDIF ZC=MIN(ZC,0.491) 4 ZCE=MIN(ZCE,0.491) ? IF((MSTJ(41).EQ.1.AND.ZC.GT.0.49).OR.(MSTJ(41).GE.2.AND. K! &MIN(ZC,ZCE).GT.0.49)) THEN P(IEP(1),5)=PMTH(1,IFL) # V(IEP(1),5)=P(IEP(1),5)**2 R GOTO 430 F ENDIF D3 C...Integral of Altarelli-Parisi z kernel for QCD. P. IF(MSTJ(49).EQ.0.AND.KFL(1).EQ.21) THEN 1 FBR=6.*LOG((1.-ZC)/ZC)+MSTJ(45)*(0.5-ZC) D! ELSEIF(MSTJ(49).EQ.0) THEN Q$ FBR=(8./3.)*LOG((1.-ZC)/ZC) F< C...Integral of Altarelli-Parisi z kernel for scalar gluon. 2 ELSEIF(MSTJ(49).EQ.1.AND.KFL(1).EQ.21) THEN 4 FBR=(PARJ(87)+MSTJ(45)*PARJ(88))*(1.-2.*ZC) ! ELSEIF(MSTJ(49).EQ.1) THEN FBR=(1.-2.*ZC)/3. . IF(IGM.EQ.0.AND.M3JC.EQ.1) FBR=4.*FBR ED C...Integral of Altarelli-Parisi z kernel for Abelian vector gluon. ELSEIF(KFL(1).EQ.21) THEN ! FBR=6.*MSTJ(45)*(0.5-ZC) T ELSE . FBR=2.*LOG((1.-ZC)/ZC) Z ENDIF .& C...Reset QCD probability for lepton. / IF(KFL(1).GE.11.AND.KFL(1).LE.18) FBR=0. b o= C...Integral of Altarelli-Parisi kernel for photon emission. A> IF(MSTJ(41).GE.2.AND.KFL(1).GE.1.AND.KFL(1).LE.18) THEN 9 FBRE=(KCHG(KFL(1),1)/3.)**2*2.*LOG((1.-ZCE)/ZCE) V. IF(MSTJ(41).EQ.10) FBRE=PARJ(84)*FBRE ENDIF B C...Inner veto algorithm starts. Find maximum mass for evolution. 390 PMS=V(IEP(1),5) IF(IGM.GE.0) THEN PM2=0. B DO 400 I=2,NEP PM=P(IEP(I),5) - IF(KFL(I).LE.40) THEN IFLI=KFL(I)E9 IF(KFL(I).GE.6.AND.KFL(I).LE.8) IFLI=37+KFL(I)+A & ISIGN(2,K(IEP(I),2)) 1/ IF(KSH(KFL(I)).EQ.1) PM=PMTH(2,IFLI) o ENDIF PM2=PM2+PM h 400 CONTINUE =& PMS=MIN(PMS,(P(IM,5)-PM2)**2) ENDIF / C...Select mass for daughter in QCD evolution. B0=27./6. DO 410 IFF=4,MSTJ(45) 6 IF(PMS.GT.4.*PMTH(2,IFF)**2) B0=(33.-2.*IFF)/6. 410 CONTINUE IF(FBR.LT.1E-3) THEN ) PMSQCD=0. ! ELSEIF(MSTJ(44).LE.0) THEN F PMSQCD=PMS*EXP(MAX(-50.,LOG(RLU(0))*PARU(2)/(PARU(111)*FBR))) ! ELSEIF(MSTJ(44).EQ.1) THEN= PMSQCD=4.*ALAMS*(0.25*PMS/ALAMS)**(RLU(0)**(B0/FBR)) ELSE =: PMSQCD=PMS*EXP(MAX(-50.,ALFM*B0*LOG(RLU(0))/FBR)) ENDIF G IF(ZC.GT.0.49.OR.PMSQCD.LE.PMTH(4,IFL)**2) PMSQCD=PMTH(2,IFL)**2 V(IEP(1),5)=PMSQCD B MCE=1 / C...Select mass for daughter in QED evolution. M> IF(MSTJ(41).GE.2.AND.KFL(1).GE.1.AND.KFL(1).LE.18) THEN PMSQED=PMS*EXP(MAX(-50.,LOG(RLU(0))*PARU(2)/(PARU(101)*FBRE))) n< IF(ZCE.GT.0.49.OR.PMSQED.LE.PMTH(5,IFL)**2) PMSQED= & PMTH(2,IFL)**2 IF(PMSQED.GT.PMSQCD) THEN V(IEP(1),5)=PMSQED E MCE=2 ENDIF ENDIF ). C...Check whether daughter mass below cutoff. $ P(IEP(1),5)=SQRT(V(IEP(1),5)) * IF(P(IEP(1),5).LE.PMTH(3,IFL)) THEN P(IEP(1),5)=PMTH(1,IFL) # V(IEP(1),5)=P(IEP(1),5)**2 GOTO 430 Z ENDIF . C...Select z value of branching: q -> qgamma. IF(MCE.EQ.2) THEN - Z=1.-(1.-ZCE)*(ZCE/(1.-ZCE))**RLU(0) ** IF(1.+Z**2.LT.2.*RLU(0)) GOTO 390 K(IEP(1),5)=22 u s? C...Select z value of branching: q -> qg, g -> gg, g -> qqbar. 2 ELSEIF(MSTJ(49).NE.1.AND.KFL(1).NE.21) THEN * Z=1.-(1.-ZC)*(ZC/(1.-ZC))**RLU(0) * IF(1.+Z**2.LT.2.*RLU(0)) GOTO 390 K(IEP(1),5)=21 DE ELSEIF(MSTJ(49).EQ.0.AND.MSTJ(45)*(0.5-ZC).LT.RLU(0)*FBR) THEN ,' Z=(1.-ZC)*(ZC/(1.-ZC))**RLU(0) 5! IF(RLU(0).GT.0.5) Z=1.-Z A0 IF((1.-Z*(1.-Z))**2.LT.RLU(0)) GOTO 390 K(IEP(1),5)=21 N! ELSEIF(MSTJ(49).NE.1) THEN I Z=ZC+(1.-2.*ZC)*RLU(0) e. IF(Z**2+(1.-Z)**2.LT.RLU(0)) GOTO 390 $ KFLB=1+INT(MSTJ(45)*RLU(0)) + PMQ=4.*PMTH(2,KFLB)**2/V(IEP(1),5) . IF(PMQ.GE.1.) GOTO 390 R* PMQ0=4.*PMTH(2,21)**2/V(IEP(1),5) B IF(MOD(MSTJ(43),2).EQ.0.AND.(1.+0.5*PMQ)*SQRT(1.-PMQ).LT. 5 & RLU(0)*(1.+0.5*PMQ0)*SQRT(1.-PMQ0)) GOTO 390 5 K(IEP(1),5)=KFLB 3 ) C...Ditto for scalar gluon model. ELSEIF(KFL(1).NE.21) THEN + Z=1.-SQRT(ZC**2+RLU(0)*(1.-2.*ZC)) M K(IEP(1),5)=21 *C ELSEIF(RLU(0)*(PARJ(87)+MSTJ(45)*PARJ(88)).LE.PARJ(87)) THEN Z=ZC+(1.-2.*ZC)*RLU(0) P K(IEP(1),5)=21 P ELSE Z=ZC+(1.-2.*ZC)*RLU(0) R$ KFLB=1+INT(MSTJ(45)*RLU(0)) + PMQ=4.*PMTH(2,KFLB)**2/V(IEP(1),5) ( IF(PMQ.GE.1.) GOTO 390 I K(IEP(1),5)=KFLB K ENDIF * IF(MCE.EQ.1.AND.MSTJ(44).GE.2) THEN 4 IF(Z*(1.-Z)*V(IEP(1),5).LT.PT2MIN) GOTO 390 D IF(ALFM/LOG(V(IEP(1),5)*Z*(1.-Z)/ALAMS).LT.RLU(0)) GOTO 390 ENDIF ) C...Check if z consistent with chosen m. P IF(KFL(1).EQ.21) THEN ! KFLGD1=IABS(K(IEP(1),5)) 7 KFLGD2=KFLGD1 ELSE ) KFLGD1=KFL(1) ! KFLGD2=IABS(K(IEP(1),5)) T ENDIF IF(NEP.EQ.1) THEN PED=PS(4) ELSEIF(NEP.GE.3) THEN PED=P(IEP(1),4) - ELSEIF(IGM.EQ.0.OR.MSTJ(43).LE.2) THEN 5 PED=0.5*(V(IM,5)+V(IEP(1),5)-PM2**2)/P(IM,5) L ELSE ** IF(IEP(1).EQ.N+1) PED=V(IM,1)*PEM / IF(IEP(1).EQ.N+2) PED=(1.-V(IM,1))*PEM ENDIF $ IF(MOD(MSTJ(43),2).EQ.1) THEN IFLGD1=KFLGD1 2 IF(KFLGD1.GE.6.AND.KFLGD1.LE.8) IFLGD1=IFL PMQTH3=0.5*PARJ(82) - IF(KFLGD2.EQ.22) PMQTH3=0.5*PARJ(83) 7 PMQ1=(PMTH(1,IFLGD1)**2+PMQTH3**2)/V(IEP(1),5) 7 PMQ2=(PMTH(1,KFLGD2)**2+PMQTH3**2)/V(IEP(1),5) DC ZD=SQRT(MAX(0.,(1.-V(IEP(1),5)/PED**2)*((1.-PMQ1-PMQ2)**2- & 4.*PMQ1*PMQ2))) ZH=1.+PMQ1-PMQ2 ELSE q/ ZD=SQRT(MAX(0.,1.-V(IEP(1),5)/PED**2)) ZH=1. ENDIF ZL=0.5*(ZH-ZD) ZU=0.5*(ZH+ZD) 1& IF(Z.LT.ZL.OR.Z.GT.ZU) GOTO 390 IF(KFL(1).EQ.21) V(IEP(1),3)=LOG(ZU*(1.-ZL)/MAX(1E-20,ZL* &(1.-ZU))) A IF(KFL(1).NE.21) V(IEP(1),3)=LOG((1.-ZL)/MAX(1E-10,1.-ZU)) D C...Width suppression for q -> q + g.M- IF(MSTJ(40).NE.0.AND.KFL(1).NE.21) THENo IF(IGM.EQ.0) THENs: EGLU=0.5*PS(5)*(1.-Z)*(1.+V(IEP(1),5)/V(NS+1,5)) ELSE EGLU=PMED*(1.-Z) ENDIF - CHI=PARJ(89)**2/(PARJ(89)**2+EGLU**2)L IF(MSTJ(40).EQ.1) THEN& IF(CHI.LT.RLU(0)) GOTO 390 ELSEIF(MSTJ(40).EQ.2) THEN' IF(1.-CHI.LT.RLU(0)) GOTO 390H ENDIF ENDIF) R) C...Three-jet matrix element correction. 2& IF(IGM.EQ.0.AND.M3JC.EQ.1) THEN ( X1=Z*(1.+V(IEP(1),5)/V(NS+1,5)) $ X2=1.-V(IEP(1),5)/V(NS+1,5) X3=(1.-X1)+(1.-X2) K IF(MCE.EQ.2) THEN KI1=K(IPA(INUM),2) KI2=K(IPA(3-INUM),2) (0 QF1=KCHG(IABS(KI1),1)*ISIGN(1,KI1)/3. 0 QF2=KCHG(IABS(KI2),1)*ISIGN(1,KI2)/3. 8 WSHOW=QF1**2*(1.-X1)/X3*(1.+(X1/(2.-X2))**2)+ 1 & QF2**2*(1.-X2)/X3*(1.+(X2/(2.-X1))**2) *? WME=(QF1*(1.-X1)/X3-QF2*(1.-X2)/X3)**2*(X1**2+X2**2) L# ELSEIF(MSTJ(49).NE.1) THEN f/ WSHOW=1.+(1.-X1)/X3*(X1/(2.-X2))**2+ 0 & (1.-X2)/X3*(X2/(2.-X1))**2 ) WME=X1**2+X2**2 4 IF(M3JCM.EQ.1) WME=WME-QME*X3-0.5*QME**2- 9 & (0.5*QME+0.25*QME**2)*((1.-X2)/MAX(1E-7,1.-X1)+)# & (1.-X1)/MAX(1E-7,1.-X2)) ELSE A> WSHOW=4.*X3*((1.-X1)/(2.-X2)**2+(1.-X2)/(2.-X1)**2) WME=X3**2 C IF(MSTJ(102).GE.2) WME=X3**2-2.*(1.+X3)*(1.-X1)*(1.-X2)* & PARJ(171) ENDIF ) IF(WME.LT.RLU(0)*WSHOW) GOTO 390 . 1A C...Impose angular ordering by rejection of nonordered emission. S; ELSEIF(MCE.EQ.1.AND.IGM.GT.0.AND.MSTJ(42).GE.2) THEN A MAOM=1 A ZM=V(IM,1) )( IF(IEP(1).EQ.N+2) ZM=1.-V(IM,1) 4 THE2ID=Z*(1.-Z)*(ZM*P(IM,4))**2/V(IEP(1),5) IAOM=IM ! 420 IF(K(IAOM,5).EQ.22) THEN t IAOM=K(IAOM,3) IF(K(IAOM,3).LE.NS) MAOM=0 E! IF(MAOM.EQ.1) GOTO 420 ENDIF IF(MAOM.EQ.1) THENA THE2IM=V(IAOM,1)*(1.-V(IAOM,1))*P(IAOM,4)**2/V(IAOM,5) A( IF(THE2ID.LT.THE2IM) GOTO 390 ENDIF ENDIF : C...Impose user-defined maximum angle at first branching. IF(MSTJ(48).EQ.1) THEN )' IF(NEP.EQ.1.AND.IM.EQ.NS) THEN S/ THE2ID=Z*(1.-Z)*PS(4)**2/V(IEP(1),5) K0 IF(THE2ID.LT.1./PARJ(85)**2) GOTO 390 1 ELSEIF(NEP.EQ.2.AND.IEP(1).EQ.NS+2) THEN I7 THE2ID=Z*(1.-Z)*(0.5*P(IM,4))**2/V(IEP(1),5) 0 IF(THE2ID.LT.1./PARJ(85)**2) GOTO 390 1 ELSEIF(NEP.EQ.2.AND.IEP(1).EQ.NS+3) THEN 7 THE2ID=Z*(1.-Z)*(0.5*P(IM,4))**2/V(IEP(1),5) s0 IF(THE2ID.LT.1./PARJ(86)**2) GOTO 390 ENDIF ENDIF 0C C...Impose angular constraint in first branching from interference C...with initial state partons. , IF(MIIS.GE.2.AND.IEP(1).LE.NS+3) THEN B THE2D=MAX((1.-Z)/Z,Z/(1.-Z))*V(IEP(1),5)/(0.5*P(IM,4))**2 1 IF(IEP(1).EQ.NS+2.AND.ISII(1).GE.1) THEN P5 IF(THE2D.GT.THEIIS(1,ISII(1))**2) GOTO 390 E5 ELSEIF(IEP(1).EQ.NS+3.AND.ISII(2).GE.1) THEN I5 IF(THE2D.GT.THEIIS(2,ISII(2))**2) GOTO 390 ) ENDIF ENDIF G C...End of inner veto algorithm. Check if only one leg evolved so far. N 430 V(IEP(1),1)=Z ISL(1)=0 L ISL(2)=0 S IF(NEP.EQ.1) GOTO 460 C IF(NEP.EQ.2.AND.P(IEP(1),5)+P(IEP(2),5).GE.P(IM,5)) GOTO 330 H DO 440 I=1,NEP ,. IF(ITRY(I).EQ.0.AND.KFLD(I).LE.40) THEN # IF(KSH(KFLD(I)).EQ.1) THEN = IFLD=KFLD(I IF(KFLD(I).GE.6.AND.KFLD(I).LE.8) IFLD=37+KFLD(I)+ & ISIGN(2,K(N+I,2)) 0 IF(P(N+I,5).GE.PMTH(2,IFLD)) GOTO 330 ENDIF ENDIF 440 CONTINUE S I7 C...Check if chosen multiplet m1,m2,z1,z2 is physical. IF(NEP.EQ.3) THEN 5 PA1S=(P(N+1,4)+P(N+1,5))*(P(N+1,4)-P(N+1,5)) L5 PA2S=(P(N+2,4)+P(N+2,5))*(P(N+2,4)-P(N+2,5)) )5 PA3S=(P(N+3,4)+P(N+3,5))*(P(N+3,4)-P(N+3,5)) ,: PTS=0.25*(2.*PA1S*PA2S+2.*PA1S*PA3S+2.*PA2S*PA3S- & & PA1S**2-PA2S**2-PA3S**2)/PA1S IF(PTS.LE.0.) GOTO 330 FE ELSEIF(IGM.EQ.0.OR.MSTJ(43).LE.2.OR.MOD(MSTJ(43),2).EQ.0) THEN m DO 450 I1=N+1,N+2 KFLDA=IABS(K(I1,2)) ! IF(KFLDA.GT.40) GOTO 450 G IF(KSH(KFLDA).EQ.0) GOTO 450 IFLDA=KFLDA 5 IF(KFLDA.GE.6.AND.KFLDA.LE.8) IFLDA=37+KFLDA+0 & ISIGN(2,K(I1,2)) . IF(P(I1,5).LT.PMTH(2,IFLDA)) GOTO 450 IF(KFLDA.EQ.21) THEN + KFLGD1=IABS(K(I1,5)) ( KFLGD2=KFLGD1 ELSE KFLGD1=KFLDA t KFLGD2=IABS(K(I1,5)) ENDIF I2=2*N+3-I1 + IF(IGM.EQ.0.OR.MSTJ(43).LE.2) THEN 4 PED=0.5*(V(IM,5)+V(I1,5)-V(I2,5))/P(IM,5) ELSE # IF(I1.EQ.N+1) ZM=V(IM,1) K& IF(I1.EQ.N+2) ZM=1.-V(IM,1) 3 PML=SQRT((V(IM,5)-V(N+1,5)-V(N+2,5))**2- M & 4.*V(N+1,5)*V(N+2,5)) E PED=PEM*(0.5*(V(IM,5)-PML+V(I1,5)-V(I2,5))+PML*ZM)/V(IM,5) ENDIF & IF(MOD(MSTJ(43),2).EQ.1) THEN PMQTH3=0.5*PARJ(82) / IF(KFLGD2.EQ.22) PMQTH3=0.5*PARJ(83) T IFLGD1=KFLGD1.6 IF(KFLGD1.GE.6.AND.KFLGD1.LE.8) IFLGD1=IFLDA5 PMQ1=(PMTH(1,IFLGD1)**2+PMQTH3**2)/V(I1,5) o5 PMQ2=(PMTH(1,KFLGD2)**2+PMQTH3**2)/V(I1,5) A ZD=SQRT(MAX(0.,(1.-V(I1,5)/PED**2)*((1.-PMQ1-PMQ2)**2- I & 4.*PMQ1*PMQ2))) ZH=1.+PMQ1-PMQ2 ELSE - ZD=SQRT(MAX(0.,1.-V(I1,5)/PED**2)) ZH=1. ENDIF ZL=0.5*(ZH-ZD) ( ZU=0.5*(ZH+ZD) ID IF(I1.EQ.N+1.AND.(V(I1,1).LT.ZL.OR.V(I1,1).GT.ZU)) ISL(1)=1 D IF(I1.EQ.N+2.AND.(V(I1,1).LT.ZL.OR.V(I1,1).GT.ZU)) ISL(2)=1 F IF(KFLDA.EQ.21) V(I1,4)=LOG(ZU*(1.-ZL)/MAX(1E-20,ZL* .-ZU))) > IF(KFLDA.NE.21) V(I1,4)=LOG((1.-ZL)/MAX(1E-10,1.-ZU)) 450 CONTINUE ; IF(ISL(1).EQ.1.AND.ISL(2).EQ.1.AND.ISLM.NE.0) THEN ISL(3-ISLM)=0 ISLM=3-ISLM 1 ELSEIF(ISL(1).EQ.1.AND.ISL(2).EQ.1) THEN 6 ZDR1=MAX(0.,V(N+1,3)/MAX(1E-6,V(N+1,4))-1.) 6 ZDR2=MAX(0.,V(N+2,3)/MAX(1E-6,V(N+2,4))-1.) 2 IF(ZDR2.GT.RLU(0)*(ZDR1+ZDR2)) ISL(1)=0 # IF(ISL(1).EQ.1) ISL(2)=0 )! IF(ISL(1).EQ.0) ISLM=1 .! IF(ISL(2).EQ.0) ISLM=2 ENDIF 0 IF(ISL(1).EQ.1.OR.ISL(2).EQ.1) GOTO 330 ENDIF IFLD1=KFLD(1) 9 IF(KFLD(1).GE.6.AND.KFLD(1).LE.8) IFLD1=37+KFLD(1)+P &ISIGN(2,K(N+1,2)) IFLD2=KFLD(2)(9 IF(KFLD(2).GE.6.AND.KFLD(2).LE.8) IFLD2=37+KFLD(2)+Q &ISIGN(2,K(N+2,2)) = IF(IGM.GT.0.AND.MOD(MSTJ(43),2).EQ.1.AND.(P(N+1,5).GE. Q8 &PMTH(2,IFLD1).OR.P(N+2,5).GE.PMTH(2,IFLD2))) THEN PMQ1=V(N+1,5)/V(IM,5) PMQ2=V(N+2,5)/V(IM,5) ? ZD=SQRT(MAX(0.,(1.-V(IM,5)/PEM**2)*((1.-PMQ1-PMQ2)**2- & 4.*PMQ1*PMQ2))) ZH=1.+PMQ1-PMQ2 ZL=0.5*(ZH-ZD) N ZU=0.5*(ZH+ZD) 4 IF(V(IM,1).LT.ZL.OR.V(IM,1).GT.ZU) GOTO 330 ENDIF IB C...Accepted branch. Construct four-momentum for initial partons. 460 MAZIP=0 MAZIC=0 IF(NEP.EQ.1) THEN P(N+1,1)=0. P(N+1,2)=0. B P(N+1,3)=SQRT(MAX(0.,(P(IPA(1),4)+P(N+1,5))*(P(IPA(1),4)- & P(N+1,5)))) P(N+1,4)=P(IPA(1),4) v V(N+1,2)=P(N+1,4) ) ELSEIF(IGM.EQ.0.AND.NEP.EQ.2) THEN 15 PED1=0.5*(V(IM,5)+V(N+1,5)-V(N+2,5))/P(IM,5) P(N+1,1)=0. P(N+1,2)=0. ? P(N+1,3)=SQRT(MAX(0.,(PED1+P(N+1,5))*(PED1-P(N+1,5)))) F P(N+1,4)=PED1 P(N+2,1)=0. P(N+2,2)=0. P(N+2,3)=-P(N+1,3) P(N+2,4)=P(IM,5)-PED1 V(N+1,2)=P(N+1,4) V(N+2,2)=P(N+2,4) ELSEIF(NEP.EQ.3) THEN P(N+1,1)=0. P(N+1,2)=0. $ P(N+1,3)=SQRT(MAX(0.,PA1S)) P(N+2,1)=SQRT(PTS) P P(N+2,2)=0. / P(N+2,3)=0.5*(PA3S-PA2S-PA1S)/P(N+1,3) . P(N+3,1)=-P(N+2,1) & P(N+3,2)=0. & P(N+3,3)=-(P(N+1,3)+P(N+2,3)) V(N+1,2)=P(N+1,4) V(N+2,2)=P(N+2,4) V(N+3,2)=P(N+3,4) D C...Construct transverse momentum for ordinary branching in shower. ELSE c ZM=V(IM,1) r6 PZM=SQRT(MAX(0.,(PEM+P(IM,5))*(PEM-P(IM,5)))) A PMLS=(V(IM,5)-V(N+1,5)-V(N+2,5))**2-4.*V(N+1,5)*V(N+2,5) N IF(PZM.LE.0.) THEN N PTS=0. I* ELSEIF(MOD(MSTJ(43),2).EQ.1) THEN < PTS=(PEM**2*(ZM*(1.-ZM)*V(IM,5)-(1.-ZM)*V(N+1,5)- ) & ZM*V(N+2,5))-0.25*PMLS)/PZM**2 ( ELSE a; PTS=PMLS*(ZM*(1.-ZM)*PEM**2/V(IM,5)-0.25)/PZM**2 ENDIF PT=SQRT(MAX(0.,PTS)) 4 GG C...Find coefficient of azimuthal asymmetry due to gluon polarization. F HAZIP=0. LE IF(MSTJ(49).NE.1.AND.MOD(MSTJ(46),2).EQ.1.AND.K(IM,2).EQ.21. 1 & AND.IAU.NE.0) THEN $ IF(K(IGM,3).NE.0) MAZIP=1 ZAU=V(IGM,1) n* IF(IAU.EQ.IM+1) ZAU=1.-V(IGM,1) IF(MAZIP.EQ.0) ZAU=0. IF(K(IGM,2).NE.21) THEN HAZIP=2.*ZAU/(1.+ZAU**2) H ELSE S- HAZIP=(ZAU/(1.-ZAU*(1.-ZAU)))**2 I ENDIF IF(K(N+1,2).NE.21) THEN < HAZIP=HAZIP*(-2.*ZM*(1.-ZM))/(1.-2.*ZM*(1.-ZM)) ELSE S8 HAZIP=HAZIP*(ZM*(1.-ZM)/(1.-ZM*(1.-ZM)))**2 ENDIF ENDIF c> C...Find coefficient of azimuthal asymmetry due to soft gluon C...interference. HAZIC=0. (C IF(MSTJ(49).NE.2.AND.MSTJ(46).GE.2.AND.(K(N+1,2).EQ.21.OR. U+ & K(N+2,2).EQ.21).AND.IAU.NE.0) THEN Q& IF(K(IGM,3).NE.0) MAZIC=N+1 9 IF(K(IGM,3).NE.0.AND.K(N+1,2).NE.21) MAZIC=N+2 1F IF(K(IGM,3).NE.0.AND.K(N+1,2).EQ.21.AND.K(N+2,2).EQ.21.AND. & ZM.GT.0.5) MAZIC=N+2 E IF(K(IAU,2).EQ.22) MAZIC=0 P ZS=ZM $ IF(MAZIC.EQ.N+2) ZS=1.-ZM ZGM=V(IGM,1) )* IF(IAU.EQ.IM-1) ZGM=1.-V(IGM,1) IF(MAZIC.EQ.0) ZGM=1. 2 IF(MAZIC.NE.0) HAZIC=(P(IM,5)/P(IGM,5))** & SQRT((1.-ZS)*(1.-ZGM)/(ZS*ZGM)) HAZIC=MIN(0.95,HAZIC) ENDIF ENDIF ); C...Construct kinematics for ordinary branching in shower. 470 IF(NEP.EQ.2.AND.IGM.GT.0) THEN e& IF(MOD(MSTJ(43),2).EQ.1) THEN P(N+1,4)=PEM*V(IM,1) K ELSE ED P(N+1,4)=PEM*(0.5*(V(IM,5)-SQRT(PMLS)+V(N+1,5)-V(N+2,5))+ ! & SQRT(PMLS)*ZM)/V(IM,5) 8 ENDIF PHI=PARU(2)*RLU(0) l P(N+1,1)=PT*COS(PHI) l P(N+1,2)=PT*SIN(PHI) 9 IF(PZM.GT.0.) THEN G P(N+1,3)=0.5*(V(N+2,5)-V(N+1,5)-V(IM,5)+2.*PEM*P(N+1,4))/PZM ( ELSE P(N+1,3)=0. ENDIF P(N+2,1)=-P(N+1,1) 4 P(N+2,2)=-P(N+1,2) l P(N+2,3)=PZM-P(N+1,3) P(N+2,4)=PEM-P(N+1,4) IF(MSTJ(43).LE.2) THEN =7 V(N+1,2)=(PEM*P(N+1,4)-PZM*P(N+1,3))/P(IM,5) (7 V(N+2,2)=(PEM*P(N+2,4)-PZM*P(N+2,3))/P(IM,5) ENDIF ENDIF 1 C...Rotate and boost daughters. IF(IGM.GT.0) THEN IF(MSTJ(43).LE.2) THEN . BEX=P(IGM,1)/P(IGM,4) BEY=P(IGM,2)/P(IGM,4) BEZ=P(IGM,3)/P(IGM,4) GA=P(IGM,4)/P(IGM,5) F GABEP=GA*(GA*(BEX*P(IM,1)+BEY*P(IM,2)+BEZ*P(IM,3))/(1.+GA)- & P(IM,4)) n ELSE f BEX=0. 9 BEY=0. BEZ=0. T GA=1. GABEP=0. I ENDIF B THE=ULANGL(P(IM,3)+GABEP*BEZ,SQRT((P(IM,1)+GABEP*BEX)**2+ ! & (P(IM,2)+GABEP*BEY)**2)) D8 PHI=ULANGL(P(IM,1)+GABEP*BEX,P(IM,2)+GABEP*BEY) DO 480 I=N+1,N+2 L8 DP(1)=COS(THE)*COS(PHI)*P(I,1)-SIN(PHI)*P(I,2)+ ! & SIN(THE)*COS(PHI)*P(I,3) 8 DP(2)=COS(THE)*SIN(PHI)*P(I,1)+COS(PHI)*P(I,2)+ ! & SIN(THE)*SIN(PHI)*P(I,3) t/ DP(3)=-SIN(THE)*P(I,1)+COS(THE)*P(I,3) ( DP(4)=P(I,4) .* DBP=BEX*DP(1)+BEY*DP(2)+BEZ*DP(3) ) DGABP=GA*(GA*DBP/(1D0+GA)+DP(4)) P(I,1)=DP(1)+DGABP*BEX T P(I,2)=DP(2)+DGABP*BEY D P(I,3)=DP(3)+DGABP*BEZ U P(I,4)=GA*(DP(4)+DBP) 480 CONTINUE ENDIF M5 C...Weight with azimuthal distribution, if required. ( IF(MAZIP.NE.0.OR.MAZIC.NE.0) THEN DO 490 J=1,3 B DPT(1,J)=P(IM,J) F DPT(2,J)=P(IAU,J) DPT(3,J)=P(N+1,J) 490 CONTINUE EC DPMA=DPT(1,1)*DPT(2,1)+DPT(1,2)*DPT(2,2)+DPT(1,3)*DPT(2,3) EC DPMD=DPT(1,1)*DPT(3,1)+DPT(1,2)*DPT(3,2)+DPT(1,3)*DPT(3,3) 11 DPMM=DPT(1,1)**2+DPT(1,2)**2+DPT(1,3)**2 ) DO 500 J=1,3 R- DPT(4,J)=DPT(2,J)-DPMA*DPT(1,J)/DPMM H- DPT(5,J)=DPT(3,J)-DPMD*DPT(1,J)/DPMM 500 CONTINUE; DPT(4,4)=SQRT(DPT(4,1)**2+DPT(4,2)**2+DPT(4,3)**2) =; DPT(5,4)=SQRT(DPT(5,1)**2+DPT(5,2)**2+DPT(5,3)**2) t8 IF(MIN(DPT(4,4),DPT(5,4)).GT.0.1*PARJ(82)) THEN 4 CAD=(DPT(4,1)*DPT(5,1)+DPT(4,2)*DPT(5,2)+ 1 & DPT(4,3)*DPT(5,3))/(DPT(4,4)*DPT(5,4)) E IF(MAZIP.NE.0) THEN B IF(1.+HAZIP*(2.*CAD**2-1.).LT.RLU(0)*(1.+ABS(HAZIP))) & GOTO 470 ENDIF IF(MAZIC.NE.0) THEN & IF(MAZIC.EQ.N+2) CAD=-CAD D IF((1.-HAZIC)*(1.-HAZIC*CAD)/(1.+HAZIC**2-2.*HAZIC*CAD) ! & .LT.RLU(0)) GOTO 470 ENDIF ENDIF ENDIF I C...Azimuthal anisotropy due to interference with initial state partons. B IF(MOD(MIIS,2).EQ.1.AND.IGM.EQ.NS+1.AND.(K(N+1,2).EQ.21.OR. &K(N+2,2).EQ.21)) THEN III=IM-NS-1 IF(ISII(III).GE.1) THEN IAZIID=N+1 Z( IF(K(N+1,2).NE.21) IAZIID=N+2 4 IF(K(N+1,2).EQ.21.AND.K(N+2,2).EQ.21.AND. + & P(N+1,4).GT.P(N+2,4)) IAZIID=N+2 LI THEIID=ULANGL(P(IAZIID,3),SQRT(P(IAZIID,1)**2+P(IAZIID,2)**2)) M- IF(III.EQ.2) THEIID=PARU(1)-THEIID 21 PHIIID=ULANGL(P(IAZIID,1),P(IAZIID,2)) 7 HAZII=MIN(0.95,THEIID/THEIIS(III,ISII(III))) M0 CAD=COS(PHIIID-PHIIIS(III,ISII(III))) 3 PHIREL=ABS(PHIIID-PHIIIS(III,ISII(III))) 06 IF(PHIREL.GT.PARU(1)) PHIREL=PARU(2)-PHIREL B IF((1.-HAZII)*(1.-HAZII*CAD)/(1.+HAZII**2-2.*HAZII*CAD) & .LT.RLU(0)) GOTO 470 ENDIF ENDIF RA C...Continue loop over partons that may branch, until none left. C IF(IGM.GE.0) K(IM,1)=14 N=N+NEP NEP=2 ' IF(N.GT.MSTU(4)-MSTU(32)-5) THEN B CALL LUERRM(11,'(LUSHOW:) no more memory left in LUJETS') IF(MSTU(21).GE.1) N=NS ! IF(MSTU(21).GE.1) RETURN ENDIF GOTO 270 . .2 C...Set information on imagined shower initiator. 510 IF(NPA.GE.2) THEN K(NS+1,1)=11 ( K(NS+1,2)=94 T K(NS+1,3)=IP1 2 IF(IP2.GT.0.AND.IP2.LT.IP1) K(NS+1,3)=IP2 K(NS+1,4)=NS+2 2 K(NS+1,5)=NS+1+NPA ( IIM=1 ELSE 2 IIM=0 ENDIF F, C...Reconstruct string drawing information. DO 520 I=NS+1+IIM,N - IF(K(I,1).LE.10.AND.K(I,2).EQ.22) THEN F K(I,1)=1 6 ELSEIF(K(I,1).LE.10.AND.IABS(K(I,2)).GE.11.AND. &IABS(K(I,2)).LE.18) THEN V K(I,1)=1 P ELSEIF(K(I,1).LE.10) THEN ( K(I,4)=MSTU(5)*(K(I,4)/MSTU(5)) ( K(I,5)=MSTU(5)*(K(I,5)/MSTU(5)) 4 ELSEIF(K(MOD(K(I,4),MSTU(5))+1,2).NE.22) THEN ID1=MOD(K(I,4),MSTU(5)) B IF(K(I,2).GE.1.AND.K(I,2).LE.8) ID1=MOD(K(I,4),MSTU(5))+1 ( ID2=2*MOD(K(I,4),MSTU(5))+1-ID1 , K(I,4)=MSTU(5)*(K(I,4)/MSTU(5))+ID1 , K(I,5)=MSTU(5)*(K(I,5)/MSTU(5))+ID2 $ K(ID1,4)=K(ID1,4)+MSTU(5)*I & K(ID1,5)=K(ID1,5)+MSTU(5)*ID2 & K(ID2,4)=K(ID2,4)+MSTU(5)*ID1 $ K(ID2,5)=K(ID2,5)+MSTU(5)*I ELSE L ID1=MOD(K(I,4),MSTU(5)) ID2=ID1+1 , K(I,4)=MSTU(5)*(K(I,4)/MSTU(5))+ID1 , K(I,5)=MSTU(5)*(K(I,5)/MSTU(5))+ID1 6 IF(IABS(K(I,2)).LE.10.OR.K(ID1,1).GE.11) THEN & K(ID1,4)=K(ID1,4)+MSTU(5)*I & K(ID1,5)=K(ID1,5)+MSTU(5)*I ELSE ( K(ID1,4)=0 ) K(ID1,5)=0 e ENDIF K(ID2,4)=0 ( K(ID2,5)=0 E ENDIF 520 CONTINUE ) E C...Transformation from CM frame. IF(NPA.GE.2) THEN BEX=PS(1)/PS(4) BEY=PS(2)/PS(4) BEZ=PS(3)/PS(4) GA=PS(4)/PS(5) 2G GABEP=GA*(GA*(BEX*P(IPA(1),1)+BEY*P(IPA(1),2)+BEZ*P(IPA(1),3)) & /(1.+GA)-P(IPA(1),4)) ELSE BEX=0. U BEY=0. BEZ=0. GABEP=0. h ENDIF 9 THE=ULANGL(P(IPA(1),3)+GABEP*BEZ,SQRT((P(IPA(1),1) E2 &+GABEP*BEX)**2+(P(IPA(1),2)+GABEP*BEY)**2)) > PHI=ULANGL(P(IPA(1),1)+GABEP*BEX,P(IPA(1),2)+GABEP*BEY) IF(NPA.EQ.3) THEN CHI=ULANGL(COS(THE)*COS(PHI)*(P(IPA(2),1)+GABEP*BEX)+COS(THE)* F & SIN(PHI)*(P(IPA(2),2)+GABEP*BEY)-SIN(THE)*(P(IPA(2),3)+GABEP* F & BEZ),-SIN(PHI)*(P(IPA(2),1)+GABEP*BEX)+COS(PHI)*(P(IPA(2),2)+ & GABEP*BEY)) MSTU(33)=1 2/ CALL LUDBRB(NS+1,N,0.,CHI,0D0,0D0,0D0) 1 ENDIF DBEX=DBLE(BEX) DBEY=DBLE(BEY) H DBEZ=DBLE(BEZ) . MSTU(33)=1 -1 CALL LUDBRB(NS+1,N,THE,PHI,DBEX,DBEY,DBEZ) C...Decay vertex of shower. DO 540 I=NS+1,N DO 530 J=1,5 V(I,J)=V(IP1,J) 530 CONTINUE ) 540 CONTINUE ) 4 C...Delete trivial shower, else connect initiators. IF(N.EQ.NS+NPA+IIM) THEN X N=NS 2 ELSE DO 550 IP=1,NPA K(IPA(IP),1)=14 , K(IPA(IP),4)=K(IPA(IP),4)+NS+IIM+IP , K(IPA(IP),5)=K(IPA(IP),5)+NS+IIM+IP K(NS+IIM+IP,3)=IPA(IP) .; IF(IIM.EQ.1.AND.MSTU(16).NE.2) K(NS+IIM+IP,3)=NS+1 . IF(K(NS+IIM+IP,1).NE.1) THEN A8 K(NS+IIM+IP,4)=MSTU(5)*IPA(IP)+K(NS+IIM+IP,4) 8 K(NS+IIM+IP,5)=MSTU(5)*IPA(IP)+K(NS+IIM+IP,5) ENDIF 550 CONTINUE E ENDIF RETURN END EG C********************************************************************* A 0 SUBROUTINE LUBOEI(NSAV) 0F C...Purpose: to modify event so as to approximately take into account A C...Bose-Einstein effects according to a simple phenom ological T C...parametrization. # IMPLICIT DOUBLE PRECISION(D) o4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) SAVE /LUJETS/,/LUDAT1/ .1 DIMENSION DPS(4),KFBE(9),NBE(0:9),BEI(100) 17 DATA KFBE/211,-211,111,321,-321,130,310,221,331/ ( E: C...Boost event to overall CM frame. Calculate CM energy. B IF((MSTJ(51).NE.1.AND.MSTJ(51).NE.2).OR.N-NSAV.LE.1) RETURN DO 100 J=1,4 N DPS(J)=0. 