The search for neutrinoless double beta decay

Michel Sorel

Colloquium Dip. Fisica Università degli Sudi di Torino and INFN Sez. di Torino May 19th, 2017

Neutrinos in the Standard Model

•

Standard Model neutrinos: 3 types, only weakly interacting, massless

Late '90s: cracks in the Standard Model

Nobel Prize in Physics 2015:

to Takaaki Kajita (Super-Kamiokande) and Arthur B. McDonald (SNO) *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

Neutrino oscillations

- Neutrinos change flavour as they propagate following oscillatory pattern
- Neutrino oscillation implies massive neutrinos and neutrino mixing

2-neutrino mixing example, for v_{μ} beam with energy E

Neutrino oscillations

- Neutrinos change flavour as they propagate following oscillatory pattern
- Neutrino oscillation implies massive neutrinos and neutrino mixing

2-neutrino mixing example, for v_{μ} beam with energy E

Neutrinos and the flavour puzzle

• Flavour puzzle:

- Why three generations?
- Why hierarchical masses?
- Origin of mixing pattern?

Chapter 2: The baryogenesis puzzle

The building blocks of matter

• Ordinary matter requires both baryons and leptons

The first matter in the Universe

- Early Universe dominated by high-energy radiation
- Photons with enough energy to produce particle-antiparticle pairs
- Matter and antimatter thought to be equally abundant at first

The first matter in the Universe

- Early Universe dominated by high-energy radiation
- Photons with enough energy to produce particle-antiparticle pairs
- Matter and antimatter thought to be equally abundant at first

The current matter in the Universe

- No convincing evidence to date for complex antimatter in space
- Search for anti-nuclei with AMS experiment: Anti-He / He $\lesssim 10^{-8}$

In fact, why do we see matter at all?

In fact, why do we see matter at all?

 Some physics process slightly changed matter/antimatter equilibrium in favor of matter, shortly after Big Bang

 All antimatter annihilated with matter, leaving only matter: birth of baryons

Baryon asymmetry in the early Universe Experimental evidence

- The baryon asymmetry per unit volume, normalised to the photon number density, has not changed since a few secs after Big Bang
- It has been accurately measured via multiple probes:

Baryon asymmetry in the early Universe Experimental evidence

- The baryon asymmetry per unit volume, normalised to the photon number density, has not changed since a few secs after Big Bang
- It has been accurately measured via multiple probes:

What process caused this baryon/antibaryon asymmetry?

Is a neutrino its own antiparticle?

- Both possibilities exist for the neutrino
- A Majorana neutrino would be unlike any other fundamental fermion: a new form of matter

Difference between Dirac and Majorana neutrinos

Idealised neutrino scattering experiment

Difference between Dirac and Majorana neutrinos

Idealised neutrino scattering experiment

A prime candidate for small neutrino mass

The see-saw mechanism

• Neutrino mass matrix, with both Majorana (M) and Dirac (m_D) terms:

- Majorana terms induce $|\Delta L| = 2$ lepton number violating processes and imply $v = \overline{v}$
- M: a new physics scale

A prime candidate for small neutrino mass The provide the second secon

 Neutrino mass matrix, with both Include both Dirac and Majorana mass Majorana (IVI) and Dirac (m_D) terms: terms.

Terms in neutrino mass matrix:

- Majorana: Dimassionalssctern Add brelar lepton charged lepton and quark masses. number violating processes and imply v = v
 M: Majorana mass term, can be very
- M: a new physics scale
 - Mass eigenvalues (both Majorana particles):
 - m_D^2/M : light neutrino we are familiar with
- "See-sawneinit mot sa Mexipains mall neutrino masses, which indirectly probe new physics scale

 m_D

 ν_R to μ

A prime candidate for the baryon asymmetry

- Baryon asymmetry possibly induced by a lepton asymmetry: leptogenesis
- Decay of heavy Majorana neutrinos ideal for leptogenesis, if CP is violated

A prime candidate for the baryon asymmetry

- Baryon asymmetry possibly induced by a lepton asymmetry: leptogenesis
- Decay of heavy Majorana neutrinos ideal for leptogenesis, if CP is violated

• Unequal number of leptons and antileptons is later transferred to baryons:

How to find out if neutrinos are Majorana?

Play...

Chapter 4: Searching for Majorana neutrinos with $\beta\beta0\nu$

Nuclear double beta decay

- Nuclear (Z,A)→(Z+2,A) transition with emission of two electrons. Second order process mediated by the weak interaction
- This process exists in 35 nuclides due to nuclear pairing interaction
 - → favours energetically the even-even isobars over the odd-odd ones.

