Neutrino Physics Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino
mailto://giunti@to.infn.it

Neutrino Unbound: http://www.nu.to.infn.it
Torino, May 2011
This File: http://www.nu.to.infn.it/slides/2011/giunti-1105-phd-to-1.pdf
Compact: http://www.nu.to.infn.it/slides/2011/giunti-1105-phd-to-1-4.pdf

C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 - 728 pages

Part I: Theory of Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
- Number of Flavor and Massive Neutrinos?
- Sterile Neutrinos

Part II: Neutrino Oscillations

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter

Part III: Phenomenology

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Anomalies Beyond Three-Neutrino Mixing
- Conclusions

Part I

Theory of Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
- Number of Flavor and Massive Neutrinos?
- Sterile Neutrinos

Fermion Mass Spectrum

Dirac Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Dirac Mass
- Higgs Mechanism in SM
- Dirac Lepton Masses
- Three-Generations Dirac Neutrino Masses
- Massive Chiral Lepton Fields
- Massive Dirac Lepton Fields
- Quantization
- Mixing
- Flavor Lepton Numbers
- Total Lepton Number
- Mixing Matrix
- Standard Parameterization of Mixing Matrix
- CP Violation
- Example: $\vartheta_{12}=0$
- Example: $\vartheta_{13}=\pi / 2$
- Example: $m_{\nu_{2}}=m_{\nu_{3}}$
- Jarlskog Rephasin ¢C.|Gंuมtirialłeptrino Physics - May 2011 - 7

Dirac Mass

- Dirac Equation: $(i \not \partial-m) \nu(x)=0 \quad\left(\not \partial \equiv \gamma^{\mu} \partial_{\mu}\right)$
- Dirac Lagrangian: $\mathscr{L}(x)=\bar{\nu}(x)(i \not \partial-m) \nu(x)$
- Chiral decomposition: $\nu_{L} \equiv P_{L} \nu, \quad \nu_{R} \equiv P_{R} \nu, \quad \nu=\nu_{L}+\nu_{R}$

$$
\begin{gathered}
P_{L} \equiv \frac{1-\gamma^{5}}{2}, \quad P_{R} \equiv \frac{1+\gamma^{5}}{2} \\
P_{L}^{2}=P_{L}, \quad P_{R}^{2}=P_{R}, \quad P_{L}+P_{R}=1, \quad P_{L} P_{R}=P_{R} P_{L}=0 \\
\mathscr{L}=\overline{\nu_{L}} i \not \partial \nu_{L}+\overline{\nu_{R}} i \not \partial \nu_{R}-m\left(\overline{\nu_{L}} \nu_{R}+\overline{\nu_{R}} \nu_{L}\right)
\end{gathered}
$$

- In SM only $\nu_{L} \Longrightarrow$ no Dirac mass
- Oscillation experiments have shown that neutrinos are massive
- Simplest extension of the SM : add ν_{R}

Higgs Mechanism in SM

- Higgs Doublet: $\Phi(x)=\binom{\phi_{+}(x)}{\phi_{0}(x)} \quad|\Phi|^{2}=\Phi^{\dagger} \Phi=\phi_{+}^{\dagger} \phi_{+}+\phi_{0}^{\dagger} \phi_{0}$
- Higgs Lagrangian: $\mathscr{L}_{\text {Higgs }}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)-V\left(|\Phi|^{2}\right)$
- Higgs Potential: $V\left(|\Phi|^{2}\right)=\mu^{2}|\Phi|^{2}+\lambda|\Phi|^{4}$
- $\mu^{2}<0$ and $\lambda>0 \Longrightarrow V\left(|\Phi|^{2}\right)=\lambda\left(|\Phi|^{2}-\frac{v^{2}}{2}\right)^{2}$, with $\quad v \equiv \sqrt{-\frac{\mu^{2}}{\lambda}}$
- Vacuum: $V_{\text {min }}$ for $|\Phi|^{2}=\frac{v^{2}}{2} \Longrightarrow\langle\Phi\rangle=\frac{1}{\sqrt{2}}\binom{0}{v}$
- Spontaneous Symmetry Breaking: $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \rightarrow \mathrm{U}(1)_{Q}$
- Unitary Gauge: $\Phi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)}$

