The GSI Time Anomaly: Facts and Fiction

Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino

mailto://giunti@to.infn.it

Neutrino Unbound: http://www.nu.to.infn.it

20 August 2009, Moscow, Russia

14th Lomonosov Conference on Elementary Particle Physics

19-25 August 2009

Moscow State University, Moscow, Russia
The GSI Experiment

Schematic layout of the secondary nuclear beam facility at GSI

- **Primary beam**: 508 MeV/u 152Sm
- **Production target**: 1032 mg/cm2 Be
- **Degrader**: 731 mg/cm2 Al
- **Injection from UNILAC**
- **ESR**: Experiment Storage Ring
- **FRS**: FRagment Separator
- **SIS**: Heavy Ion Synchrotron

[Litvinov et al, nucl-ex/0509019]
Schottky Mass Spectrometry

- Stored ions circulate in ESR with revolution frequencies $\sim 2\ \text{MHz}$
- At each turn they induce mirror charges on two electrodes
- Revolution frequency spectra provide information about q/m:
 \[f = \frac{\omega}{2\pi} = \frac{B}{2\pi\gamma} \frac{q}{m} \]
- Area of each frequency peak is proportional to number of stored ions

![Schottky Mass Spectrometry Graph](Litvinov et al, nucl-ex/0509019)
Praseodymium

\[^{140}_{58}\text{Ce} \rightarrow ^{140}_{59}\text{Pr} \quad \beta^+ \sim 50 \% \quad \varepsilon \sim 50 \% \]

\[Q_{EC} = 3388 \text{ keV} \]

3.39 min

Promethium

\[^{142}_{61}\text{Pm} \rightarrow ^{142}_{60}\text{Nd} \quad \beta^+ = 76.8 \% \quad \varepsilon = 19.7 \% \]

\[Q_{EC} = 4870 \text{ keV} \]

40.5 s

Cerium

Neodymium
Electron Capture

$$^{140}_{59}\text{Pr}^{58+} \rightarrow ^{140}_{58}\text{Ce}^{58+} + \nu_e$$

$$^{142}_{61}\text{Pm}^{60+} \rightarrow ^{142}_{60}\text{Nd}^{60+} + \nu_e$$

seen because $\Delta q = 0$

$$\Delta f/f = -\Delta m/m \text{ (small)}$$

β^+ decay

$$^{140}_{59}\text{Pr}^{58+} \rightarrow ^{140}_{58}\text{Ce}^{57+} + e^+ + \nu_e$$

$$^{142}_{61}\text{Pm}^{60+} \rightarrow ^{142}_{60}\text{Nd}^{59+} + e^+ + \nu_e$$

not seen because $\Delta q = -1$

$$\Delta f \sim -150 \text{ kHz}$$

[Litvinov et al, PLB 664 (2008) 168]
The GSI Time Anomaly: Facts and Fiction

C. Giunti

20 August 2009, Moscow, Russia

[Litvinov et al, PLB 664 (2008) 168]
The GSI Time Anomaly: Facts and Fiction

20 August 2009, Moscow, Russia

Litvinov et al, PLB 664 (2008) 168

![Graph showing the number of EC decays per 0.64 seconds for 142Pm over time after injection into the ESR.](Image)
\[
\frac{dN_{EC}(t)}{dt} = \lambda_{EC} N(t) = \lambda_{EC} N(0) e^{-\lambda t}
\]
\[
\frac{dN_{EC}(t)}{dt} = \tilde{\lambda}_{EC}(t) N(t) = \tilde{\lambda}_{EC}(t) N(0) e^{-\lambda t}
\]
\[
\lambda = \lambda_{EC} + \lambda_{\beta+} + \lambda_{\text{loss}} \quad \tilde{\lambda}_{EC}(t) = \lambda_{EC} [1 + a \cos(\omega t + \phi)]
\]