100 CONTINUE DO 120 I=1,N P KFA=IABS(K(I,2))G IF(K(I,1).LE.10.AND.((KFA.GT.10.AND.KFA.LE.20).OR.KFA.EQ.22).AND. &K(I,3).GT.0) THENg KFMA=IABS(K(K(I,3),2))4 IF(KFMA.GT.10.AND.KFMA.LE.80) K(I,1)=-K(I,1) ENDIFM/ IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 120 = DO 110 J=1,4 ) DPS(J)=DPS(J)+P(I,J) 110 CONTINUE 1 120 CONTINUE I; CALL LUDBRB(0,0,0.,0.,-DPS(1)/DPS(4),-DPS(2)/DPS(4), &-DPS(3)/DPS(4)) PECM=0. DO 130 I=1,N H8 IF(K(I,1).GE.1.AND.K(I,1).LE.10) PECM=PECM+P(I,4) 130 CONTINUE ; C...Reserve copy of particles by species at end of record. y NBE(0)=N+MSTU(3) N# DO 160 IBE=1,MIN(9,MSTJ(52)) 0 NBE(IBE)=NBE(IBE-1) DO 150 I=NSAV+1,N ' IF(K(I,2).NE.KFBE(IBE)) GOTO 150 5/ IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 150 . IF(NBE(IBE).GE.MSTU(4)-MSTU(32)-5) THEN B CALL LUERRM(11,'(LUBOEI:) no more memory left in LUJETS') RETURN . ENDIF NBE(IBE)=NBE(IBE)+1 K(NBE(IBE),1)=I DO 140 J=1,3 5 P(NBE(IBE),J)=0. 3 140 CONTINUE 150 CONTINUE 160 CONTINUE I3 IF(NBE(MIN(9,MSTJ(52)))-NBE(0).LE.1) GOTO 280a 5 C...Tabulate integral for subsequent momentum shift. 1# DO 220 IBE=1,MIN(9,MSTJ(52)) A6 IF(IBE.NE.1.AND.IBE.NE.4.AND.IBE.LE.7) GOTO 180 E IF(IBE.EQ.1.AND.MAX(NBE(1)-NBE(0),NBE(2)-NBE(1),NBE(3)-NBE(2)) * &.LE.1) GOTO 180 E IF(IBE.EQ.4.AND.MAX(NBE(4)-NBE(3),NBE(5)-NBE(4),NBE(6)-NBE(5), $ &NBE(7)-NBE(6)).LE.1) GOTO 180 9 IF(IBE.GE.8.AND.NBE(IBE)-NBE(IBE-1).LE.1) GOTO 180 0' IF(IBE.EQ.1) PMHQ=2.*ULMASS(211) ' IF(IBE.EQ.4) PMHQ=2.*ULMASS(321) ' IF(IBE.EQ.8) PMHQ=2.*ULMASS(221) ' IF(IBE.EQ.9) PMHQ=2.*ULMASS(331) . QDEL=0.1*MIN(PMHQ,PARJ(93)) IF(MSTJ(51).EQ.1) THEN F- NBIN=MIN(100,NINT(9.*PARJ(93)/QDEL)) F$ BEEX=EXP(0.5*QDEL/PARJ(93)) ! BERT=EXP(-QDEL/PARJ(93)) K ELSE - NBIN=MIN(100,NINT(3.*PARJ(93)/QDEL)) F ENDIF DO 170 IBIN=1,NBIN QBIN=QDEL*(IBIN-0.5) IA BEI(IBIN)=QDEL*(QBIN**2+QDEL**2/12.)/SQRT(QBIN**2+PMHQ**2) ) IF(MSTJ(51).EQ.1) THEN BEEX=BEEX*BERT 1! BEI(IBIN)=BEI(IBIN)*BEEX N ELSE M5 BEI(IBIN)=BEI(IBIN)*EXP(-(QBIN/PARJ(93))**2) - ENDIF 4 IF(IBIN.GE.2) BEI(IBIN)=BEI(IBIN)+BEI(IBIN-1) 170 CONTINUE 2 ) C...Loop through particle pairs and find old relative momentum. ) 180 DO 210 I1M=NBE(IBE-1)+1,NBE(IBE)-1 I1=K(I1M,1) DO 200 I2M=I1M+1,NBE(IBE) I2=K(I2M,1) G Q2OLD=MAX(0.,(P(I1,4)+P(I2,4))**2-(P(I1,1)+P(I2,1))**2-(P(I1,2)+ M= &P(I2,2))**2-(P(I1,3)+P(I2,3))**2-(P(I1,5)+P(I2,5))**2) L QOLD=SQRT(Q2OLD) ) C...Calculate new relative momentum. D! IF(QOLD.LT.1E-3*QDEL) THEN GOTO 200 ELSEIF(QOLD.LE.QDEL) THEN QMOV=QOLD/3. S+ ELSEIF(QOLD.LT.(NBIN-0.1)*QDEL) THEN H RBIN=QOLD/QDEL IBIN=RBIN 3 RINP=(RBIN**3-IBIN**3)/(3*IBIN*(IBIN+1)+1) (7 QMOV=(BEI(IBIN)+RINP*(BEI(IBIN+1)-BEI(IBIN)))* . & SQRT(Q2OLD+PMHQ**2)/Q2OLD ELSE 21 QMOV=BEI(NBIN)*SQRT(Q2OLD+PMHQ**2)/Q2OLD ) ENDIF : Q2NEW=Q2OLD*(QOLD/(QOLD+3.*PARJ(92)*QMOV))**(2./3.) 1? C...Calculate and save shift to be performed on three-momenta. .- HC1=(P(I1,4)+P(I2,4))**2-(Q2OLD-Q2NEW) M- HC2=(Q2OLD-Q2NEW)*(P(I1,4)-P(I2,4))**2 L2 HA=0.5*(1.-SQRT(HC1*Q2NEW/(HC1*Q2OLD-HC2))) DO 190 J=1,3 , PD=HA*(P(I2,J)-P(I1,J)) P(I1M,J)=P(I1M,J)+PD , P(I2M,J)=P(I2M,J)-PD T 190 CONTINUE 2 200 CONTINUE 210 CONTINUE Q 220 CONTINUE , C...Shift momenta and recalculate energies. . DO 240 IM=NBE(0)+1,NBE(MIN(9,MSTJ(52))) I=K(IM,1) DO 230 J=1,3 P(I,J)=P(I,J)+P(IM,J) 230 CONTINUE; P(I,4)=SQRT(P(I,5)**2+P(I,1)**2+P(I,2)**2+P(I,3)**2) ( 240 CONTINUE F =1 C...Rescale all momenta for energy conservation. F PES=0. Q PQS=0. , DO 250 I=1,N I/ IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 250 . PES=PES+P(I,4) . PQS=PQS+P(I,5)**2/P(I,4) E 250 CONTINUE V FAC=(PECM-PQS)/(PES-PQS) N DO 270 I=1,N / IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 270 Q DO 260 J=1,3 P P(I,J)=FAC*P(I,J) 260 CONTINUE ; P(I,4)=SQRT(P(I,5)**2+P(I,1)**2+P(I,2)**2+P(I,3)**2) I 270 CONTINUE M .+ C...Boost back to correct reference frame. tG 280 CALL LUDBRB(0,0,0.,0.,DPS(1)/DPS(4),DPS(2)/DPS(4),DPS(3)/DPS(4)) DO 290 I=1,N$ IF(K(I,1).LT.0) K(I,1)=-K(I,1) 290 CONTINUE , RETURN END AG C********************************************************************* + FUNCTION ULMASS(KF) +4 C...Purpose: to give the mass of a particle/parton. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) A SAVE /LUDAT1/,/LUDAT2/ 1 )& C...Reset variables. Compressed code. ULMASS=0. KFA=IABS(KF) KC=LUCOMP(KF) IF(KC.EQ.0) RETURN P PARF(106)=PMAS(6,1) PARF(107)=PMAS(7,1) PARF(108)=PMAS(8,1) E= C...Guarantee use of constituent masses for internal checks. )> IF((MSTJ(93).EQ.1.OR.MSTJ(93).EQ.2).AND.KFA.LE.10) THEN ULMASS=PARF(100+KFA) (: IF(MSTJ(93).EQ.2) ULMASS=MAX(0.,ULMASS-PARF(121)) 0 C...Masses that can be read directly off table. 7 ELSEIF(KFA.LE.100.OR.KC.LE.80.OR.KC.GT.100) THEN 4 ULMASS=PMAS(KC,1) / C...Find constituent partons and their masses. y ELSE KFLA=MOD(KFA/1000,10) KFLB=MOD(KFA/100,10) M KFLC=MOD(KFA/10,10) KFLS=MOD(KFA,10) 5 KFLR=MOD(KFA/10000,10) 5 PMA=PARF(100+KFLA) L PMB=PARF(100+KFLB) . PMC=PARF(100+KFLC) 3 )B C...Construct masses for various meson, diquark and baryon cases. 7 IF(KFLA.EQ.0.AND.KFLR.EQ.0.AND.KFLS.LE.3) THEN , IF(KFLS.EQ.1) PMSPL=-3./(PMB*PMC) + IF(KFLS.GE.3) PMSPL=1./(PMB*PMC) ULMASS=PARF(111)+PMB+PMC+PARF(113)*PARF(101)**2*PMSPL ELSEIF(KFLA.EQ.0) THEN o KMUL=2 = IF(KFLS.EQ.1) KMUL=3 D IF(KFLR.EQ.2) KMUL=4 . IF(KFLS.EQ.5) KMUL=5 H( ULMASS=PARF(113+KMUL)+PMB+PMC ELSEIF(KFLC.EQ.0) THEN , IF(KFLS.EQ.1) PMSPL=-3./(PMA*PMB) + IF(KFLS.EQ.3) PMSPL=1./(PMA*PMB) 2F ULMASS=2.*PARF(112)/3.+PMA+PMB+PARF(114)*PARF(101)**2*PMSPL + IF(MSTJ(93).EQ.1) ULMASS=PMA+PMB 2< IF(MSTJ(93).EQ.2) ULMASS=MAX(0.,ULMASS-PARF(122)- & 2.*PARF(112)/3.) 1 ELSE M. IF(KFLS.EQ.2.AND.KFLA.EQ.KFLB) THEN 9 PMSPL=1./(PMA*PMB)-2./(PMA*PMC)-2./(PMB*PMC) 2 ELSEIF(KFLS.EQ.2.AND.KFLB.GE.KFLC) THEN : PMSPL=-2./(PMA*PMB)-2./(PMA*PMC)+1./(PMB*PMC) ! ELSEIF(KFLS.EQ.2) THEN A PMSPL=-3./(PMB*PMC) ELSE 9 PMSPL=1./(PMA*PMB)+1./(PMA*PMC)+1./(PMB*PMC) . ENDIF D ULMASS=PARF(112)+PMA+PMB+PMC+PARF(114)*PARF(101)**2*PMSPL ENDIF ENDIF 2A C...Optional mass broadening according to truncated Breit-Wigner C...(either in m or in m^2). P4 IF(MSTJ(24).GE.1.AND.PMAS(KC,2).GT.1E-4) THEN A IF(MSTJ(24).EQ.1.OR.(MSTJ(24).EQ.2.AND.KFA.GT.100)) THEN M; ULMASS=ULMASS+0.5*PMAS(KC,2)*TAN((2.*RLU(0)-1.)* .* & ATAN(2.*PMAS(KC,3)/PMAS(KC,2))) ELSE M PM0=ULMASS 9 PMLOW=ATAN((MAX(0.,PM0-PMAS(KC,3))**2-PM0**2)/ . & (PM0*PMAS(KC,2))) D PMUPP=ATAN(((PM0+PMAS(KC,3))**2-PM0**2)/(PM0*PMAS(KC,2))) > ULMASS=SQRT(MAX(0.,PM0**2+PM0*PMAS(KC,2)*TAN(PMLOW+ & (PMUPP-PMLOW)*RLU(0)))) ENDIF ENDIF MSTJ(93)=0 N 5 RETURN END VG C********************************************************************* P ! SUBROUTINE LUNAME(KF,CHAU) H 9E C...Purpose: to give the particle/parton name as a character string. 5< COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) ( COMMON/LUDAT4/CHAF(500) CHARACTER CHAF*8 & SAVE /LUDAT1/,/LUDAT2/,/LUDAT4/ CHARACTER CHAU*16 , C...Initial values. Charge. Subdivide code. CHAU=' ' , KFA=IABS(KF) P KC=LUCOMP(KF) IF(KC.EQ.0) RETURN KQ=LUCHGE(KF) KFLA=MOD(KFA/1000,10) KFLB=MOD(KFA/100,10) 3 KFLC=MOD(KFA/10,10) KFLS=MOD(KFA,10) KFLR=MOD(KFA/10000,10) 5 C...Read out root name and spin for simple particle. ,8 IF(KFA.LE.100.OR.(KFA.GT.100.AND.KC.GT.100)) THEN CHAU=CHAF(KC) LEN=0 DO 100 LEM=1,8 ) IF(CHAU(LEM:LEM).NE.' ') LEN=LEM E 100 CONTINUE A 2 C...Construct root name for diquark. Add on spin. ELSEIF(KFLC.EQ.0) THEN P3 CHAU(1:2)=CHAF(KFLA)(1:1)//CHAF(KFLB)(1:1) 2 IF(KFLS.EQ.1) CHAU(3:4)='_0' B IF(KFLS.EQ.3) CHAU(3:4)='_1' I LEN=4 H C...Construct root name for heavy meson. Add on spin and heavy flavour. ELSEIF(KFLA.EQ.0) THEN H$ IF(KFLB.EQ.5) CHAU(1:1)='B' $ IF(KFLB.EQ.6) CHAU(1:1)='T' $ IF(KFLB.EQ.7) CHAU(1:1)='L' $ IF(KFLB.EQ.8) CHAU(1:1)='H' LEN=1 ) IF(KFLR.EQ.0.AND.KFLS.EQ.1) THEN A- ELSEIF(KFLR.EQ.0.AND.KFLS.EQ.3) THEN A CHAU(2:2)='*' LEN=2 - ELSEIF(KFLR.EQ.1.AND.KFLS.EQ.3) THEN ) CHAU(2:3)='_1' LEN=3 - ELSEIF(KFLR.EQ.1.AND.KFLS.EQ.1) THEN n CHAU(2:4)='*_0' LEN=4 ELSEIF(KFLR.EQ.2) THEN 3 CHAU(2:4)='*_1' LEN=4 ELSEIF(KFLS.EQ.5) THEN N CHAU(2:4)='*_2' LEN=4 ENDIF 7 IF(KFLC.GE.3.AND.KFLR.EQ.0.AND.KFLS.LE.3) THEN *1 CHAU(LEN+1:LEN+2)='_'//CHAF(KFLC)(1:1) LEN=LEN+2 ELSEIF(KFLC.GE.3) THEN , CHAU(LEN+1:LEN+1)=CHAF(KFLC)(1:1) LEN=LEN+1 ENDIF J3 C...Construct root name and spin for heavy baryon. P ELSE P) IF(KFLB.LE.2.AND.KFLC.LE.2) THEN CHAU='Sigma ' ) IF(KFLC.GT.KFLB) CHAU='Lambda' N& IF(KFLS.EQ.4) CHAU='Sigma*' LEN=5 IF(CHAU(6:6).NE.' ') LEN=6 , ELSEIF(KFLB.LE.2.OR.KFLC.LE.2) THEN CHAU='Xi ' P8 IF(KFLA.GT.KFLB.AND.KFLB.GT.KFLC) CHAU='Xi''' # IF(KFLS.EQ.4) CHAU='Xi*' LEN=2 IF(CHAU(3:3).NE.' ') LEN=3 ELSE F CHAU='Omega ' ; IF(KFLA.GT.KFLB.AND.KFLB.GT.KFLC) CHAU='Omega''' C& IF(KFLS.EQ.4) CHAU='Omega*' LEN=5 IF(CHAU(6:6).NE.' ') LEN=6 . ENDIF o3 C...Add on heavy flavour content for heavy baryon. / CHAU(LEN+1:LEN+2)='_'//CHAF(KFLA)(1:1) N LEN=LEN+2 , IF(KFLB.GE.KFLC.AND.KFLC.GE.4) THEN = CHAU(LEN+1:LEN+2)=CHAF(KFLB)(1:1)//CHAF(KFLC)(1:1) LEN=LEN+2 0 ELSEIF(KFLB.GE.KFLC.AND.KFLB.GE.4) THEN , CHAU(LEN+1:LEN+1)=CHAF(KFLB)(1:1) LEN=LEN+1 0 ELSEIF(KFLC.GT.KFLB.AND.KFLB.GE.4) THEN = CHAU(LEN+1:LEN+2)=CHAF(KFLC)(1:1)//CHAF(KFLB)(1:1) - LEN=LEN+2 0 ELSEIF(KFLC.GT.KFLB.AND.KFLC.GE.4) THEN , CHAU(LEN+1:LEN+1)=CHAF(KFLC)(1:1) LEN=LEN+1 ENDIF ENDIF 8 C...Add on bar sign for antiparticle (where necessary). # IF(KF.GT.0.OR.LEN.EQ.0) THEN )E ELSEIF(KFA.GT.10.AND.KFA.LE.40.AND.KQ.NE.0.AND.MOD(KQ,3).EQ.0) C &THEN : ELSEIF(KFA.EQ.89.OR.(KFA.GE.91.AND.KFA.LE.99)) THEN 8 ELSEIF(KFA.GT.100.AND.KFLA.EQ.0.AND.KQ.NE.0) THEN ! ELSEIF(MSTU(15).LE.1) THEN ) CHAU(LEN+1:LEN+1)='~' LEN=LEN+1 ELSE ) .*PARU(1)) 3, IF(MSTU(101).LE.0.OR.Q2.LT.2E-6) THEN RPIGG=0. S5 ELSEIF(MSTU(101).EQ.2.AND.Q2.LT.PARU(104)) THENO RPIGG=0.! ELSEIF(MSTU(101).EQ.2) THENe RPIGG=1.-PARU(101)/PARU(103) . ELSEIF(Q2.LT.0.09) THEN 9 RPIGG=AEMPI*(13.4916+LOG(Q2))+0.00835*LOG(1.+Q2) ( ELSEIF(Q2.LT.9.) THEN B RPIGG=AEMPI*(16.3200+2.*LOG(Q2))+0.00238*LOG(1.+3.927*Q2) ELSEIF(Q2.LT.1E4) THEN 1D RPIGG=AEMPI*(13.4955+3.*LOG(Q2))+0.00165+0.00299*LOG(1.+Q2) ELSE D RPIGG=AEMPI*(13.4955+3.*LOG(Q2))+0.00221+0.00293*LOG(1.+Q2) ENDIF C...Calculate running alpha_em. ULALEM=PARU(101)/(1.-RPIGG) PARU(108)=ULALEM D 4 RETURN , END G C********************************************************************* E , FUNCTION ULALPS(Q2) A0 C...Purpose: to give the value of alpha_strong. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) L SAVE /LUDAT1/,/LUDAT2/ 2 ,# C...Constant alpha_strong trivial. 5 IF(MSTU(111).LE.0) THEN ULALPS=PARU(111) 1 MSTU(118)=MSTU(112) PARU(117)=0. e PARU(118)=PARU(111) RETURN ENDIF 6 C...Find effective Q2, number of flavours and Lambda. Q2EFF=Q2 M1 IF(MSTU(115).GE.2) Q2EFF=MAX(Q2,PARU(114)) n NF=MSTU(112) t ALAM2=PARU(112)**2 .& 100 IF(NF.GT.MAX(2,MSTU(113))) THEN & Q2THR=PARU(113)*PMAS(NF,1)**2 IF(Q2EFF.LT.Q2THR) THEN NF=NF-1 6 ALAM2=ALAM2*(Q2THR/ALAM2)**(2./(33.-2.*NF)) GOTO 100 ENDIF ENDIF & 110 IF(NF.LT.MIN(8,MSTU(114))) THEN ( Q2THR=PARU(113)*PMAS(NF+1,1)**2 IF(Q2EFF.GT.Q2THR) THEN NF=NF+1 6 ALAM2=ALAM2*(ALAM2/Q2THR)**(2./(33.-2.*NF)) GOTO 110 , ENDIF ENDIF + IF(MSTU(115).EQ.1) Q2EFF=Q2EFF+ALAM2 PARU(117)=SQRT(ALAM2) =1 C...Evaluate first or second order alpha_strong. B0=(33.-2.*NF)/6. ( ALGQ=LOG(MAX(1.0001,Q2EFF/ALAM2)) IF(MSTU(111).EQ.1) THEN 0 ULALPS=MIN(PARU(115),PARU(2)/(B0*ALGQ)) ELSE B B1=(153.-19.*NF)/6. A ULALPS=MIN(PARU(115),PARU(2)/(B0*ALGQ)*(1.-B1*LOG(ALGQ)/ ) & (B0**2*ALGQ))) ENDIF MSTU(118)=NF PARU(118)=ULALPS F L RETURN D END KG C********************************************************************* R 1 FUNCTION ULANGL(X,Y) E KE C...Purpose: to reconstruct an angle from given x and y coordinates. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) SAVE /LUDAT1/ ) ULANGL=0. R=SQRT(X**2+Y**2) IF(R.LT.1E-20) RETURN IF(ABS(X)/R.LT.0.8) THEN 0! ULANGL=SIGN(ACOS(X/R),Y) P ELSE 1 ULANGL=ASIN(Y/R) * IF(X.LT.0..AND.ULANGL.GE.0.) THEN ULANGL=PARU(1)-ULANGL ELSEIF(X.LT.0.) THEN L! ULANGL=-PARU(1)-ULANGL E ENDIF ENDIF B RETURN 1 END G C********************************************************************* FUNCTION RLU(IDUMMY) ( *F C...Purpose: to generate random numbers uniformly distributed between & C...0 and 1, excluding the endpoints. & COMMON/LUDATR/MRLU(6),RRLU(100) SAVE /LUDATR/ C EQUIVALENCE (MRLU1,MRLU(1)),(MRLU2,MRLU(2)),(MRLU3,MRLU(3)), 7 &(MRLU4,MRLU(4)),(MRLU5,MRLU(5)),(MRLU6,MRLU(6)), )= &(RRLU98,RRLU(98)),(RRLU99,RRLU(99)),(RRLU00,RRLU(100)) 0 + C...Initialize generation from given seed. ) IF(MRLU2.EQ.0) THEN IJ=MOD(MRLU1/30082,31329) KL=MOD(MRLU1,30082) I=MOD(IJ/177,177)+2 J=MOD(IJ,177)+2 K=MOD(KL/169,178)+1 L=MOD(KL,169) DO 110 II=1,97 ( S=0. 2 T=0.5 DO 100 JJ=1,24 R M=MOD(MOD(I*J,179)*K,179) I=J J=K K=M L=MOD(53*L+1,169) $ IF(MOD(L*M,64).GE.32) S=S+T T=0.5*T 100 CONTINUE * RRLU(II)=S * 110 CONTINUE * TWOM24=1. DO 120 I24=1,24 TWOM24=0.5*TWOM24 120 CONTINUE / RRLU98=362436.*TWOM24 RRLU99=7654321.*TWOM24 0 RRLU00=16777213.*TWOM24 MRLU2=1 MRLU3=0 MRLU4=97 V MRLU5=33 ENDIF 5! C...Generate next random number. # 130 RUNI=RRLU(MRLU4)-RRLU(MRLU5) IF(RUNI.LT.0.) RUNI=RUNI+1. RRLU(MRLU4)=RUNI v MRLU4=MRLU4-1 IF(MRLU4.EQ.0) MRLU4=97 MRLU5=MRLU5-1 IF(MRLU5.EQ.0) MRLU5=97 RRLU98=RRLU98-RRLU99 D, IF(RRLU98.LT.0.) RRLU98=RRLU98+RRLU00 RUNI=RUNI-RRLU98 IF(RUNI.LT.0.) RUNI=RUNI+1. + IF(RUNI.LE.0.OR.RUNI.GE.1.) GOTO 130 e. C...Update counters. Random number to output. MRLU3=MRLU3+1 # IF(MRLU3.EQ.1000000000) THEN A MRLU2=MRLU2+1 MRLU3=0 ENDIF RLU=RUNI ) . RETURN END EG C********************************************************************* K . SUBROUTINE RLUGET(LFN,MOVE) LH C...Purpose: to dump the state of the random number generator on a file 4 C...for subsequent startup from this state onwards. & COMMON/LUDATR/MRLU(6),RRLU(100) SAVE /LUDATR/ CHARACTER CHERR*8 .D C...Backspace required number of records (or as many as there are). IF(MOVE.LT.0) THEN NBCK=MIN(MRLU(6),-MOVE) DO 100 IBCK=1,NBCK H+ BACKSPACE(LFN,ERR=110,IOSTAT=IERR) K 100 CONTINUE MRLU(6)=MRLU(6)-NBCK . ENDIF # C...Unformatted write on unit LFN. 8 WRITE(LFN,ERR=110,IOSTAT=IERR) (MRLU(I1),I1=1,5), &(RRLU(I2),I2=1,100) MRLU(6)=MRLU(6)+1 RETURN L Q C...Write error. 110 WRITE(CHERR,'(I8)') IERR =G CALL LUERRM(18,'(RLUGET:) error when accessing file, IOSTAT ='// &CHERR) L RETURN END G C********************************************************************* 3 D SUBROUTINE RLUSET(LFN,MOVE) H C...Purpose: to read a state of the random number generator from a file 7 C...for subsequent generation from this state onwards. H& COMMON/LUDATR/MRLU(6),RRLU(100) SAVE /LUDATR/ CHARACTER CHERR*8 fD C...Backspace required number of records (or as many as there are). IF(MOVE.LT.0) THEN m NBCK=MIN(MRLU(6),-MOVE) DO 100 IBCK=1,NBCK K+ BACKSPACE(LFN,ERR=120,IOSTAT=IERR) 100 CONTINUE ) MRLU(6)=MRLU(6)-NBCK F ENDIF C$ C...Unformatted read from unit LFN. NFOR=1+MAX(0,MOVE) N DO 110 IFOR=1,NFOR 7 READ(LFN,ERR=120,IOSTAT=IERR) (MRLU(I1),I1=1,5), &(RRLU(I2),I2=1,100) 110 CONTINUE MRLU(6)=MRLU(6)+NFOR g RETURN K C...Write error. B 120 WRITE(CHERR,'(I8)') IERR G CALL LUERRM(18,'(RLUSET:) error when accessing file, IOSTAT ='// ) &CHERR) . RETURN o END aG C********************************************************************* A F- SUBROUTINE LUROBO(THE,PHI,BEX,BEY,BEZ) . K. C...Purpose: to perform rotations and boosts. # IMPLICIT DOUBLE PRECISION(D) )4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) SAVE /LUJETS/ UDAT1/ 1 DIMENSION ROT(3,3),PR(3),VR(3),DP(4),DV(4) E C...Find range of rotation/boost. Convert boost to double precision. + IMIN=1 E$ IF(MSTU(1).GT.0) IMIN=MSTU(1) IMAX=N L$ IF(MSTU(2).GT.0) IMAX=MSTU(2) DBX=BEX DBY=BEY DBZ=BEZ GOTO 120 g o9 C...Entry for specific range and double precision boost. .3 ENTRY LUDBRB(IMI,IMA,THE,PHI,DBEX,DBEY,DBEZ) D IMIN=IMI K IF(IMIN.LE.0) IMIN=1 IMAX=IMA . IF(IMAX.LE.0) IMAX=N 9 DBX=DBEX L DBY=DBEY N DBZ=DBEZ Q .3 C...Optional resetting of V (when not set before.) IF(MSTU(33).NE.0) THEN 5 DO 110 I=MIN(IMIN,MSTU(4)),MIN(IMAX,MSTU(4)) r DO 100 J=1,5 V(I,J)=0. 100 CONTINUE r 110 CONTINUE v MSTU(33)=0 d ENDIF .# C...Check range of rotation/boost. 2 120 IF(IMIN.GT.MSTU(4).OR.IMAX.GT.MSTU(4)) THEN CALL LUERRM(11,'(LUROBO:) range outside LUJETS memory') RETURN . ENDIF 2< C...Rotate, typically from z axis to direction (theta,phi). & IF(THE**2+PHI**2.GT.1E-20) THEN # ROT(1,1)=COS(THE)*COS(PHI) F ROT(1,2)=-SIN(PHI) .# ROT(1,3)=SIN(THE)*COS(PHI) T# ROT(2,1)=COS(THE)*SIN(PHI) ROT(2,2)=COS(PHI) # ROT(2,3)=SIN(THE)*SIN(PHI) ROT(3,1)=-SIN(THE) * ROT(3,2)=0. ROT(3,3)=COS(THE) DO 150 I=IMIN,IMAX C! IF(K(I,1).LE.0) GOTO 150 t DO 130 J=1,3 o PR(J)=P(I,J) VR(J)=V(I,J) G 130 CONTINUE , DO 140 J=1,3 < P(I,J)=ROT(J,1)*PR(1)+ROT(J,2)*PR(2)+ROT(J,3)*PR(3) < V(I,J)=ROT(J,1)*VR(1)+ROT(J,2)*VR(2)+ROT(J,3)*VR(3) 140 CONTINUE 150 CONTINUE H ENDIF F8 C...Boost, typically from rest to momentum/energy=beta. - IF(DBX**2+DBY**2+DBZ**2.GT.1E-20) THEN & DB=SQRT(DBX**2+DBY**2+DBZ**2) $ IF(DB.GT.0.99999999D0) THEN 0 C...Rescale boost vector if too close to unity. < CALL LUERRM(3,'(LUROBO:) boost vector too large') $ DBX=DBX*(0.99999999D0/DB) $ DBY=DBY*(0.99999999D0/DB) $ DBZ=DBZ*(0.99999999D0/DB) DB=0.99999999D0 ENDIF DGA=1D0/SQRT(1D0-DB**2) DO 170 I=IMIN,IMAX ! IF(K(I,1).LE.0) GOTO 170 t DO 160 J=1,4 L DP(J)=P(I,J) DV(J)=V(I,J) N 160 CONTINUE ** DBP=DBX*DP(1)+DBY*DP(2)+DBZ*DP(3) , DGABP=DGA*(DGA*DBP/(1D0+DGA)+DP(4)) P(I,1)=DP(1)+DGABP*DBX t P(I,2)=DP(2)+DGABP*DBY a P(I,3)=DP(3)+DGABP*DBZ t P(I,4)=DGA*(DP(4)+DBP) a* DBV=DBX*DV(1)+DBY*DV(2)+DBZ*DV(3) , DGABV=DGA*(DGA*DBV/(1D0+DGA)+DV(4)) V(I,1)=DV(1)+DGABV*DBX V(I,2)=DV(2)+DGABV*DBY K V(I,3)=DV(3)+DGABV*DBZ 2 V(I,4)=DGA*(DV(4)+DBV) 2 170 CONTINUE 1 ENDIF 4 RETURN END BG C********************************************************************* , , SUBROUTINE LUEDIT(MEDIT) E .B C...Purpose: to perform global manipulations on the event record, I C...in particular to exclude unstable or undetectable partons/particles. .4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) 1& SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ $ DIMENSION NS(2),PTS(2),PLS(2) ' C...Remove unwanted partons/particles. Q9 IF((MEDIT.GE.0.AND.MEDIT.LE.3).OR.MEDIT.EQ.5) THEN IMAX=N & IF(MSTU(2).GT.0) IMAX=MSTU(2) I1=MAX(1,MSTU(1))-1 DO 110 I=MAX(1,MSTU(1)),IMAX A1 IF(K(I,1).EQ.0.OR.K(I,1).GT.20) GOTO 110 M IF(MEDIT.EQ.1) THEN $ IF(K(I,1).GT.10) GOTO 110 ELSEIF(MEDIT.EQ.2) THEN $ IF(K(I,1).GT.10) GOTO 110 KC=LUCOMP(K(I,2)) F IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR.KC.EQ.18) & GOTO 110 ELSEIF(MEDIT.EQ.3) THEN $ IF(K(I,1).GT.10) GOTO 110 KC=LUCOMP(K(I,2)) IF(KC.EQ.0) GOTO 110 K? IF(KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) GOTO 110 K ELSEIF(MEDIT.EQ.5) THEN 4 IF(K(I,1).EQ.13.OR.K(I,1).EQ.14) GOTO 110 KC=LUCOMP(K(I,2)) IF(KC.EQ.0) GOTO 110 8 IF(K(I,1).GE.11.AND.KCHG(KC,2).EQ.0) GOTO 110 ENDIF > C...Pack remaining partons/particles. rigin no longer known. I1=I1+1 DO 100 J=1,5 K K(I1,J)=K(I,J) P(I1,J)=P(I,J) Q V(I1,J)=V(I,J) U 100 CONTINUE K(I1,3)=0 110 CONTINUE . IF(I1.LT.N) MSTU(3)=0 IF(I1.LT.N) MSTU(70)=0 B N=I1 E C...Selective removal of class of entries. New position of retained. L/ ELSEIF(MEDIT.GE.11.AND.MEDIT.LE.15) THEN 1 I1=0 DO 120 I=1,N # K(I,3)=MOD(K(I,3),MSTU(5)) 1 IF(MEDIT.EQ.11.AND.K(I,1).LT.0) GOTO 120 1 IF(MEDIT.EQ.12.AND.K(I,1).EQ.0) GOTO 120 = IF(MEDIT.EQ.13.AND.(K(I,1).EQ.11.OR.K(I,1).EQ.12.OR. P1 & K(I,1).EQ.15).AND.K(I,2).NE.94) GOTO 120 = IF(MEDIT.EQ.14.AND.(K(I,1).EQ.13.OR.K(I,1).EQ.14.OR. . & K(I,2).EQ.94)) GOTO 120 2 IF(MEDIT.EQ.15.AND.K(I,1).GE.21) GOTO 120 I1=I1+1 ! K(I,3)=K(I,3)+MSTU(5)*I1 . 