C. Giunti - Neutrino Physics - May 2011 - 10

Dirac Lepton Masses

$$
L_{L} \equiv\binom{\nu_{L}}{\ell_{L}} \quad \ell_{R} \quad \nu_{R}
$$

Lepton-Higgs Yukawa Lagrangian

$$
\mathscr{L}_{H, L}=-y^{\ell} \overline{L_{L}} \Phi \ell_{R}-y^{\nu} \overline{L_{L}} \tilde{\Phi} \nu_{R}+\text { H.c. }
$$

Unitary Gauge

$$
\begin{aligned}
& \Phi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)} \quad \tilde{\Phi}=i \sigma_{2} \Phi^{*}=\frac{1}{\sqrt{2}}\binom{v+H(x)}{0} \\
& \mathscr{L}_{H, L}=-\frac{y^{\ell}}{\sqrt{2}}\left(\begin{array}{ll}
\overline{\nu_{L}} & \overline{\ell_{L}}
\end{array}\right)\binom{0}{v+H(x)} \ell_{R} \\
&-\frac{y^{\nu}}{\sqrt{2}}\left(\begin{array}{ll}
\overline{\nu_{L}} & \overline{\ell_{L}}
\end{array}\right)\binom{v+H(x)}{0} \nu_{R}+\text { H.c. } \\
& \text { C. Giunti - Neutrino Physics - May 2011 - 11 }
\end{aligned}
$$

$$
\begin{gathered}
\mathscr{L}_{H, L}=-y^{\ell} \frac{v}{\sqrt{2}} \overline{\ell_{L}} \ell_{R}-y^{\nu} \frac{v}{\sqrt{2}} \overline{\nu_{L}} \nu_{R} \\
-\frac{y^{\ell}}{\sqrt{2}} \overline{\ell_{L}} \ell_{R} H-\frac{y^{\nu}}{\sqrt{2}} \overline{\nu_{L}} \nu_{R} H+\text { H.c. } \\
m_{\ell}=y^{\ell} \frac{v}{\sqrt{2}} \quad m_{\nu}=y^{\nu} \frac{v}{\sqrt{2}} \\
g_{\ell H}=\frac{y^{\ell}}{\sqrt{2}}=\frac{m_{\ell}}{v} \quad g_{\nu H}=\frac{y^{\nu}}{\sqrt{2}}=\frac{m_{\nu}}{v} \\
v=\left(\sqrt{2} G_{F}\right)^{1 / 2}=246 \mathrm{GeV}
\end{gathered}
$$

Three-Generations Dirac Neutrino Masses

$L_{e L}^{\prime} \equiv\binom{\nu_{e L}^{\prime}}{\ell_{e L}^{\prime} \equiv e_{L}^{\prime}}$	$L_{\mu L}^{\prime} \equiv\binom{\nu_{\mu L}^{\prime}}{\ell_{\mu L}^{\prime} \equiv \mu_{L}^{\prime}}$	$L_{\tau L}^{\prime} \equiv\binom{\nu_{\tau L}^{\prime}}{\ell_{\tau L}^{\prime} \equiv \tau_{L}^{\prime}}$
$\ell_{e R}^{\prime} \equiv e_{R}^{\prime}$	$\ell_{\mu R}^{\prime} \equiv \mu_{R}^{\prime}$	$\ell_{\tau R}^{\prime} \equiv \tau_{R}^{\prime}$
$\nu_{e R}^{\prime}$	$\nu_{\mu R}^{\prime}$	$\nu_{\tau R}^{\prime}$

Lepton-Higgs Yukawa Lagrangian

$$
\mathscr{L}_{H, L}=-\sum_{\alpha, \beta=e, \mu, \tau}\left[Y_{\alpha \beta}^{\prime \ell} \overline{L_{\alpha L}^{\prime}} \Phi \ell_{\beta R}^{\prime}+Y_{\alpha \beta}^{\prime \nu} \overline{L_{\alpha L}^{\prime}} \tilde{\Phi} \nu_{\beta R}^{\prime}\right]+\text { H.c. }
$$