Fit parameters of $^{140}_{59}\text{Pr}$ data

<table>
<thead>
<tr>
<th>Eq.</th>
<th>$N_0\lambda_{EC}$</th>
<th>λ</th>
<th>a</th>
<th>ω</th>
<th>χ^2/DoF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>34.9(18)</td>
<td>0.00138(10)</td>
<td>-</td>
<td>-</td>
<td>107.2/73</td>
</tr>
<tr>
<td>(2)</td>
<td>35.4(18)</td>
<td>0.00147(10)</td>
<td>0.18(3)</td>
<td>0.89(1)</td>
<td>67.18/70</td>
</tr>
</tbody>
</table>

Fit parameters of $^{142}_{61}\text{Pm}$ data

<table>
<thead>
<tr>
<th>Eq.</th>
<th>$N_0\lambda_{EC}$</th>
<th>λ</th>
<th>a</th>
<th>ω</th>
<th>χ^2/DoF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>46.8(40)</td>
<td>0.0240(42)</td>
<td>-</td>
<td>-</td>
<td>63.77/38</td>
</tr>
<tr>
<td>(2)</td>
<td>46.0(39)</td>
<td>0.0224(41)</td>
<td>0.23(4)</td>
<td>0.89(3)</td>
<td>31.82/35</td>
</tr>
</tbody>
</table>

\[T(\text{Pr}^{58+}) = 7.06 \pm 0.08 \text{ s} \quad T(\text{Pm}^{60+}) = 7.10 \pm 0.22 \text{ s}\]

\[\langle a \rangle = 0.20 \pm 0.02\]

[Litvinov et al, PLB 664 (2008) 168]
Neutrino Mixing?

[Litvinov et al, PLB 664 (2008) 168]

\[l_i \rightarrow l_f + \nu_e \quad \nu_e = \cos \theta_{\text{SOL}} \nu_1 + \sin \theta_{\text{SOL}} \nu_2 \]

PROPOSED EXPLANATION: INTERFERENCE OF \(\nu_1 \) AND \(\nu_2 \)

Initial Ion: Momentum \(\vec{P} = 0 \), Energy \(E \)

Massive \(\nu_k \): Momentum \(\vec{p}_k \), Energy \(E_k = \sqrt{p_k^2 + m_k^2} \)

Final Ion: Momentum \(-\vec{p}_k \), Energy \(M + p_k^2/2M \)

\[E_1 + M + p_1^2/2M = E \quad E_2 + M + p_2^2/2M = E \]

\[\Delta E \equiv E_2 - E_1 \simeq \frac{\Delta m^2}{2M} \]

\[\Delta m^2 \equiv m_2^2 - m_1^2 \]
massive neutrino energy difference: \[\Delta E \equiv E_2 - E_1 \simeq \frac{\Delta m^2}{2M} \]

\[\Delta m^2 = \Delta m_{\text{SOL}}^2 \simeq 8 \times 10^{-5} \text{ eV}^2 \quad M \simeq 140 \text{ amu} \simeq 130 \text{ GeV} \]

\[\Delta E \simeq 3.1 \times 10^{-16} \text{ eV} \]

\[T = \frac{2\pi}{\Delta E} \gamma \simeq 19.1 \text{ s} \quad \gamma = 1.43 \]

about 3 times larger than \[T_{\text{GSI}} \simeq 7 \text{ s} \]

CAN INTERFERENCE IN FINAL STATE AFFECT DECAY RATE?
Interference: Double-Slit Analogy

- Decay rate of I corresponds to fraction of intensity of incoming wave which crosses the barrier.
- Fraction of intensity of the incoming wave which crosses the barrier depends on the sizes of the holes.
- It does not depend on interference effects which occur after the wave has passed through the barrier.
- Analogy: decay rate of I cannot depend on interference of ν_1 and ν_2 which occurs after decay has happened \iff CAUSALITY!

\[\nu_e = \cos \vartheta \nu_1 + \sin \vartheta \nu_2 \]
Causality

INTERFERENCE OF COHERENT ENERGY STATES

\((\nu_1 \text{ AND } \nu_2)\)

OCCURRING AFTER THE DECAY

(flavor neutrino oscillations)