Double beta decay modes

• Two basic decay modes:

Two neutrino mode

- Observed in several nuclei
- 10¹⁹-10²¹ yr half-lives
- Standard Model allowed
- Conserves lepton number

Neutrinoless mode

- Not observed yet in Nature
- >10²⁶ yr half-lives
- Would signal BSM physics
- Violates L by two units

ββ0v and Majorana neutrinos

• ββ0v evidence would imply that neutrinos are massive, Majorana, particles

ββ0v and Majorana neutrinos

• ββ0v evidence would imply that neutrinos are massive, Majorana, particles

Emitted in ①, in association with electron, with almost total positive helicity

ββ0v and Majorana neutrinos

• ββ0v evidence would imply that neutrinos are massive, Majorana, particles

Emitted in ①, in association with electron, with almost total positive helicity

Only its small, 𝒪(m/E), negative helicity component absorbed in ②, producing <u>another electron</u>

$\beta\beta0\nu$ and neutrino mass

• ββ0v rate constrains neutrino mass:

ββ0v and neutrino mass

• ββ0v rate constrains neutrino mass:

 $\beta\beta0\nu$: most sensitive probe for Majorana neutrinos \rightarrow low m_{\beta\beta} reach!

^{Chapter 5:} Experimental challenges in ββ0v searches

Facts of life of the double beta decay experimentalist

- Total number of $\beta\beta0\nu$ decays that can be observed in a detector is:

Facts of life of the double beta decay experimentalist

- Total number of $\beta\beta0\nu$ decays that can be observed in a detector is:

• For ¹³⁶Xe experiment with 100% efficiency and 1 year exposure time, what is the mass $M_{\beta\beta}$ required to observe <u>only one</u> $\beta\beta0v$ decay?
Facts of life of the double beta decay experimentalist

- Total number of $\beta\beta0\nu$ decays that can be observed in a detector is:

- For ¹³⁶Xe experiment with 100% efficiency and 1 year exposure time, what is the mass $M_{\beta\beta}$ required to observe <u>only one</u> $\beta\beta0\nu$ decay?
- If ¹³⁶Xe $\beta\beta0v$ half-life is $T_{1/2} = 10^{27}$ years, get:

$$M_{\beta\beta} = 326 \text{ kg!}$$

Facts of life of the double beta decay experimentalist

- Total number of $\beta\beta0\nu$ decays that can be observed in a detector is:

- For ¹³⁶Xe experiment with 100% efficiency and 1 year exposure time, what is the mass $M_{\beta\beta}$ required to observe <u>only one</u> $\beta\beta0\nu$ decay?
- If ¹³⁶Xe $\beta\beta0\nu$ half-life is $T_{1/2} = 10^{27}$ years, get:

$$M_{\beta\beta} = 326 \text{ kg!}$$

· Life is harder than this: non-perfect efficiencies and backgrounds

Experimental sensitivity to ββ0v

• Experiment with no background:

detector efficiency $T_{1/2}^{0\nu} \propto \varepsilon \cdot M_{\beta\beta} \cdot t$ exposure (mass×time)

Experimental sensitivity to ββ0v

• Experiment with no background:

• Experiment with background:

ββ0v experimental signature

Rare process to be isolated in radio-pure detector underground

ββ0v experimental signature

Rare process to be isolated in radio-pure detector underground

ββ0v experimental signature

Rare process to be isolated in radio-pure detector underground

How can we uncover the $Q_{\beta\beta}$ peak in the energy spectrum?

- Typical situation for current-generation detector performance, assuming $T_{1/2}^{0v} = 10^{26}$ yr:

Improvement no.1: larger detector

- More events! Also: signal \propto volume, background \propto surface \rightarrow S/B \checkmark
- Mass scalability depends on chosen $\beta\beta$ isotope

Comparison of BB isotopes

• $\beta\beta$ isotope choice also affects relationship ($\beta\beta0v$ rate \leftrightarrow Majorana mass):

atomic, nuclear, particle physics

 $1/T_{1/2}^{0v} = G^{0v} | M^{0v} |^{2} m_{\beta\beta}^{2}$

Isotope	Q-value (MeV)	Phase space G ^{0v} (yr ⁻¹ eV ⁻²)	Matrix element M ^{0v}	Isotopic abundance (%)	Cost (normalized to ⁷⁶ Ge)	Current experiments
⁷⁶ Ge	2.04	3.0×10 ⁻²⁶	≈4.1	7.8	1	GERDA, Majorana
¹³⁰ Te	2.53	2.1×10 ⁻²⁵	≈3.6	33.8	0.2	CUORE, SNO+
¹³⁶ Xe	2.46	2.3×10 ⁻²⁵	≈2.8	8.9	0.1	EXO, KamLAND- Zen, NEXT
The higher, the better The lower, the better						

Improvement no.2: better energy resolution

 $T_{1/2}^{0\nu} \propto \varepsilon$

- Experiments define energy Region Of Interest near Q_{ββ}. ROI width depends on energy resolution (1 FWHM typical)
- The better the resolution, the lower the background within the ROI!