Unitary Gauge

$$
\Phi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)} \quad \tilde{\Phi}=i \sigma_{2} \Phi^{*}=\frac{1}{\sqrt{2}}\binom{v+H(x)}{0}
$$

$$
\begin{gathered}
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right) \sum_{\alpha, \beta=e, \mu, \tau}\left[Y_{\alpha \beta}^{\prime \ell} \overline{\ell_{\alpha L}^{\prime}} \ell_{\beta R}^{\prime}+Y_{\alpha \beta}^{\prime \nu} \overline{\nu_{\alpha L}^{\prime}} \nu_{\beta R}^{\prime}\right]+\text { H.c. } \\
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}^{\prime}} Y^{\prime \ell} \ell_{R}^{\prime}+\overline{\nu_{L}^{\prime}} Y^{\prime \nu} \nu_{R}^{\prime}\right]+\text { H.c. } \\
\ell_{L}^{\prime} \equiv\left(\begin{array}{c}
e_{L}^{\prime} \\
\mu_{L}^{\prime} \\
\tau_{L}^{\prime}
\end{array}\right) \quad \ell_{R}^{\prime} \equiv\left(\begin{array}{c}
e_{R}^{\prime} \\
\mu_{R}^{\prime} \\
\tau_{R}^{\prime}
\end{array}\right) \quad \nu_{L}^{\prime} \equiv\left(\begin{array}{c}
\nu_{e L}^{\prime} \\
\nu_{\mu L}^{\prime} \\
\nu_{\tau L}^{\prime}
\end{array}\right) \quad \nu_{R}^{\prime} \equiv\left(\begin{array}{c}
\nu_{e R}^{\prime} \\
\nu_{\mu R}^{\prime} \\
\nu_{\tau R}^{\prime}
\end{array}\right) \\
Y^{\prime \ell} \equiv\left(\begin{array}{cccc}
Y_{e e}^{\prime \ell} & Y_{e \mu}^{\prime \ell} & Y_{e \tau}^{\prime \ell} \\
Y_{\mu e}^{\prime \ell} & Y_{\mu \mu}^{\prime \ell} & Y_{\mu \tau}^{\prime \ell} \\
Y_{\tau e}^{\prime \ell} & Y_{\tau \mu}^{\prime \ell} & Y_{\tau \tau}^{\prime \ell}
\end{array}\right) \\
M^{\prime \ell}=\frac{v}{\sqrt{2}} Y^{\prime \ell} \\
Y^{\prime \nu} \equiv\left(\begin{array}{ccc}
Y_{e e}^{\prime \nu} & Y_{e \mu}^{\prime \nu} & Y_{e \tau}^{\prime \nu} \\
Y_{\mu e}^{\prime \nu} & Y_{\mu \mu}^{\prime \nu} & Y_{\mu \tau}^{\prime \nu} \\
Y_{\tau e}^{\prime \nu} & Y_{\tau \mu}^{\prime \nu} & Y_{\tau \tau}^{\prime \nu}
\end{array}\right) \\
M^{\prime \nu}=\frac{v}{\sqrt{2}} Y^{\prime \nu}
\end{gathered}
$$

$$
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}^{\prime}} Y^{\prime \ell} \ell_{R}^{\prime}+\overline{\nu_{L}^{\prime}} Y^{\prime \nu} \nu_{R}^{\prime}\right]+\text { H.c. }
$$

Diagonalization of $Y^{\prime \ell}$ and $Y^{\prime \nu}$ with unitary $V_{L}^{\ell}, V_{R}^{\ell}, V_{L}^{\nu}, V_{R}^{\nu}$

$$
\ell_{L}^{\prime}=V_{L}^{\ell} \ell_{L} \quad \ell_{R}^{\prime}=V_{R}^{\ell} \ell_{R} \quad \nu_{L}^{\prime}=V_{L}^{\nu} \mathbf{n}_{L} \quad \nu_{R}^{\prime}=V_{R}^{\nu} \mathbf{n}_{R}
$$