CANNOT AFFECT THE DECAY RATE
Cross Sections and Decay Rates are always summed incoherently over different final channels:

\[
\begin{align*}
\Pi & \rightarrow F_1, \quad \Pi \rightarrow F_2, \quad \ldots \implies P_{\Pi \rightarrow F} = \sum_k P_{\Pi \rightarrow F_k} \\
\text{coherent final state:} \quad |F\rangle & = \sum_k A_k |F_k\rangle \\
|F\rangle & \propto (S - 1) |\Pi\rangle \quad \implies A_k = \langle F_k | F \rangle \propto \langle F_k | S | \Pi \rangle \\
\end{align*}
\]

\[
P_{\Pi \rightarrow F} = |\langle F | S | \Pi \rangle|^2 \propto \left| \sum_k A_k^* \langle F_k | S | \Pi \rangle \right|^2 \propto \sum_k \left| \langle F_k | S | \Pi \rangle \right|^2 = \sum_k P_{\Pi \rightarrow F_k}
\]

coherent character of final state is irrelevant for interaction probability!
Causality is violated explicitly

- **arXiv:0801.1465**: The difference in momentum δp between the two neutrino eigenstates with the same energy produces a small initial momentum change δP ...

- **arXiv:0805.0435**: Since the time dependence depends only on the propagation of the initial state, it is independent of the final state, which is created only at the decay point. Thus there is no violation of causality.

- **But in calculation of effect**: The phase difference at a time t between states produced by the neutrino mass difference on the motion of the initial ion in the laboratory frame with velocity $V = (P/E)$ is

$$\delta \phi \approx -\delta E \cdot t = \Delta m^2 / 2E$$
decay rate in time-dependent perturbation theory

with final neutrino state \(|\nu\rangle = \sum_k |\nu_k\rangle \)

Not even properly normalized to describe one particle:

\[
\langle \nu_j | \nu_k \rangle = \delta_{jk} \quad \Rightarrow \quad \langle \nu | \nu \rangle = 3
\]

Different from standard electron neutrino state

\[
|\nu_e\rangle = \sum_k U_{ek}^* |\nu_k\rangle
\]

Several more papers with same mistake in arXiv. Two published in PRL!
Time-Dependent Perturbation Theory

\[P_{I\rightarrow F+\nu}(t) = \left| \int_0^t d\tau \langle \nu, F | \mathcal{H}_W(\tau) | I \rangle \right|^2 = \left| \sum_k \int_0^t d\tau \langle \nu_k, F | \mathcal{H}_W(\tau) | I \rangle \right|^2 \]

\[\mathcal{H}_W(t) = \int d^3 x \mathcal{H}_W(x) \]

Effective Four-Fermion Interaction Hamiltonian

\[\mathcal{H}_W(x) = \frac{G_F}{\sqrt{2}} \cos \theta_C \bar{\nu}_e(x) \gamma_\rho (1 - \gamma^5) e(x) \bar{n}(x) \gamma^\rho (1 - g_A \gamma^5) p(x) \]

\[= \frac{G_F}{\sqrt{2}} \cos \theta_C \sum_k U_{ek}^* \bar{\nu}_k(x) \gamma_\rho (1 - \gamma^5) e(x) \bar{n}(x) \gamma^\rho (1 - g_A \gamma^5) p(x) \]

\[\langle \nu_k, F | \mathcal{H}_W(\tau) | I \rangle = U_{ek}^* e^{i \Delta E_k t} T_k \quad \text{with} \quad \Delta E_k = E_k + E_F - E_I \]

\[\int_0^t d\tau e^{i \Delta E_k t} = e^{i \Delta E_k t/2} \frac{\sin(\Delta E_k t/2)}{\Delta E_k/2} \xrightarrow{\Delta E_k t \gg 1} 2\pi \delta(\Delta E_k) e^{i \Delta E_k t/2} \]
\[P_{\Pi \rightarrow F + \nu}(t) = 4\pi^2 \left| \sum_k U_{ek}^* e^{i\Delta E_k t} \delta(\Delta E_k) T_k \right|^2 \]

\[T_k \simeq T_j \]

\[\delta(\Delta E_k) \text{ satisfied by wave packet} \]

\[P_{\Pi \rightarrow F + \nu}(t) \propto \left| \sum_k U_{ek}^* e^{i\Delta E_k t} \right|^2 \]