120 CONTINUE . C8 C...Find new event history information and replace old. DO 140 I=1,N 9H IF(K(I,1).LE.0.OR.K(I,1).GT.20.OR.K(I,3)/MSTU(5).EQ.0) GOTO 140 ID=I L 130 IM=MOD(K(ID,3),MSTU(5)) 5 IF(MEDIT.EQ.13.AND.IM.GT.0.AND.IM.LE.N) THEN D IF((K(IM,1).EQ.11.OR.K(IM,1).EQ.12.OR.K(IM,1).EQ.15).AND. & K(IM,2).NE.94) THEN ID=IM GOTO 130 ENDIF 9 ELSEIF(MEDIT.EQ.14.AND.IM.GT.0.AND.IM.LE.N) THENC IF(K(IM,1).EQ.13.OR.K(IM,1).EQ.14.OR.K(IM,2).EQ.94) THEN K ID=IM GOTO 130 K ENDIF ENDIF ( K(I,3)=MSTU(5)*(K(I,3)/MSTU(5)) 2 IF(IM.NE.0) K(I,3)=K(I,3)+K(IM,3)/MSTU(5) ? IF(K(I,1).NE.3.AND.K(I,1).NE.13.AND.K(I,1).NE.14) THEN8 IF(K(I,4).GT.0.AND.K(I,4).LE.MSTU(4)) K(I,4)= & K(K(I,4),3)/MSTU(5) 8 IF(K(I,5).GT.0.AND.K(I,5).LE.MSTU(4)) K(I,5)= & K(K(I,5),3)/MSTU(5) ELSE T* KCM=MOD(K(I,4)/MSTU(5),MSTU(5)) ? IF(KCM.GT.0.AND.KCM.LE.MSTU(4)) KCM=K(KCM,3)/MSTU(5) - KCD=MOD(K(I,4),MSTU(5)) ? IF(KCD.GT.0.AND.KCD.LE.MSTU(4)) KCD=K(KCD,3)/MSTU(5) * K(I,4)=MSTU(5)**2*(K(I,4)/MSTU(5)**2)+MSTU(5)*KCM+KCD * KCM=MOD(K(I,5)/MSTU(5),MSTU(5)) ? IF(KCM.GT.0.AND.KCM.LE.MSTU(4)) KCM=K(KCM,3)/MSTU(5) L KCD=MOD(K(I,5),MSTU(5)) ? IF(KCD.GT.0.AND.KCD.LE.MSTU(4)) KCD=K(KCD,3)/MSTU(5) K(I,5)=MSTU(5)**2*(K(I,5)/MSTU(5)**2)+MSTU(5)*KCM+KCD ENDIF 140 CONTINUE b i C...Pack remaining entries. I1=0 S MSTU90=MSTU(90) MSTU(90)=0 DO 170 I=1,N D) IF(K(I,3)/MSTU(5).EQ.0) GOTO 170 I1=I1+1 DO 150 J=1,5 . K(I1,J)=K(I,J) h P(I1,J)=P(I,J) r V(I1,J)=V(I,J) E 150 CONTINUE K(I1,3)=MOD(K(I1,3),MSTU(5)) M DO 160 IZ=1,MSTU90 . IF(I.EQ.MSTU(90+IZ)) THEN MSTU(90)=MSTU(90)+1 MSTU(90+MSTU(90))=I1 T( PARU(90+MSTU(90))=PARU(90+IZ) ENDIF 160 CONTINUE R 170 CONTINUE S IF(I1.LT.N) MSTU(3)=0 IF(I1.LT.N) MSTU(70)=0 L N=I1 B C...Fill in some missing daughter pointers (lost in colour flow). ELSEIF(MEDIT.EQ.16) THEN DO 190 I=1,N M2 IF(K(I,1).LE.10.OR.K(I,1).GT.20) GOTO 190 0 IF(K(I,4).NE.0.OR.K(I,5).NE.0) GOTO 190 ' C...Find daughters who point to mother.' DO 180 I1=I+1,N IF(K(I1,3).NE.I) THEN ! ELSEIF(K(I,4).EQ.0) THEN , K(I,4)=I1 ELSE K(I,5)=I1 ENDIF 180 CONTINUE o IF(K(I,5).EQ.0) K(I,5)=K(I,4)M IF(K(I,4).NE.0) GOTO 190F C...Find daughters who point to documentation version of mother. IM=K(I,3)=' IF(IM.LE.0.OR.IM.GE.I) GOTO 190*5 IF(K(IM,1).LE.20.OR.K(IM,1).GT.30) GOTO 190 *E IF(K(IM,2).NE.K(I,2).OR.ABS(P(IM,5)-P(I,5)).GT.1E-2) GOTO 190 DO 182 I1=I+1,N IF(K(I1,3).NE.IM) THEN S! ELSEIF(K(I,4).EQ.0) THEN 0 K(I,4)=I1 ELSE c K(I,5)=I1 ENDIF 182 CONTINUE IF(K(I,5).EQ.0) K(I,5)=K(I,4)^ IF(K(I,4).NE.0) GOTO 190< C...Find daughters who point to documentation daughters who,1 C...in their turn, point to documentation mother. ID1=IM ID2=IM DO 184 I1=IM+1,I-1B IF(K(I1,3).EQ.IM.AND.K(I1,1).GT.20.AND.K(I1,1).LE.30) THEN ID2=I1 IF(ID1.EQ.IM) ID1=I1 ENDIFT 184 CONTINUE DO 186 I1=I+1,N 3 IF(K(I1,3).NE.ID1.AND.K(I1,3).NE.ID2) THEN ! ELSEIF(K(I,4).EQ.0) THEN 3 K(I,4)=I1 ELSE ) K(I,5)=I1 ENDIF 186 CONTINUE L IF(K(I,5).EQ.0) K(I,5)=K(I,4)4 190 CONTINUE P =6 C...Save top entries at bottom of LUJETS commonblock. ELSEIF(MEDIT.EQ.21) THEN * IF(2*N.GE.MSTU(4)) THEN D CALL LUERRM(11,'(LUEDIT:) no more memory left in LUJETS') RETURN ) ENDIF DO 210 I=1,N DO 200 J=1,5 K(MSTU(4)-I,J)=K(I,J) P(MSTU(4)-I,J)=P(I,J) V(MSTU(4)-I,J)=V(I,J) 200 CONTINUE 210 CONTINUE t MSTU(32)=N l _9 C...Restore bottom entries of commonblock LUJETS to top. , ELSEIF(MEDIT.EQ.22) THEN C DO 230 I=1,MSTU(32) DO 220 J=1,5 A K(I,J)=K(MSTU(4)-I,J) P(I,J)=P(MSTU(4)-I,J) V(I,J)=V(MSTU(4)-I,J) 220 CONTINUE R 230 CONTINUE S N=MSTU(32) D C...Mark primary entries at top of commonblock LUJETS as untreated. ELSEIF(MEDIT.EQ.23) THEN Q I1=0 a DO 240 I=1,N KH=K(I,3) IF(KH.GE.1) THEN X! IF(K(KH,1).GT.20) KH=0 ) ENDIF IF(KH.NE.0) GOTO 250 M I1=I1+1 ; IF(K(I,1).GT.10.AND.K(I,1).LE.20) K(I,1)=K(I,1)-10 F 240 CONTINUE 250 N=I1 D C...Place largest axis along z axis and second largest in xy plane. . ELSEIF(MEDIT.EQ.31.OR.MEDIT.EQ.32) THEN : CALL LUDBRB(1,N+MSTU(3),0.,-ULANGL(P(MSTU(61),1), $ & P(MSTU(61),2)),0D0,0D0,0D0) 7 CALL LUDBRB(1,N+MSTU(3),-ULANGL(P(MSTU(61),3), T' & P(MSTU(61),1)),0.,0D0,0D0,0D0) 0< CALL LUDBRB(1,N+MSTU(3),0.,-ULANGL(P(MSTU(61)+1,1), & & P(MSTU(61)+1,2)),0D0,0D0,0D0) IF(MEDIT.EQ.31) RETURN o* C...Rotate to put slim jet along +z axis. DO 260 IS=1,2 NS(IS)=0 M PTS(IS)=0. 1 PLS(IS)=0. 260 CONTINUE 1 DO 270 I=1,N 1 IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 270 IF(MSTU(41).GE.2) THEN A KC=LUCOMP(K(I,2)) = IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR. & KC.EQ.18) GOTO 270 EH IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) & GOTO 270 R ENDIF IS=2.-SIGN(0.5,P(I,3)) s NS(IS)=NS(IS)+1 2 PTS(IS)=PTS(IS)+SQRT(P(I,1)**2+P(I,2)**2) 270 CONTINUE 2/ IF(NS(1)*PTS(2)**2.LT.NS(2)*PTS(1)**2) )8 & CALL LUDBRB(1,N+MSTU(3),PARU(1),0.,0D0,0D0,0D0) E: C...Rotate to put second largest jet into -z,+x quadrant. DO 280 I=1,N IF(P(I,3).GE.0.) GOTO 280 1 IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 280 IF(MSTU(41).GE.2) THEN KC=LUCOMP(K(I,2)) = IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR. & KC.EQ.18) GOTO 280 H IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) & GOTO 280 I ENDIF IS=2.-SIGN(0.5,P(I,1)) n PLS(IS)=PLS(IS)-P(I,3) 280 CONTINUE A IF(PLS(2).GT.PLS(1)) CALL LUDBRB(1,N+MSTU(3),0.,PARU(1), & 0D0,0D0,0D0) ENDIF RETURN , END ,G C********************************************************************* , SUBROUTINE LULIST(MLIST) R 9D C...Purpose: to give program heading, or list an event, or particle ' C...data, or current parameter values. 4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) IE COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5) / SAVE /LUJETS/,/LUDAT1/,/LUDAT2/,/LUDAT3/ = CHARACTER CHAP*16,CHAC*16,CHAN*16,CHAD(5)*16,CHDL(7)*4 M DIMENSION PS(6) 7 DATA CHDL/'(())',' ','()','!!','<>','==','(==)'/ S E C...Initialization printout: version number and date of last change. + IF(MLIST.EQ.0.OR.MSTU(12).EQ.1) THEN * CALL LULOGO 2 MSTU(12)=0 5 IF(MLIST.EQ.0) RETURN ENDIF 9 C...List event data, including additional lines after N. ) IF(MLIST.GE.1.AND.MLIST.LE.3) THEN a, IF(MLIST.EQ.1) WRITE(MSTU(11),5100) , IF(MLIST.EQ.2) WRITE(MSTU(11),5200) , IF(MLIST.EQ.3) WRITE(MSTU(11),5300) LMX=12 F IF(MLIST.GE.2) LMX=16 ISTR=0 IMAX=N M& IF(MSTU(2).GT.0) IMAX=MSTU(2) ; DO 120 I=MAX(1,MSTU(1)),MAX(IMAX,N+MAX(0,MSTU(3))) -; IF((I.GT.IMAX.AND.I.LE.N).OR.K(I,1).LT.0) GOTO 120 E < C...Get particle name, pad it and check it is not too long. ! CALL LUNAME(K(I,2),CHAP) LEN=0 DO 100 LEM=1,16 ) IF(CHAP(LEM:LEM).NE.' ') LEN=LEM 100 CONTINUE = MDL=(K(I,1)+19)/10 LDL=0 & IF(MDL.EQ.2.OR.MDL.GE.8) THEN CHAC=CHAP + IF(LEN.GT.LMX) CHAC(LMX:LMX)='?' E ELSE p LDL=1 ) IF(MDL.EQ.1.OR.MDL.EQ.7) LDL=2 l IF(LEN.EQ.0) THEN ) CHAC=CHDL(MDL)(1:2*LDL)//' ' D ELSE 1 CHAC=CHDL(MDL)(1:LDL)//CHAP(1:MIN(LEN,LMX-2*LDL))// ( & CHDL(MDL)(LDL+1:2*LDL)//' ' 3 IF(LEN+2*LDL.GT.LMX) CHAC(LMX:LMX)='?' ENDIF ENDIF * C...Add information on string connection. G IF(K(I,1).EQ.1.OR.K(I,1).EQ.2.OR.K(I,1).EQ.11.OR.K(I,1).EQ.12) & THEN KC=LUCOMP(K(I,2)) KCC=0 IF(KC.NE.0) KCC=KCHG(KC,2) I& IF(IABS(K(I,2)).EQ.39) THEN 9 IF(LEN+2*LDL+3.LE.LMX) CHAC(LMX-1:LMX-1)='X' .. ELSEIF(KCC.NE.0.AND.ISTR.EQ.0) THEN ISTR=1 9 IF(LEN+2*LDL+3.LE.LMX) CHAC(LMX-1:LMX-1)='A' LB ELSEIF(KCC.NE.0.AND.(K(I,1).EQ.2.OR.K(I,1).EQ.12)) THEN 9 IF(LEN+2*LDL+3.LE.LMX) CHAC(LMX-1:LMX-1)='I' E ELSEIF(KCC.NE.0) THEN ISTR=0 9 IF(LEN+2*LDL+3.LE.LMX) CHAC(LMX-1:LMX-1)='V' t ENDIF ENDIF H! C...Write data for particle/jet. 15 IF(MLIST.EQ.1.AND.ABS(P(I,4)).LT.9999.) THEN f> WRITE(MSTU(11),5400) I,CHAC(1:12),(K(I,J1),J1=1,3), & (P(I,J2),J2=1,5) H: ELSEIF(MLIST.EQ.1.AND.ABS(P(I,4)).LT.99999.) THEN > WRITE(MSTU(11),5500) I,CHAC(1:12),(K(I,J1),J1=1,3), & (P(I,J2),J2=1,5) R ELSEIF(MLIST.EQ.1) THEN > WRITE(MSTU(11),5600) I,CHAC(1:12),(K(I,J1),J1=1,3), & (P(I,J2),J2=1,5) E ELSEIF(MSTU(5).EQ.10000.AND.(K(I,1).EQ.3.OR.K(I,1).EQ.13.OR. , & K(I,1).EQ.14)) THEN 8 WRITE(MSTU(11),5700) I,CHAC,(K(I,J1),J1=1,3), F & K(I,4)/100000000,MOD(K(I,4)/10000,10000),MOD(K(I,4),10000), F & K(I,5)/100000000,MOD(K(I,5)/10000,10000),MOD(K(I,5),10000), & (P(I,J2),J2=1,5) * ELSE *H WRITE(MSTU(11),5800) I,CHAC,(K(I,J1),J1=1,5),(P(I,J2),J2=1,5) ENDIF ; IF(MLIST.EQ.3) WRITE(MSTU(11),5900) (V(I,J),J=1,5) o s4 C...Insert extra separator lines specified by user. IF(MSTU(70).GE.1) THEN 0 ISEP=0 N& DO 110 J=1,MIN(10,MSTU(70)) IF(I.EQ.MSTU(70+J)) ISEP=1 110 CONTINUE< IF(ISEP.EQ.1.AND.MLIST.EQ.1) WRITE(MSTU(11),6000) < IF(ISEP.EQ.1.AND.MLIST.GE.2) WRITE(MSTU(11),6100) ENDIF 120 CONTINUE C...Sum of charges and momenta. DO 130 J=1,6 PS(J)=PLU(0,J) 130 CONTINUE 4 IF(MLIST.EQ.1.AND.ABS(PS(4)).LT.9999.) THEN 3 WRITE(MSTU(11),6200) PS(6),(PS(J),J=1,5) E9 ELSEIF(MLIST.EQ.1.AND.ABS(PS(4)).LT.99999.) THEN 03 WRITE(MSTU(11),6300) PS(6),(PS(J),J=1,5) X ELSEIF(MLIST.EQ.1) THEN 3 WRITE(MSTU(11),6400) PS(6),(PS(J),J=1,5) o ELSE e3 WRITE(MSTU(11),6500) PS(6),(PS(J),J=1,5) ENDIF S5 C...Give simple list of KF codes defined in program. ELSEIF(MLIST.EQ.11) THEN r WRITE(MSTU(11),6600) U DO 140 KF=1,40 . CALL LUNAME(KF,CHAP) o CALL LUNAME(-KF,CHAN) E IF(CHAP.NE.' '.AND.CHAN.EQ.' ') WRITE(MSTU(11),6700) KF,CHAP s> IF(CHAN.NE.' ') WRITE(MSTU(11),6700) KF,CHAP,-KF,CHAN 140 CONTINUE m DO 170 KFLS=1,3,2 DO 160 KFLA=1,8 & DO 150 KFLB=1,KFLA-(3-KFLS)/2 # KF=1000*KFLA+100*KFLB+KFLS - CALL LUNAME(KF,CHAP) N CALL LUNAME(-KF,CHAN) . WRITE(MSTU(11),6700) KF,CHAP,-KF,CHAN 150 CONTINUE ) 160 CONTINUE 170 CONTINUE - KF=130 CALL LUNAME(KF,CHAP) ) WRITE(MSTU(11),6700) KF,CHAP C KF=310 1 CALL LUNAME(KF,CHAP) 1 WRITE(MSTU(11),6700) KF,CHAP DO 200 KMUL=0,5 KFLS=3 * IF(KMUL.EQ.0.OR.KMUL.EQ.3) KFLS=1 IF(KMUL.EQ.5) KFLS=5 R KFLR=0 ,* IF(KMUL.EQ.2.OR.KMUL.EQ.3) KFLR=1 IF(KMUL.EQ.4) KFLR=2 DO 190 KFLB=1,8 DO 180 KFLC=1,KFLB-1 , KF=10000*KFLR+100*KFLB+10*KFLC+KFLS CALL LUNAME(KF,CHAP) CALL LUNAME(-KF,CHAN) . WRITE(MSTU(11),6700) KF,CHAP,-KF,CHAN 180 CONTINUE e$ KF=10000*KFLR+110*KFLB+KFLS CALL LUNAME(KF,CHAP) t WRITE(MSTU(11),6700) KF,CHAP * 190 CONTINUE 200 CONTINUE * KF=30443 CALL LUNAME(KF,CHAP) / WRITE(MSTU(11),6700) KF,CHAP KF=30553 G CALL LUNAME(KF,CHAP) WRITE(MSTU(11),6700) KF,CHAP . DO 240 KFLSP=1,3 KFLS=2+2*(KFLSP/3) ( DO 230 KFLA=1,8 DO 220 KFLB=1,KFLA DO 210 KFLC=1,KFLB BC IF(KFLSP.EQ.1.AND.(KFLA.EQ.KFLB.OR.KFLB.EQ.KFLC)) GOTO 210 )1 IF(KFLSP.EQ.2.AND.KFLA.EQ.KFLC) GOTO 210 a: IF(KFLSP.EQ.1) KF=1000*KFLA+100*KFLC+10*KFLB+KFLS : IF(KFLSP.GE.2) KF=1000*KFLA+100*KFLB+10*KFLC+KFLS CALL LUNAME(KF,CHAP) D CALL LUNAME(-KF,CHAN) . WRITE(MSTU(11),6700) KF,CHAP,-KF,CHAN 210 CONTINUE A 220 CONTINUE 230 CONTINUE ) 240 CONTINUE E A C...List parton/particle data table. Check whether to be listed. * ELSEIF(MLIST.EQ.12) THEN * WRITE(MSTU(11),6800) MSTJ24=MSTJ(24) MSTJ(24)=0 KFMAX=30553 ' IF(MSTU(2).NE.0) KFMAX=MSTU(2) i' DO 270 KF=MAX(1,MSTU(1)),KFMAX KC=LUCOMP(KF) IF(KC.EQ.0) GOTO 270 (? IF(MSTU(14).EQ.0.AND.KF.GT.100.AND.KC.LE.100) GOTO 270 2 IF(MSTU(14).GT.0.AND.KF.GT.100.AND.MAX(MOD(KF/1000,10), . & MOD(KF/100,10)).GT.MSTU(14)) GOTO 270 > IF(MSTU(14).GT.0.AND.KF.GT.100.AND.KC.EQ.90) GOTO 270 n4 C...Find particle name and mass. Print information. CALL LUNAME(KF,CHAP) C IF(KF.LE.100.AND.CHAP.EQ.' '.AND.MDCY(KC,2).EQ.0) GOTO 270 M CALL LUNAME(-KF,CHAN) PM=ULMASS(KF) D WRITE(MSTU(11),6900) KF,KC,CHAP,CHAN,KCHG(KC,1),KCHG(KC,2), B & KCHG(KC,3),PM,PMAS(KC,2),PMAS(KC,3),PMAS(KC,4),MDCY(KC,1) TF C...Particle decay: channel number, branching ration, matrix element, C...decay products. - IF(KF.GT.100.AND.KC.LE.100) GOTO 270 .6 DO 260 IDC=MDCY(KC,2),MDCY(KC,2)+MDCY(KC,3)-1 DO 250 J=1,5 F) CALL LUNAME(KFDP(IDC,J),CHAD(J)) M 250 CONTINUE D WRITE(MSTU(11),7000) IDC,MDME(IDC,1),MDME(IDC,2),BRAT(IDC), & (CHAD(J),J=1,5) 260 CONTINUE . 270 CONTINUE MSTJ(24)=MSTJ24 1 C...List parameter value table. ELSEIF(MLIST.EQ.13) THEN WRITE(MSTU(11),7100) E DO 280 I=1,200 GG WRITE(MSTU(11),7200) I,MSTU(I),PARU(I),MSTJ(I),PARJ(I),PARF(I) n 280 CONTINUE ENDIF B C...Format statements for output on unit MSTU(11) (by default 6). H 5100 FORMAT(///28X,'Event listing (summary)'//4X,'I particle/jet KS', ? &5X,'KF orig p_x p_y p_z E m'/) .F 5200 FORMAT(///28X,'Event listing (standard)'//4X,'I particle/jet', F &' K(I,1) K(I,2) K(I,3) K(I,4) K(I,5) P(I,1)', ? &' P(I,2) P(I,3) P(I,4) P(I,5)'/) I 5300 FORMAT(///28X,'Event listing (with vertices)'//4X,'I particle/j', 1H &'et K(I,1) K(I,2) K(I,3) K(I,4) K(I,5) P(I,1)', B &' P(I,2) P(I,3) P(I,4) P(I,5)'/73X, E &'V(I,1) V(I,2) V(I,3) V(I,4) V(I,5)'/) 33 5400 FORMAT(1X,I4,2X,A12,1X,I2,1X,I6,1X,I4,5F9.3) 23 5500 FORMAT(1X,I4,2X,A12,1X,I2,1X,I6,1X,I4,5F9.2) 3 5600 FORMAT(1X,I4,2X,A12,1X,I2,1X,I6,1X,I4,5F9.1) .A 5700 FORMAT(1X,I4,2X,A16,1X,I3,1X,I8,2X,I4,2(3X,I1,2I4),5F13.5) d= 5800 FORMAT(1X,I4,2X,A16,1X,I3,1X,I8,2X,I4,2(3X,I9),5F13.5) 5900 FORMAT(66X,5(1X,F12.3)) 6000 FORMAT(1X,78('=')) D 6100 FORMAT(1X,130('=')) ' 6200 FORMAT(19X,'sum:',F6.2,5X,5F9.3) .' 6300 FORMAT(19X,'sum:',F6.2,5X,5F9.2) (' 6400 FORMAT(19X,'sum:',F6.2,5X,5F9.1) QF 6500 FORMAT(19X,'sum charge:',F6.2,3X,'sum momentum and inv. mass:', &5F13.5) 4 6600 FORMAT(///20X,'List of KF codes in program'/) ( 6700 FORMAT(4X,I6,4X,A16,6X,I6,4X,A16) F 6800 FORMAT(///30X,'Particle/parton data table'//5X,'KF',5X,'KC',4X, E &'particle',8X,'antiparticle',6X,'chg col anti',8X,'mass',7X, )I &'width',7X,'w-cut',5X,'lifetime',1X,'decay'/11X,'IDC',1X,'on/off', 50 &1X,'ME',3X,'Br.rat.',4X,'decay products') ? 6900 FORMAT(/1X,I6,3X,I4,4X,A16,A16,3I5,1X,F12.5,2(1X,F11.5), ) &2X,F12.5,3X,I2) 1 7000 FORMAT(10X,I4,2X,I3,2X,I3,2X,F8.5,4X,5A16) IB 7100 FORMAT(///20X,'Parameter value table'//4X,'I',3X,'MSTU(I)', ; &8X,'PARU(I)',3X,'MSTJ(I)',8X,'PARJ(I)',8X,'PARF(I)') F; 7200 FORMAT(1X,I4,1X,I9,1X,F14.5,1X,I9,1X,F14.5,1X,F14.5) C RETURN T END G C********************************************************************* ) T SUBROUTINE LULOGO S; C...Purpose: to write logo for JETSET and PYTHIA programs. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) < COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200) SAVE /LUDAT1/ SAVE /PYPARS/ A CHARACTER MONTH(12)*3, LOGO(48)*32, REFER(22)*36, LINE*79, &VERS*1, SUBV*3, DATE*2, YEAR*4 . k2 C...Data on months, logo, titles, and references. H DATA MONTH/'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep', &'Oct','Nov','Dec'/ DATA (LOGO(J),J=1,10)/ 0* &'PPP Y Y TTTTT H H III A ', * &'P P Y Y T H H I A A ', * &'PPP Y T HHHHH I AAAAA', * &'P Y T H H I A A', * &'P Y T H H III A A', * &'JJJJ EEEE TTTTT SSS EEEE TTTTT', * &' J E T S E T ', * &' J EEE T SSS EEE T ', * &'J J E T S E T ', * &' JJ EEEE T SSS EEEE T '/ DATA (LOGO(J),J=11,29)/ * &' *......* ', * &' *:::!!:::::::::::* ', * &' *::::::!!::::::::::::::* ', * &' *::::::::!!::::::::::::::::* ', * &' *:::::::::!!:::::::::::::::::* ', * &' *:::::::::!!:::::::::::::::::* ', * &' *::::::::!!::::::::::::::::*! ', * &' *::::::!!::::::::::::::* !! ', * &' !! *:::!!:::::::::::* !! ', * &' !! !* -><- * !! ', * &' !! !! !! ', * &' !! !! !! ', * &' !! !! ', * &' !! ep !! ', * &' !! !! ', * &' !! pp !! ', * &' !! e+e- !! ', * &' !! !! ', * &' !! '/ DATA (LOGO(J),J=30,48)/ * &'Welcome to the Lund Monte Carlo!', * &' ', * &' This is PYTHIA version x.xxx ', * &'Last date of change: xx xxx 199x', * &' ', * &' This is JETSET version x.xxx ', * &'Last date of change: xx xxx 199x', * &' ', * &' Main author: ', * &' Torbjorn Sjostrand ', * &' Dept. of theoretical physics 2 ', * &' University of Lund ', * &' Solvegatan 14A ', * &' S-223 62 Lund, Sweden ', * &' phone: +46 - 46 - 222 48 16 ', * &' E-mail: torbjorn thep.lu.se ', * &' ', * &' Copyright Torbjorn Sjostrand ', * &' and CERN, Geneva 1993 '/ DATA (REFER(J),J=1,6)/ .- &'The latest program versions and docu', - &'mentation is found on WWW address ',y- &'http://thep.lu.se/tf2/staff/torbjorn', - &'/Welcome.html ',J- &' ', - &' '/V DATA (REFER(J),J=7,22)/ . &'When you cite these programs, priori', . &'ty should always be given to the ', . &'latest published description. Curren', . &'tly this is ', . &'T. Sjostrand, Computer Physics Commu', . &'n. 82 (1994) 74. ', . &'The most recent long description (un', . &'published) is ', - &'T. Sjostrand, LU TP 95-20 and CERN-T',E. &'H.7112/93 (revised August 1995). ', . &'Also remember that the programs, to ', . &'a large extent, represent original ', . &'physics research. ther publications', . &' of special relevance to your ', . &'studies may therefore deserve separa', . &'te mention. '/ a C...Check if PYTHIA linked. # IF(MSTP(183)/10.NE.199) THEN .4 LOGO(32)=' Warning: PYTHIA is not loaded! ' 4 LOGO(33)='Did you remember to link PYDATA?' ELSE WRITE(VERS,'(I1)') MSTP(181) G LOGO(32)(26:26)=VERS S WRITE(SUBV,'(I3)') MSTP(182) A LOGO(32)(28:30)=SUBV L WRITE(DATE,'(I2)') MSTP(185) 1 LOGO(33)(22:23)=DATE M) LOGO(33)(25:27)=MONTH(MSTP(184)) WRITE(YEAR,'(I4)') MSTP(183) 0 LOGO(33)(29:32)=YEAR ENDIF 1 C...Check if JETSET linked. # IF(MSTU(183)/10.NE.199) THEN 4 LOGO(35)=' Error: JETSET is not loaded! ' 4 LOGO(36)='Did you remember to link LUDATA?' ELSE WRITE(VERS,'(I1)') MSTU(181) LOGO(35)(26:26)=VERS E WRITE(SU ,'(I3)') MSTU(182) . LOGO(35)(28:30)=SUBV C WRITE(DATE,'(I2)') MSTU(185) R LOGO(36)(22:23)=DATE -) LOGO(36)(25:27)=MONTH(MSTU(184)) WRITE(YEAR,'(I4)') MSTU(183) 2 LOGO(36)(29:32)=YEAR 2 ENDIF )B C...Loop over lines in header. Define page feed and side borders. DO 100 ILIN=1,48 E LINE=' ' u IF(ILIN.EQ.1) THEN z LINE(1:1)='1' ELSE LINE(2:3)='**' ) LINE(78:79)='**' 1 ENDIF G C...Separator lines and logos. (B IF(ILIN.EQ.2.OR.ILIN.EQ.3.OR.ILIN.EQ.47.OR.ILIN.EQ.48) THEN LINE(4:77)='***********************************************'// & & '***************************' , ELSEIF(ILIN.GE.6.AND.ILIN.LE.10) THEN LINE(6:37)=LOGO(ILIN-5) LINE(44:75)=LOGO(ILIN) - ELSEIF(ILIN.GE.13.AND.ILIN.LE.31) THEN LINE(6:37)=LOGO(ILIN-2) LINE(44:75)=LOGO(ILIN+17) - ELSEIF(ILIN.GE.34.AND.ILIN.LE.44) THEN$ LINE(5:40)=REFER(2*ILIN-67) LINE(41:76)=REFER(2*ILIN-66) * ENDIF , C...Write lines to appropriate unit. # IF(MSTU(183)/10.EQ.199) THEN i WRITE(MSTU(11),'(A79)') LINE . ELSE e WRITE(*,'(A79)') LINE ENDIF 100 CONTINUE 5 (0 C...Check that matching subversions are linked. ; IF(MSTU(183)/10.EQ.199.AND.MSTP(183)/10.EQ.199) THEN 03 IF(MSTU(182).LT.MSTP(186)) WRITE(MSTU(11), 5B & '(/'' Warning: JETSET subversion too old for PYTHIA''/)') 3 IF(MSTP(182).LT.MSTU(186)) WRITE(MSTU(11), HB & '(/'' Warning: PYTHIA subversion too old for JETSET''/)') ENDIF ' RETURN > END SG C********************************************************************* . # SUBROUTINE LUUPDA(MUPDA,LFN) ND C...Purpose: to facilitate the updating of particle and decay data. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) NE COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5) ) COMMON/LUDAT4/CHAF(500) CHARACTER CHAF*8 (/ SAVE /LUDAT1/,/LUDAT2/,/LUDAT3/,/LUDAT4/ .6 CHARACTER CHINL*80,CHKC*4,CHVAR(19)*9,CHLIN*72, 7 &CHBLK(20)*72,CHOLD*12,CHTMP*12,CHNEW*12,CHCOM*12 TC DATA CHVAR/ 'KCHG(I,1)','KCHG(I,2)','KCHG(I,3)','PMAS(I,1)', .C &'PMAS(I,2)','PMAS(I,3)','PMAS(I,4)','MDCY(I,1)','MDCY(I,2)', cC &'MDCY(I,3)','MDME(I,1)','MDME(I,2)','BRAT(I) ','KFDP(I,1)', EC &'KFDP(I,2)','KFDP(I,3)','KFDP(I,4)','KFDP(I,5)','CHAF(I) '/ L + C...Write information on file for editing. /' IF(MSTU(12).GE.1) CALL LULIST(0) . IF(MUPDA.EQ.1) THEN DO 110 KC=1,MSTU(6) : WRITE(LFN,5000) KC,CHAF(KC),(KCHG(KC,J1),J1=1,3), ( & (PMAS(KC,J2),J2=1,4),MDCY(KC,1) 6 DO 100 IDC=MDCY(KC,2),MDCY(KC,2)+MDCY(KC,3)-1 ; WRITE(LFN,5100) MDME(IDC,1),MDME(IDC,2),BRAT(IDC), D & (KFDP(IDC,J),J=1,5) 100 CONTINUE 110 CONTINUE D :; C...Reset variables and read information from edited file. ' ELSEIF(MUPDA.EQ.2) THEN DO 130 I=1,MSTU(7) o MDME(I,1)=1 MDME(I,2)=0 BRAT(I)=0. R DO 120 J=1,5 . KFDP(I,J)=0 120 CONTINUE C 130 CONTINUE KC=0 IDC=0 NDC=0 140 READ(LFN,5200,END=150) CHINL E& IF(CHINL(2:5).NE.' ') THEN CHKC=CHINL(2:5) IF(KC.NE.0) THEN R MDCY(KC,2)=0 S. IF(NDC.NE.0) MDCY(KC,2)=IDC+1-NDC MDCY(KC,3)=NDC ENDIF READ(CHKC,5300) KC )7 IF(KC.LE.0.OR.KC.GT.MSTU(6)) CALL LUERRM(27, -8 & '(LUUPDA:) Read KC code illegal, KC ='//CHKC) > READ(CHINL,5000) KCR,CHAF(KC),(KCHG(KC,J1),J1=1,3), * & (PMAS(KC,J2),J2=1,4),MDCY(KC,1) NDC=0 ELSE IDC=IDC+1 NDC=NDC+1 - IF(IDC.GE.MSTU(7)) CALL LUERRM(27, A< & '(LUUPDA:) Decay data arrays full by KC ='//CHKC) > READ(CHINL,5100) MDME(IDC,1),MDME(IDC,2),BRAT(IDC), & (KFDP(IDC,J),J=1,5) ENDIF GOTO 140 P 150 MDCY(KC,2)=0 * IF(NDC.NE.0) MDCY(KC,2)=IDC+1-NDC MDCY(KC,3)=NDC 2 K? C...Perform possible tests that new information is consistent. T MSTJ24=MSTJ(24) MSTJ(24)=0 DO 180 KC=1,MSTU(6) WRITE(CHKC,5300) KC G IF(MIN(PMAS(KC,1),PMAS(KC,2),PMAS(KC,3),PMAS(KC,1)-PMAS(KC,3), 0> & PMAS(KC,4)).LT.0..OR.MDCY(KC,3).LT.0) CALL LUERRM(17, G & '(LUUPDA:) Mass/width/life/(# channels) wrong for KC ='//CHKC) BRSUM=0. 