Unitary transformations are allowed
because they leave invariant the kinetic terms in the Lagrangian

$$
\begin{aligned}
\mathscr{L}_{\text {kin }} & =\overline{\ell_{L}^{\prime}} i \not \ell_{L}^{\prime}+\overline{\ell_{R}^{\prime}} i \not \partial \ell_{R}^{\prime}+\overline{\nu_{L}^{\prime}} i \not \partial \nu_{L}^{\prime}+\overline{\nu_{R}^{\prime}} i \not \partial \nu_{R}^{\prime} \\
& =\overline{\ell_{L}} V_{L}^{\ell \dagger} i \not \partial V_{L}^{\ell} \ell_{L}+\ldots \\
& =\overline{\ell_{L}} i \not \partial \ell_{L}+\overline{\ell_{R}} i \not \partial \ell_{R}+\overline{\nu_{L}} i \not \partial \nu_{L}+\overline{\nu_{R}} i \not \partial \nu_{R}
\end{aligned}
$$

$$
\begin{gathered}
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}^{\prime}} Y^{\prime \ell} \ell_{R}^{\prime}+\overline{\nu_{L}^{\prime}} Y^{\prime \nu} \nu_{R}^{\prime}\right]+\text { H.c. } \\
\ell_{L}^{\prime}=V_{L}^{\ell} \ell_{L} \quad \ell_{R}^{\prime}=V_{R}^{\ell} \ell_{R} \quad \nu_{L}^{\prime}=V_{L}^{\nu} \mathbf{n}_{L} \quad \nu_{R}^{\prime}=V_{R}^{\nu} \mathbf{n}_{R} \\
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}} V_{L}^{\ell \dagger} Y^{\prime \ell} V_{R}^{\ell} \ell_{R}+\overline{\nu_{L}} V_{L}^{\nu \dagger} Y^{\prime \nu} V_{R}^{\nu} \nu_{R}\right]+\text { H.c. } \\
V_{L}^{\ell \dagger} Y^{\prime \ell} V_{R}^{\ell}=Y^{\ell} \quad Y_{\alpha \beta}^{\ell}=y_{\alpha}^{\ell} \delta_{\alpha \beta} \quad(\alpha, \beta=e, \mu, \tau) \\
V_{L}^{\nu \dagger} Y^{\prime \nu} V_{R}^{\nu}=Y^{\nu} \quad Y_{k j}^{\nu}=y_{k}^{\nu} \delta_{k j} \quad(k, j=1,2,3) \\
\text { Real and Positive } y_{\alpha}^{\ell}, y_{k}^{\nu} \\
V_{L}^{\dagger} Y^{\prime} V_{R}=Y \quad \Longleftrightarrow \quad Y^{\prime}=V_{L} \quad Y \quad V_{R}^{\dagger} \\
18 \quad 9 \quad 3
\end{gathered}
$$

Massive Chiral Lepton Fields

$\ell_{L}=V_{L}^{\ell \dagger} \ell_{L}^{\prime} \equiv\left(\begin{array}{c}e_{L} \\ \mu_{L} \\ \tau_{L}\end{array}\right)$	$\ell_{R}=V_{R}^{\ell \dagger} \ell_{R}^{\prime} \equiv\left(\begin{array}{c}e_{R} \\ \mu_{R} \\ \tau_{R}\end{array}\right)$
$\mathbf{n}_{L}=V_{L}^{\nu \dagger} \nu_{L}^{\prime} \equiv\left(\begin{array}{c}\nu_{1 L} \\ \nu_{2 L} \\ \nu_{3 L}\end{array}\right)$	$\mathbf{n}_{R}=V_{R}^{\nu \dagger} \nu_{R}^{\prime} \equiv\left(\begin{array}{c}\nu_{1 R} \\ \nu_{2 R} \\ \nu_{3 R}\end{array}\right)$

$$
\begin{aligned}
\mathscr{L}_{H, L} & =-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}} Y^{\ell} \ell_{R}+\overline{\mathbf{n}_{L}} Y^{\nu} n_{R}\right]+\text { H.c. } \\
& =-\left(\frac{v+H}{\sqrt{2}}\right)\left[\sum_{\alpha=e, \mu, \tau} y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R}+\sum_{k=1}^{3} y_{k}^{\nu} \overline{\nu_{k L}} \nu_{k R}\right]+\text { H.c. }
\end{aligned}
$$