Two-Neutrino Mixing

\[P_{\Pi \rightarrow F + \nu}(t) \propto \left| \cos \vartheta e^{i\Delta E_1 t} + \sin \vartheta e^{i\Delta E_2 t} \right|^2 = 1 + \sin 2\vartheta \cos \left(\frac{\Delta E t}{2} \right) = 1 + \sin 2\vartheta \cos \left(\frac{\Delta m^2 t}{4M} \right) \]

\[\Delta E = \Delta E_2 - \Delta E_1 = E_2 - E_1 = \frac{\Delta m^2}{2M} \]
Standard QFT: \[P_{\Pi \to F+\nu} = \left| \langle \nu, F|S|\Pi \rangle \right|^2 = \left| \sum_k \langle \nu_k, F|S|\Pi \rangle \right|^2 \]

S-matrix operator at first order in perturbation theory:
\[S = 1 - i \int d^4x \mathcal{H}_W(x) \]

Effective four-fermion interaction Hamiltonian:
\[\mathcal{H}_W(x) = \frac{G_F}{\sqrt{2}} \cos \theta_C \bar{\nu}_e(x) \gamma_\rho (1 - \gamma^5) e(x) \bar{n}(x) \gamma^\rho (1 - g_A \gamma^5) p(x) \]
\[= \frac{G_F}{\sqrt{2}} \cos \theta_C \sum_k U_{ek}^* \bar{\nu}_k(x) \gamma_\rho (1 - \gamma^5) e(x) \bar{n}(x) \gamma^\rho (1 - g_A \gamma^5) p(x) \]

\[\langle \nu_k, F|S|\Pi \rangle = U_{ek}^* \mathcal{M}_k \quad \text{with} \]
\[\mathcal{M}_k = -i \frac{G_F}{\sqrt{2}} \cos \theta_C \int d^4x \langle \nu_k, F|\bar{\nu}_k(x) \gamma_\rho (1 - \gamma^5) e(x) \bar{n}(x) \gamma^\rho (1 - g_A \gamma^5) p(x) |\Pi \rangle \]

\[P_{\Pi \to F+\nu} = \left| \sum_k U_{ek}^* \mathcal{M}_k \right|^2 \quad \text{different from standard} \quad P = \sum_k |U_{ek}|^2 |\mathcal{M}_k|^2 \]
Check: in the limit of massless neutrinos decay probability should reduce to the Standard Model decay probability

\[P_{\text{SM}} = |\mathcal{M}_{\text{SM}}|^2 \]

with

\[\mathcal{M}_{\text{SM}} = -i \frac{G_F}{\sqrt{2}} \cos \theta_C \int d^4x \langle \nu_e, F | \bar{\nu}_e(x) \gamma_\rho (1-\gamma^5) e(x) \bar{n}(x) \gamma^\rho (1-g_A \gamma^5) p(x) | II \rangle \]

where \(\nu_e \) is the Standard Model massless electron neutrino

\[\mathcal{M}_k = -i \frac{G_F}{\sqrt{2}} \cos \theta_C \int d^4x \langle \nu_k, F | \bar{\nu}_k(x) \gamma_\rho (1-\gamma^5) e(x) \bar{n}(x) \gamma^\rho (1-g_A \gamma^5) p(x) | II \rangle \]

\[\mathcal{M}_k \xrightarrow[m_k \to 0]{m_k \to 0} \mathcal{M}_{\text{SM}} \]

\[P_{\| \to F + \nu} = \sum_k U_{ek}^* \mathcal{M}_k \]

\[\xrightarrow[m_k \to 0]{m_k \to 0} |\mathcal{M}_{\text{SM}}|^2 \left| \sum_k U_{ek}^* \right|^2 \neq P_{\text{SM}} \]