6 DO 170 IDC=MDCY(KC,2),MDCY(KC,2)+MDCY(KC,3)-1 ' IF(MDME(IDC,2).GT.80) GOTO 170 T KQ=KCHG(KC,1) + PMS=PMAS(KC,1)-PMAS(KC,3)-PARJ(64) p MERR=0 i DO 160 J=1,5 KP=KFDP(IDC,J) 7 IF(KP.EQ.0.OR.KP.EQ.81.OR.IABS(KP).EQ.82) THEN ELSEIF(LUCOMP(KP).EQ.0) THEN MERR=3 E ELSE F KQ=KQ-LUCHGE(KP) I PMS=PMS-ULMASS(KP) F ENDIF 160 CONTINUE IF(KQ.NE.0) MERR=MAX(2,MERR) < IF(KFDP(IDC,2).NE.0.AND.(KC.LE.20.OR.KC.GT.40).AND. ; & (KC.LE.80.OR.KC.GT.100).AND.MDME(IDC,2).NE.34.AND. : & MDME(IDC,2).NE.61.AND.PMS.LT.0.) MERR=MAX(1,MERR) & IF(MERR.EQ.3) CALL LUERRM(17, B & '(LUUPDA:) Unknown particle code in decay of KC ='//CHKC) & IF(MERR.EQ.2) CALL LUERRM(17, A & '(LUUPDA:) Charge not conserved in decay of KC ='//CHKC) 6 IF(MERR.EQ.1) CALL LUERRM(7, EA & '(LUUPDA:) Kinematically unallowed decay of KC ='//CHKC) N psing jet system or not. ELSEIF(J.EQ.17) THEN u I1=I ' 150 KLU=KLU+1 I3=I1 I1=K(I1,3) e I0=MAX(1,I1) i KC=LUCOMP(K(I0,2)) rE IF(I1.EQ.0.OR.K(I0,1).LE.0.OR.K(I0,1).GT.20.OR.KC.EQ.0) THEN IF(KLU.EQ.1) KLU=-1 IF(KLU.GT.1) KLU=0 4 RETURN ENDIF IF(KCHG(KC,2).EQ.0) GOTO 150 IF(K(I1,1).NE.12) KLU=0 ! IF(K(I1,1).NE.12) RETURN I2=I1 160 I2=I2+1 / IF(I2.LT.N.AND.K(I2,1).NE.11) GOTO 160 K3M=K(I3-1,3) * IF(K3M.GE.I1.AND.K3M.LE.I2) KLU=0 K3P=K(I3+1,3) 6 IF(I3.LT.N.AND.K3P.GE.I1.AND.K3P.LE.I2) KLU=0 e+ C...Number of decay products. Colour flow. ELSEIF(J.EQ.18) THEN D IF(K(I,1).EQ.11.OR.K(I,1).EQ.12) KLU=MAX(0,K(I,5)-K(I,4)+1) - IF(K(I,4).EQ.0.OR.K(I,5).EQ.0) KLU=0 p ELSEIF(J.LE.22) THEN A IF(K(I,1).NE.3.AND.K(I,1).NE.13.AND.K(I,1).NE.14) RETURN i4 IF(J.EQ.19) KLU=MOD(K(I,4)/MSTU(5),MSTU(5)) 4 IF(J.EQ.20) KLU=MOD(K(I,5)/MSTU(5),MSTU(5)) , IF(J.EQ.21) KLU=MOD(K(I,4),MSTU(5)) , IF(J.EQ.22) KLU=MOD(K(I,5),MSTU(5)) ELSE ENDIF RETURN END &G C********************************************************************* t 9 FUNCTION PLU(I,J) b C...Purpose: to provide various real-valued event related data. 4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) & SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ DIMENSION PSUM(4) 8< C...Set default value. For I = 0 sum of momenta or charges, ! C...or invariant mass of system. PLU=0. 0 IF(I.LT.0.OR.I.GT.MSTU(4).OR.J.LE.0) THEN ELSEIF(I.EQ.0.AND.J.LE.4) THEN : DO 100 I1=1,N ; IF(K(I1,1).GT.0.AND.K(I1,1).LE.10) PLU=PLU+P(I1,J) 100 CONTINUE I ELSEIF(I.EQ.0.AND.J.EQ.5) THEN 3 DO 120 J1=1,4 PSUM(J1)=0. DO 110 I1=1,N F IF(K(I1,1).GT.0.AND.K(I1,1).LE.10) PSUM(J1)=PSUM(J1)+P(I1,J1) 110 CONTINUE E 120 CONTINUE F PLU=SQRT(MAX(0.,PSUM(4)**2-PSUM(1)**2-PSUM(2)**2-PSUM(3)**2)) ELSEIF(I.EQ.0.AND.J.EQ.6) THEN DO 130 I1=1,N F IF(K(I1,1).GT.0.AND.K(I1,1).LE.10) PLU=PLU+LUCHGE(K(I1,2))/3. 130 CONTINUE ELSEIF(I.EQ.0) THEN 8 C...Direct readout of P matrix. ELSEIF(J.LE.5) THEN PLU=P(I,J) B C...Charge, total momentum, transverse momentum, transverse mass. ELSEIF(J.LE.12) THEN () IF(J.EQ.6) PLU=LUCHGE(K(I,2))/3. ? IF(J.EQ.7.OR.J.EQ.8) PLU=P(I,1)**2+P(I,2)**2+P(I,3)**2 6 IF(J.EQ.9.OR.J.EQ.10) PLU=P(I,1)**2+P(I,2)**2 A IF(J.EQ.11.OR.J.EQ.12) PLU=P(I,5)**2+P(I,1)**2+P(I,2)**2 7 IF(J.EQ.8.OR.J.EQ.10.OR.J.EQ.12) PLU=SQRT(PLU) / C...Theta and phi angle in radians or degrees. ELSEIF(J.LE.16) THEN RA IF(J.LE.14) PLU=ULANGL(P(I,3),SQRT(P(I,1)**2+P(I,2)**2)) *. IF(J.GE.15) PLU=ULANGL(P(I,1),P(I,2)) 4 IF(J.EQ.14.OR.J.EQ.16) PLU=PLU*180./PARU(1) D< C...True rapidity, rapidity with pion mass, pseudorapidity. ELSEIF(J.LE.19) THEN PMR=0. 1 IF(J.EQ.17) PMR=P(I,5) $ IF(J.EQ.18) PMR=ULMASS(211) 1 PR=MAX(1E-20,PMR**2+P(I,1)**2+P(I,2)**2) .D PLU=SIGN(LOG(MIN((SQRT(PR+P(I,3)**2)+ABS(P(I,3)))/SQRT(PR), & 1E20)),P(I,3)) * A C...Energy and momentum fractions (only to be used in CM frame). T ELSEIF(J.LE.25) THEN H IF(J.EQ.20) PLU=2.*SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2)/PARU(21) + IF(J.EQ.21) PLU=2.*P(I,3)/PARU(21) .> IF(J.EQ.22) PLU=2.*SQRT(P(I,1)**2+P(I,2)**2)/PARU(21) + IF(J.EQ.23) PLU=2.*P(I,4)/PARU(21) 1 IF(J.EQ.24) PLU=(P(I,4)+P(I,3))/PARU(21) 51 IF(J.EQ.25) PLU=(P(I,4)-P(I,3))/PARU(21) f ENDIF RETURN ( END 6G C********************************************************************* r T! SUBROUTINE LUSPHE(SPH,APL) UG C...Purpose: to perform sphericity tensor analysis to give sphericity, *+ C...aplanarity and the related event axes. U4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) 3& SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ DIMENSION SM(3,3),SV(3,3) 0) C...Calculate matrix to be diagonalized. N NP=0 5 DO 110 J1=1,3 DO 100 J2=J1,3 U SM(J1,J2)=0. 3 100 CONTINUE 110 CONTINUE * PS=0. DO 140 I=1,N / IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 140 * IF(MSTU(41).GE.2) THEN , KC=LUCOMP(K(I,2)) ; IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR. C & KC.EQ.18) GOTO 140 &F IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) & GOTO 140 ) ENDIF NP=NP+1 - PA=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2) o PWT=1. E IF(ABS(PARU(41)-2.).GT.0.001) PWT=MAX(1E-10,PA)**(PARU(41)-2.) DO 130 J1=1,3 DO 120 J2=J1,3 0. SM(J1,J2)=SM(J1,J2)+PWT*P(I,J1)*P(I,J2) 120 CONTINUE , 130 CONTINUE PS=PS+PWT*PA**2 140 CONTINUE C C5 C...Very low multiplicities (0 or 1) not considered. , IF(NP.LE.1) THEN DB CALL LUERRM(8,'(LUSPHE:) too few particles for analysis') SPH=-1. APL=-1. RETURN ' ENDIF DO 160 J1=1,3 DO 150 J2=J1,3 ) SM(J1,J2)=SM(J1,J2)/PS 150 CONTINUE 160 CONTINUE R 8 C...Find eigenvalues to matrix (third degree equation). F SQ=(SM(1,1)*SM(2,2)+SM(1,1)*SM(3,3)+SM(2,2)*SM(3,3)-SM(1,2)**2- & &SM(1,3)**2-SM(2,3)**2)/3.-1./9. G SR=-0.5*(SQ+1./9.+SM(1,1)*SM(2,3)**2+SM(2,2)*SM(1,3)**2+SM(3,3)* I &SM(1,2)**2-SM(1,1)*SM(2,2)*SM(3,3))+SM(1,2)*SM(1,3)*SM(2,3)+1./27. .8 SP=COS(ACOS(MAX(MIN(SR/SQRT(-SQ**3),1.),-1.))/3.) A P(N+1,4)=1./3.+SQRT(-SQ)*MAX(2.*SP,SQRT(3.*(1.-SP**2))-SP) 0B P(N+3,4)=1./3.+SQRT(-SQ)*MIN(2.*SP,-SQRT(3.*(1.-SP**2))-SP) $ P(N+2,4)=1.-P(N+1,4)-P(N+3,4) IF(P(N+2,4).LT.1E-5) THEN > CALL LUERRM(8,'(LUSPHE:) all particles back-to-back') SPH=-1. APL=-1. RETURN ENDIF D C...Find first and last eigenvector by solving equation system. DO 240 I=1,3,2 a DO 180 J1=1,3 # SV(J1,J1)=SM(J1,J1)-P(N+I,4) D DO 170 J2=J1+1,3 ) SV(J1,J2)=SM(J1,J2) SV(J2,J1)=SM(J1,J2) 170 CONTINUE 180 CONTINUE 0 SMAX=0. DO 200 J1=1,3 DO 190 J2=1,3 * IF(ABS(SV(J1,J2)).LE.SMAX) GOTO 190 JA=J1 JB=J2 SMAX=ABS(SV(J1,J2)) 190 CONTINUE 200 CONTINUE SMAX=0. DO 220 J3=JA+1,JA+2 J1=J3-3*((J3-1)/3) P RL=SV(J1,JB)/SV(JA,JB) , DO 210 J2=1,3 ' SV(J1,J2)=SV(J1,J2)-RL*SV(JA,J2) 3* IF(ABS(SV(J1,J2)).LE.SMAX) GOTO 210 JC=J1 SMAX=ABS(SV(J1,J2)) 210 CONTINUE 220 CONTINUE JB1=JB+1-3*(JB/3) JB2=JB+2-3*((JB+1)/3) P(N+I,JB1)=-SV(JC,JB2) P(N+I,JB2)=SV(JC,JB1) P(N+I,JB)=-(SV(JA,JB1)*P(N+I,JB1)+SV(JA,JB2)*P(N+I,JB2))/ &SV(JA,JB) 3 PA=SQRT(P(N+I,1)**2+P(N+I,2)**2+P(N+I,3)**2) .! SGN=(-1.)**INT(RLU(0)+0.5) DO 230 J=1,3 ( P(N+I,J)=SGN*P(N+I,J)/PA 3 230 CONTINUE F 240 CONTINUE - H; C...Middle axis orthogonal to other two. Fill other codes. 6! SGN=(-1.)**INT(RLU(0)+0.5) 9 P(N+2,1)=SGN*(P(N+1,2)*P(N+3,3)-P(N+1,3)*P(N+3,2)) 29 P(N+2,2)=SGN*(P(N+1,3)*P(N+3,1)-P(N+1,1)*P(N+3,3)) D9 P(N+2,3)=SGN*(P(N+1,1)*P(N+3,2)-P(N+1,2)*P(N+3,1)) T DO 260 I=1,3 K(N+I,1)=31 K(N+I,2)=95 K(N+I,3)=I ) K(N+I,4)=0 o K(N+I,5)=0 ' P(N+I,5)=0. DO 250 J=1,5 R V(I,J)=0. 250 CONTINUE o 260 CONTINUE c o C...Calculate sphericity and aplanarity. Select storing option. SPH=1.5*(P(N+2,4)+P(N+ 4)) APL=1.5*P(N+3,4) MSTU(61)=N+1 T MSTU(62)=NP IF(MSTU(43).LE.1) MSTU(3)=3 IF(MSTU(43).GE.2) N=N+3 0 RETURN - END CG C********************************************************************* 2 ! SUBROUTINE LUTHRU(THR,OBL) 8 C C...Purpose: to perform thrust analysis to give thrust, oblateness A C...and the related event axes. 4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) & SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ DIMENSION TDI(3),TPR(3) 3I C...Take copy of particles that are to be considered in thrust analysis. o NP=0 F PS=0. DO 100 I=1,N / IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 100 M IF(MSTU(41).GE.2) THEN H KC=LUCOMP(K(I,2)) ; IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR. & KC.EQ.18) GOTO 100 0F IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) & GOTO 100 Q ENDIF 6 IF(N+NP+MSTU(44)+15.GE.MSTU(4)-MSTU(32)-5) THEN B CALL LUERRM(11,'(LUTHRU:) no more memory left in LUJETS') THR=-2. BL=-2. RETURN D ENDIF NP=NP+1 K(N+NP,1)=23 0 P(N+NP,1)=P(I,1) P(N+NP,2)=P(I,2) P P(N+NP,3)=P(I,3) 4 P(N+NP,4)=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2) P(N+NP,5)=1. WG IF(ABS(PARU(42)-1.).GT.0.001) P(N+NP,5)=P(N+NP,4)**(PARU(42)-1.) D PS=PS+P(N+NP,4)*P(N+NP,5) 100 CONTINUE ) D5 C...Very low multiplicities (0 or 1) not considered. D IF(NP.LE.1) THEN AB CALL LUERRM(8,'(LUTHRU:) too few particles for analysis') THR=-1. BL=-1. RETURN C ENDIF I C...Loop over thrust and major. T axis along z direction in latter case. DO 320 ILD=1,2 H IF(ILD.EQ.2) THEN K(N+NP+1,1)=31 1, PHI=ULANGL(P(N+NP+1,1),P(N+NP+1,2)) MSTU(33)=1 H4 CALL LUDBRB(N+1,N+NP+1,0.,-PHI,0D0,0D0,0D0) , THE=ULANGL(P(N+NP+1,3),P(N+NP+1,1)) 4 CALL LUDBRB(N+1,N+NP+1,-THE,0.,0D0,0D0,0D0) ENDIF E< C...Find and order particles with highest p (pT for major). ( DO 110 ILF=N+NP+4,N+NP+MSTU(44)+4 P(ILF,4)=0. 110 CONTINUE Q DO 160 I=N+1,N+NP 4 IF(ILD.EQ.2) P(I,4)=SQRT(P(I,1)**2+P(I,2)**2) + DO 130 ILF=N+NP+MSTU(44)+3,N+NP+4,-1 & IF(P(I,4).LE.P(ILF,4)) GOTO 140 DO 120 J=1,5 T P(ILF+1,J)=P(ILF,J) 120 CONTINUE 130 CONTINUE ILF=N+NP+3 140 DO 150 J=1,5 P(ILF+1,J)=P(I,J) 150 CONTINUE / 160 CONTINUE W= C...Find and order initial axes with highest thrust (major). n2 DO 170 ILG=N+NP+MSTU(44)+5,N+NP+MSTU(44)+15 P(ILG,4)=0. 170 CONTINUE! NC=2**(MIN(MSTU(44),NP)-1) DO 250 ILC=1,NC DO 180 J=1,3 TDI(J)=0. 180 CONTINUE $ DO 200 ILF=1,MIN(MSTU(44),NP) SGN=P(N+NP+ILF+3,5) = IF(2**ILF*((ILC+2**(ILF-1)-1)/2**ILF).GE.ILC) SGN=-SGN N DO 190 J=1,4-ILD M( TDI(J)=TDI(J)+SGN*P(N+NP+ILF+3,J) 190 CONTINUE 200 CONTINUE 4( TDS=TDI(1)**2+TDI(2)**2+TDI(3)**2 DO 220 ILG=N+NP+MSTU(44)+MIN(ILC,10)+4,N+NP+MSTU(44)+5,-1 # IF(TDS.LE.P(ILG,4)) GOTO 230 DO 210 J=1,4 ) P(ILG+1,J)=P(ILG,J) 210 CONTINUE 220 CONTINUE + ILG=N+NP+MSTU(44)+4 230 DO 240 J=1,3 P(ILG+1,J)=TDI(J) 240 CONTINUE P(ILG+1,4)=TDS 250 CONTINUE f 4 C...Iterate direction of axis until stable maximum. P(N+NP+ILD,4)=0. 1 ILG=0 260 ILG=ILG+1 THP=0. L 270 THPS=THP DO 280 J=1,3 E7 IF(THP.LE.1E-10) TDI(J)=P(N+NP+MSTU(44)+4+ILG,J) H IF(THP.GT.1E-10) TDI(J)=TPR(J) TPR(J)=0. 280 CONTINUE C DO 300 I=N+1,N+NP A SGN=SIGN(P(I,5),TDI(1)*P(I,1)+TDI(2)*P(I,2)+TDI(3)*P(I,3)) DO 290 J=1,4-ILD = TPR(J)=TPR(J)+SGN*P(I,J) 0 290 CONTINUE 300 CONTINUE :1 THP=SQRT(TPR(1)**2+TPR(2)**2+TPR(3)**2)/PS ( IF(THP.GE.THPS+PARU(48)) GOTO 270 H C...Save good axis. Try new initial axis until a number of tries agree. G IF(THP.LT.P(N+NP+ILD,4)-PARU(48).AND.ILG.LT.MIN(10,NC)) GOTO 260 :- IF(THP.GT.P(N+NP+ILD,4)+PARU(48)) THEN N IAGR=0 # SGN=(-1.)**INT(RLU(0)+0.5) DO 310 J=1,3 * P(N+NP+ILD,J)=SGN*TPR(J)/(PS*THP) 310 CONTINUE s P(N+NP+ILD,4)=THP P(N+NP+ILD,5)=0. N ENDIF IAGR=IAGR+1 : IF(IAGR.LT.MSTU(45).AND.ILG.LT.MIN(10,NC)) GOTO 260 320 CONTINUE 0 C...Find minor axis and value by orthogonality. ! SGN=(-1.)**INT(RLU(0)+0.5) # P(N+NP+3,1)=-SGN*P(N+NP+2,2) t P(N+NP+3,2)=SGN*P(N+NP+2,1) P(N+NP+3,3)=0. X THP=0. 5 DO 330 I=N+1,N+NP THP=THP+P(I,5)*ABS(P(N+NP+3,1)*P(I,1)+P(N+NP+3,2)*P(I,2)) 330 CONTINUE 5 P(N+NP+3,4)=THP/PS P(N+NP+3,5)=0. N F C...Fill axis information. Rotate back to original coordinate system. DO 350 ILD=1,3 N K(N+ILD,1)=31 K(N+ILD,2)=96 K(N+ILD,3)=ILD t K(N+ILD,4)=0 K(N+ILD,5)=0 0 DO 340 J=1,5 0 P(N+ILD,J)=P(N+NP+ILD,J) 0 V(N+ILD,J)=0. 340 CONTINUE 350 CONTINUE G/ CALL LUDBRB(N+1,N+3,THE,PHI,0D0,0D0,0D0) E< C...Calculate thrust and oblateness. Select storing option. THR=P(N+1,4) b BL=P(N+2,4)-P(N+3,4) MSTU(61)=N+1 . MSTU(62)=NP IF(MSTU(43).LE.1) MSTU(3)=3 IF(MSTU(43).GE.2) N=N+3 . RETURN END G C********************************************************************* SUBROUTINE LUCLUS(NJET) D C...Purpose: to subdivide the particle content of an event into C...jets/clusters. L4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) )& SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ DIMENSION PS(5) * SAVE NSAV,NP,PS,PSS,RINIT,NPRE,NREM t7 C...Functions: distance measure in pT or (pseudo)mass. C R2T(I1,I2)=(P(I1,5)*P(I2,5)-P(I1,1)*P(I2,1)-P(I1,2)*P(I2,2)- UF &P(I1,3)*P(I2,3))*2.*P(I1,5)*P(I2,5)/(0.0001+P(I1,5)+P(I2,5))**2 B R2M(I1,I2)=2.*P(I1,4)*P(I2,4)*(1.-(P(I1,1)*P(I2,1)+P(I1,2)* 2 &P(I2,2)+P(I1,3)*P(I2,3))/(P(I1,5)*P(I2,5))) I= C...If first time, reset. If reentering, skip preliminaries. IF(MSTU(48).LE.0) THEN NP=0 2 DO 100 J=1,5 ) PS(J)=0. t 100 CONTINUE d PSS=0. L ELSE NJET=NSAV # IF(MSTU(43).GE.2) N=N-NJET 0 DO 110 I=N+1,N+NJET 3 P(I,5)=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2) 0 110 CONTINUE, IF(MSTU(46).LE.3) R2ACC=PARU(44)**2 2 IF(MSTU(46).GE.4) R2ACC=PARU(45)*PS(5)**2 NLOOP=0 GOTO 300 ENDIF A C...Find which particles are to be considered in cluster search. ) DO 140 I=1,N 0/ IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 140 IF(MSTU(41).GE.2) THEN KC=LUCOMP(K(I,2)) ; IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR. 1 & KC.EQ.18) GOTO 140 .F IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) & GOTO 140 ENDIF , IF(N+2*NP.GE.MSTU(4)-MSTU(32)-5) THEN B CALL LUERRM(11,'(LUCLUS:) no more memory left in LUJETS') NJET=-1 RETURN ENDIF .E C...Take copy of these particles, with space left for jets later on. NP=NP+1 K(N+NP,3)=I DO 120 J=1,5 0 P(N+NP,J)=P(I,J) ) 120 CONTINUE IF(MSTU(42).EQ.0) P(N+NP,5)=0. ? IF(MSTU(42).EQ.1.AND.K(I,2).NE.22) P(N+NP,5)=PMAS(101,1) (A P(N+NP,4)=SQRT(P(N+NP,5)**2+P(I,1)**2+P(I,2)**2+P(I,3)**2) )4 P(N+NP,5)=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2) DO 130 J=1,4 PS(J)=PS(J)+P(N+NP,J) 130 CONTINUE PSS=PSS+P(N+NP,5) 140 CONTINUE 3 DO 160 I=N+1,N+NP K(I+NP,3)=K(I,3) N DO 150 J=1,5 e P(I+NP,J)=P(I,J) e 150 CONTINUE 160 CONTINUE E> PS(5)=SQRT(MAX(0.,PS(4)**2-PS(1)**2-PS(2)**2-PS(3)**2)) , C...Very low multiplicities not considered. IF(NP.LT.MSTU(47)) THEN B CALL LUERRM(8,'(LUCLUS:) too few particles for analysis') NJET=-1 RETURN ENDIF )F C...Find precluster configuration. If too few jets, make harder cuts. NLOOP=0 * IF(MSTU(46).LE.3) R2ACC=PARU(44)**2 0 IF(MSTU(46).GE.4) R2ACC=PARU(45)*PS(5)**2 RINIT=1.25*PARU(43) $ IF(NP.LE.MSTU(47)+2) RINIT=0. 170 RINIT=0.8*RINIT NPRE=0 D NREM=NP DO 180 I=N+NP+1,N+2*NP K(I,4)=0 D 180 CONTINUE P .C C...Sum up small momentum region. Jet if enough absolute momentum. L IF(MSTU(46).LE.2) THEN F DO 190 J=1,4 . P(N+1,J)=0. 190 CONTINUE DO 210 I=N+NP+1,N+2*NP K( IF(P(I,5).GT.2.*RINIT) GOTO 210 NREM=NREM-1 K(I,4)=1 ( DO 200 J=1,4 ! P(N+1,J)=P(N+1,J)+P(I,J) T 200 CONTINUE 210 CONTINUE =; P(N+1,5)=SQRT(P(N+1,1)**2+P(N+1,2)**2+P(N+1,3)**2) ,( IF(P(N+1,5).GT.2.*RINIT) NPRE=1 E IF(RINIT.GE.0.2*PARU(43).AND.NPRE+NREM.LT.MSTU(47)) GOTO 170 IF(NREM.EQ.0) GOTO 170 * ENDIF * C...Find fastest remaining particle. 220 NPRE=NPRE+1 PMAX=0. DO 230 I=N+NP+1,N+2*NP e1 IF(K(I,4).NE.0.OR.P(I,5).LE.PMAX) GOTO 230 0 IMAX=I ( PMAX=P(I,5) 230 CONTINUE 0 DO 240 J=1,5 , P(N+NPRE,J)=P(IMAX,J) 240 CONTINUE S NREM=NREM-1 K(IMAX,4)=NPRE / E< C...Sum up precluster around it according to pT separation. IF(MSTU(46).LE.2) THEN DO 260 I=N+NP+1,N+2*NP r! IF(K(I,4).NE.0) GOTO 260 . R2=R2T(I,IMAX) G$ IF(R2.GT.RINIT**2) GOTO 260 NREM=NREM-1 K(I,4)=NPRE DO 250 J=1,4 I' P(N+NPRE,J)=P(N+NPRE,J)+P(I,J) , 250 CONTINUE 260 CONTINUE IG P(N+NPRE,5)=SQRT(P(N+NPRE,1)**2+P(N+NPRE,2)**2+P(N+NPRE,3)**2) > C...Sum up precluster around it according to mass separation. ELSE ) 270 IMIN=0 R2MIN=RINIT**2 N DO 280 I=N+NP+1,N+2*NP M! IF(K(I,4).NE.0) GOTO 280 ) R2=R2M(I,N+NPRE) .! IF(R2.GE.R2MIN) GOTO 280 I IMIN=I F R2MIN=R2 ( 280 CONTINUE U IF(IMIN.NE.0) THEN DO 290 J=1,4 I, P(N+NPRE,J)=P(N+NPRE,J)+P(IMIN,J) 290 CONTINUE LI P(N+NPRE,5)=SQRT(P(N+NPRE,1)**2+P(N+NPRE,2)**2+P(N+NPRE,3)**2) e NREM=NREM-1 K(IMIN,4)=NPRE GOTO 270 E ENDIF ENDIF B C...Check if more preclusters to be found. Start over if too few. C IF(RINIT.GE.0.2*PARU(43).AND.NPRE+NREM.LT.MSTU(47)) GOTO 170 IF(NREM.GT.0) GOTO 220 * NJET=NPRE C C...Reassign all particles to nearest jet. Sum up new jet momenta. 300 TSAV=0. PSJT=0. 310 IF(MSTU(46).LE.1) THEN R DO 330 I=N+1,N+NJET DO 320 J=1,4 V(I,J)=0. 320 CONTINUE 330 CONTINUE DO 360 I=N+NP+1,N+2*NP R2MIN=PSS**2 DO 340 IJET=N+1,N+NJET IF(P(IJET,5).LT.RINIT) GOTO 340 R2=R2T(I,IJET) IF(R2.GE.R2MIN) GOTO 340 IMIN=IJET R2MIN=R2 340 CONTINUE K(I,4)=IMIN-N DO 350 J=1,4 V(IMIN,J)=V(IMIN,J)+P(I,J) 350 CONTINUE 360 CONTINUE PSJT=0. DO 380 I=N+1,N+NJET DO 370 J=1,4 P(I,J)=V(I,J) 370 CONTINUE P(I,5)=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2) PSJT=PSJT+P(I,5) 380 CONTINUE ENDIF C...Find two closest jets. R2MIN=2.*MAX(R2ACC,PS(5)**2) DO 400 ITRY1=N+1,N+NJET-1 DO 390 ITRY2=ITRY1+1,N+NJET IF(MSTU(46).LE.2) R2=R2T(ITRY1,ITRY2) IF(MSTU(46).GE.3) R2=R2M(ITRY1,ITRY2) IF(R2.GE.R2MIN) GOTO 390 IMIN1=ITRY1 IMIN2=ITRY2 R2MIN=R2 390 CONTINUE 400 CONTINUE C...If allowed, join two closest jets and start over. IF(NJET.GT.MSTU(47).AND.R2MIN.LT.R2ACC) THEN IREC=MIN(IMIN1,IMIN2) IDEL=MAX(IMIN1,IMIN2) DO 410 J=1,4 P(IREC,J)=P(IMIN1,J)+P(IMIN2,J) 410 CONTINUE P(IREC,5)=SQRT(P(IREC,1)**2+P(IREC,2)**2+P(IREC,3)**2) DO 430 I=IDEL+1,N+NJET DO 420 J=1,5 P(I-1,J)=P(I,J) 420 CONTINUE 430 CONTINUE IF(MSTU(46).GE.2) THEN DO 440 I=N+NP+1,N+2*NP IORI=N+K(I,4) IF(IORI.EQ.IDEL) K(I,4)=IREC-N IF(IORI.GT.IDEL) K(I,4)=K(I,4)-1 440 CONTINUE ENDIF NJET=NJET-1 GOTO 300 C...Divide up broad jet if empty cluster in list of final ones. ELSEIF(NJET.EQ.MSTU(47).AND.MSTU(46).LE.1.AND.NLOOP.LE.2) THEN DO 450 I=N+1,N+NJET K(I,5)=0 450 CONTINUE DO 460 I=N+NP+1,N+2*NP K(N+K(I,4),5)=K(N+K(I,4),5)+1 460 CONTINUE IEMP=0 DO 470 I=N+1,N+NJET IF(K(I,5).EQ.0) IEMP=I 470 CONTINUE IF(IEMP.NE.0) THEN NLOOP=NLOOP+1 ISPL=0 R2MAX=0. DO 480 I=N+NP+1,N+2*NP IF(K(N+K(I,4),5).LE.1.OR.P(I,5).LT.RINIT) GOTO 480 IJET=N+K(I,4) R2=R2T(I,IJET) IF(R2.LE.R2MAX) GOTO 480 ISPL=I R2MAX=R2 480 CONTINUE IF(ISPL.NE.0) THEN IJET=N+K(ISPL,4) DO 490 J=1,4 P(IEMP,J)=P(ISPL,J) P(IJET,J)=P(IJET,J)-P(ISPL,J) 490 CONTINUE P(IEMP,5)=P(ISPL,5) P(IJET,5)=SQRT(P(IJET,1)**2+P(IJET,2)**2+P(IJET,3)**2) IF(NLOOP.LE.2) GOTO 300 ENDIF ENDIF ENDIF C...If generalized thrust has not yet converged, continue iteration. IF(MSTU(46).LE.1.AND.NLOOP.LE.2.AND.PSJT/PSS.GT.TSAV+PARU(48)) &THEN TSAV=PSJT/PSS GOTO 310 ENDIF C...Reorder jets according to energy. DO 510 I=N+1,N+NJET DO 500 J=1,5 V(I,J)=P(I,J) 500 CONTINUE 510 CONTINUE DO 540 INEW=N+1,N+NJET PEMAX=0. DO 520 ITRY=N+1,N+NJET IF(V(ITRY,4).LE.PEMAX) GOTO 520 IMAX=ITRY PEMAX=V(ITRY,4) 520 CONTINUE K(INEW,1)=31 K(INEW,2)=97 K(INEW,3)=INEW-N K(INEW,4)=0 DO 530 J=1,5 P(INEW,J)=V(IMAX,J) 530 CONTINUE V(IMAX,4)=-1. K(IMAX,5)=INEW 540 CONTINUE C...Clean up particle-jet assignments and jet information. DO 550 I=N+NP+1,N+2*NP IORI=K(N+K(I,4),5) K(I,4)=IORI-N IF(K(K(I,3),1).NE.3) K(K(I,3),4)=IORI-N K(IORI,4)=K(IORI,4)+1 550 CONTINUE IEMP=0 PSJT=0. DO 570 I=N+1,N+NJET K(I,5)=0 PSJT=PSJT+P(I,5) P(I,5)=SQRT(MAX(P(I,4)**2-P(I,5)**2,0.)) DO 560 J=1,5 V(I,J)=0. 