Energy resolution versus background type

ββ0v backgrounds unrelated to ββ source: contamination of detector components, cosmogenics, etc.

 Can be eliminated in experiment with average energy resolution, provided perfect shielding (c~0) available

Energy resolution versus background type

ββ0v backgrounds unrelated to ββ source: contamination of detector components, cosmogenics, etc.

 Can be eliminated in experiment with average energy resolution, provided perfect shielding (c~0) available

ββ0v backgrounds related to ββ source: $\beta\beta2v!$

Irreducible background unless resolution is excellent

Improvement no.3: lower background rate

 $\frac{Mt}{c \Delta E}$ $T_{1/2}^{0\nu} \propto \varepsilon \sqrt{}$

Underground detectors

- Some backgrounds originated outside detector by cosmic-ray interactions
- All ββ0v experiments located deep underground, using rock as shield

Radiopure detectors

Minimise contamination from natural radioactivity in all detector components

Tracking detectors

NEMO3 experiment

• Observe the two stopping electron tracks emitted from common vertex!

NEXT experiment (time projection chamber, Xe gas at 7-15 bar)

Is daughter ion tagging possible?

• Active R&D in ¹³⁶Xe experiments (liquid and gas) to detect ¹³⁶Ba⁺⁺ ion:

Is daughter ion tagging possible?

• Active R&D in ¹³⁶Xe experiments (liquid and gas) to detect ¹³⁶Ba⁺⁺ ion:

• If successful, one would be left with $\beta\beta 2\nu$ background only!

Putting it all together: Q_{ββ} peak uncovered!

 $\frac{Mt}{c\,\Delta E}$ $T_{1/2}^{0
u}\propto \varepsilon \sqrt{}$

ββ0v experimental status

Main experiments, current generation:

- No convincing evidence for ββ0v
- Best limits:

Experiment	T _{1/2} ^{0v} limit (yr)	m _{ββ} limit (meV)	
KamLAND- Zen	> 1.07×10 ²⁶	< 61-165	
GERDA	> 5.3×10 ²⁵	< 150-330	

GERDA experiment

- High-purity germanium diodes enriched in ⁷⁶Ge immersed in LAr
- Advantages: energy resolution, radiopurity → background-free!

GERDA experiment

- High-purity germanium diodes enriched in ⁷⁶Ge immersed in LAr
- Advantages: energy resolution, radiopurity → background-free!

GERDA experiment

Giovedì 1 Giugno 2017, ore 14:30, <mark>Sala Wataghin</mark> Riccardo Brugnera (Università di Padova)

Neutrinoless double-beta decay searches with ⁷⁶Ge

CUORE experiment

- Towers of TeO₂ crystals. $\beta\beta$ energy measured as temperature increase
- Advantages: energy resolution, mass scalability

CUORE experiment

- Towers of TeO₂ crystals. $\beta\beta$ energy measured as temperature increase
- Advantages: energy resolution, mass scalability

KamLAND-Zen experiment

- Liquid scintillator with 300-750 kg of ¹³⁶Xe gas dissolved in it
- Advantages: mass scalability, radiopure, veto region \rightarrow leading the field

KamLAND-Zen experiment

- Liquid scintillator with 300-750 kg of ¹³⁶Xe gas dissolved in it
- Advantages: mass scalability, radiopure, veto region \rightarrow leading the field

EXO experiment

- Cryogenic time projection chamber filled with 80 kg (fiducial) liquid xenon
- Advantages: mass scalability, some electron topology

EXO experiment

- Cryogenic time projection chamber filled with 80 kg (fiducial) liquid xenon
- Advantages: mass scalability, some electron topology

NEXT experiment

- Time projection chamber filled with high-pressure (10-15 bar) ¹³⁶Xe gas
- Advantages: energy resolution, image electron tracks

NEXT phases

NEXT-NEW construction

NEXT-NEW installation at the LSC

NEXT-NEW first results

• Energy resolution from low-energy xenon X-rays:

NEXT-NEW first results

• Alpha production rate from radon ($\rightarrow \beta\beta0\nu$ background!):

Chapter 7: The future of ββ0v searches

How to move forward?

• Strong support to build 2-3 next-generation experiments. Which ones?