WRONG!
Correct normalized final neutrino state ($\langle \nu_e | \nu_e \rangle = 1$):

$$|\nu_e\rangle = \left(\sum_j |\langle \nu_j, F|S|\Pi\rangle|^2 \right)^{-1/2} \sum_k |\nu_k\rangle \langle \nu_k, F|S|\Pi\rangle$$

$$= \left(\sum_j |U_{ej}|^2 |\mathcal{M}_j|^2 \right)^{-1/2} \sum_k U_{ek}^* \mathcal{M}_k |\nu_k\rangle$$

Standard decay probability:

$$P_{\Pi \rightarrow F + \nu_e} = |\langle \nu_e, F|S|\Pi\rangle|^2 = \sum_k |\langle \nu_k, F|S|\Pi\rangle|^2 = \sum_k |U_{ek}|^2 |\mathcal{M}_k|^2$$

$$\mathcal{M}_k \xrightarrow{m_k \rightarrow 0} \mathcal{M}_{SM} \quad \implies \quad P_{\Pi \rightarrow F + \nu_e} \xrightarrow{m_k \rightarrow 0} |\mathcal{M}_{SM}|^2 = P_{SM}$$

In experiments which are not sensitive to the differences of neutrino masses in production and detection interactions, as neutrino oscillation experiments,

$$\mathcal{M}_k \simeq \overline{\mathcal{M}} \quad \implies \quad |\nu_e\rangle = \sum_k U_{ek}^* |\nu_k\rangle$$
Time-Dependent Perturbation Theory?

not appropriate because electron capture and decay are interrupted by

Schottky Mass Spectrometry

with ESR revolution frequency ~ 2 MHz, i.e. every

$\sim 5 \times 10^{-7} \text{s}$

much smaller than ion lifetime

$T_{1/2}(^{140}_{59}\text{Pr}) \sim 3.39 \text{ m} \quad T_{1/2}(^{142}_{61}\text{Pm}) \sim 40.5 \text{ s}$

and period of anomalous oscillations $T \sim 7 \text{ s}$

interaction time: $t_W \sim \frac{\hbar}{m_W} \sim \frac{6.6 \times 10^{-22} \text{ MeV s}}{8.0 \times 10^4 \text{ MeV}} \sim 10^{-26} \text{ s}$

$t \gg t_W$ in Time-Dependent Perturbation Theory

Quantum Field Theory result
Quantum Beats?

- GSI time anomaly can be due to interference effects in initial state
- Two coherent energy states of the decaying ion \(\Rightarrow \) Quantum Beats

\[
I = \mathcal{A}_1 I_1 + \mathcal{A}_2 I_2
\]

INTERFERENCE (QUANTUM BEATS)

\[
\nu_e = \cos \vartheta \nu_1 + \sin \vartheta \nu_2
\]
Causality

INTERFERENCE OF COHERENT ENERGY STATES OCCURRING BEFORE THE DECAY CAN AFFECT THE DECAY RATE
Quantum beats in GSI experiment can be due to interference of two coherent energy states of the decaying ion which develop different phases before the decay.

Coherence is preserved for a long time if measuring apparatus which monitors the ions with frequency ~ 2 MHz does not distinguish between the two states.

\[
|\Pi(t = 0)\rangle = A_1 |\Pi_1\rangle + A_2 |\Pi_2\rangle \quad (|A_1|^2 + |A_2|^2 = 1)
\]

\[
\Gamma = \Gamma_1 \simeq \Gamma_2 \quad \Rightarrow \quad |\Pi(t)\rangle = \left(A_1 e^{-iE_1 t} |\Pi_1\rangle + A_2 e^{-iE_2 t} |\Pi_2\rangle \right) e^{-\Gamma t/2}
\]

\[
P_{\text{EC}}(t) = |\langle \nu_e, F|S|\Pi(t)\rangle|^2 = [1 + A \cos(\Delta E t + \varphi)] P_{\text{EC}} e^{-\Gamma t}
\]

\[A \equiv 2|A_1||A_2|, \quad \Delta E \equiv E_2 - E_1, \quad P_{\text{EC}} = |\langle \nu_e, F|S|\Pi_1\rangle|^2 \sim |\langle \nu_e, F|S|\Pi_2\rangle|^2\]