560 CONTINUE IF(K(I,4).EQ.0) IEMP=I 570 CONTINUE C...Select storing option. utput variables. Check for failure. MSTU(61)=N+1 MSTU(62)=NP MSTU(63)=NPRE PARU(61)=PS(5) PARU(62)=PSJT/PSS PARU(63)=SQRT(R2MIN) IF(NJET.LE.1) PARU(63)=0. IF(IEMP.NE.0) THEN CALL LUERRM(8,'(LUCLUS:) failed to reconstruct as requested') NJET=-1 ENDIF IF(MSTU(43).LE.1) MSTU(3)=NJET IF(MSTU(43).GE.2) N=N+NJET NSAV=NJET RETURN END C********************************************************************* SUBROUTINE LUCELL(NJET) C...Purpose: to provide a simple way of jet finding in an eta-phi-ET C...coordinate frame, as used for calorimeters at hadron colliders. COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ C...Loop over all particles. Find cell that was hit by given particle. PTLRAT=1./SINH(PARU(51))**2 NP=0 NC=N DO 110 I=1,N IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 110 IF(P(I,1)**2+P(I,2)**2.LE.PTLRAT*P(I,3)**2) GOTO 110 IF(MSTU(41).GE.2) THEN KC=LUCOMP(K(I,2)) IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR. & KC.EQ.18) GOTO 110 IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) & GOTO 110 ENDIF NP=NP+1 PT=SQRT(P(I,1)**2+P(I,2)**2) ETA=SIGN(LOG((SQRT(PT**2+P(I,3)**2)+ABS(P(I,3)))/PT),P(I,3)) IETA=MAX(1,MIN(MSTU(51),1+INT(MSTU(51)*0.5*(ETA/PARU(51)+1.)))) PHI=ULANGL(P(I,1),P(I,2)) IPHI=MAX(1,MIN(MSTU(52),1+INT(MSTU(52)*0.5*(PHI/PARU(1)+1.)))) IETPH=MSTU(52)*IETA+IPHI C...Add to cell already hit, or book new cell. DO 100 IC=N+1,NC IF(IETPH.EQ.K(IC,3)) THEN K(IC,4)=K(IC,4)+1 P(IC,5)=P(IC,5)+PT GOTO 110 ENDIF 100 CONTINUE IF(NC.GE.MSTU(4)-MSTU(32)-5) THEN CALL LUERRM(11,'(LUCELL:) no more memory left in LUJETS') NJET=-2 RETURN ENDIF NC=NC+1 K(NC,3)=IETPH K(NC,4)=1 K(NC,5)=2 P(NC,1)=(PARU(51)/MSTU(51))*(2*IETA-1-MSTU(51)) P(NC,2)=(PARU(1)/MSTU(52))*(2*IPHI-1-MSTU(52)) P(NC,5)=PT 110 CONTINUE C...Smear true bin content by calorimeter resolution. IF(MSTU(53).GE.1) THEN DO 130 IC=N+1,NC PEI=P(IC,5) IF(MSTU(53).EQ.2) PEI=P(IC,5)*COSH(P(IC,1)) 120 PEF=PEI+PARU(55)*SQRT(-2.*LOG(MAX(1E-10,RLU(0)))*PEI)* & COS(PARU(2)*RLU(0)) IF(PEF.LT.0..OR.PEF.GT.PARU(56)*PEI) GOTO 120 P(IC,5)=PEF IF(MSTU(53).EQ.2) P(IC,5)=PEF/COSH(P(IC,1)) 130 CONTINUE ENDIF C...Remove cells below threshold. IF(PARU(58).GT.0.) THEN NCC=NC NC=N DO 140 IC=N+1,NCC IF(P(IC,5).GT.PARU(58)) THEN NC=NC+1 K(NC,3)=K(IC,3) K(NC,4)=K(IC,4) K(NC,5)=K(IC,5) P(NC,1)=P(IC,1) P(NC,2)=P(IC,2) P(NC,5)=P(IC,5) ENDIF 140 CONTINUE ENDIF C...Find initiator cell: the one with highest pT of not yet used ones. NJ=NC 150 ETMAX=0. DO 160 IC=N+1,NC IF(K(IC,5).NE.2) GOTO 160 IF(P(IC,5).LE.ETMAX) GOTO 160 ICMAX=IC ETA=P(IC,1) PHI=P(IC,2) ETMAX=P(IC,5) 160 CONTINUE IF(ETMAX.LT.PARU(52)) GOTO 220 IF(NJ.GE.MSTU(4)-MSTU(32)-5) THEN CALL LUERRM(11,'(LUCELL:) no more memory left in LUJETS') NJET=-2 RETURN ENDIF K(ICMAX,5)=1 NJ=NJ+1 K(NJ,4)=0 K(NJ,5)=1 P(NJ,1)=ETA P(NJ,2)=PHI P(NJ,3)=0. P(NJ,4)=0. P(NJ,5)=0. C...Sum up unused cells within required distance of initiator. DO 170 IC=N+1,NC IF(K(IC,5).EQ.0) GOTO 170 IF(ABS(P(IC,1)-ETA).GT.PARU(54)) GOTO 170 DPHIA=ABS(P(IC,2)-PHI) IF(DPHIA.GT.PARU(54).AND.DPHIA.LT.PARU(2)-PARU(54)) GOTO 170 PHIC=P(IC,2) IF(DPHIA.GT.PARU(1)) PHIC=PHIC+SIGN(PARU(2),PHI) IF((P(IC,1)-ETA)**2+(PHIC-PHI)**2.GT.PARU(54)**2) GOTO 170 K(IC,5)=-K(IC,5) K(NJ,4)=K(NJ,4)+K(IC,4) P(NJ,3)=P(NJ,3)+P(IC,5)*P(IC,1) P(NJ,4)=P(NJ,4)+P(IC,5)*PHIC P(NJ,5)=P(NJ,5)+P(IC,5) 170 CONTINUE C...Reject cluster below minimum ET, else accept. IF(P(NJ,5).LT.PARU(53)) THEN NJ=NJ-1 DO 180 IC=N+1,NC IF(K(IC,5).LT.0) K(IC,5)=-K(IC,5) 180 CONTINUE ELSEIF(MSTU(54).LE.2) THEN P(NJ,3)=P(NJ,3)/P(NJ,5) P(NJ,4)=P(NJ,4)/P(NJ,5) IF(ABS(P(NJ,4)).GT.PARU(1)) P(NJ,4)=P(NJ,4)-SIGN(PARU(2), & P(NJ,4)) DO 190 IC=N+1,NC IF(K(IC,5).LT.0) K(IC,5)=0 190 CONTINUE ELSE DO 200 J=1,4 P(NJ,J)=0. 200 CONTINUE DO 210 IC=N+1,NC IF(K(IC,5).GE.0) GOTO 210 P(NJ,1)=P(NJ,1)+P(IC,5)*COS(P(IC,2)) P(NJ,2)=P(NJ,2)+P(IC,5)*SIN(P(IC,2)) P(NJ,3)=P(NJ,3)+P(IC,5)*SINH(P(IC,1)) P(NJ,4)=P(NJ,4)+P(IC,5)*COSH(P(IC,1)) K(IC,5)=0 210 CONTINUE ENDIF GOTO 150 C...Arrange clusters in falling ET sequence. 220 DO 250 I=1,NJ-NC ETMAX=0. DO 230 IJ=NC+1,NJ IF(K(IJ,5).EQ.0) GOTO 230 IF(P(IJ,5).LT.ETMAX) GOTO 230 IJMAX=IJ ETMAX=P(IJ,5) 230 CONTINUE K(IJMAX,5)=0 K(N+I,1)=31 K(N+I,2)=98 K(N+I,3)=I K(N+I,4)=K(IJMAX,4) K(N+I,5)=0 DO 240 J=1,5 P(N+I,J)=P(IJMAX,J) V(N+I,J)=0. 240 CONTINUE 250 CONTINUE NJET=NJ-NC C...Convert to massless or massive four-vectors. IF(MSTU(54).EQ.2) THEN DO 260 I=N+1,N+NJET ETA=P(I,3) P(I,1)=P(I,5)*COS(P(I,4)) P(I,2)=P(I,5)*SIN(P(I,4)) P(I,3)=P(I,5)*SINH(ETA) P(I,4)=P(I,5)*COSH(ETA) P(I,5)=0. 260 CONTINUE ELSEIF(MSTU(54).GE.3) THEN DO 270 I=N+1,N+NJET P(I,5)=SQRT(MAX(0.,P(I,4)**2-P(I,1)**2-P(I,2)**2-P(I,3)**2)) 270 CONTINUE ENDIF C...Information about storage. MSTU(61)=N+1 MSTU(62)=NP MSTU(63)=NC-N IF(MSTU(43).LE.1) MSTU(3)=NJET IF(MSTU(43).GE.2) N=N+NJET RETURN END C********************************************************************* SUBROUTINE LUJMAS(PMH,PML) C...Purpose: to determine, approximately, the two jet masses that C...minimize the sum m_H^2 + m_L^2, a la Clavelli and Wyler. COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ DIMENSION SM(3,3),SAX(3),PS(3,5) C...Reset. NP=0 DO 120 J1=1,3 DO 100 J2=J1,3 SM(J1,J2)=0. 100 CONTINUE DO 110 J2=1,4 PS(J1,J2)=0. 110 CONTINUE 120 CONTINUE PSS=0. C...Take copy of particles that are to be considered in mass analysis. DO 170 I=1,N IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 170 IF(MSTU(41).GE.2) THEN KC=LUCOMP(K(I,2)) IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR. & KC.EQ.18) GOTO 170 IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) & GOTO 170 ENDIF IF(N+NP+1.GE.MSTU(4)-MSTU(32)-5) THEN CALL LUERRM(11,'(LUJMAS:) no more memory left in LUJETS') PMH=-2. PML=-2. RETURN ENDIF NP=NP+1 DO 130 J=1,5 P(N+NP,J)=P(I,J) 130 CONTINUE IF(MSTU(42).EQ.0) P(N+NP,5)=0. IF(MSTU(42).EQ.1.AND.K(I,2).NE.22) P(N+NP,5)=PMAS(101,1) P(N+NP,4)=SQRT(P(N+NP,5)**2+P(I,1)**2+P(I,2)**2+P(I,3)**2) C...Fill information in sphericity tensor and total momentum vector. DO 150 J1=1,3 DO 140 J2=J1,3 SM(J1,J2)=SM(J1,J2)+P(I,J1)*P(I,J2) 140 CONTINUE 150 CONTINUE PSS=PSS+(P(I,1)**2+P(I,2)**2+P(I,3)**2) DO 160 J=1,4 PS(3,J)=PS(3,J)+P(N+NP,J) 160 CONTINUE 170 CONTINUE C...Very low multiplicities (0 or 1) not considered. IF(NP.LE.1) THEN CALL LUERRM(8,'(LUJMAS:) too few particles for analysis') PMH=-1. PML=-1. RETURN ENDIF PARU(61)=SQRT(MAX(0.,PS(3,4)**2-PS(3,1)**2-PS(3,2)**2-PS(3,3)**2)) C...Find largest eigenvalue to matrix (third degree equation). DO 190 J1=1,3 DO 180 J2=J1,3 SM(J1,J2)=SM(J1,J2)/PSS 180 CONTINUE 190 CONTINUE SQ=(SM(1,1)*SM(2,2)+SM(1,1)*SM(3,3)+SM(2,2)*SM(3,3)-SM(1,2)**2- &SM(1,3)**2-SM(2,3)**2)/3.-1./9. SR=-0.5*(SQ+1./9.+SM(1,1)*SM(2,3)**2+SM(2,2)*SM(1,3)**2+SM(3,3)* &SM(1,2)**2-SM(1,1)*SM(2,2)*SM(3,3))+SM(1,2)*SM(1,3)*SM(2,3)+1./27. SP=COS(ACOS(MAX(MIN(SR/SQRT(-SQ**3),1.),-1.))/3.) SMA=1./3.+SQRT(-SQ)*MAX(2.*SP,SQRT(3.*(1.-SP**2))-SP) C...Find largest eigenvector by solving equation system. DO 210 J1=1,3 SM(J1,J1)=SM(J1,J1)-SMA DO 200 J2=J1+1,3 SM(J2,J1)=SM(J1,J2) 200 CONTINUE 210 CONTINUE SMAX=0. DO 230 J1=1,3 DO 220 J2=1,3 IF(ABS(SM(J1,J2)).LE.SMAX) GOTO 220 JA=J1 JB=J2 SMAX=ABS(SM(J1,J2)) 220 CONTINUE 230 CONTINUE SMAX=0. DO 250 J3=JA+1,JA+2 J1=J3-3*((J3-1)/3) RL=SM(J1,JB)/SM(JA,JB) DO 240 J2=1,3 SM(J1,J2)=SM(J1,J2)-RL*SM(JA,J2) IF(ABS(SM(J1,J2)).LE.SMAX) GOTO 240 JC=J1 SMAX=ABS(SM(J1,J2)) 240 CONTINUE 250 CONTINUE JB1=JB+1-3*(JB/3) JB2=JB+2-3*((JB+1)/3) SAX(JB1)=-SM(JC,JB2) SAX(JB2)=SM(JC,JB1) SAX(JB)=-(SM(JA,JB1)*SAX(JB1)+SM(JA,JB2)*SAX(JB2))/SM(JA,JB) C...Divide particles into two initial clusters by hemisphere. DO 270 I=N+1,N+NP PSAX=P(I,1)*SAX(1)+P(I,2)*SAX(2)+P(I,3)*SAX(3) IS=1 IF(PSAX.LT.0.) IS=2 K(I,3)=IS DO 260 J=1,4 PS(IS,J)=PS(IS,J)+P(I,J) 260 CONTINUE 270 CONTINUE PMS=MAX(1E-10,PS(1,4)**2-PS(1,1)**2-PS(1,2)**2-PS(1,3)**2)+ &MAX(1E-10,PS(2,4)**2-PS(2,1)**2-PS(2,2)**2-PS(2,3)**2) C...Reassign one particle at a time; find maximum decrease of m^2 sum. 280 PMD=0. IM=0 DO 290 J=1,4 PS(3,J)=PS(1,J)-PS(2,J) 290 CONTINUE DO 300 I=N+1,N+NP PPS=P(I,4)*PS(3,4)-P(I,1)*PS(3,1)-P(I,2)*PS(3,2)-P(I,3)*PS(3,3) IF(K(I,3).EQ.1) PMDI=2.*(P(I,5)**2-PPS) IF(K(I,3).EQ.2) PMDI=2.*(P(I,5)**2+PPS) IF(PMDI.LT.PMD) THEN PMD=PMDI IM=I ENDIF 300 CONTINUE C...Loop back if significant reduction in sum of m^2. IF(PMD.LT.-PARU(48)*PMS) THEN PMS=PMS+PMD IS=K(IM,3) DO 310 J=1,4 PS(IS,J)=PS(IS,J)-P(IM,J) PS(3-IS,J)=PS(3-IS,J)+P(IM,J) 310 CONTINUE K(IM,3)=3-IS GOTO 280 ENDIF C...Final masses and output. MSTU(61)=N+1 MSTU(62)=NP PS(1,5)=SQRT(MAX(0.,PS(1,4)**2-PS(1,1)**2-PS(1,2)**2-PS(1,3)**2)) PS(2,5)=SQRT(MAX(0.,PS(2,4)**2-PS(2,1)**2-PS(2,2)**2-PS(2,3)**2)) PMH=MAX(PS(1,5),PS(2,5)) PML=MIN(PS(1,5),PS(2,5)) RETURN END C********************************************************************* SUBROUTINE LUFOWO(H10,H20,H30,H40) C...Purpose: to calculate the first few Fox-Wolfram moments. COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ C...Copy momenta for particles and calculate H0. NP=0 H0=0. HD=0. DO 110 I=1,N IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 110 IF(MSTU(41).GE.2) THEN KC=LUCOMP(K(I,2)) IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR. & KC.EQ.18) GOTO 110 IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) & GOTO 110 ENDIF IF(N+NP.GE.MSTU(4)-MSTU(32)-5) THEN CALL LUERRM(11,'(LUFOWO:) no more memory left in LUJETS') H10=-1. H20=-1. H30=-1. H40=-1. RETURN ENDIF NP=NP+1 DO 100 J=1,3 P(N+NP,J)=P(I,J) 100 CONTINUE P(N+NP,4)=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2) H0=H0+P(N+NP,4) HD=HD+P(N+NP,4)**2 110 CONTINUE H0=H0**2 C...Very low multiplicities (0 or 1) not considered. IF(NP.LE.1) THEN CALL LUERRM(8,'(LUFOWO:) too few particles for analysis') H10=-1. H20=-1. H30=-1. H40=-1. RETURN ENDIF C...Calculate H1 - H4. H10=0. H20=0. H30=0. H40=0. DO 130 I1=N+1,N+NP DO 120 I2=I1+1,N+NP CTHE=(P(I1,1)*P(I2,1)+P(I1,2)*P(I2,2)+P(I1,3)*P(I2,3))/ &(P(I1,4)*P(I2,4)) H10=H10+P(I1,4)*P(I2,4)*CTHE H20=H20+P(I1,4)*P(I2,4)*(1.5*CTHE**2-0.5) H30=H30+P(I1,4)*P(I2,4)*(2.5*CTHE**3-1.5*CTHE) H40=H40+P(I1,4)*P(I2,4)*(4.375*CTHE**4-3.75*CTHE**2+0.375) 120 CONTINUE 130 CONTINUE C...Calculate H1/H0 - H4/H0. utput. MSTU(61)=N+1 MSTU(62)=NP H10=(HD+2.*H10)/H0 H20=(HD+2.*H20)/H0 H30=(HD+2.*H30)/H0 H40=(HD+2.*H40)/H0 RETURN END C********************************************************************* SUBROUTINE LUTABU(MTABU) C...Purpose: to evaluate various properties of an event, with C...statistics accumulated during the course of the run and C...printed at the end. COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5) SAVE /LUJETS/,/LUDAT1/,/LUDAT2/,/LUDAT3/ DIMENSION KFIS(100,2),NPIS(100,0:10),KFFS(400),NPFS(400,4), &FEVFM(10,4),FM1FM(3,10,4),FM2FM(3,10,4),FMOMA(4),FMOMS(4), &FEVEE(50),FE1EC(50),FE2EC(50),FE1EA(25),FE2EA(25), &KFDM(8),KFDC(200,0:8),NPDC(200) SAVE NEVIS,NKFIS,KFIS,NPIS,NEVFS,NPRFS,NFIFS,NCHFS,NKFFS, &KFFS,NPFS,NEVFM,NMUFM,FM1FM,FM2FM,NEVEE,FE1EC,FE2EC,FE1EA, &FE2EA,NEVDC,NKFDC,NREDC,KFDC,NPDC CHARACTER CHAU*16,CHIS(2)*12,CHDC(8)*12 DATA NEVIS/0/,NKFIS/0/,NEVFS/0/,NPRFS/0/,NFIFS/0/,NCHFS/0/, &NKFFS/0/,NEVFM/0/,NMUFM/0/,FM1FM/120*0./,FM2FM/120*0./, &NEVEE/0/,FE1EC/50*0./,FE2EC/50*0./,FE1EA/25*0./,FE2EA/25*0./, &NEVDC/0/,NKFDC/0/,NREDC/0/ C...Reset statistics on initial parton state. IF(MTABU.EQ.10) THEN NEVIS=0 NKFIS=0 C...Identify and order flavour content of initial state. ELSEIF(MTABU.EQ.11) THEN NEVIS=NEVIS+1 KFM1=2*IABS(MSTU(161)) IF(MSTU(161).GT.0) KFM1=KFM1-1 KFM2=2*IABS(MSTU(162)) IF(MSTU(162).GT.0) KFM2=KFM2-1 KFMN=MIN(KFM1,KFM2) KFMX=MAX(KFM1,KFM2) DO 100 I=1,NKFIS IF(KFMN.EQ.KFIS(I,1).AND.KFMX.EQ.KFIS(I,2)) THEN IKFIS=-I GOTO 110 ELSEIF(KFMN.LT.KFIS(I,1).OR.(KFMN.EQ.KFIS(I,1).AND. & KFMX.LT.KFIS(I,2))) THEN IKFIS=I GOTO 110 ENDIF 100 CONTINUE IKFIS=NKFIS+1 110 IF(IKFIS.LT.0) THEN IKFIS=-IKFIS ELSE IF(NKFIS.GE.100) RETURN DO 130 I=NKFIS,IKFIS,-1 KFIS(I+1,1)=KFIS(I,1) KFIS(I+1,2)=KFIS(I,2) DO 120 J=0,10 NPIS(I+1,J)=NPIS(I,J) 120 CONTINUE 130 CONTINUE NKFIS=NKFIS+1 KFIS(IKFIS,1)=KFMN KFIS(IKFIS,2)=KFMX DO 140 J=0,10 NPIS(IKFIS,J)=0 140 CONTINUE ENDIF NPIS(IKFIS,0)=NPIS(IKFIS,0)+1 C...Count number of partons in initial state. NP=0 DO 160 I=1,N IF(K(I,1).LE.0.OR.K(I,1).GT.12) THEN ELSEIF(IABS(K(I,2)).GT.80.AND.IABS(K(I,2)).LE.100) THEN ELSEIF(IABS(K(I,2)).GT.100.AND.MOD(IABS(K(I,2))/10,10).NE.0) & THEN ELSE IM=I 150 IM=K(IM,3) IF(IM.LE.0.OR.IM.GT.N) THEN NP=NP+1 ELSEIF(K(IM,1).LE.0.OR.K(IM,1).GT.20) THEN NP=NP+1 ,3)=4**10 1 C...Calculate sum of factorial moments in event. 3 DO 480 IM=1,3 DO 430 IB=1,10 S DO 420 IP=1,4 FEVFM(IB,IP)=0. 420 CONTINUE , 430 CONTINUE 3 DO 450 IB=1,10 ($ IF(IM.LE.2) IBIN=2**(10-IB) $ IF(IM.EQ.3) IBIN=4**(10-IB) IAGR=K(NLOW+1,IM)/IBIN . NAGR=1 3 DO 440 I=NLOW+2,NUPP+1 - ICUT=K(I,IM)/IBIN IF(ICUT.EQ.IAGR) THEN NAGR=NAGR+1 ELSE IF(NAGR.EQ.1) THEN ! ELSEIF(NAGR.EQ.2) THEN J' FEVFM(IB,1)=FEVFM(IB,1)+2. ! ELSEIF(NAGR.EQ.3) THEN ' FEVFM(IB,1)=FEVFM(IB,1)+6. ' FEVFM(IB,2)=FEVFM(IB,2)+6. ! ELSEIF(NAGR.EQ.4) THEN A( FEVFM(IB,1)=FEVFM(IB,1)+12. ( FEVFM(IB,2)=FEVFM(IB,2)+24. ( FEVFM(IB,3)=FEVFM(IB,3)+24. ELSE S3 FEVFM(IB,1)=FEVFM(IB,1)+NAGR*(NAGR-1.) J= FEVFM(IB,2)=FEVFM(IB,2)+NAGR*(NAGR-1.)*(NAGR-2.) G FEVFM(IB,3)=FEVFM(IB,3)+NAGR*(NAGR-1.)*(NAGR-2.)*(NAGR-3.) NH FEVFM(IB,4)=FEVFM(IB,4)+NAGR*(NAGR-1.)*(NAGR-2.)*(NAGR-3.)* & (NAGR-4.) ENDIF IAGR=ICUT NAGR=1 M ENDIF 440 CONTINUE 450 CONTINUE s t C...Add results to total statistics. DO 470 IB=10,1,-1 DO 460 IP=1,4 $ IF(FEVFM(1,IP).LT.0.5) THEN FEVFM(IB,IP)=0. ELSEIF(IM.LE.2) THEN FEVFM(IB,IP)=2.**((IB-1)*IP)*FEVFM(IB,IP)/FEVFM(1,IP) ELSE FEVFM(IB,IP)=4.**((IB-1)*IP)*FEVFM(IB,IP)/FEVFM(1,IP) ENDIF 5 FM1FM(IM,IB,IP)=FM1FM(IM,IB,IP)+FEVFM(IB,IP) 8 FM2FM(IM,IB,IP)=FM2FM(IM,IB,IP)+FEVFM(IB,IP)**2 460 CONTINUE 8 470 CONTINUE M 480 CONTINUE J NMUFM=NMUFM+(NUPP-NLOW) MSTU(62)=NUPP-NLOW 37 C...Write accumulated statistics on factorial moments. ( ELSEIF(MTABU.EQ.32) THEN FAC=1./MAX(1,NEVFM) ; IF(MSTU(42).LE.0) WRITE(MSTU(11),5400) NEVFM,'eta' ; IF(MSTU(42).EQ.1) WRITE(MSTU(11),5400) NEVFM,'ypi' I; IF(MSTU(42).GE.2) WRITE(MSTU(11),5400) NEVFM,'y ' i DO 510 IM=1,3 WRITE(MSTU(11),5500) ( DO 500 IB=1,10 M BYETA=2.*PARU(57) * IF(IM.NE.2) BYETA=BYETA/2**(IB-1) BPHI=PARU(2) ( IF(IM.NE.1) BPHI=BPHI/2**(IB-1) 5 IF(IM.LE.2) BNAVE=FAC*NMUFM/FLOAT(2**(IB-1)) 05 IF(IM.EQ.3) BNAVE=FAC*NMUFM/FLOAT(4**(IB-1)) DO 490 IP=1,4 & FMOMA(IP)=FAC*FM1FM(IM,IB,IP) G FMOMS(IP)=SQRT(MAX(0.,FAC*(FAC*FM2FM(IM,IB,IP)-FMOMA(IP)**2))) 0 490 CONTINUE )D WRITE(MSTU(11),5600) BYETA,BPHI,BNAVE,(FMOMA(IP),FMOMS(IP), & IP=1,4) 500 CONTINUE 510 CONTINUE 8 C...Copy statistics on factorial moments into /LUJETS/. ELSEIF(MTABU.EQ.33) THEN U FAC=1./MAX(1,NEVFM) DO 540 IM=1,3 DO 530 IB=1,10 - I=10*(IM-1)+IB K(I,1)=32 K(I,2)=99 K(I,3)=1 N IF(IM.NE.2) K(I,3)=2**(IB-1) A K(I,4)=1 M IF(IM.NE.1) K(I,4)=2**(IB-1) 2 K(I,5)=0 P(I,1)=2.*PARU(57)/K(I,3) V(I,1)=PARU(2)/K(I,4) DO 520 IP=1,4 & P(I,IP+1)=FAC*FM1FM(IM,IB,IP) G V(I,IP+1)=SQRT(MAX(0.,FAC*(FAC*FM2FM(IM,IB,IP)-P(I,IP+1)**2))) I 520 CONTINUE . 530 CONTINUE 540 CONTINUE N=30 . DO 550 J=1,5 E K(N+1,J)=0 0 P(N+1,J)=0. V(N+1,J)=0. 550 CONTINUE H K(N+1,1)=32 K(N+1,2)=99 K(N+1,5)=NEVFM I MSTU(3)=1 T3 C...Reset statistics on Energy-Energy Correlation. W ELSEIF(MTABU.EQ.40) THEN ' NEVEE=0 DO 560 J=1,25 FE1EC(J)=0. FE2EC(J)=0. FE1EC(51-J)=0. FE2EC(51-J)=0. J FE1EA(J)=0. FE2EA(J)=0. 560 CONTINUE P =9 C...Find particles to include, with proper assumed mass. ELSEIF(MTABU.EQ.41) THEN 1 NEVEE=NEVEE+1 NLOW=N+MSTU(3) m NUPP=NLOW ECM=0. . DO 570 I=1,N H1 IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 570 i IF(MSTU(41).GE.2) THEN = KC=LUCOMP(K(I,2)) = IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR. N & KC.EQ.18) GOTO 570 H IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.LUCHGE(K(I,2)).EQ.0) & GOTO 570 ENDIF PMR=0. (; IF(MSTU(42).EQ.1.AND.K(I,2).NE.22) PMR=ULMASS(211) , IF(MSTU(42).GE.2) PMR=P(I,5) 2, IF(NUPP.GT.MSTU(4)-5-MSTU(32)) THEN D CALL LUERRM(11,'(LUTABU:) no more memory left in LUJETS') RETURN 1 ENDIF NUPP=NUPP+1 P(NUPP,1)=P(I,1) . P(NUPP,2)=P(I,2) . P(NUPP,3)=P(I,3) t= P(NUPP,4)=SQRT(PMR**2+P(I,1)**2+P(I,2)**2+P(I,3)**2) +A P(NUPP,5)=MAX(1E-10,SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2)) ECM=ECM+P(NUPP,4) 570 CONTINUE P IF(NUPP.EQ.NLOW) RETURN *0 C...Analyze Energy-Energy Correlation in event. $ FAC=(2./ECM**2)*50./PARU(1) DO 580 J=1,50 FEVEE(J)=0. 580 CONTINUE w DO 600 I1=NLOW+2,NUPP DO 590 I2=NLOW+1,I1-1 CTHE=(P(I1,1)*P(I2,1)+P(I1,2)*P(I2,2)+P(I1,3)*P(I2,3))/ & (P(I1,5)*P(I2,5)) ( THE=ACOS(MAX(-1.,MIN(1.,CTHE))) 3 ITHE=MAX(1,MIN(50,1+INT(50.*THE/PARU(1)))) ,4 FEVEE(ITHE)=FEVEE(ITHE)+FAC*P(I1,4)*P(I2,4) 590 CONTINUE 600 CONTINUE E DO 610 J=1,25 # FE1EC(J)=FE1EC(J)+FEVEE(J) E& FE2EC(J)=FE2EC(J)+FEVEE(J)**2 , FE1EC(51-J)=FE1EC(51-J)+FEVEE(51-J) / FE2EC(51-J)=FE2EC(51-J)+FEVEE(51-J)**2 E1 FE1EA(J)=FE1EA(J)+(FEVEE(51-J)-FEVEE(J)) 4 FE2EA(J)=FE2EA(J)+(FEVEE(51-J)-FEVEE(J))**2 610 CONTINUE V MSTU(62)=NUPP-NLOW 3 C...Write statistics on Energy-Energy Correlation. , ELSEIF(MTABU.EQ.42) THEN , FAC=1./MAX(1,NEVEE) # WRITE(MSTU(11),5700) NEVEE DO 620 J=1,25 FEEC1=FAC*FE1EC(J) ,8 FEES1=SQRT(MAX(0.,FAC*(FAC*FE2EC(J)-FEEC1**2))) FEEC2=FAC*FE1EC(51-J) ; FEES2=SQRT(MAX(0.,FAC*(FAC*FE2EC(51-J)-FEEC2**2))) & FEECA=FAC*FE1EA(J) 8 FEESA=SQRT(MAX(0.,FAC*(FAC*FE2EA(J)-FEECA**2))) F WRITE(MSTU(11),5800) 3.6*(J-1),3.6*J,FEEC1,FEES1,FEEC2,FEES2, & FEECA,FEESA 620 CONTINUE t C...Copy statistics on Energy-Energy Correlation into /LUJETS/. ELSEIF(MTABU.EQ.43) THEN FAC=1./MAX(1,NEVEE) DO 630 I=1,25 K(I,1)=32 K(I,2)=99 K(I,3)=0 K(I,4)=0 K K(I,5)=0 P(I,1)=FAC*FE1EC(I) : V(I,1)=SQRT(MAX(0.,FAC*(FAC*FE2EC(I)-P(I,1)**2))) P(I,2)=FAC*FE1EC(51-I) I= V(I,2)=SQRT(MAX(0.,FAC*(FAC*FE2EC(51-I)-P(I,2)**2))) P(I,3)=FAC*FE1EA(I) : V(I,3)=SQRT(MAX(0.,FAC*(FAC*FE2EA(I)-P(I,3)**2))) ! P(I,4)=PARU(1)*(I-1)/50. 0 P(I,5)=PARU(1)*I/50. K V(I,4)=3.6*(I-1) . V(I,5)=3.6*I I 630 CONTINUE N=25 DO 640 J=1,5 R K(N+1,J)=0 I P(N+1,J)=0. V(N+1,J)=0. 640 CONTINUE F K(N+1,1)=32 K(N+1,2)=99 K(N+1,5)=NEVEE = MSTU(3)=1 ( C...Reset statistics on decay channels. ELSEIF(MTABU.EQ.50) THEN S NEVDC=0 NKFDC=0 NREDC=0 17 C...Identify and order flavour content of final state. E ELSEIF(MTABU.EQ.51) THEN I NEVDC=NEVDC+1 NDS=0 DO 670 I=1,N i0 IF(K(I,1).LE.0.OR.K(I,1).GE.6) GOTO 670 NDS=NDS+1 IF(NDS.GT.8) THEN NREDC=NREDC+1 RETURN S ENDIF KFM=2*IABS(K(I,2)) ( IF(K(I,2).LT.0) KFM=KFM-1 DO 650 IDS=NDS-1,1,-1 IIN=IDS+1 & IF(KFM.LT.KFDM(IDS)) GOTO 660 KFDM(IDS+1)=KFDM(IDS) 650 CONTINUE IIN=1 660 KFDM(IIN)=KFM 670 CONTINUE M ) C...Find whether old or new final state. ( DO 690 IDC=1,NKFDC )$ IF(NDS.LT.KFDC(IDC,0)) THEN IKFDC=IDC GOTO 700 )( ELSEIF(NDS.EQ.KFDC(IDC,0)) THEN DO 680 I=1,NDS * IF(KFDM(I).LT.KFDC(IDC,I)) THEN IKFDC=IDC GOTO 700 N. ELSEIF(KFDM(I).GT.KFDC(IDC,I)) THEN GOTO 690 C ENDIF 680 CONTINUE IKFDC=-IDC 0 GOTO 700 S ENDIF 690 CONTINUE IKFDC=NKFDC+1 700 IF(IKFDC.LT.0) THEN IKFDC=-IKFDC M ELSEIF(NKFDC.GE.200) THEN NREDC=NREDC+1 RETURN V ELSE $ DO 720 IDC=NKFDC,IKFDC,-1 NPDC(IDC+1)=NPDC(IDC) DO 710 I=0,8 ($ KFDC(IDC+1,I)=KFDC(IDC,I) 710 CONTINUE 720 CONTINUE ) NKFDC=NKFDC+1 KFDC(IKFDC,0)=NDS DO 730 I=1,NDS KFDC(IKFDC,I)=KFDM(I) 730 CONTINUE K NPDC(IKFDC)=0 ENDIF NPDC(IKFDC)=NPDC(IKFDC)+1 ( C...Write statistics on decay channels. ELSEIF(MTABU.EQ.52) THEN 1 FAC=1./MAX(1,NEVDC) # WRITE(MSTU(11),5900) NEVDC ) DO 750 IDC=1,NKFDC DO 740 I=1,KFDC(IDC,0) = KFM=KFDC(IDC,I) KF=(KFM+1)/2 c IF(2*KF.NE.KFM) KF=-KF U CALL LUNAME(KF,CHAU) . CHDC(I)=CHAU(1:12) X2 IF(CHAU(13:13).NE.' ') CHDC(I)(12:12)='?' 