Goal for next-generation experiments

15 meV Majorana neutrino mass sensitivity

Recipe for next-generation experiments

The problem of backgrounds

• Today, no technique extrapolates to background-free regime at ton-scale

Ton-scale detector and need for background R&D

- Ton-scale detector necessary but not sufficient requirement
- Need <u>at least</u> 1-2 orders of magnitude background reduction with respect to current-generation
- R&D on active background reduction techniques

Background reduction R&D

Technology	R&D	Current experiments	Ton-scale proposal
Ge detectors	Larger Ge detectors, improved LAr scint. detection	GERDA, MAJORANA	LEGEND (200 kg)
Bolometers	Scintillating bolometers, isotopic enrichment	CUORE	CUPID
Liquid scintillators	High yield LS, light concentrators, high QE PMTs, enrichment	KamLAND-Zen, SNO+	KamLAND2-Zen
LXe-TPCs	Xe scint. readout with SiPMs, cold electronics, Ba tagging	EXO-200	nEXO
HPXe-TPCs	Low diffusion gas mixtures, finer tracking readout, Ba tagging	NEXT-NEW	NEXT-ton

Appendices:

Thinking outside the box

The standard story I just told you

Possible variations

Other lepton number violating processes?

- $|\Delta L| = 2 \text{ process mediated by:} |W^- W^- \rightarrow |_{\alpha}^- |_{\beta}^-$, $\alpha, \beta = e, \mu, \tau$
- \rightarrow can probe different neutrino mass matrix elements $\mathbf{m}_{\alpha\beta}$

Other lepton number violating processes?

• $|\Delta L| = 2$ process mediated by:

$$W^- W^- \rightarrow l_{\alpha}^- l_{\beta}^-$$
, $\alpha, \beta = e, \mu, \tau$

 \rightarrow can probe different neutrino mass matrix elements $\mathbf{m}_{\alpha\beta}$

Flavors	Exp. technique	Mass bound (eV)	
(e,e)	ββ0ν	m _{ee} < 1×10 ⁻¹	
(e,µ)	µ⁻→e+ conversion	m _{eµ} < 2×10 ⁷	
(e,T)	Rare ⊤ ⁻ decays	$m_{e\tau} < 3 \times 10^{12}$	
(µ,µ)	Rare K ⁺ decays	m _{μμ} < 3×10 ⁸	
(μ,τ)	Rare ⊤ decays	$m_{\mu\tau} < 2 \times 10^{12}$	
(τ,τ)	None	None	

 \rightarrow best constraint <u>by far</u> on **(e,e)** element and from **\beta\beta0v**, currently

Example: neutrinoless double Electron Capture

Inverse of neutrinoless double beta decay!

What if v mass is not connected to Majorana neutrinos?

Possible: Dirac neutrinos!

What if v mass is not connected to Majorana neutrinos?

• **Possible**: Dirac neutrinos!

- How can we **prove** that neutrinos are Dirac particles? Difficult!
- **Best bet**: neutrino mass measured with cosmology, not in $\beta\beta0\nu$

What if baryogenesis is not connected to Majorana neutrinos?

• **Possible**: alternatives to leptogenesis-induced baryogenesis!

Epilogue: Final thoughts

Double beta decay experiments are challenging

A variety of double beta decay experiments

• Non-trivial detector optimisation process, relatively inexpensive \rightarrow diversity

The theory-experiment connection is essential

Think outside the box!

Backups

The discovery of neutrino oscillations

With atmospheric neutrinos

- Disappearance of atmospheric v_{μ} 's and \overline{v}_{μ} 's •
- First conclusive evidence for oscillations: zenith angle-dependent deficit •

1

The discovery of neutrino oscillations With solar neutrinos

- Disappearance of solar v_e 's, appearance into other "active" flavours (μ , τ)
- Energy dependence of v_e suppression also measured

3-Neutrino mixing parametrisation

- 2 mass splittings, 3 mixing angles,1 CPV phase
- Describe all convincing evidence for neutrino oscillations

Neutrino oscillation experimental status

3-neutrino mixing parametrisation

Mass splittings and mixing angles measured with 10% precision or better

- θ_{12} and Δm^2_{21} : solar and reactor experiments
- θ_{23} and $|\Delta m^2_{31}|$: atmospheric and accelerator experiments
- θ_{13} : reactor and accelerator experiments
- δ_{CP} phase compatible with any value at 3σ , sgn(Δm^2_{31}) unknown

Ingredients for $\beta\beta0\nu$ experiments

• •

Current-generation

•Isotope with large $Q_{\beta\beta}$ value

•Larger phase space and less backgrounds

ββ0v experiments comparison: mass, background