\[
\frac{dN_{\text{EC}}(t)}{dt} = N(0) [1 + A \cos(\Delta E t + \varphi)] \Gamma_{\text{EC}} e^{-\Gamma t}
\]
\[
\frac{dN_{EC}(t)}{dt} = N(0) [1 + A \cos(\Delta E t + \varphi)] \bar{\Gamma}_{EC} e^{-\Gamma t}
\]

\[
\Delta E(^{140}_{59}\text{Pr}^{58+}) = (8.38 \pm 0.10) \times 10^{-16} \text{ eV} , \quad A(^{140}_{59}\text{Pr}^{58+}) = 0.18 \pm 0.03
\]

\[
\Delta E(^{142}_{61}\text{Pm}^{60+}) = (8.32 \pm 0.26) \times 10^{-16} \text{ eV} , \quad A(^{142}_{61}\text{Pm}^{60+}) = 0.23 \pm 0.04
\]

\[
A \equiv 2|A_1||A_2|
\]

- Energy splitting is extremely small

- Needed ratio of production probabilities:

\[
|A_1|^2/|A_2|^2 \sim 1/99 \quad \text{or} \quad |A_2|^2/|A_1|^2 \sim 1/99
\]

- It is difficult to find an appropriate mechanism
Hyperfine Splitting

smallest known energy splitting

\[\Delta E \sim 1 \text{ eV} \quad \Rightarrow \quad T \sim 10^{-14} \text{ s} \]

far too large to explain the GSI anomaly

\[T_{GSI} \sim 7 \text{ s} \quad \Delta E_{GSI} = \frac{2\pi \gamma}{T_{GSI}} \sim 8 \times 10^{-16} \text{ eV} \]

feeling of smallness of \[\Delta E_{\text{GSI}} \sim 10^{-15} \text{ eV} \]

\[\mu_N B_\oplus \sim \left(3 \times 10^{-12} \text{ eV G}^{-1} \right) (0.5 \text{ G}) = 1.5 \times 10^{-12} \text{ eV} \]

\[\Delta E_{\text{GSI}} \sim 10^{-3} \mu_N B_\oplus \]
Further Developments

Berkeley Experiment – arXiv:0807.0649

- EC: $^{142}\text{Pm} \rightarrow ^{142}\text{Nd} + \nu_e$ ^{142}Pm in an aluminum foil
 no oscillations at a level 31 times smaller than GSI

- Reanalysis of old $^{142}\text{Eu} \rightarrow ^{142}\text{Sm} + \nu_e$ EC data \Rightarrow no oscillations

- Differences with GSI Experiment: neutral and stopped atoms

Munich Group + F. Bosch (GSI) – arXiv:0807.3297

- $^{180}\text{Re} \rightarrow ^{180}\text{W} + \nu_e$ ^{180}Re in a tantalum foil
 no oscillations at a level more than 10 times smaller than GSI
Conclusions

- **Interference:** due to phase difference of two incoming waves
- **Causality:** there cannot be interference of waves before they exist
- The GSI ion lifetime anomaly **cannot** be due to interference of decay product before the decay product start to exist (neutrino mixing in the final state)
- The GSI ion lifetime anomaly **can** be due to interference of two energy states of the decaying ion: Quantum Beats
- No known mechanism, because
 - Energy splitting of the two energy states: $\Delta E \sim 8 \times 10^{-16}$ eV
 - Ratio of production probabilities of the two energy states: $1/99$
- GSI group is trying to measure EC of different hydrogen-like ions, EC of helium-like ions and β^+ decay of hydrogen-like ions
Spin-rotation coupling in non-exponential decay of hydrogen-like heavy ions

14 November 2008

We discuss a model in which a recently reported modulation in the decay of the hydrogen-like ions $^{140}\text{Pr}^{58+}$ and $^{142}\text{Pm}^{60+}$ arises from the coupling of rotation to the spin of electron and nuclei (Thomas precession).

\[\text{! electron and nucleus spins cannot precess independently!} \]
\[\text{! they are tied by spin-spin interaction, which generates hyperfine splitting!} \]
\[\text{! it is much stronger than precession force!} \]
\[\text{! precession is strongly suppressed by hyperfine splitting!} \]