740 CONTINUE E WRITE(MSTU(11),6000) FAC*NPDC(IDC),(CHDC(I),I=1,KFDC(IDC,0)) 2 750 CONTINUE =6 IF(NREDC.NE.0) WRITE(MSTU(11),6100) FAC*NREDC )5 C...Copy statistics on decay channels into /LUJETS/. Q ELSEIF(MTABU.EQ.53) THEN ) FAC=1./MAX(1,NEVDC) DO 780 IDC=1,NKFDC , K(IDC,1)=32 K(IDC,2)=99 K(IDC,3)=0 K(IDC,4)=0 , K(IDC,5)=KFDC(IDC,0) , DO 760 J=1,5 E P(IDC,J)=0. V(IDC,J)=0. 760 CONTINUE DO 770 I=1,KFDC(IDC,0) ( KFM=KFDC(IDC,I) KF=(KFM+1)/2 E IF(2*KF.NE.KFM) KF=-KF IF(I.LE.5) P(IDC,I)=KF V! IF(I.GE.6) V(IDC,I-5)=KF e 770 CONTINUE u V(IDC,5)=FAC*NPDC(IDC) 780 CONTINUE 0 N=NKFDC DO 790 J=1,5 = K(N+1,J)=0 P(N+1,J)=0. V(N+1,J)=0. 790 CONTINUE r K(N+1,1)=32 K(N+1,2)=99 K(N+1,5)=NEVDC V(N+1,5)=FAC*NREDC MSTU(3)=1 ENDIF ? C...Format statements for output on unit MSTU(11) (default 6). P8 5000 FORMAT(///20X,'Event statistics - initial state'/ 4 &20X,'based on an analysis of ',I6,' events'// A &3X,'Main flavours after',8X,'Fraction',4X,'Subfractions ', K6 &'according to fragmenting system multiplicity'/ A &4X,'hard interaction',24X,'1',7X,'2',7X,'3',7X,'4',7X,'5', I: &6X,'6-7',5X,'8-10',3X,'11-15',3X,'16-25',4X,'>25'/) , 5100 FORMAT(3X,A12,1X,A12,F10.5,1X,10F8.4) 6 5200 FORMAT(///20X,'Event statistics - final state'/ 4 &20X,'based on an analysis of ',I7,' events'// . &5X,'Mean primary multiplicity =',F10.4/ . &5X,'Mean final multiplicity =',F10.4/ / &5X,'Mean charged multiplicity =',F10.4// .F &5X,'Number of particles produced per event (directly and via ', &'decays/branchings)'/ I &5X,'KF Particle/jet MDCY',10X,'Particles',13X,'Antiparticles', B &8X,'Total'/35X,'prim seco prim seco'/) * 5300 FORMAT(1X,I6,4X,A16,I2,5(1X,F11.6)) B 5400 FORMAT(///20X,'Factorial moments analysis of multiplicity'/ 4 &20X,'based on an analysis of ',I6,' events'// E &3X,'delta-',A3,' delta-phi /bin',10X,'',18X,'', = &18X,'',18X,''/35X,4(' value error ')) 5500 FORMAT(10X) - 5600 FORMAT(2X,2F10.4,F12.4,4(F12.4,F10.4)) K? 5700 FORMAT(///20X,'Energy-Energy Correlation and Asymmetry'/ 4 &20X,'based on an analysis of ',I6,' events'// ? &2X,'theta range',8X,'EEC(theta)',8X,'EEC(180-theta)',7X, TA &'EECA(theta)'/2X,'in degrees ',3(' value error')/) F/ 5800 FORMAT(2X,F4.1,' - ',F4.1,3(F11.4,F9.4)) I< 5900 FORMAT(///20X,'Decay channel analysis - final state'/ 4 &20X,'based on an analysis of ',I6,' events'// 4 &2X,'Probability',10X,'Complete final state'/) # 6000 FORMAT(2X,F9.5,5X,8(A12,1X)) G 0 FORMAT(2X,F9.5,5X,'into other channels (more than 8 particles ', r &'or table overflow)') RETURN e END G C********************************************************************* S 1! SUBROUTINE LUEEVT(KFL,ECM) F NI C...Purpose: to handle the generation of an e+e- annihilation jet event. # IMPLICIT DOUBLE PRECISION(D) Y4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) & SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ m C...Check input parameters. ' IF(MSTU(12).GE.1) CALL LULIST(0) $ IF(KFL.LT.0.OR.KFL.GT.8) THEN CALL LUERRM(16,'(LUEEVT:) called with unknown flavour code') ,! IF(MSTU(21).GE.1) RETURN ENDIF > IF(KFL.LE.5) ECMMIN=PARJ(127)+2.02*PARF(100+MAX(1,KFL)) 5 IF(KFL.GE.6) ECMMIN=PARJ(127)+2.02*PMAS(KFL,1) IF(ECM.LT.ECMMIN) THEN )D CALL LUERRM(16,'(LUEEVT:) called with too small CM energy') ! IF(MSTU(21).GE.1) RETURN ( ENDIF + C...Check consistency of MSTJ options set. 1 IF(MSTJ(109).EQ.2.AND.MSTJ(110).NE.1) THEN 9 CALL LUERRM(6, S< & '(LUEEVT:) MSTJ(109) value requires MSTJ(110) = 1') MSTJ(110)=1 ENDIF 1 IF(MSTJ(109).EQ.2.AND.MSTJ(111).NE.0) THEN t CALL LUERRM(6, A< & '(LUEEVT:) MSTJ(109) value requires MSTJ(111) = 0') MSTJ(111)=0 ENDIF 5 C...Initialize alpha_strong and total cross-section. MSTU(111)=MSTJ(108) IF(MSTJ(108).EQ.2.AND.(MSTJ(101).EQ.0.OR.MSTJ(101).EQ.1)) &MSTU(111)=1 PARU(112)=PARJ(121) - IF(MSTU(111).EQ.2) PARU(112)=PARJ(122) .F IF(MSTJ(116).GT.0.AND.(MSTJ(116).GE.2.OR.ABS(ECM-PARJ(151)).GE. H &PARJ(139).OR.10*MSTJ(102)+KFL.NE.MSTJ(119))) CALL LUXTOT(KFL,ECM, &XTOT) IF(MSTJ(116).GE.3) MSTJ(116)=1 PARJ(171)=0. ; C...Add initial e+e- to event record (documentation only). NTRY=0 8 100 NTRY=NTRY+1 IF(NTRY.GT.100) THEN (? CALL LUERRM(14,'(LUEEVT:) caught in an infinite loop') RETURN ENDIF MSTU(24)=0 1 NC=0 E IF(MSTJ(115).GE.2) THEN NC=NC+2 + CALL LU1ENT(NC-1,11,0.5*ECM,0.,0.) , K(NC-1,1)=21 / CALL LU1ENT(NC,-11,0.5*ECM,PARU(1),0.) , K(NC,1)=21 ENDIF )) C...Radiative photon (in initial state). 4 MK=0 ECMC=ECM ,D IF(MSTJ(107).GE.1.AND.MSTJ(116).GE.1) CALL LURADK(ECM,MK,PAK, &THEK,PHIK,ALPK) . IF(MK.EQ.1) ECMC=SQRT(ECM*(ECM-2.*PAK)) * IF(MSTJ(115).GE.1.AND.MK.EQ.1) THEN NC=NC+1 ) CALL LU1ENT(NC,22,PAK,THEK,PHIK) M# K(NC,3)=MIN(MSTJ(115)/2,1) 3 ENDIF E* C...Virtual exchange boson (gamma or Z0). IF(MSTJ(115).GE.3) THEN NC=NC+1 KF=22 ! IF(MSTJ(102).EQ.2) KF=23 : MSTU10=MSTU(10) MSTU(10)=1 E P(NC,5)=ECMC & CALL LU1ENT(NC,KF,ECMC,0.,0.) K(NC,1)=21 K(NC,3)=1 MSTU(10)=MSTU10 ENDIF U- C...Choice of flavour and jet configuration. I CALL LUXKFL(KFL,ECM,ECMC,KFLC) A IF(KFLC.EQ.0) GOTO 100 ! CALL LUXJET(ECMC,NJET,CUT) T KFLN=21 B IF(NJET.EQ.4) CALL LUX4JT(NJET,CUT,KFLC,ECMC,KFLN,X1,X2,X4, &X12,X14) ,: IF(NJET.EQ.3) CALL LUX3JT(NJET,CUT,KFLC,ECMC,X1,X3) IF(NJET.EQ.2) MSTJ(120)=1 ' C...Fill jet configuration and origin. I IF(NJET.EQ.2.AND.MSTJ(101).NE.5) CALL LU2ENT(NC+1,KFLC,-KFLC,ECMC) G IF(NJET.EQ.2.AND.MSTJ(101).EQ.5) CALL LU2ENT(-(NC+1),KFLC,-KFLC, E &ECMC) ? IF(NJET.EQ.3) CALL LU3ENT(NC+1,KFLC,21,-KFLC,ECMC,X1,X3) =D IF(NJET.EQ.4.AND.KFLN.EQ.21) CALL LU4ENT(NC+1,KFLC,KFLN,KFLN, # &-KFLC,ECMC,X1,X2,X4,X12,X14) ,E IF(NJET.EQ.4.AND.KFLN.NE.21) CALL LU4ENT(NC+1,KFLC,-KFLN,KFLN, E# &-KFLC,ECMC,X1,X2,X4,X12,X14) 0! IF(MSTU(24).NE.0) GOTO 100 N DO 110 IP=NC+1,N I> K(IP,3)=K(IP,3)+MIN(MSTJ(115)/2,1)+(MSTJ(115)/3)*(NC-1) 110 CONTINUE 5 C...Angular orientation according to matrix element. IF(MSTJ(106).EQ.1) THEN 3 CALL LUXDIF(NC,NJET,KFLC,ECMC,CHI,THE,PHI) G/ CALL LUDBRB(NC+1,N,0.,CHI,0D0,0D0,0D0) J0 CALL LUDBRB(NC+1,N,THE,PHI,0D0,0D0,0D0) ENDIF Q. C...Rotation and boost from radiative photon. IF(MK.EQ.1) THEN B DBEK=-PAK/(ECM-PAK) NMIN=NC+1-MSTJ(115)/3 1 CALL LUDBRB(NMIN,N,0.,-PHIK,0D0,0D0,0D0) EF CALL LUDBRB(NMIN,N,ALPK,0.,DBEK*SIN(THEK),0D0,DBEK*COS(THEK)) 0 CALL LUDBRB(NMIN,N,0.,PHIK,0D0,0D0,0D0) ENDIF J? C...Generate parton shower. Rearrange along strings and check. IF(MSTJ(101).EQ.5) THEN CALL LUSHOW(N-1,N,ECMC) MSTJ14=MSTJ(14) ( IF(MSTJ(105).EQ.-1) MSTJ(14)=-1 & IF(MSTJ(105).GE.0) MSTU(28)=0 CALL LUPREP(0) MSTJ(14)=MSTJ14 6 IF(MSTJ(105).GE.0.AND.MSTU(28).NE.0) GOTO 100 ENDIF < C...Fragmentation/decay generation. Information for LUTABU. IF(MSTJ(105).EQ.1) CALL LUEXEC 1 MSTU(161)=KFLC MSTU(162)=-KFLC RETURN E END G C********************************************************************* E & SUBROUTINE LUXTOT(KFL,ECM,XTOT) MA C...Purpose: to calculate total cross-section, including initial ( C...state radiation effects. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) F SAVE /LUDAT1/,/LUDAT2/ ) P1 C...Status, (optimized) Q^2 scale, alpha_strong. a PARJ(151)=ECM ! MSTJ(119)=10*MSTJ(102)+KFL IF(MSTJ(111).EQ.0) THEN Q2R=ECM**2 R ELSEIF(MSTU(111).EQ.0) THEN 9 PARJ(168)=MIN(1.,MAX(PARJ(128),EXP(-12.*PARU(1)/ * & ((33.-2.*MSTU(112))*PARU(111))))) Q2R=PARJ(168)*ECM**2 0 ELSE 6 PARJ(168)=MIN(1.,MAX(PARJ(128),PARU(112)/ECM, & (2.*PARU(112)/ECM)**2)) Q2R=PARJ(168)*ECM**2 1 ENDIF ALSPI=ULALPS(Q2R)/PARU(1) I! C...QCD corrections factor in R. 20 IF(MSTJ(101).EQ.0.OR.MSTJ(109).EQ.1) THEN RQCD=1. ; ELSEIF(IABS(MSTJ(101)).EQ.1.AND.MSTJ(109).EQ.0) THEN M RQCD=1.+ALSPI ELSEIF(MSTJ(109).EQ.0) THEN 7 RQCD=1.+ALSPI+(1.986-0.115*MSTU(118))*ALSPI**2 ED IF(MSTJ(111).EQ.1) RQCD=MAX(1.,RQCD+(33.-2.*MSTU(112))/12.* ! & LOG(PARJ(168))*ALSPI**2) N( ELSEIF(IABS(MSTJ(101)).EQ.1) THEN RQCD=1.+(3./4.)*ALSPI ELSE RQCD=1.+(3./4.)*ALSPI-(3./32.+0.519*MSTU(118))*ALSPI**2 ENDIF ,8 C...Calculate Z0 width if default value not acceptable. IF(MSTJ(102).GE.3) THEN RVA=3.*(3.+(4.*PARU(102)-1.)**2)+6.*RQCD*(2.+(1.-8.*PARU(102)/ ( & 3.)**2+(4.*PARU(102)/3.-1.)**2) DO 100 KFLC=5,6 VQ=1. F IF(MOD(MSTJ(103),2).EQ.1) VQ=SQRT(MAX(0.,1.-(2.*ULMASS(KFLC)/ & ECM)**2)) , IF(KFLC.EQ.5) VF=4.*PARU(102)/3.-1. , IF(KFLC.EQ.6) VF=1.-8.*PARU(102)/3. 8 RVA=RVA+3.*RQCD*(0.5*VQ*(3.-VQ**2)*VF**2+VQ**3) 100 CONTINUE I PARJ(124)=PARU(101)*PARJ(123)*RVA/(48.*PARU(102)*(1.-PARU(102))) ENDIF 0= C...Calculate propagator and related constants for QFD case. 9 POLL=1.-PARJ(131)*PARJ(132) IF(MSTJ(102).GE.2) THEN . SFF=1./(16.*PARU(102)*(1.-PARU(102))) G SFW=ECM**4/((ECM**2-PARJ(123)**2)**2+(PARJ(123)*PARJ(124))**2) ( SFI=SFW*(1.-(PARJ(123)/ECM)**2) VE=4.*PARU(102)-1. / SF1I=SFF*(VE*POLL+PARJ(132)-PARJ(131)) EB SF1W=SFF**2*((VE**2+1.)*POLL+2.*VE*(PARJ(132)-PARJ(131))) HF1I=SFI*SF1I HF1W=SFW*SF1W ENDIF 4 C...Loop over different flavours: charge, velocity. RTOT=0. RQQ=0. RQV=0. 1 RVA=0. F' DO 110 KFLC=1,MAX(MSTJ(104),KFL) , IF(KFL.GT.0.AND.KFLC.NE.KFL) GOTO 110 MSTJ(93)=1 PMQ=ULMASS(KFLC) E+ IF(ECM.LT.2.*PMQ+PARJ(127)) GOTO 110 QF=KCHG(KFLC,1)/3. VQ=1. < IF(MOD(MSTJ(103),2).EQ.1) VQ=SQRT(1.-(2.*PMQ/ECM)**2) 8 C...Calculate R and sum of charges for QED or QFD case. RQQ=RQQ+3.*QF**2*POLL IF(MSTJ(102).LE.1) THEN RTOT=RTOT+3.*0.5*VQ*(3.-VQ**2)*QF**2*POLL ELSE T' VF=SIGN(1.,QF)-4.*QF*PARU(102) RQV=RQV-6.*QF*VF*SF1I # RVA=RVA+3.*(VF**2+1.)*SF1W C RTOT=RTOT+3.*(0.5*VQ*(3.-VQ**2)*(QF**2*POLL-2.*QF*VF*HF1I+ ( & VF**2*HF1W)+VQ**3*HF1W) ENDIF 110 CONTINUE + RSUM=RQQ *2 IF(MSTJ(102).GE.2) RSUM=RQQ+SFI*RQV+SFW*RVA *8 C...Calculate cross-section, including QCD corrections. PARJ(141)=RQQ PARJ(142)=RTOT T PARJ(143)=RTOT*RQCD PARJ(144)=PARJ(143) & PARJ(145)=PARJ(141)*86.8/ECM**2 & PARJ(146)=PARJ(142)*86.8/ECM**2 & PARJ(147)=PARJ(143)*86.8/ECM**2 PARJ(148)=PARJ(147) PARJ(157)=RSUM*RQCD PARJ(158)=0. 2 PARJ(159)=0. ( XTOT=PARJ(147) & IF(MSTJ(107).LE.0) RETURN S C...Virtual cross-section. XKL=PARJ(135) 2 XKU=MIN(PARJ(136),1.-(2.*PARJ(127)/ECM)**2) $ ALE=2.*LOG(ECM/ULMASS(11))-1. C SIGV=ALE/3.+2.*LOG(ECM**2/(ULMASS(13)*ULMASS(15)))/3.-4./3.+ ( &1.526*LOG(ECM**2/0.932) E7 C...Soft and hard radiative cross-section in QED case. J IF(MSTJ(102).LE.1) THEN / SIGV=1.5*ALE-0.5+PARU(1)**2/3.+2.*SIGV )/ SIGS=ALE*(2.*LOG(XKL)-LOG(1.-XKL)-XKL) (D SIGH=ALE*(2.*LOG(XKU/XKL)-LOG((1.-XKU)/(1.-XKL))-(XKU-XKL)) 67 C...Soft and hard radiative cross-section in QFD case. ELSE , SZM=1.-(PARJ(123)/ECM)**2 ' SZW=PARJ(123)*PARJ(124)/ECM**2 T PARJ(161)=-RQQ/RSUM & PARJ(162)=-(RQQ+RQV+RVA)/RSUM PARJ(163)=(RQV*(1.-0.5*SZM-SFI)+RVA*(1.5-SZM-SFW))/RSUM H PARJ(164)=(RQV*SZW**2*(1.-2.*SFW)+RVA*(2.*SFI+SZW**2-4.+3.*SZM- & SZM**2))/(SZW*RSUM) E SIGV=1.5*ALE-0.5+PARU(1)**2/3.+((2.*RQQ+SFI*RQV)/RSUM)*SIGV+ ** & (SZW*SFW*RQV/RSUM)*PARU(1)*20./9. C SIGS=ALE*(2.*LOG(XKL)+PARJ(161)*LOG(1.-XKL)+PARJ(162)*XKL+ T> & PARJ(163)*LOG(((XKL-SZM)**2+SZW**2)/(SZM**2+SZW**2))+ 8 & PARJ(164)*(ATAN((XKL-SZM)/SZW)-ATAN(-SZM/SZW))) D SIGH=ALE*(2.*LOG(XKU/XKL)+PARJ(161)*LOG((1.-XKU)/(1.-XKL))+ A & PARJ(162)*(XKU-XKL)+PARJ(163)*LOG(((XKU-SZM)**2+SZW**2)/ )? & ((XKL-SZM)**2+SZW**2))+PARJ(164)*(ATAN((XKU-SZM)/SZW)- C & ATAN((XKL-SZM)/SZW))) ENDIF F< C...Total cross-section and fraction of hard photon events. 8 PARJ(160)=SIGH/(PARU(1)/PARU(101)+SIGV+SIGS+SIGH) D PARJ(157)=RSUM*(1.+(PARU(101)/PARU(1))*(SIGV+SIGS+SIGH))*RQCD PARJ(144)=PARJ(157) & PARJ(148)=PARJ(144)*86.8/ECM**2 XTOT=PARJ(148) 6 I RETURN N END =G C********************************************************************* 3 SUBROUTINE LURADK(ECM,MK,PAK,THEK,PHIK,ALPK) ) 9 C...Purpose: to generate initial state photon radiation. S< COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) SAVE /LUDAT1/ S; C...Function: cumulative hard photon spectrum in QFD case. .< FXK(XX)=2.*LOG(XX)+PARJ(161)*LOG(1.-XX)+PARJ(162)*XX+ E &PARJ(163)*LOG((XX-SZM)**2+SZW**2)+PARJ(164)*ATAN((XX-SZM)/SZW) / C...Determine whether radiative photon or not. G MK=0 PAK=0. D IF(PARJ(160).LT.RLU(0)) RETURN MK=1 D ; C...Photon energy range. Find photon momentum in QED case. 2 XKL=PARJ(135) 2 XKU=MIN(PARJ(136),1.-(2.*PARJ(127)/ECM)**2) IF(MSTJ(102).LE.1) THEN A 100 XK=1./(1.+(1./XKL-1.)*((1./XKU-1.)/(1./XKL-1.))**RLU(0)) 0 IF(1.+(1.-XK)**2.LT.2.*RLU(0)) GOTO 100 F C...Ditto in QFD case, by numerical inversion of integrated spectrum. ELSE 1 SZM=1.-(PARJ(123)/ECM)**2 ' SZW=PARJ(123)*PARJ(124)/ECM**2 FXKL=FXK(XKL) FXKU=FXK(XKU) FXKD=1E-4*(FXKU-FXKL) FXKR=FXKL+RLU(0)*(FXKU-FXKL) ) NXK=0 110 NXK=NXK+1 XK=0.5*(XKL+XKU) FXKV=FXK(XK) C IF(FXKV.GT.FX THEN XKU=XK N FXKU=FXKV ELSE XKL=XK FXKL=FXKV ENDIF 5 IF(NXK.LT.15.AND.FXKU-FXKL.GT.FXKD) GOTO 110 L1 XK=XKL+(XKU-XKL)*(FXKR-FXKL)/(FXKU-FXKL) F ENDIF PAK=0.5*ECM*XK = D& C...Photon polar and azimuthal angle. ! PME=2.*(ULMASS(11)/ECM)**2 - 120 CTHM=PME*(2./PME)**RLU(0) > IF(1.-(XK**2*CTHM*(1.-0.5*CTHM)+2.*(1.-XK)*PME/MAX(PME, ? &CTHM*(1.-0.5*CTHM)))/(1.+(1.-XK)**2).LT.RLU(0)) GOTO 120 K CTHE=1.-CTHM C# IF(RLU(0).GT.0.5) CTHE=-CTHE N. STHE=SQRT(MAX(0.,(CTHM-PME)*(2.-CTHM))) THEK=ULANGL(CTHE,STHE) F PHIK=PARU(2)*RLU(0) ( C...Rotation angle for hadronic system. SGN=1. e IF(0.5*(2.-XK*(1.-CTHE))**2/((2.-XK)**2+(XK*CTHE)**2).GT. &RLU(0)) SGN=-1. ? ALPK=ASIN(SGN*STHE*(XK-SGN*(2.*SQRT(1.-XK)-2.+XK)*CTHE)/ &(2.-XK*(1.-SGN*CTHE))) F RETURN END +G C********************************************************************* + SUBROUTINE LUXKFL(KFL,ECM,ECMC,KFLC) 1 N8 C...Purpose: to select flavour for produced qqbar pair. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) * SAVE /LUDAT1/,/LUDAT2/ d1 C...Calculate maximum weight in QED or QFD case. E IF(MSTJ(102).LE.1) THEN RFMAX=4./9. ELSE F$ POLL=1.-PARJ(131)*PARJ(132) . SFF=1./(16.*PARU(102)*(1.-PARU(102))) I SFW=ECMC**4/((ECMC**2-PARJ(123)**2)**2+(PARJ(123)*PARJ(124))**2) D) SFI=SFW*(1.-(PARJ(123)/ECMC)**2) T VE=4.*PARU(102)-1. D3 HF1I=SFI*SFF*(VE*POLL+PARJ(132)-PARJ(131)) +F HF1W=SFW*SFF**2*((VE**2+1.)*POLL+2.*VE*(PARJ(132)-PARJ(131))) > RFMAX=MAX(4./9.*POLL-4./3.*(1.-8.*PARU(102)/3.)*HF1I+ < & ((1.-8.*PARU(102)/3.)**2+1.)*HF1W,1./9.*POLL+2./3.* G & (-1.+4.*PARU(102)/3.)*HF1I+((-1.+4.*PARU(102)/3.)**2+1.)*HF1W) ENDIF 0/ C...Choose flavour. Gives charge and velocity. NTRY=0 100 NTRY=NTRY+1 IF(NTRY.GT.100) THEN N? CALL LUERRM(14,'(LUXKFL:) caught in an infinite loop') t KFLC=0 n RETURN u ENDIF KFLC=KFL E0 IF(KFL.LE.0) KFLC=1+INT(MSTJ(104)*RLU(0)) MSTJ(93)=1 f PMQ=ULMASS(KFLC) &+ IF(ECM.LT.2.*PMQ+PARJ(127)) GOTO 100 b QF=KCHG(KFLC,1)/3. r VQ=1. E IF(MOD(MSTJ(103),2).EQ.1) VQ=SQRT(MAX(0.,1.-(2.*PMQ/ECMC)**2)) ' ,) C...Calculate weight in QED or QFD case. 1 IF(MSTJ(102).LE.1) THEN RF=QF**2 3$ RFV=0.5*VQ*(3.-VQ**2)*QF**2 ELSE ,' VF=SIGN(1.,QF)-4.*QF*PARU(102) &4 RF=QF**2*POLL-2.*QF*VF*HF1I+(VF**2+1.)*HF1W E RFV=0.5*VQ*(3.-VQ**2)*(QF**2*POLL-2.*QF*VF*HF1I+VF**2*HF1W)+ l & VQ**3*HF1W 7 IF(RFV.GT.0.) PARJ(171)=MIN(1.,VQ**3*HF1W/RFV) u ENDIF E C...Weighting or new event (radiative photon). Cross-section update. 3 IF(KFL.LE.0.AND.RF.LT.RLU(0)*RFMAX) GOTO 100 3 PARJ(158)=PARJ(158)+1. '> IF(ECMC.LT.2.*PMQ+PARJ(127).OR.RFV.LT.RLU(0)*RF) KFLC=0 0 IF(MSTJ(107).LE.0.AND.KFLC.EQ.0) GOTO 100 + IF(KFLC.NE.0) PARJ(159)=PARJ(159)+1. l. PARJ(144)=PARJ(157)*PARJ(159)/PARJ(158) & PARJ(148)=PARJ(144)*86.8/ECM**2 a RETURN n END XG C********************************************************************* 5& SUBROUTINE LUXJET(ECM,NJET,CUT) 2B C...Purpose: to select number of jets in matrix element approach. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) SAVE /LUDAT1/ DIMENSION ZHUT(5) 8A C...Relative three-jet rate in Zhu second order parametrization. 8 DATA ZHUT/3.0922, 6.2291, 7.4782, 7.8440, 8.2560/ 1? C...Trivial result for two-jets only, including parton shower. 0 IF(MSTJ(101).EQ.0.OR.MSTJ(101).EQ.5) THEN CUT=0. XA C...QCD and Abelian vector gluon theory: Q^2 for jet rate and R. 54 ELSEIF(MSTJ(109).EQ.0.OR.MSTJ(109).EQ.2) THEN CF=4./3. ! IF(MSTJ(109).EQ.2) CF=1. r IF(MSTJ(111).EQ.0) THEN Q2=ECM**2 Q2R=ECM**2 *$ ELSEIF(MSTU(111).EQ.0) THEN & PARJ(169)=MIN(1.,PARJ(129)) Q2=PARJ(169)*ECM**2 ; PARJ(168)=MIN(1.,MAX(PARJ(128),EXP(-12.*PARU(1)/ C, & ((33.-2.*MSTU(112))*PARU(111))))) Q2R=PARJ(168)*ECM**2 ELSE DA PARJ(169)=MIN(1.,MAX(PARJ(129),(2.*PARU(112)/ECM)**2)) C Q2=PARJ(169)*ECM**2 8 PARJ(168)=MIN(1.,MAX(PARJ(128),PARU(112)/ECM, & (2.*PARU(112)/ECM)**2)) Q2R=PARJ(168)*ECM**2 ENDIF . C...alpha_strong for R and R itself. (- ALSPI=(3./4.)*CF*ULALPS(Q2R)/PARU(1) )& IF(IABS(MSTJ(101)).EQ.1) THEN RQCD=1.+ALSPI $ ELSEIF(MSTJ(109).EQ.0) THEN 9 RQCD=1.+ALSPI+(1.986-0.115*MSTU(118))*ALSPI**2 (F IF(MSTJ(111).EQ.1) RQCD=MAX(1.,RQCD+(33.-2.*MSTU(112))/12.* # & LOG(PARJ(168))*ALSPI**2) ELSE TB RQCD=1.+ALSPI-(3./32.+0.519*MSTU(118))*(4.*ALSPI/3.)**2 ENDIF 8 C...alpha_strong for jet rate. Initial value for y cut. , ALSPI=(3./4.)*CF*ULALPS(Q2)/PARU(1) 4 CUT=MAX(0.001,PARJ(125),(PARJ(126)/ECM)**2) H IF(IABS(MSTJ(101)).LE.1.OR.(MSTJ(109).EQ.0.AND.MSTJ(111).EQ.0)) / & CUT=MAX(CUT,EXP(-SQRT(0.75/ALSPI))/2.) v7 IF(MSTJ(110).EQ.2) CUT=MAX(0.01,MIN(0.05,CUT)) N< C...Parametrization of first order three-jet cross-section. / 100 IF(MSTJ(101).EQ.0.OR.CUT.GE.0.25) THEN ) PARJ(152)=0. . ELSE .< PARJ(152)=(2.*ALSPI/3.)*((3.-6.*CUT+2.*LOG(CUT))* & LOG(CUT/(1.-2.*CUT))+(2.5+1.5*CUT-6.571)*(1.-3.*CUT)+ 5 & 5.833*(1.-3.*CUT)**2-3.894*(1.-3.*CUT)**3+ J & 1.342*(1.-3.*CUT)**4)/RQCD )E IF(MSTJ(109).EQ.2.AND.(MSTJ(101).EQ.2.OR.MSTJ(101).LE.-2)) ) & PARJ(152)=0. ENDIF a= C...Parametrization of second order three-jet cross-section. H IF(IABS(MSTJ(101)).LE.1.OR.MSTJ(101).EQ.3.OR.MSTJ(109).EQ.2.OR. & CUT.GE.0.25) THEN PARJ(153)=0. U$ ELSEIF(MSTJ(110).LE.1) THEN CT=LOG(1./CUT-2.) B PARJ(153)=ALSPI**2*CT**2*(2.419+0.5989*CT+0.6782*CT**2- + & 0.2661*CT**3+0.01159*CT**4)/RQCD LG C...Interpolation in second/first order ratio for Zhu parametrization. $ ELSEIF(MSTJ(110).EQ.2) THEN IZA=0 DO 110 IY=1,5 0 IF(ABS(CUT-0.01*IY).LT.0.0001) IZA=IY 110 CONTINUE IF(IZA.NE.0) THEN ZHURAT=ZHUT(IZA) A ELSE T IZ=100.*CUT ZHURAT=ZHUT(IZ)+(100.*CUT-IZ)*(ZHUT(IZ+1)-ZHUT(IZ)) ENDIF + PARJ(153)=ALSPI*PARJ(152)*ZHURAT i ENDIF nF C...Shift in second order three-jet cross-section with optimized Q^2. G IF(MSTJ(111).EQ.1.AND.IABS(MSTJ(101)).GE.2.AND.MSTJ(101).NE.3. E & AND.CUT.LT.0.25) PARJ(153)=PARJ(153)+(33.-2.*MSTU(112))/12.* ,' & LOG(PARJ(169))*ALSPI*PARJ(152) (< C...Parametrization of second order four-jet cross-section. 6 IF(IABS(MSTJ(101)).LE.1.OR.CUT.GE.0.125) THEN PARJ(154)=0. ELSE 0 CT=LOG(1./CUT-5.) IF(CUT.LE.0.018) THEN . XQQGG=6.349-4.330*CT+0.8304*CT**2 A IF(MSTJ(109).EQ.2) XQQGG=(4./3.)**2*(3.035-2.091*CT+ X & 0.4059*CT**2) ; XQQQQ=1.25*(-0.1080+0.01486*CT+0.009364*CT**2) u. IF(MSTJ(109).EQ.2) XQQQQ=8.*XQQQQ ELSE XQQGG=-0.09773+0.2959*CT-0.2764*CT**2+0.08832*CT**3 E IF(MSTJ(109).EQ.2) XQQGG=(4./3.)**2*(-0.04079+0.1340*CT- 3( & 0.1326*CT**2+0.04365*CT**3) F XQQQQ=1.25*(0.003661-0.004888*CT-0.001081*CT**2+0.002093* & CT**3) X. IF(MSTJ(109).EQ.2) XQQQQ=8.*XQQQQ ENDIF 6 PARJ(154)=ALSPI**2*CT**2*(XQQGG+XQQQQ)/RQCD ( PARJ(155)=XQQQQ/(XQQGG+XQQQQ) ENDIF CB C...If negative three-jet rate, change y' optimization parameter. = IF(MSTJ(111).EQ.1.AND.PARJ(152)+PARJ(153).LT.0..AND. m & PARJ(169).LT.0.99) THEN * PARJ(169)=MIN(1.,1.2*PARJ(169)) Q2=PARJ(169)*ECM**2 . ALSPI=(3./4.)*CF*ULALPS(Q2)/PARU(1) GOTO 100 N ENDIF 09 C...If too high cross-section, use harder cuts, or fail. 4 IF(PARJ(152)+PARJ(153)+PARJ(154).GE.1) THEN F IF(MSTJ(110).EQ.2.AND.CUT.GT.0.0499.AND.MSTJ(111).EQ.1.AND. & PARJ(169).LT.0.99) THEN , PARJ(169)=MIN(1.,1.2*PARJ(169)) Q2=PARJ(169)*ECM**2 0 ALSPI=(3./4.)*CF*ULALPS(Q2)/PARU(1) GOTO 100 r8 ELSEIF(MSTJ(110).EQ.2.AND.CUT.GT.0.0499) THEN CALL LUERRM(26, H & '(LUXJET:) no allowed y cut value for Zhu parametrization') ENDIF G CUT=0.26*(4.