Massive Dirac Lepton Fields

$$
\begin{gathered}
\ell_{\alpha} \equiv \ell_{\alpha L}+\ell_{\alpha R} \quad(\alpha=e, \mu, \tau) \\
\nu_{k}=\nu_{k L}+\nu_{k R} \quad(k=1,2,3) \\
\mathscr{L}_{H, L}=-\sum_{\alpha=e, \mu, \tau} \frac{y_{\alpha}^{\ell} v}{\sqrt{2}} \overline{\ell_{\alpha}} \ell_{\alpha}-\sum_{k=1}^{3} \frac{y_{k}^{\nu} v}{\sqrt{2}} \overline{\nu_{k}} \nu_{k} \quad \text { Mass Terms } \\
-\sum_{\alpha=e, \mu, \tau} \frac{y_{\alpha}^{\ell}}{\sqrt{2}} \overline{\ell_{\alpha}} \ell_{\alpha} H-\sum_{k=1}^{3} \frac{y_{k}^{\nu}}{\sqrt{2}} \overline{\nu_{k}} \nu_{k} H \quad \text { Lepton-Higgs Couplings }
\end{gathered}
$$

Charged Lepton and Neutrino Masses

$$
\begin{gathered}
m_{\alpha}=\frac{y_{\alpha}^{\ell} v}{\sqrt{2}} \quad(\alpha=e, \mu, \tau) \quad m_{k}=\frac{y_{k}^{\nu} v}{\sqrt{2}} \quad(k=1,2,3) \\
\text { Lepton-Higgs coupling } \propto \text { Lepton Mass }
\end{gathered}
$$

Quantization

$$
\begin{aligned}
& \nu_{k}(x)=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E_{k}} \sum_{h= \pm 1}\left[a_{k}^{(h)}(p) u_{k}^{(h)}(p) e^{-i p \cdot x}+b_{k}^{(h) \dagger}(p) v_{k}^{(h)}(p) e^{i p \cdot x}\right] \\
& p^{0}=E_{k}=\sqrt{\vec{p}^{2}+m_{k}^{2}} \quad \begin{array}{l}
\left(p-m_{k}\right) u_{k}^{(h)}(p)=0 \\
\left(p+m_{k}\right) v_{k}^{(h)}(p)=0
\end{array} \\
& \frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} u_{k}^{(h)}(p)=h u_{k}^{(h)}(p) \\
& \frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} v_{k}^{(h)}(p)=-h v_{k}^{(h)}(p) \\
& \left\{a_{k}^{(h)}(p), a_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=\left\{b_{k}^{(h)}(p), b_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=(2 \pi)^{3} 2 E_{k} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right) \delta_{h h^{\prime}} \\
& \left\{a_{k}^{(h)}(p), a_{k}^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=\left\{a_{k}^{(h) \dagger}(p), a_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=0 \\
& \left\{b_{k}^{(h)}(p), b_{k}^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=\left\{b_{k}^{(h) \dagger}(p), b_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=0 \\
& \left\{a_{k}^{(h)}(p), b_{k}^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=\left\{a_{k}^{(h) \dagger}(p), b_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=0 \\
& \left\{a_{k}^{(h)}(p), b_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=\left\{a_{k}^{(h) \dagger}(p), b_{k}^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=0 \\
& \text { C. Giunti - Neutrino Physics - May } 2011 \text { - } 19
\end{aligned}
$$

Mixing

Charged-Current Weak Interaction Lagrangian

$$
\mathscr{L}_{1}^{(\mathrm{CC})}=-\frac{g}{2 \sqrt{2}} j_{W}^{\rho} W_{\rho}+\text { H.c. }
$$