*CUT)**(PARJ(152)+PARJ(153)+PARJ(154))**(-1./3.) 19 IF(MSTJ(110).EQ.2) CUT=MAX(0.01,MIN(0.05,CUT)) T GOTO 100 ENDIF o C...Scalar gluon (first order only). A ELSE F ALSPI=ULALPS(ECM**2)/PARU(1) SC CUT=MAX(0.001,PARJ(125),(PARJ(126)/ECM)**2,EXP(-3./ALSPI)) PARJ(152)=0. *; IF(CUT.LT.0.25) PARJ(152)=(ALSPI/3.)*((1.-2.*CUT)* 1 & LOG((1.-2.*CUT)/CUT)+0.5*(9.*CUT**2-1.)) s PARJ(153)=0. r PARJ(154)=0. i ENDIF t C...Select number of jets. PARJ(150)=CUT 0 IF(MSTJ(101).EQ.0.OR.MSTJ(101).EQ.5) THEN NJET=2 M ELSEIF(MSTJ(101).LE.0) THEN NJET=MIN(4,2-MSTJ(101)) ELSE o RNJ=RLU(0) a NJET=2 8 IF(PARJ(152)+PARJ(153)+PARJ(154).GT.RNJ) NJET=3 $ IF(PARJ(154).GT.RNJ) NJET=4 ENDIF RETURN 1 END G C********************************************************************* - M0 SUBROUTINE LUX3JT(NJET,CUT,KFL,ECM,X1,X2) 2F C...Purpose: to select the kinematical variables of three-jet events. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) SAVE /LUDAT1/ DIMENSION ZHUP(5,12) I6 C...Coefficients of Zhu second order parametrization. / DATA ((ZHUP(IC1,IC2),IC2=1,12),IC1=1,5)/ C & 18.29, 89.56, 4.541, -52.09, -109.8, 24.90, C & 11.63, 3.683, 17.50, 0.002440, -1.362, -0.3537, LC & 11.42, 6.299, -22.55, -8.915, 59.25, -5.855, CC & -32.85, -1.054, -16.90, 0.006489, -0.8156, 0.01095, *C & 7.847, -3.964, -35.83, 1.178, 29.39, 0.2806, .C & 47.82, -12.36, -56.72, 0.04054, -0.4365, 0.6062, SC & 5.441, -56.89, -50.27, 15.13, 114.3, -18.19, lC & 97.05, -1.890, -139.9, 0.08153, -0.4984, 0.9439, =C & -17.65, 51.44, -58.32, 70.95, -255.7, -78.99, C & 476.9, 29.65, -239.3, 0.4745, -1.174, 6.081/ Q C C...Dilogarithm of x for x<0.5 (x>0.5 obtained by analytic trick). )E DILOG(X)=X+X**2/4.+X**3/9.+X**4/16.+X**5/25.+X**6/36.+X**7/49. C...Event type. Mass effect factors and other common constants. MSTJ(120)=2 MSTJ(121)=0 PMQ=ULMASS(KFL) QME=(2.*PMQ/ECM)**2 IF(MSTJ(109).NE.1) THEN CUTL=LOG(CUT) CUTD=LOG(1./CUT-2.) IF(MSTJ(109).EQ.0) THEN CF=4./3. * CN=3. TR=2. $ WTMX=MIN(20.,37.-6.*CUTD) 3 IF(MSTJ(110).EQ.2) WTMX=2.*(7.5+80.*CUT) 3 ELSE 1 CF=1. CN=0. TR=12. M WTMX=0. ENDIF E C...Alpha_strong and effects of optimized Q^2 scale. Maximum weight. E! ALS2PI=PARU(118)/PARU(2) 1 WTOPT=0. IG IF(MSTJ(111).EQ.1) WTOPT=(33.-2.*MSTU(112))/6.*LOG(PARJ(169))* r & ALS2PI r+ WTMAX=MAX(0.,1.+WTOPT+ALS2PI*WTMX) / C...Choose three-jet events in allowed region. , 100 NJET=3 ) 110 Y13L=CUTL+CUTD*RLU(0) Y23L=CUTL+CUTD*RLU(0) Y13=EXP(Y13L) Y23=EXP(Y23L) Y12=1.-Y13-Y23 0 IF(Y12.LE.CUT) GOTO 110 7 IF(Y13**2+Y23**2+2.*Y12.LE.2.*RLU(0)) GOTO 110 . Q C...Second order corrections. 3 IF(MSTJ(101).EQ.2.AND.MSTJ(110).LE.1) THEN Q Y12L=LOG(Y12) Y13M=LOG(1.-Y13) Y23M=LOG(1.-Y23) * Y12M=LOG(1.-Y12) ) IF(Y13.LE.0.5) Y13I=DILOG(Y13) ? IF(Y13.GE.0.5) Y13I=1.644934-Y13L*Y13M-DILOG(1.-Y13) ) IF(Y23.LE.0.5) Y23I=DILOG(Y23) Q? IF(Y23.GE.0.5) Y23I=1.644934-Y23L*Y23M-DILOG(1.-Y23) ) IF(Y12.LE.0.5) Y12I=DILOG(Y12) *? IF(Y12.GE.0.5) Y12I=1.644934-Y12L*Y12M-DILOG(1.-Y12) c/ WT1=(Y13**2+Y23**2+2.*Y12)/(Y13*Y23) : WT2=CF*(-2.*(CUTL-Y12L)**2-3.*CUTL-1.+3.289868+ & & 2.*(2.*CUTL-Y12L)*CUT/Y12)+ H & CN*((CUTL-Y12L)**2-(CUTL-Y13L)**2-(CUTL-Y23L)**2-11.*CUTL/6.+ B & 67./18.+1.644934-(2.*CUTL-Y12L)*CUT/Y12+(2.*CUTL-Y13L)* + & CUT/Y13+(2.*CUTL-Y23L)*CUT/Y23)+ J & TR*(2.*CUTL/3.-10./9.)+ G & CF*(Y12/(Y12+Y13)+Y12/(Y12+Y23)+(Y12+Y23)/Y13+(Y12+Y13)/Y23+ rG & Y13L*(4.*Y12**2+2.*Y12*Y13+4.*Y12*Y23+Y13*Y23)/(Y12+Y23)**2+ (H & Y23L*(4.*Y12**2+2.*Y12*Y23+4.*Y12*Y13+Y13*Y23)/(Y12+Y13)**2)/ & WT1+ S: & CN*(Y13L*Y13/(Y12+Y23)+Y23L*Y23/(Y12+Y13))/WT1+ G & (CN-2.*CF)*((Y12**2+(Y12+Y13)**2)*(Y12L*Y23L-Y12L*Y12M-Y23L* FD & Y23M+1.644934-Y12I-Y23I)/(Y13*Y23)+(Y12**2+(Y12+Y23)**2)* > & (Y12L*Y13L-Y12L*Y12M-Y13L*Y13M+1.644934-Y12I-Y13I)/ 9 & (Y13*Y23)+(Y13**2+Y23**2)/(Y13*Y23*(Y13+Y23))- B & 2.*Y12L*Y12**2/(Y13+Y23)**2-4.*Y12L*Y12/(Y13+Y23))/WT1- & CN*(Y13L*Y23L-Y13L*Y13M-Y23L*Y23M+1.644934-Y13I-Y23I) 4 IF(1.+WTOPT+ALS2PI*WT2.LE.0.) MSTJ(121)=1 ; IF(1.+WTOPT+ALS2PI*WT2.LE.WTMAX*RLU(0)) GOTO 110 .= PARJ(156)=(WTOPT+ALS2PI*WT2)/(1.+WTOPT+ALS2PI*WT2) S *7 ELSEIF(MSTJ(101).EQ.2.AND.MSTJ(110).EQ.2) THEN *: C...Second order corrections; Zhu parametrization of ERT. ZX=(Y23-Y13)**2 ZY=1.-Y12 IZA=0 DO 120 IY=1,5 0 IF(ABS(CUT-0.01*IY).LT.0.0001) IZA=IY 120 CONTINUE IF(IZA.NE.0) THEN IZ=IZA AG WT2=ZHUP(IZ,1)+ZHUP(IZ,2)*ZX+ZHUP(IZ,3)*ZX**2+(ZHUP(IZ,4)+ X & ZHUP(IZ,5)*ZX)*ZY+(ZHUP(IZ,6)+ZHUP(IZ,7)*ZX)*ZY**2+ E & (ZHUP(IZ,8)+ZHUP(IZ,9)*ZX)*ZY**3+ZHUP(IZ,10)/(ZX-ZY**2)+ */ & ZHUP(IZ,11)/(1.-ZY)+ZHUP(IZ,12)/ZY T ELSE ) IZ=100.*CUT G WTL=ZHUP(IZ,1)+ZHUP(IZ,2)*ZX+ZHUP(IZ,3)*ZX**2+(ZHUP(IZ,4)+ = & ZHUP(IZ,5)*ZX)*ZY+(ZHUP(IZ,6)+ZHUP(IZ,7)*ZX)*ZY**2+ E & (ZHUP(IZ,8)+ZHUP(IZ,9)*ZX)*ZY**3+ZHUP(IZ,10)/(ZX-ZY**2)+ / & ZHUP(IZ,11)/(1.-ZY)+ZHUP(IZ,12)/ZY T IZ=IZ+1 G WTU=ZHUP(IZ,1)+ZHUP(IZ,2)*ZX+ZHUP(IZ,3)*ZX**2+(ZHUP(IZ,4)+ * & ZHUP(IZ,5)*ZX)*ZY+(ZHUP(IZ,6)+ZHUP(IZ,7)*ZX)*ZY**2+ E & (ZHUP(IZ,8)+ZHUP(IZ,9)*ZX)*ZY**3+ZHUP(IZ,10)/(ZX-ZY**2)+ / & ZHUP(IZ,11)/(1.-ZY)+ZHUP(IZ,12)/ZY 2/ WT2=WTL+(WTU-WTL)*(100.*CUT+1.-IZ) S ENDIF 7 IF(1.+WTOPT+2.*ALS2PI*WT2.LE.0.) MSTJ(121)=1 X> IF(1.+WTOPT+2.*ALS2PI*WT2.LE.WTMAX*RLU(0)) GOTO 110 C PARJ(156)=(WTOPT+2.*ALS2PI*WT2)/(1.+WTOPT+2.*ALS2PI*WT2) e ENDIF tE C...Impose mass cuts (gives two jets). For fixed jet number new try. L X1=1.-Y23 X2=1.-Y13 X3=1.-Y12 / IF(4.*Y23*Y13*Y12/X3**2.LE.QME) NJET=2 =F IF(MOD(MSTJ(103),4).GE.2.AND.IABS(MSTJ(101)).LE.1.AND.QME*X3+ ; & 0.5*QME**2+(0.5*QME+0.25*QME**2)*((1.-X2)/(1.-X1)+ U9 & (1.-X1)/(1.-X2)).GT.(X1**2+X2**2)*RLU(0)) NJET=2 .3 IF(MSTJ(101).EQ.-1.AND.NJET.EQ.2) GOTO 100 e a< C... nts: string configuration, choose new flavour. 0 ELSE + IF(ID.EQ.1) THEN *3 WTR=RLU(0)*(WTD(1)+WTD(2)+WTD(3)+WTD(4)) / IF(WTR.LT.WTD(2)+WTD(3)+WTD(4)) ID=2 *( IF(WTR.LT.WTD(3)+WTD(4)) ID=3 ! IF(WTR.LT.WTD(4)) ID=4 I IF(ID.GE.2) GOTO 130 ENDIF MSTJ(120)=5 B PARJ(156)=CF*TR*(WTD(1)+WTD(2)+WTD(3)+WTD(4))/(16.*WTTOT) 140 KFLN=1+INT(5.*RLU(0)) = IF(KFLN.NE.KFL.AND.0.2*PARJ(156).LE.RLU(0)) GOTO 140 ( IF(KFLN.EQ.KFL.AND.1.-0.8*PARJ(156).LE.RLU(0)) GOTO 140 IF(KFLN.GT.MSTJ(104)) NJET=2 . PMQN=ULMASS(KFLN) QMEN=(2.*PMQN/ECM)**2 * C...Mass cuts. Kinematical variables out. 5 IF(Y24.LE.CUT+QME.OR.Y13.LE.1.1*QMEN) NJET=2 S IF(NJET.EQ.2) GOTO 150 J& Q24=0.5*(1.-SQRT(1.-QME/Y24)) ' Q13=0.5*(1.-SQRT(1.-QMEN/Y13)) 2 X1=1.-(1.-Q24)*Y123-Q24*Y134 3 X4=1.-(1.-Q24)*Y134-Q24*Y123 X2=1.-(1.-Q13)*Y234-Q13*Y124 )G X12=(1.-Q24)*((1.-Q13)*Y14+Q13*Y34)+Q24*((1.-Q13)*Y12+Q13*Y23) X14=Y24-0.5*QME G X34=(1.-Q24)*((1.-Q13)*Y23+Q13*Y12)+Q24*((1.-Q13)*Y34+Q13*Y14) (2 IF(PMQ**2+PMQN**2+MIN(X12,X34)*ECM**2.LE. ( & (PARJ(127)+PMQ+PMQN)**2) NJET=2 9 IF(Y123*Y134/((1.-X1)*(1.-X4)).LE.RLU(0)) NJET=2 o ENDIF 1 150 IF(MSTJ(101).LE.-2.AND.NJET.EQ.2) GOTO 100 L = RETURN P END G C********************************************************************* A 15 SUBROUTINE LUXDIF(NC,NJET,KFL,ECM,CHI,THE,PHI) ( -8 C...Purpose: to give the angular orientation of events. 4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) J& SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ < C...Charge. Factors depending on polarization for QED case. QF=KCHG(KFL,1)/3. POLL=1.-PARJ(131)*PARJ(132) POLD=PARJ(132)-PARJ(131) P0 IF(MSTJ(102).LE.1.OR.MSTJ(109).EQ.1) THEN HF1=POLL HF2=0. * HF3=PARJ(133)**2 * HF4=0. * *H C...Factors depending on flavour, energy and polarization for QFD case. ELSE e. SFF=1./(16.*PARU(102)*(1.-PARU(102))) G SFW=ECM**4/((ECM**2-PARJ(123)**2)**2+(PARJ(123)*PARJ(124))**2) ( SFI=SFW*(1.-(PARJ(123)/ECM)**2) AE=-1. i VE=4.*PARU(102)-1. r AF=SIGN(1.,QF) A VF=AF-4.*QF*PARU(102) ; HF1=QF**2*POLL-2.*QF*VF*SFI*SFF*(VE*POLL-AE*POLD)+ .D & (VF**2+AF**2)*SFW*SFF**2*((VE**2+AE**2)*POLL-2.*VE*AE*POLD) E HF2=-2.*QF*AF*SFI*SFF*(AE*POLL-VE*POLD)+2.*VF*AF*SFW*SFF**2* ,+ & (2.*VE*AE*POLL-(VE**2+AE**2)*POLD) 6C HF3=PARJ(133)**2*(QF**2-2.*QF*VF*SFI*SFF*VE+(VF**2+AF**2)* 5 & SFW*SFF**2*(VE**2-AE**2)) E HF4=-PARJ(133)**2*2.*QF*VF*SFW*(PARJ(123)*PARJ(124)/ECM**2)* & SFF*AE ENDIF ,A C...Mass factor. Differential cross-sections for two-jet events. . SQ2=SQRT(2.) , QME=0. I IF(MSTJ(103).GE.4.AND.IABS(MSTJ(101)).LE.1.AND.MSTJ(102).LE.1.AND. 2 &MSTJ(109).NE.1) QME=(2.*ULMASS(KFL)/ECM)**2 IF(NJET.EQ.2) THEN h SIGU=4.*SQRT(1.-QME) d! SIGL=2.*QME*SQRT(1.-QME) ( SIGT=0. SIGI=0. SIGA=0. SIGP=4. yC C...Kinematical variables. Reduce four-jet event to three-jet one. = ELSE J IF(NJET.EQ.3) THEN L X1=2.*P(NC+1,4)/ECM X2=2.*P(NC+3,4)/ECM ELSE GB ECMR=P(NC+1,4)+P(NC+4,4)+SQRT((P(NC+2,1)+P(NC+3,1))**2+ = & (P(NC+2,2)+P(NC+3,2))**2+(P(NC+2,3)+P(NC+3,3))**2) X1=2.*P(NC+1,4)/ECMR X2=2.*P(NC+4,4)/ECMR M ENDIF 3E C...Differential cross-sections for three-jet (or reduced four-jet). M XQ=(1.-X1)/(1.-X2) F CT12=(X1*X2-2.*X1-2.*X2+2.+QME)/SQRT((X1**2-QME)*(X2**2-QME)) ST12=SQRT(1.-CT12**2) IF(MSTJ(109).NE.1) THEN C SIGU=2.*X1**2+X2**2*(1.+CT12**2)-QME*(3.+CT12**2-X1-X2)- ); & QME*X1/XQ+0.5*QME*((X2**2-QME)*ST12**2-2.*X2)*XQ WD SIGL=(X2*ST12)**2-QME*(3.-CT12**2-2.5*(X1+X2)+X1*X2+QME)+ H & 0.5*QME*(X1**2-X1-QME)/XQ+0.5*QME*((X2**2-QME)*CT12**2-X2)*XQ > SIGT=0.5*(X2**2-QME-0.5*QME*(X2**2-QME)/XQ)*ST12**2 E SIGI=((1.-0.5*QME*XQ)*(X2**2-QME)*ST12*CT12+QME*(1.-X1-X2+ *, & 0.5*X1*X2+0.5*QME)*ST12/CT12)/SQ2 SIGA=X2**2*ST12/SQ2 SIGP=2.*(X1**2-X2**2*CT12) Q A C...Differential cross-sect for scalar gluons (no mass effects). M ELSE X3=2.-X1-X2 XT=X2*ST12 L+ CT13=SQRT(MAX(0.,1.-(XT/X3)**2)) .1 SIGU=(1.-PARJ(171))*(X3**2-0.5*XT**2)+ ? & PARJ(171)*(X3**2-0.5*XT**2-4.*(1.-X1)*(1.-X2)**2/X1) 3) SIGL=(1.-PARJ(171))*0.5*XT**2+ ) & PARJ(171)*0.5*(1.-X1)**2*XT**2 * SIGT=(1.-PARJ(171))*0.25*XT**2+ * & PARJ(171)*0.25*XT**2*(1.-2.*X1) 6 SIGI=-(0.5/SQ2)*((1.-PARJ(171))*XT*X3*CT13+ 8 & PARJ(171)*XT*((1.-2.*X1)*X3*CT13-X1*(X1-X2))) 0 SIGA=(0.25/SQ2)*XT*(2.*(1.-X1)-X1*X3) + SIGP=X3**2-2.*(1.-X1)*(1.-X2)/X1 / ENDIF ENDIF 11 C...Upper bounds for differential cross-section. ) HF1A=ABS(HF1) HF2A=ABS(HF2) HF3A=ABS(HF3) HF4A=ABS(HF4) SIGMAX=(2.*HF1A+HF3A+HF4A)*ABS(SIGU)+2.*(HF1A+HF3A+HF4A)* < &ABS(SIGL)+2.*(HF1A+2.*HF3A+2.*HF4A)*ABS(SIGT)+2.*SQ2* > &(HF1A+2.*HF3A+2.*HF4A)*ABS(SIGI)+4.*SQ2*HF2A*ABS(SIGA)+ &2.*HF2A*ABS(SIGP) YG C...Generate angular orientation according to differential cross-sect. 2 100 CHI=PARU(2)*RLU(0) 1 CTHE=2.*RLU(0)-1. PHI=PARU(2)*RLU(0) 2 CCHI=COS(CHI) SCHI=SIN(CHI) C2CHI=COS(2.*CHI) S2CHI=SIN(2.*CHI) THE=ACOS(CTHE) + STHE=SIN(THE) $ C2PHI=COS(2.*(PHI-PARJ(134))) $ S2PHI=SIN(2.*(PHI-PARJ(134))) A SIG=((1.+CTHE**2)*HF1+STHE**2*(C2PHI*HF3-S2PHI*HF4))*SIGU+ ; &2.*(STHE**2*HF1-STHE**2*(C2PHI*HF3-S2PHI*HF4))*SIGL+ E &2.*(STHE**2*C2CHI*HF1+((1.+CTHE**2)*C2CHI*C2PHI-2.*CTHE*S2CHI* 6F &S2PHI)*HF3-((1.+CTHE**2)*C2CHI*S2PHI+2.*CTHE*S2CHI*C2PHI)*HF4)* C &SIGT-2.*SQ2*(2.*STHE*CTHE*CCHI*HF1-2.*STHE*(CTHE*CCHI*C2PHI- F &SCHI*S2PHI)*HF3+2.*STHE*(CTHE*CCHI*S2PHI+SCHI*C2PHI)*HF4)*SIGI+ 1 &4.*SQ2*STHE*CCHI*HF2*SIGA+2.*CTHE*HF2*SIGP ( IF(SIG.LT.SIGMAX*RLU(0)) GOTO 100 RETURN N END G C********************************************************************* ( 2! SUBROUTINE LUONIA(KFL,ECM) X C...Purpose: to generate Upsilon and toponium decays into three ' C...gluons or two gluons and a photon. 34 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) U& SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ Z& C...Printout. Check input parameters. ' IF(MSTU(12).GE.1) CALL LULIST(0) U$ IF(KFL.LT.0.OR.KFL.GT.8) THEN CALL LUERRM(16,'(LUONIA:) called with unknown flavour code') T! IF(MSTU(21).GE.1) RETURN 3 ENDIF / IF(ECM.LT.PARJ(127)+2.02*PARF(101)) THEN 6D CALL LUERRM(16,'(LUONIA:) called with too small CM energy') ! IF(MSTU(21).GE.1) RETURN ENDIF 1- C...Initial e+e- and onium state (optional). U NC=0 U IF(MSTJ(115).GE.2) THEN NC=NC+2 + CALL LU1ENT(NC-1,11,0.5*ECM,0.,0.) K(NC-1,1)=21 */ CALL LU1ENT(NC,-11,0.5*ECM,PARU(1),0.) 6 K(NC,1)=21 2 ENDIF KFLC=IABS(KFL) , IF(MSTJ(115).GE.3.AND.KFLC.GE.5) THEN NC=NC+1 KF=110*KFLC+3 MSTU10=MSTU(10) MSTU(10)=1 1 P(NC,5)=ECM CALL LU1ENT(NC,KF,ECM,0.,0.) K(NC,1)=21 4 K(NC,3)=1 MSTU(10)=MSTU10 ENDIF 22 C...Choose x1 and x2 according to matrix element. NTRY=0 ) 100 X1=RLU(0) X2=RLU(0) X3=2.-X1-X2 IF(X3.GE.1..OR.((1.-X1)/(X2*X3))**2+((1.-X2)/(X1*X3))**2+ 2 &((1.-X3)/(X1*X2))**2.LE.2.*RLU(0)) GOTO 100 NTRY=NTRY+1 NJET=3 T> IF(MSTJ(101).LE.4) CALL LU3ENT(NC+1,21,21,21,ECM,X1,X3) A IF(MSTJ(101).GE.5) CALL LU3ENT(-(NC+1),21,21,21,ECM,X1,X3) T XG C...Photon-gluon-gluon events. Small system modifications. Jet origin. MSTU(111)=MSTJ(108) IF(MSTJ(108).EQ.2.AND.(MSTJ(101).EQ.0.OR.MSTJ(101).EQ.1)) &MSTU(111)=1 PARU(112)=PARJ(121) - IF(MSTU(111).EQ.2) PARU(112)=PARJ(122) 3 QF=0. ' IF(KFLC.NE.0) QF=KCHG(KFLC,1)/3. 0. RGAM=7.2*QF**2*PARU(101)/ULALPS(ECM**2) MK=0 E ECMC=ECM ( IF(RLU(0).GT.RGAM/(1.+RGAM)) THEN B IF(1.-MAX(X1,X2,X3).LE.MAX((PARJ(126)/ECM)**2,PARJ(125))) & NJET=2 LE IF(NJET.EQ.2.AND.MSTJ(101).LE.4) CALL LU2ENT(NC+1,21,21,ECM) lH IF(NJET.EQ.2.AND.MSTJ(101).GE.5) CALL LU2ENT(-(NC+1),21,21,ECM) ELSE MK=1 A ECMC=SQRT(1.-X1)*ECM B* IF(ECMC.LT.2.*PARJ(127)) GOTO 100 K(NC+1,1)=1 K(NC+1,2)=22 g K(NC+1,4)=0 K(NC+1,5)=0 4 IF(MSTJ(101).GE.5) K(NC+2,4)=MSTU(5)*(NC+3) 4 IF(MSTJ(101).GE.5) K(NC+2,5)=MSTU(5)*(NC+3) 4 IF(MSTJ(101).GE.5) K(NC+3,4)=MSTU(5)*(NC+2) 4 IF(MSTJ(101).GE.5) K(NC+3,5)=MSTU(5)*(NC+2) NJET=2 r& IF(ECMC.LT.4.*PARJ(127)) THEN MSTU10=MSTU(10) MSTU(10)=1 ) P(NC+2,5)=ECMC ): CALL LU1ENT(NC+2,83,0.5*(X2+X3)*ECM,PARU(1),0.) MSTU(10)=MSTU10 NJET=0 / ENDIF ENDIF DO 110 IP=NC+1,N B K(IP,3)=K(IP,3)+(MSTJ(115)/2)+(KFLC/5)*(MSTJ(115)/3)*(NC-1) 110 CONTINUE . C...Differential cross-sections. Upper limit for cross-section. IF(MSTJ(106).EQ.1) THEN SQ2=SQRT(2.) (# HF1=1.-PARJ(131)*PARJ(132) U HF3=PARJ(133)**2 , CT13=(X1*X3-2.*X1-2.*X3+2.)/(X1*X3) ST13=SQRT(1.-CT13**2) 7 SIGL=0.5*X3**2*((1.-X2)**2+(1.-X3)**2)*ST13**2 B SIGU=(X1*(1.-X1))**2+(X2*(1.-X2))**2+(X3*(1.-X3))**2-SIGL SIGT=0.5*SIGL < SIGI=(SIGL*CT13/ST13+0.5*X1*X3*(1.-X2)**2*ST13)/SQ2 F SIGMAX=(2.*HF1+HF3)*ABS(SIGU)+2.*(HF1+HF3)*ABS(SIGL)+2.*(HF1+ 8 & 2.*HF3)*ABS(SIGT)+2.*SQ2*(HF1+2.*HF3)*ABS(SIGI) C...Angular orientation of event. 120 CHI=PARU(2)*RLU(0) . CTHE=2.*RLU(0)-1. PHI=PARU(2)*RLU(0) CCHI=COS(CHI) SCHI=SIN(CHI) C2CHI=COS(2.*CHI) S2CHI=SIN(2.*CHI) THE=ACOS(CTHE) 2 STHE=SIN(THE) & C2PHI=COS(2.*(PHI-PARJ(134))) & S2PHI=SIN(2.*(PHI-PARJ(134))) G SIG=((1.+CTHE**2)*HF1+STHE**2*C2PHI*HF3)*SIGU+2.*(STHE**2*HF1- .E & STHE**2*C2PHI*HF3)*SIGL+2.*(STHE**2*C2CHI*HF1+((1.+CTHE**2)* 1I & C2CHI*C2PHI-2.*CTHE*S2CHI*S2PHI)*HF3)*SIGT-2.*SQ2*(2.*STHE*CTHE* 3 & CCHI*HF1-2.*STHE*(CTHE*CCHI*C2PHI-SCHI*S2PHI)*HF3)*SIGI * IF(SIG.LT.SIGMAX*RLU(0)) GOTO 120 / CALL LUDBRB(NC+1,N,0.,CHI,0D0,0D0,0D0) 40 CALL LUDBRB(NC+1,N,THE,PHI,0D0,0D0,0D0) ENDIF 1? C...Generate parton shower. Rearrange along strings and check. *, IF(MSTJ(101).GE.5.AND.NJET.GE.2) THEN ( CALL LUSHOW(NC+MK+1,-NJET,ECMC) MSTJ14=MSTJ(14) ( IF(MSTJ(105).EQ.-1) MSTJ(14)=-1 & IF(MSTJ(105).GE.0) MSTU(28)=0 CALL LUPREP(0) A MSTJ(14)=MSTJ14 6 IF(MSTJ(105).GE.0.AND.MSTU(28).NE.0) GOTO 100 ENDIF *4 C...Generate fragmentation. Information for LUTABU: IF(MSTJ(105).EQ.1) CALL LUEXEC 2 MSTU(161)=110*KFLC+3 MSTU(162)=0 Y RETURN 1 END 2G C********************************************************************* Y 2 SUBROUTINE LUHEPC(MCONV) Y Y C...Purpose: to convert JETSET event record contents to or from + C...the standard event record commonblock. *H C...Note that HEPEVT is in double precision according to LEP 2 standard. PARAMETER (NMXHEP=2000) > COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP), F &JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP) DOUBLE PRECISION PHEP,VHEP4 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) Y SAVE /HEPEVT/ & SAVE /LUJETS/,/LUDAT1/,/LUDAT2/ *7 C...Conversion from JETSET to standard, the easy part. 2 IF(MCONV.EQ.1) THEN NEVHEP=0 &' IF(N.GT.NMXHEP) CALL LUERRM(8, */ & '(LUHEPC:) no more space in /HEPEVT/') * NHEP=MIN(N,NMXHEP) - DO 140 I=1,NHEP ISTHEP(I)=0 5 IF(K(I,1).GE.1.AND.K(I,1).LE.10) ISTHEP(I)=1 36 IF(K(I,1).GE.11.AND.K(I,1).LE.20) ISTHEP(I)=2 6 IF(K(I,1).GE.21.AND.K(I,1).LE.30) ISTHEP(I)=3 < IF(K(I,1).GE.31.AND.K(I,1).LE.100) ISTHEP(I)=K(I,1) IDHEP(I)=K(I,2) JMOHEP(1,I)=K(I,3) JMOHEP(2,I)=0 ? IF(K(I,1).NE.3.AND.K(I,1).NE.13.AND.K(I,1).NE.14) THEN * JDAHEP(1,I)=K(I,4) Y JDAHEP(2,I)=K(I,5) ELSE 3 JDAHEP(1,I)=0 JDAHEP(2,I)=0 ENDIF DO 100 J=1,5 Y PHEP(J,I)=P(I,J) 100 CONTINUE * DO 110 J=1,4 1 VHEP(J,I)=V(I,J) 110 CONTINUE + Y& C...Check if new event (from pileup). IF(I.EQ.1) THEN INEW=1 2 ELSE 15 IF(K(I,1).EQ.21.AND.K(I-1,1).NE.21) INEW=I 1 ENDIF 4( C...Fill in missing mother information. > IF(I.GE.INEW+2.AND.K(I,1).EQ.21.AND.K(I,3).EQ.0) THEN IMO1=I-2 1? IF(I.GE.INEW+3.AND.K(I-1,1).EQ.21.AND.K(I-1,3).EQ.0) ( & IMO1=IMO1-1 JMOHEP(1,I)=IMO1 * JMOHEP(2,I)=IMO1+1 *3 ELSEIF(K(I,2).GE.91.AND.K(I,2).LE.93) THEN ) I1=K(I,3)-1 120 I1=I1+1 IF(I1.GE.I) CALL LUERRM(8, 2A & '(LUHEPC:) translation of inconsistent event history') 1B IF(I1.LT.I.AND.K(I1,1).NE.1.AND.K(I1,1).NE.11) GOTO 120 KC=LUCOMP(K(I1,2)) &+ IF(I1.LT.I.AND.KC.EQ.0) GOTO 120 13 IF(I1.LT.I.AND.KCHG(KC,2).EQ.0) GOTO 120 5 JMOHEP(2,I)=I1 N ELSEIF(K(I,2).EQ.94) THEN NJET=2 .3 IF(NHEP.GE.I+3.AND.K(I+3,3).LE.I) NJET=3 3 IF(NHEP.GE.I+4.AND.K(I+4,3).LE.I) NJET=4 7 JMOHEP(2,I)=MOD(K(I+NJET,4)/MSTU(5),MSTU(5)) 6 IF(JMOHEP(2,I).EQ.JMOHEP(1,I)) JMOHEP(2,I)= ( & MOD(K(I+1,4)/MSTU(5),MSTU(5)) ENDIF C* C...Fill in missing daughter information. 0 IF(K(I,2).EQ.94.AND.MSTU(16).NE.2) THEN , DO 130 I1=JDAHEP(1,I),JDAHEP(2,I) * I2=MOD(K(I1,4)/MSTU(5),MSTU(5)) JDAHEP(1,I2)=I 130 CONTINUE F ENDIF 3 IF(K(I,2).GE.91.AND.K(I,2).LE.94) GOTO 140 I1=JMOHEP(1,I) .+ IF(I1.LE.0.OR.I1.GT.NHEP) GOTO 140 5 IF(K(I1,1).NE.13.AND.K(I1,1).NE.14) GOTO 140 E# IF(JDAHEP(1,I1).EQ.0) THEN J JDAHEP(1,I1)=I ) ELSE + JDAHEP(2,I1)=I ( ENDIF 140 CONTINUE DO 150 I=1,NHEP 3 IF(K(I,1).NE.13.AND.K(I,1).NE.14) GOTO 150 5 IF(JDAHEP(2,I).EQ.0) JDAHEP(2,I)=JDAHEP(1,I) 150 CONTINUE 2 7 C...Conversion from standard to JETSET, the easy part. ELSE A+ IF(NHEP.GT.MSTU(4)) CALL LUERRM(8, */ & '(LUHEPC:) no more space in /LUJETS/') T N=MIN(NHEP,MSTU(4)) NKQ=0 KQSUM=0 DO 180 I=1,N K(I,1)=0 $ IF(ISTHEP(I).EQ.1) K(I,1)=1 IF(ISTHEP(I).EQ.2) K(I,1)=11 IF(ISTHEP(I).EQ.3) K(I,1)=21 K(I,2)=IDHEP(I) K(I,3)=JMOHEP(1,I) K(I,4)=JDAHEP(1,I) N K(I,5)=JDAHEP(2,I) DO 160 J=1,5 = P(I,J)=PHEP(J,I) 160 CONTINUE 1 DO 170 J=1,4 V(I,J)=VHEP(J,I) * 170 CONTINUE 1 V(I,5)=0. ; IF(ISTHEP(I).EQ.2.AND.PHEP(4,I).GT.PHEP(5,I)) THEN F I1=JDAHEP(1,I) )D IF(I1.GT.0.AND.I1.LE.NHEP) V(I,5)=(VHEP(4,I1)-VHEP(4,I))* & PHEP(5,I)/PHEP(4,I) ENDIF .E C...Fill in missing information on colour connection in jet systems. IF(ISTHEP(I).EQ.1) THEN KC=LUCOMP(K(I,2)) KQ=0 I4 IF(KC.NE.0) KQ=KCHG(KC,2)*ISIGN(1,K(I,2)) IF(KQ.NE.0) NKQ=NKQ+1 IF(KQ.NE.2) KQSUM=KQSUM+KQ 1* IF(KQ.NE.0.AND.KQSUM.NE.0) THEN K(I,1)=2 1* ELSEIF(KQ.EQ.2.AND.I.LT.N) THEN ( IF(K(I+1,2).EQ.21) K(I,1)=2 ENDIF ENDIF 180 CONTINUE2 IF(NKQ.EQ.1.OR.KQSUM.NE.0) CALL LUERRM(8, C & '(LUHEPC:) input parton configuration not colour singlet') c ENDIF v END G C********************************************************************* Q SUBROUTINE LUTEST(MTEST) Q 1F C...Purpose: to provide a simple program (disguised as subroutine) to G C...run at installation as a check that the program works as intended. 24 COMMON/LUJETS/N,K(4000,5),P(4000,5),V(4000,5) < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) SAVE /LUJETS/,/LUDAT1/ 2( DIMENSION PSUM(5),PINI(6),PFIN(6) 1& C...Loop over events to be generated. IF(MTEST.GE.1) CALL LUTABU(20) ) NERR=0 N DO 180 IEV=1,600 1 (A C...Reset parameter values. Switch on some nonstandard features. 0 MSTJ(1)=1 MSTJ(3)=0 MSTJ(11)=1 MSTJ(42)=2 * MSTJ(43)=4 * MSTJ(44)=2 * PARJ(17)=0.1 * PARJ(22)=1.5 R PARJ(43)=1. PARJ(54)=-0.05 ( MSTJ(101)=5 MSTJ(104)=5 MSTJ(105)=0 MSTJ(107)=1 = IF(IEV.EQ.301.OR.IEV.EQ.351.OR.IEV.EQ.401) MSTJ(116)=3 2 ,9 C...Ten events each for some single jets configurations. 