Weak Charged Current: $\quad j_{W}^{\rho}=j_{W, \mathrm{~L}}^{\rho}+j_{W, \mathrm{Q}}^{\rho}$
Leptonic Weak Charged Current

$$
\begin{gathered}
j_{W, L}^{\rho}=\sum_{\alpha=e, \mu, \tau} \overline{\nu_{\alpha}^{\prime}} \gamma^{\rho}\left(1-\gamma^{5}\right) \ell_{\alpha}^{\prime}=2 \sum_{\alpha=e, \mu, \tau} \overline{\nu_{\alpha L}^{\prime}} \gamma^{\rho} \ell_{\alpha L}^{\prime}=2 \overline{\nu_{L}^{\prime}} \gamma^{\rho} \ell_{L}^{\prime} \\
\frac{\ell_{L}^{\prime}=V_{L}^{\ell} \ell_{L}}{\nu_{L}^{\prime}=V_{L}^{\nu} \mathbf{n}_{L}} \\
j_{W, L}^{\rho}=2 \overline{\mathbf{n}_{L}} V_{L}^{\nu \dagger} \gamma^{\rho} V_{L}^{\ell} \ell_{L}=2 \overline{\mathbf{n}_{L}} V_{L}^{\nu \dagger} V_{L}^{\ell} \gamma^{\rho} \ell_{L}=2 \overline{\mathbf{n}_{L}} U^{\dagger} \gamma^{\rho} \ell_{L} \\
\text { Mixing Matrix }
\end{gathered}
$$

$$
U^{\dagger}=V_{L}^{\nu \dagger} V_{L}^{\ell} \quad U=V_{L}^{\ell \dagger} V_{L}^{\nu}
$$

- Definition: Left-Handed Flavor Neutrino Fields

$$
\nu_{L}=U \mathbf{n}_{L}=V_{L}^{\ell \dagger} \nu_{L}^{\prime}=\left(\begin{array}{c}
\nu_{e L} \\
\nu_{\mu L} \\
\nu_{\tau L}
\end{array}\right)
$$

- They allow us to write the Leptonic Weak Charged Current as in the SM:

$$
j_{W, L}^{\rho}=2 \overline{\nu_{L}} \gamma^{\rho} \ell_{L}=2 \sum_{\alpha=e, \mu, \tau} \overline{\nu_{\alpha L}} \gamma^{\rho} \ell_{\alpha L}
$$

- Each left-handed flavor neutrino field is associated with the corresponding charged lepton field which describes a massive charged lepton:

$$
j_{W, \mathrm{~L}}^{\rho}=2\left(\overline{\nu_{e L}} \gamma^{\rho} e_{L}+\overline{\nu_{\mu L}} \gamma^{\rho} \mu_{L}+\overline{\nu_{\tau L}} \gamma^{\rho} \tau_{L}\right)
$$

- In practice left-handed flavor neutrino fields are useful for calculations in the SM approximation of massless neutrinos (interactions).
- If neutrino masses must be taken into account, it is necessary to use

$$
j_{W, L}^{\rho}=2 \overline{\mathbf{n}_{L}} U^{\dagger} \gamma^{\rho} \ell_{L}=2 \sum_{k=1}^{3} \sum_{\alpha=e, \mu, \tau} U_{\alpha k}^{*} \overline{\nu_{k L}} \gamma^{\rho} \ell_{\alpha L}
$$

Flavor Lepton Numbers

Flavor Neutrino Fields are useful for defining Flavor Lepton Numbers as in the SM

	L_{e}	L_{μ}	L_{τ}			L_{e}	L_{μ}
	L_{τ}						
$\left(\nu_{e}, e^{-}\right)$	+1	0	0				
$\left(\nu_{\mu}, \mu^{-}\right)$	0	+1	0				
$\left(\nu_{\tau}, \tau^{-}\right)$	0	0	+1	$\left(\nu_{e}^{c}, e^{+}\right)$	-1	0	0
$\left(\nu_{\mu}^{c}, \mu^{+}\right)$	0	-1	0				
$\left(\nu_{\tau}^{c}, \tau^{+}\right)$	0	0	-1				

$$
L=L_{e}+L_{\mu}+L_{\tau}
$$

Standard Model:
Lepton numbers are conserved

$$
\mathscr{L}_{\text {mass }}^{\mathrm{D}}=-\left(\begin{array}{lll}
\overline{\nu_{e L}} & \overline{\nu_{\mu L}} & \overline{\nu_{\tau L}}
\end{array}\right)\left(\begin{array}{ccc}
m_{e e}^{\mathrm{D}} & m_{e \mu}^{\mathrm{D}} & m_{e \tau}^{\mathrm{D}} \\
m_{\mu e}^{\mathrm{D}} & m_{\mu \mu}^{\mathrm{D}} & m_{\mu \tau}^{\mathrm{D}} \\
m_{\tau e}^{\mathrm{D}} & m_{\tau \mu}^{\mathrm{D}} & m_{\tau \tau}^{\mathrm{D}}
\end{array}\right)\left(\begin{array}{c}
\nu_{e R} \\
\nu_{\mu R} \\
\nu_{\tau R}
\end{array}\right)+\text { H.c. }
$$

L_{e}, L_{μ}, L_{τ} are not conserved
L is conserved: $\quad L\left(\nu_{\alpha R}\right)=L\left(\nu_{\beta L}\right) \Rightarrow|\Delta L|=0$

- Leptonic Weak Charged Current is invariant under the global $U(1)$ gauge transformations

$$
\ell_{\alpha L} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha L} \quad \nu_{\alpha L} \rightarrow e^{i \varphi_{\alpha}} \nu_{\alpha L} \quad(\alpha=e, \mu, \tau)
$$

- If neutrinos are massless (SM), Noether's theorem implies that there is, for each flavor, a conserved current:

$$
j_{\alpha}^{\rho}=\overline{\nu_{\alpha L}} \gamma^{\rho} \nu_{\alpha L}+\overline{\ell_{\alpha}} \gamma^{\rho} \ell_{\alpha} \quad \partial_{\rho} j_{\alpha}^{\rho}=0
$$

and a conserved charge:

$$
\begin{gathered}
\mathrm{L}_{\alpha}=\int \mathrm{d}^{3} x j_{\alpha}^{0}(x) \quad \partial_{0} \mathrm{~L}_{\alpha}=0 \\
: \mathrm{L}_{\alpha}:=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E}\left[a_{\nu_{\alpha}}^{(-) \dagger}(p) a_{\nu_{\alpha}}^{(-)}(p)-b_{\nu_{\alpha}}^{(+) \dagger}(p) b_{\nu_{\alpha}}^{(+)}(p)\right] \\
\\
+\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a_{\ell_{\alpha}}^{(h) \dagger}(p) a_{\ell_{\alpha}}^{(h)}(p)-b_{\ell_{\alpha}}^{(h) \dagger}(p) b_{\ell_{\alpha}}^{(h)}(p)\right]
\end{gathered}
$$

- Lepton-Higgs Yukawa Lagrangian:

$$
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\sum_{\alpha=e, \mu, \tau} y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R}+\sum_{k=1}^{3} y_{k}^{\nu} \overline{\nu_{k L}} \nu_{k R}\right]+\text { H.c. }
$$

- Mixing: $\nu_{\alpha L}=\sum_{k=1}^{3} U_{\alpha k} \nu_{k L}$
$\Longleftrightarrow \quad \nu_{k L}=\sum_{\alpha=e, \mu, \tau} U_{\alpha k}^{*} \nu_{\alpha L}$

$$
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right) \sum_{\alpha=e, \mu, \tau}\left[y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R}+\overline{\nu_{\alpha L}} \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{k R}\right]+\text { Н.c. }
$$

- Invariant for

$$
\begin{array}{ll}
\ell_{\alpha L} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha L}, & \nu_{\alpha L} \rightarrow e^{i \varphi_{\alpha}} \nu_{\alpha L} \\
\ell_{\alpha R} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha R}, & \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{k R} \rightarrow e^{i \varphi_{\alpha}} \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{k R}
\end{array}
$$

- But kinetic part of neutrino Lagrangian is not invariant

$$
\mathscr{L}_{\text {kinetic }}^{(\nu)}=\sum_{\alpha=e, \mu, \tau} \overline{\nu_{\alpha L}} i \not \partial \nu_{\alpha L}+\sum_{k=1}^{3} \overline{\nu_{k R}} i \not \partial \nu_{k R}
$$

because $\sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{k R}$ is not a unitary combination of the $\nu_{k R}$'s