0 IF(IEV.LE.50) THEN V ITY=(IEV+9)/10 U MSTJ(3)=-1 2, IF(ITY.EQ.3.OR.ITY.EQ.4) MSTJ(11)=2 0 IF(ITY.EQ.1) CALL LU1ENT(1,1,15.,0.,0.) 3 IF(ITY.EQ.2) CALL LU1ENT(1,3101,15.,0.,0.) 34 IF(ITY.EQ.3) CALL LU1ENT(1,-2203,15.,0.,0.) 1 IF(ITY.EQ.4) CALL LU1ENT(1,-4,30.,0.,0.) 1 IF(ITY.EQ.5) CALL LU1ENT(1,21,15.,0.,0.) . tG C...Ten events each for some simple jet systems; string fragmentation. L ELSEIF(IEV.LE.130) THEN ITY=(IEV-41)/10 - IF(ITY.EQ.1) CALL LU2ENT(1,1,-1,40.) 1- IF(ITY.EQ.2) CALL LU2ENT(1,4,-4,30.) (0 IF(ITY.EQ.3) CALL LU2ENT(1,2,2103,100.) . IF(ITY.EQ.4) CALL LU2ENT(1,21,21,40.) > IF(ITY.EQ.5) CALL LU3ENT(1,2101,21,-3203,30.,0.6,0.8) 8 IF(ITY.EQ.6) CALL LU3ENT(1,5,21,-5,40.,0.9,0.8) 9 IF(ITY.EQ.7) CALL LU3ENT(1,21,21,21,60.,0.7,0.5) *I IF(ITY.EQ.8) CALL LU4ENT(1,2,21,21,-2,40.,0.4,0.64,0.6,0.12,0.2) + *E C...Seventy events with independent fragmentation and momentum cons. A ELSEIF(IEV.LE.200) THEN ITY=1+(IEV-131)/16 R! MSTJ(2)=1+MOD(IEV-131,4) A MSTJ(3)=1+MOD((IEV-131)/4,4) - IF(ITY.EQ.1) CALL LU2ENT(1,4,-5,40.) r8 IF(ITY.EQ.2) CALL LU3ENT(1,3,21,-3,40.,0.9,0.4) I IF(ITY.EQ.3) CALL LU4ENT(1,2,21,21,-2,40.,0.4,0.64,0.6,0.12,0.2) 0H IF(ITY.GE.4) CALL LU4ENT(1,2,-3,3,-2,40.,0.4,0.64,0.6,0.12,0.2) N> C...A hundred events with random jets (check invariant mass). ELSEIF(IEV.LE.300) THEN 100 DO 110 J=1,5 PSUM(J)=0. 110 CONTINUE NJET=2.+6.*RLU(0) DO 130 I=1,NJET KFL=21 ) IF(I.EQ.1) KFL=INT(1.+4.*RLU(0)) - IF(I.EQ.NJET) KFL=-INT(1.+4.*RLU(0)) ( EJET=5.+20.*RLU(0) ! THETA=ACOS(2.*RLU(0)-1.) S PHI=6.2832*RLU(0) 9 IF(I.LT.NJET) CALL LU1ENT(-I,KFL,EJET,THETA,PHI) )8 IF(I.EQ.NJET) CALL LU1ENT(I,KFL,EJET,THETA,PHI) + IF(I.EQ.1.OR.I.EQ.NJET) MSTJ(93)=1 f< IF(I.EQ.1.OR.I.EQ.NJET) PSUM(5)=PSUM(5)+ULMASS(KFL) DO 120 J=1,4 . PSUM(J)=PSUM(J)+P(I,J) - 120 CONTINUE 130 CONTINUE M; IF(PSUM(4)**2-PSUM(1)**2-PSUM(2)**2-PSUM(3)**2.LT. .( & (PSUM(5)+PARJ(32))**2) GOTO 100 T6 C...Fifty e+e- continuum events with matrix elements. ELSEIF(IEV.LE.350) THEN MSTJ(101)=2 CALL LUEEVT(0,40.) - *< C...Fifty e+e- continuum event with varying shower options. ELSEIF(IEV.LE.400) THEN MSTJ(42)=1+MOD(IEV,2) MSTJ(43)=1+MOD(IEV/2,4) MSTJ(44)=MOD(IEV/8,3) CALL LUEEVT(0,90.) - XE C...Fifty e+e- continuum events with coherent shower, including top. 2 ELSEIF(IEV.LE.450) THEN MSTJ(104)=6 CALL LUEEVT(0,500.) A C...Fifty Upsilon decays to ggg or gammagg with coherent shower. - ELSEIF(IEV.LE.500) THEN CALL LUONIA(5,9.46) /* C...One decay each for some heavy mesons. ELSEIF(IEV.LE.560) THEN ITY=IEV-501 KFLS=2*(ITY/20)+1 KFLB=8-MOD(ITY/5,4) KFLC=KFLB-MOD(ITY,5) J6 CALL LU1ENT(1,100*KFLB+10*KFLC+KFLS,0.,0.,0.) *+ C...One decay each for some heavy baryons. ( ELSEIF(IEV.LE.600) THEN ITY=IEV-561 KFLS=2*(ITY/20)+2 KFLA=8-MOD(ITY/5,4) KFLB=KFLA-MOD(ITY,5) . KFLC=MAX(1,KFLB-1) CALL LU1ENT(1,1000*KFLA+100*KFLB+10*KFLC+KFLS,0.,0.,0.) ENDIF .< C...Generate event. Find total momentum, energy and charge. DO 140 J=1,4 A PINI(J)=PLU(0,J) H 140 CONTINUE A PINI(6)=PLU(0,6) . CALL LUEXEC DO 150 J=1,4 H PFIN(J)=PLU(0,J) . 150 CONTINUE * PFIN(6)=PLU(0,6) 7 C...Check conservation of energy, momentum and charge; 9 C...usually exact, but only approximate for single jets. a MERR=0 t IF(IEV.LE.50) THENH IF((PFIN(1)-PINI(1))**2+(PFIN(2)-PINI(2))**2.GE.4.) MERR=MERR+1 / EPZREM=PINI(4)+PINI(3)-PFIN(4)-PFIN(3) I> IF(EPZREM.LT.0..OR.EPZREM.GT.2.*PARJ(31)) MERR=MERR+1 4 IF(ABS(PFIN(6)-PINI(6)).GT.2.1) MERR=MERR+1 ELSE 1 DO 160 J=1,4 (? IF(ABS(PFIN(J)-PINI(J)).GT.0.0001*PINI(4)) MERR=MERR+1 H 160 CONTINUE +4 IF(ABS(PFIN(6)-PINI(6)).GT.0.1) MERR=MERR+1 ENDIF B IF(MERR.NE.0) WRITE(MSTU(11),5000) (PINI(J),J=1,4),PINI(6), &(PFIN(J),J=1,4),PFIN(6) CG C...Check that all KF codes are known ones, and that partons/particles IF C...satisfy energy-momentum-mass relation. Store particle statistics. DO 170 I=1,N H IF(K(I,1).GT.20) GOTO 170 # IF(LUCOMP(K(I,2)).EQ.0) THEN F WRITE(MSTU(11),5100) I MERR=MERR+1 ENDIF ; PD=P(I,4)**2-P(I,1)**2-P(I,2)**2-P(I,3)**2-P(I,5)**2 *C IF(ABS(PD).GT.MAX(0.1,0.001*P(I,4)**2).OR.P(I,4).LT.0.) THEN t WRITE(MSTU(11),5200) I e MERR=MERR+1 ENDIF 170 CONTINUE o IF(MTEST.GE.1) CALL LUTABU(21) ( 04 C...List all erroneous events and some normal ones. ; IF(MERR.NE.0.OR.MSTU(24).NE.0.OR.MSTU(28).NE.0) THEN 5 CALL LULIST(2) )6 ELSEIF(MTEST.GE.1.AND.MOD(IEV-5,100).EQ.0) THEN CALL LULIST(1) e ENDIF T' C...Stop execution if too many errors. L IF(MERR.NE.0) NERR=NERR+1 IF(NERR.GE.10) THEN ! WRITE(MSTU(11),5300) IEV STOP ( ENDIF 180 CONTINUE C...Summarize result of run. R IF(MTEST.GE.1) CALL LUTABU(22) ') IF(NERR.EQ.0) WRITE(MSTU(11),5400) . IF(NERR.GT.0) WRITE(MSTU(11),5500) NERR 4 C...Reset commonblock variables changed during run. MSTJ(2)=3 PARJ(17)=0. PARJ(22)=1. PARJ(43)=0.5 N PARJ(54)=0. MSTJ(105)=1 MSTJ(107)=0 L C...Format statements for output. E 5000 FORMAT(/' Momentum, energy and/or charge were not conserved ', MD &'in following event'/' sum of',9X,'px',11X,'py',11X,'pz',11X, D &'E',8X,'charge'/' before',2X,4(1X,F12.5),1X,F8.2/' after',3X, &4(1X,F12.5),1X,F8.2) CF 5100 FORMAT(/5X,'Entry no.',I4,' in following event not known code') C 5200 FORMAT(/5X,'Entry no.',I4,' in following event has faulty ', r &'kinematics') 8 5300 FORMAT(/5X,'Ten errors experienced by event ',I3/ A &5X,'Something is seriously wrong! Execution stopped now!') 2? 5400 FORMAT(//5X,'End result of LUTEST: no errors detected.') YB 5500 FORMAT(//5X,'End result of LUTEST:',I2,' errors detected.'/ + &5X,'This should not have happened!') ) L RETURN ) END 1G C********************************************************************* t i BLOCK DATA LUDATA 1C C...Purpose: to give default values to parameters and particle and C...decay data. < COMMON/LUDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200) A COMMON/LUDAT2/KCHG(500,3),PMAS(500,4),PARF(2000),VCKM(4,4) /E COMMON/LUDAT3/MDCY(500,3),MDME(2000,2),BRAT(2000),KFDP(2000,5) COMMON/LUDAT4/CHAF(500) CHARACTER CHAF*8 & COMMON/LUDATR/MRLU(6),RRLU(100) 8 SAVE /LUDAT1/,/LUDAT2/,/LUDAT3/,/LUDAT4/,/LUDATR/ Q9 C...LUDAT1, containing status codes and most parameters. DATA MSTU/ MC & 0, 0, 0, 4000,10000, 500, 2000, 0, 0, 2, C 1 6, 1, 1, 0, 1, 1, 0, 0, 0, 0, 7C 2 2, 10, 0, 0, 1, 10, 0, 0, 0, 0, (C 3 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, )C 4 2, 2, 1, 4, 2, 1, 1, 0, 0, 0, C 5 25, 24, 0, 1, 0, 0, 0, 0, 0, 0, TC 6 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E 7 30*0, C & 1, 0, 0, 0, 0, 0, 0, 0, 0, C 1 1, 5, 3, 5, 0, 0, 0, 0, 0, 0, A 2 60*0, C 8 7, 409, 1996, 03, 21, 700, 0, 0, 0, 0, IC 9 0, 0, 0, 0, 0, 0, 0, 0, 0, 0/ L DATA PARU/ (C & 3.1415927, 6.2831854, 0.1973, 5.068, 0.3894, 2.568, 4*0., lC 1 0.001, 0.09, 0.01, 0., 0., 0., 0., 0., 0., 0., =C 2 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 3C 3 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., RC 4 2.0, 1.0, 0.25, 2.5, 0.05, 0., 0., 0.0001, 0., 0., 2C 5 2.5, 1.5, 7.0, 1.0, 0.5, 2.0, 3.2, 0., 0., 0., 6 40*0., 5A & 0.00729735, 0.232, 0.007764, 1.0, 1.16639E-5, 0., 0., 0., & 0., 0., HC 1 0.20, 0.25, 1.0, 4.0, 10., 0., 0., 0., 0., 0., BC 2 -0.693, -1.0, 0.387, 1.0, -0.08, -1.0, 1.0, 1.0, 1.0, 0., fC 3 1.0, -1.0, 1.0, -1.0, 1.0, 0., 0., 0., 0., 0., C 4 5.0, 1.0, 1.0, 0., 1.0, 1.0, 0., 0., 0., 0., CC 5 1.0, 0., 0., 0., 1000., 1.0, 1.0, 1.0, 1.0, 0., C 6 1.0, 1.0, 1.0, 1.0, 1.0, 0., 0., 0., 0., 0., AC 7 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0., 0., 0., CC 8 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0., *C 9 0., 0., 0., 0., 1.0, 0., 0., 0., 0., 0./ H DATA MSTJ/ HC & 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, (C 1 4, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0C 2 2, 1, 1, 2, 1, 2, 2, 0, 0, 0, C 3 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, eC 4 2, 2, 4, 2, 5, 3, 3, 0, 0, 3, TC 5 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, C 6 40*0, C & 5, 2, 7, 5, 1, 1, 0, 2, 0, 2, MC 1 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ) 2 80*0/ DATA PARJ/ .C & 0.10, 0.30, 0.40, 0.05, 0.50, 0.50, 0.50, 0., 0., 0., aC 1 0.50, 0.60, 0.75, 0., 0., 0., 0., 1.0, 1.0, 0., 2C 2 0.36, 1.0, 0.01, 2.0, 1.0, 0.4, 0., 0., 0., 0., 1C 3 0.10, 1.0, 0.8, 1.5, 0., 2.0, 0.2, 2.5, 0.6, 0., *C 4 0.3, 0.58, 0.5, 0.9, 0.5, 1.0, 1.0, 1.0, 0., 0., uF 5 0.77,0.77,0.77,-0.05,-0.005,-0.00001,-0.00001,-0.00001,1.0,0., C 6 4.5, 0.7, 0., 0.003, 0.5, 0.5, 0., 0., 0., 0., rC 7 10., 1000., 100., 1000., 0., 0.7, 10., 0., 0., 0., C 8 0.29, 1.0, 1.0, 0., 10., 10., 0., 0., 0., 0., &C 9 0.02, 1.0, 0.2, 0., 0., 0., 0., 0., 0., 0., C & 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 5C 1 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2C 2 1.0, 0.25,91.187,2.489, 0.01, 2.0, 1.0, 0.25,0.002, 0., )C 3 0., 0., 0., 0., 0.01, 0.99, 0., 0., 0.2, 0., 4 60*0./ o EA C...LUDAT2, with particle data and flavour treatment parameters. F DATA (KCHG(I,1),I= 1, 500)/-1,2,-1,2,-1,2,-1,2,2*0,-3,0,-3,0, H &-3,0,-3,6*0,3,9*0,3,2*0,3,0,-1,44*0,2,-1,2,-1,2,3,11*0,3,0,2*3,0, H &3,0,3,0,3,10*0,3,0,2*3,0,3,0,3,0,3,10*0,3,0,2*3,0,3,0,3,0,3,10*0, G &3,0,2*3,0,3,0,3,0,3,10*0,3,0,2*3,0,3,0,3,0,3,10*0,3,0,2*3,0,3,0, =H &3,0,3,70*0,3,0,3,28*0,3,2*0,3,8*0,-3,8*0,3,0,-3,0,3,-3,3*0,3,6,0, F &3,5*0,-3,0,3,-3,0,-3,4*0,-3,0,3,6,-3,0,3,-3,0,-3,0,3,6,0,3,5*0, &-3,0,3,-3,0,-3,114*0/ F DATA (KCHG(I,2),I= 1, 500)/8*1,12*0,2,16*0,2,1,50*0,-1,410*0/ H DATA (KCHG(I,3),I= 1, 500)/8*1,2*0,8*1,5*0,1,9*0,1,2*0,1,0,2*1, F &41*0,1,0,7*1,10*0,10*1,10*0,10*1,10*0,10*1,10*0,10*1,10*0,10*1, G &10*0,10*1,70*0,3*1,22*0,1,5*0,1,0,2*1,6*0,1,0,2*1,6*0,2*1,0,5*1, , &0,6*1,4*0,6*1,4*0,16*1,4*0,6*1,114*0/ E DATA (PMAS(I,1),I= 1, 500)/0.0099,0.0056,0.199,1.35,5.,160., tH &2*250.,2*0.,0.00051,0.,0.1057,0.,1.777,0.,250.,5*0.,91.187,80.25, C &80.,6*0.,500.,900.,500.,3*300.,350.,200.,5000.,60*0.,0.1396, F &0.4977,0.4936,1.8693,1.8645,1.9688,5.2787,5.2786,5.47972,6.594, E &0.135,0.5475,0.9578,2.9788,9.4,320.,2*500.,2*0.,0.7669,0.8961, C &0.8916,2.0101,2.0071,2.11,2*5.325,5.5068,6.602,0.7683,0.782, H &1.0194,3.0969,9.4603,320.,2*500.,2*0.,1.232,2*1.29,2*2.424,2.536, H &2*5.73,5.97,7.3,1.232,1.17,1.4,3.46,9.875,320.,2*500.,2*0.,0.983, H &2*1.429,2*2.272,2.5,2*5.68,5.92,7.25,0.9827,1.,1.4,3.4151,9.8598, G &320.,2*500.,2*0.,1.26,2*1.402,2*2.372,2.56,2*5.78,6.02,7.3,1.26, FC &1.282,1.42,3.5106,9.8919,320.,2*500.,2*0.,1.318,1.432,1.425, LD &2*2.46,2.61,2*5.83,6.07,7.35,1.318,1.275,1.525,3.5562,9.9132, F &320.,2*500.,2*0.,2*0.4977,8*0.,3.686,3*0.,10.0233,70*0.,1.1156, C &5*0.,2.2849,0.,2.473,2.466,6*0.,5.641,0.,2*5.84,6*0.,0.9396, E &0.9383,0.,1.1974,1.1926,1.1894,1.3213,1.3149,0.,2.4525,2.4529, DH &2.4527,2*2.55,2.73,4*0.,3*5.8,2*5.96,6.12,4*0.,1.234,1.233,1.232, G &1.231,1.3872,1.3837,1.3828,1.535,1.5318,1.6724,3*2.5,2*2.63,2.8, & &4*0.,3*5.81,2*5.97,6.13,114*0./ C DATA (PMAS(I,2),I= 1, 500)/22*0.,2.489,2.066,88*0.,0.0002, KE &0.001,6*0.,0.149,0.0505,0.0498,7*0.,0.151,0.00843,0.0044,7*0., DG &0.155,2*0.09,2*0.02,0.,4*0.05,0.155,0.36,0.08,2*0.01,5*0.,0.057, 1F &2*0.287,7*0.05,0.057,0.,0.25,0.014,6*0.,0.4,2*0.174,7*0.05,0.4, C &0.024,0.06,0.0009,6*0.,0.11,0.109,0.098,2*0.019,5*0.02,0.11, .B &0.185,0.076,0.002,146*0.,4*0.12,0.0394,0.036,0.0358,0.0099, &0.0091,131*0./ G DATA (PMAS(I,3),I= 1, 500)/22*0.,2*20.,88*0.,0.002,0.005,6*0., EC &0.4,2*0.2,7*0.,0.4,0.1,0.015,7*0.,0.25,0.005,0.01,2*0.08,0., H &4*0.1,0.25,0.2,0.001,2*0.02,5*0.,0.05,2*0.4,6*0.1,2*0.05,0.,0.35, F &0.05,6*0.,3*0.3,2*0.1,0.03,4*0.1,0.3,0.05,0.02,0.001,6*0.,0.25, C &4*0.12,5*0.05,0.25,0.17,0.2,0.01,146*0.,4*0.14,0.04,2*0.035, &2*0.05,131*0./ FF DATA (PMAS(I,4),I= 1, 500)/12*0.,658650.,0.,0.0914,68*0.,0.1, H &0.387,15*0.,7804.,0.,3709.,0.32,0.1259,0.135,3*0.387,0.15,110*0., G &15500.,26.75,83*0.,78.88,5*0.,0.057,0.,0.025,0.09,6*0.,0.387,0., )G &2*0.387,9*0.,44.3,0.,23.95,49.1,86.9,6*0.,0.13,9*0.,0.387,13*0., E &24.60001,130*0./ DATA PARF/ C & 0.5, 0.25, 0.5, 0.25, 1., 0.5, 0., 0., 0., 0., ,C 1 0.5, 0., 0.5, 0., 1., 1., 0., 0., 0., 0., C 2 0.5, 0., 0.5, 0., 1., 1., 0., 0., 0., 0., *C 3 0.5, 0., 0.5, 0., 1., 1., 0., 0., 0., 0., NC 4 0.5, 0., 0.5, 0., 1., 1., 0., 0., 0., 0., C 5 0.5, 0., 0.5, 0., 1., 1., 0., 0., 0., 0., C 6 0.75, 0.5, 0., 0.1667, 0.0833, 0.1667, 0., 0., 0., 0., mC 7 0., 0., 1., 0.3333, 0.6667, 0.3333, 0., 0., 0., 0., .C 8 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., FC 9 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., KC & 0.325, 0.325, 0.5, 1.6, 5.0, 0., 0., 0., 0., 0., DC 1 0., 0.11, 0.16, 0.048, 0.50, 0.45, 0.55, 0.60, 0., 0., AC 2 0.2, 0.1, 0., 0., 0., 0., 0., 0., 0., 0., 3 1870*0./ I& DATA ((VCKM(I,J),J=1,4),I=1,4)/ / 1 0.95113, 0.04884, 0.00003, 0.00000, E/ 2 0.04884, 0.94940, 0.00176, 0.00000, t/ 3 0.00003, 0.00176, 0.99821, 0.00000, */ 4 0.00000, 0.00000, 0.00000, 1.00000/ * *5 C...LUDAT3, with particle decay parameters and data. .H DATA (MDCY(I,1),I= 1, 500)/5*0,3*1,6*0,1,0,1,5*0,3*1,6*0,1,0,1, E &2*0,4*1,42*0,7*1,12*0,1,0,15*1,2*0,18*1,2*0,18*1,2*0,18*1,2*0, F &18*1,2*0,18*1,3*0,1,8*0,1,3*0,1,70*0,1,5*0,1,0,2*1,6*0,1,0,2*1, 4 &9*0,5*1,0,6*1,4*0,6*1,4*0,16*1,4*0,6*1,114*0/ G DATA (MDCY(I,2),I= 1, 500)/1,9,17,25,33,41,50,60,2*0,70,74,76, oG &81,83,124,126,132,2*0,135,144,156,172,192,6*0,209,0,231,254,274, E &292,301,304,305,42*0,314,315,319,328,331,336,338,11*0,358,359, wG &361,367,430,491,524,560,596,635,666,668,675,681,682,683,684,685, G &2*0,686,688,691,694,697,699,700,701,702,703,704,708,713,721,724, )G &733,734,735,2*0,736,737,742,747,749,751,753,755,757,759,761,762, G &765,769,770,771,772,773,2*0,774,775,777,779,781,783,785,787,789, 5G &791,793,794,799,804,806,808,809,810,2*0,811,813,815,817,819,821, )G &823,825,827,829,831,833,846,850,852,854,855,856,2*0,857,863,873, nG &884,892,900,904,912,920,924,928,936,945,951,953,955,956,957,2*0, 3G &958,966,8*0,968,3*0,979,70*0,993,5*0,997,0,1073,1074,6*0,1075,0, )D &1092,1093,9*0,1094,1096,1097,1100,1101,0,1103,1104,1105,1106, F &1107,1108,4*0,1109,1110,1111,1112,1113,1114,4*0,1115,1116,1119, H &1122,1123,1126,1129,1132,1134,1136,1140,1141,1142,1143,1145,1147, / &4*0,1148,1149,1150,1151,1152,1153,114*0/ H DATA (MDCY(I,3),I= 1, 500)/5*8,9,2*10,2*0,4,2,5,2,41,2,6,3,2*0, H &9,12,16,20,17,6*0,22,0,23,20,18,9,3,1,9,42*0,1,4,9,3,5,2,20,11*0, E &1,2,6,63,61,33,2*36,39,31,2,7,6,5*1,2*0,2,3*3,2,5*1,4,5,8,3,9, IG &3*1,2*0,1,2*5,7*2,1,3,4,5*1,2*0,1,9*2,1,2*5,2*2,3*1,2*0,11*2,13, 2H &4,2*2,3*1,2*0,6,10,11,2*8,4,2*8,2*4,8,9,6,2*2,3*1,2*0,8,2,8*0,11, G &3*0,14,70*0,4,5*0,76,0,2*1,6*0,17,0,2*1,9*0,2,1,3,1,2,0,6*1,4*0, Y9 &6*1,4*0,1,2*3,1,3*3,2*2,4,3*1,2*2,1,4*0,6*1,114*0/ YG DATA (MDME(I,1),I= 1,2000)/6*1,-1,7*1,-1,7*1,-1,7*1,-1,7*1,-1, eF &7*1,-1,1,-1,8*1,2*-1,8*1,2*-1,61*1,-1,2*1,-1,6*1,2*-1,7*1,2*-1, G &3*1,-1,6*1,2*-1,6*1,2*-1,3*1,-1,3*1,-1,3*1,5*-1,3*1,-1,6*1,2*-1, E &3*1,-1,11*1,2*-1,6*1,8*-1,3*1,-1,3*1,-1,3*1,5*-1,3*1,4*-1,6*1, EH &2*-1,3*1,-1,5*1,-1,8*1,2*-1,3*1,-1,9*1,-1,3*1,-1,9*1,2*-1,2*1,-1, &16*1,-1,2*1,3*-1,1665*1/ .F DATA (MDME(I,2),I= 1,2000)/75*102,42,6*102,2*42,2*0,7*41,2*0, E &24*41,6*102,45,29*102,8*32,8*0,16*32,4*0,8*32,4*0,32,4*0,8*32, uF &14*0,16*32,7*0,8*32,4*0,32,7*0,8*32,4*0,32,5*0,4*32,5*0,3*32,0, F &6*32,3*0,12,2*42,2*11,9*42,2*45,31,2*45,2*33,31,2*45,20*46,7*0, F &24*42,41*0,16*42,46*0,10*42,20*0,2*13,14*42,16*0,48,3*13,16*42, G &16*0,48,3*13,16*42,19*0,48,3*13,2*42,0,2*11,28*42,0,2,4*0,2,8*0, TF &12,32,86,87,88,3,0,2*3,0,2*3,0,2*3,0,3,6*0,3,3*0,1,0,3,2*0,2*3, H &3*0,1,4*0,12,3*0,4*32,2*4,86,87,88,33*0,12,32,86,87,88,31*0,12,0, H &32,86,87,88,40*0,12,0,32,86,87,88,95*0,12,0,32,86,87,88,2*0,4*42, G &6*0,12,11*0,4*32,2*4,9*0,14*42,52*0,10*13,2*84,3*42,8*0,48,3*13, & &2*42,2*85,14*0,84,5*0,85,886*0/ D DATA (BRAT(I) ,I= 1, 439)/75*0.,1.,6*0.,0.179,0.178,0.116, H &0.235,0.005,0.056,0.018,0.023,0.011,2*0.004,0.0067,0.014,2*0.002, C &2*0.001,0.0022,0.054,0.002,0.016,0.005,0.011,0.0101,5*0.006, C &0.002,2*0.001,5*0.002,6*0.,1.,29*0.,0.15394,0.11936,0.15394, LD &0.11926,0.15254,3*0.,0.03368,0.06664,0.03368,0.06664,0.03368, B &0.06664,2*0.,0.3214,0.0165,2*0.,0.0165,0.3207,2*0.,0.00001, B &0.00059,6*0.,3*0.1081,3*0.,0.0003,0.048,0.8705,4*0.,0.0002, H &0.0603,0.,0.0199,0.0008,3*0.,0.143,0.111,0.143,0.111,0.143,0.085, F &2*0.,0.03,0.058,0.03,0.058,0.03,0.058,8*0.,0.25,0.01,2*0.,0.01, F &0.25,4*0., 24,5*0.,3*0.08,6*0.,0.01,0.08,0.82,5*0.,0.09,11*0., G &0.01,0.08,0.82,5*0.,0.09,9*0.,1.,6*0.,0.01,0.98,0.01,1.,4*0.215, E &2*0.,2*0.07,0.,1.,2*0.08,0.76,0.08,2*0.105,0.04,0.5,0.08,0.14, D &0.01,0.015,0.005,1.,3*0.,1.,4*0.,1.,0.25,0.01,2*0.,0.01,0.25, G &4*0.,0.24,5*0.,3*0.08,0.,1.,2*0.5,0.635,0.212,0.056,0.017,0.048, (C &0.032,0.07,0.065,2*0.005,2*0.011,5*0.001,0.07,0.065,2*0.005, )B &2*0.011,5*0.001,0.026,0.019,0.066,0.041,0.045,0.076,0.0073, A &2*0.0047,0.026,0.001,0.0006,0.0066,0.005,2*0.003,2*0.0006, TG &2*0.001,0.006,0.005,0.012,0.0057,0.067,0.008,0.0022,0.027,0.004, DE &0.019,0.012,0.002,0.009,0.0218,0.001,0.022,0.087,0.001,0.0019, E &0.0015,0.0028,0.034,0.027,2*0.002,2*0.004,2*0.002,0.034,0.027/ C DATA (BRAT(I) ,I= 440, 655)/2*0.002,2*0.004,2*0.002,0.0365, rH &0.045,0.073,0.062,3*0.021,0.0061,0.015,0.025,0.0088,0.074,0.0109, E &0.0041,0.002,0.0035,0.0011,0.001,0.0027,2*0.0016,0.0018,0.011, C &0.0063,0.0052,0.018,0.016,0.0034,0.0036,0.0009,0.0006,0.015, .H &0.0923,0.018,0.022,0.0077,0.009,0.0075,0.024,0.0085,0.067,0.0511, H &0.017,0.0004,0.0028,0.01,2*0.02,0.03,2*0.005,2*0.02,0.03,2*0.005, F &0.015,0.037,0.028,0.079,0.095,0.052,0.0078,4*0.001,0.028,0.033, D &0.026,0.05,0.01,4*0.005,0.25,0.0952,0.02,0.055,2*0.005,0.008, C &0.012,0.02,0.055,2*0.005,0.008,0.012,0.01,0.03,0.0035,0.011, AB &0.0055,0.0042,0.009,0.018,0.015,0.0185,0.0135,0.025,0.0004, F &0.0007,0.0008,0.0014,0.0019,0.0025,0.4291,0.08,0.07,0.02,0.015, E &0.005,0.02,0.055,2*0.005,0.008,0.012,0.02,0.055,2*0.005,0.008, MD &0.012,0.01,0.03,0.0035,0.011,0.0055,0.0042,0.009,0.018,0.015, E &0.0185,0.0135,0.025,0.0004,0.0007,0.0008,0.0014,0.0019,0.0025, aH &0.4291,0.08,0.07,0.02,0.015,0.005,0.02,0.055,2*0.005,0.008,0.012, D &0.02,0.055,2*0.005,0.008,0.012,0.01,0.03,0.0035,0.011,0.0055, D &0.0042,0.009,0.018,0.015,0.0185,0.0135,0.025,2*0.0002,0.0007, G &2*0.0004,0.0014,0.001,0.0009,0.0025,0.4291,0.08,0.07,0.02,0.015, NH &0.005,0.047,0.122,0.006,0.012,0.035,0.012,0.035,0.003,0.007,0.15, H &0.037,0.008,0.002,0.05,0.015,0.003,0.001,0.014,0.042,0.014,0.042/ G DATA (BRAT(I) ,I= 656, 931)/0.24,0.065,0.012,0.003,0.001,0.002, ED &0.001,0.002,0.014,0.003,0.988,0.012,0.389,0.319,0.2367,0.049, H &0.005,0.001,0.0003,0.441,0.206,0.3,0.03,0.022,0.001,5*1.,0.99955, F &0.00045,0.665,0.333,0.002,0.666,0.333,0.001,0.65,0.3,0.05,0.56, C &0.44,5*1.,0.99912,0.00079,0.00005,0.00004,0.888,0.085,0.021, B &2*0.003,0.49,0.344,3*0.043,0.023,0.013,0.001,0.0627,0.0597, H &0.8776,3*0.027,0.015,0.045,0.015,0.045,0.77,0.029,4*1.,0.28,0.14, E &0.313,0.157,0.11,0.28,0.14,0.313,0.157,0.11,0.667,0.333,0.667, uF &0.333,2*0.5,0.667,0.333,0.667,0.333,4*0.5,1.,0.333,0.334,0.333, C &4*0.25,6*1.,0.667,0.333,0.667,0.333,0.667,0.333,0.667,0.333, RE &2*0.5,0.667,0.333,0.667,0.333,4*0.5,1.,0.52,0.26,0.11,2*0.055, JG &0.62,0.31,0.035,2*0.0175,0.007,0.993,0.02,0.98,3*1.,2*0.5,0.667, C &0.333,0.667,0.333,0.667,0.333,0.667,0.333,2*0.5,0.667,0.333, tH &0.667,0.333,6*0.5,3*0.12,0.097,0.043,4*0.095,4*0.03,4*0.25,0.273, G &0.727,0.35,0.65,3*1.,2*0.35,0.144,0.105,0.048,0.003,0.333,0.166, 'E &0.168,0.084,0.087,0.043,0.059,2*0.029,0.002,0.332,0.166,0.168, 8G &0.084,0.086,0.043,0.059,2*0.029,2*0.002,0.3,0.15,0.16,0.08,0.13, oC &0.06,0.08,0.04,0.3,0.15,0.16,0.08,0.13,0.06,0.08,0.04,2*0.3, G &2*0.2,0.3,0.15,0.16,0.08,0.13,0.06,0.08,0.04,0.3,0.15,0.16,0.08, F &0.13,0.06,0.08,0.04,2*0.3,2*0.2,2*0.3,2*0.2,2*0.35,0.144,0.105/ D DATA (BRAT(I) ,