Total Lepton Number

- Dirac neutrino masses violate conservation of Flavor Lepton Numbers
- Total Lepton Number is conserved, because Lagrangian is invariant under the global $U(1)$ gauge transformations

$$
\begin{array}{lll}
\nu_{k L} \rightarrow e^{i \varphi} \nu_{k L}, & \nu_{k R} \rightarrow e^{i \varphi} \nu_{k R} & (k=1,2,3) \\
\ell_{\alpha L} \rightarrow e^{i \varphi} \ell_{\alpha L}, & \ell_{\alpha R} \rightarrow e^{i \varphi} \ell_{\alpha R} & (\alpha=e, \mu, \tau)
\end{array}
$$

- From Noether's theorem:

$$
j^{\rho}=\sum_{k=1}^{3} \overline{\nu_{k}} \gamma^{\rho} \nu_{k}+\sum_{\alpha=e, \mu, \tau} \overline{\ell_{\alpha}} \gamma^{\rho} \ell_{\alpha} \quad \partial_{\rho} j^{\rho}=0
$$

Conserved charge: $\mathrm{L}_{\alpha}=\int \mathrm{d}^{3} x j_{\alpha}^{0}(x) \quad \partial_{0} \mathrm{~L}_{\alpha}=0$

$$
\begin{aligned}
: \mathrm{L}:= & \sum_{k=1}^{3} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a_{\nu_{k}}^{(h) \dagger}(p) a_{\nu_{k}}^{(h)}(p)-b_{\nu_{k}}^{(h) \dagger}(p) b_{\nu_{k}}^{(h)}(p)\right] \\
& +\sum_{\alpha=e, \mu, \tau} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a_{\ell_{\alpha}}^{(h) \dagger}(p) a_{\ell_{\alpha}}^{(h)}(p)-b_{\ell_{\alpha}}^{(h) \dagger}(p) b_{\ell_{\alpha}}^{(h)}(p)\right]
\end{aligned}
$$

Mixing Matrix

- Leptonic Weak Charged Current: $j_{W, L}^{\rho}=2 \overline{\mathbf{n}_{L}} U^{\dagger} \gamma^{\rho} \ell_{L}$
$-U=V_{L}^{\ell \dagger} V_{L}^{\nu}=\left(\begin{array}{lll}U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33}\end{array}\right) \equiv\left(\begin{array}{lll}U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\end{array}\right)$
- Unitary $N \times N$ matrix depends on N^{2} independent real parameters

$$
N=3 \quad \Longrightarrow \quad \begin{array}{ll}
\frac{N(N-1)}{2}=3 \\
\frac{N(N+1)}{2}=6
\end{array} \quad \text { Mixing Angles }
$$

- Not all phases are physical observables
- Only physical effect of mixing matrix occurs through its presence in the Leptonic Weak Charged Current
- Weak Charged Current: $j_{W, L}^{\rho}=2 \sum_{k=1}^{3} \sum_{\alpha=e, \mu, \tau} \overline{\nu_{k L}} U_{\alpha k}^{*} \gamma^{\rho} \ell_{\alpha L}$
- Apart from the Weak Charged Current, the Lagrangian is invariant under the global phase transformations (6 arbitrary phases)

$$
\nu_{k} \rightarrow e^{i \varphi_{k}} \nu_{k} \quad(k=1,2,3), \quad \ell_{\alpha} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha} \quad(\alpha=e, \mu, \tau)
$$

- Performing this transformation, the Charged Current becomes

$$
\begin{gathered}
j_{W, L}^{\rho}=2 \sum_{k=1}^{3} \sum_{\alpha=e, \mu, \tau} \overline{\nu_{k L}} e^{-i \varphi_{k}} U_{\alpha k}^{*} e^{i \varphi_{\alpha}} \gamma^{\rho} \ell_{\alpha L} \\
j_{W, L}^{\rho}=2 \underbrace{e^{-i\left(\varphi_{1}-\varphi_{e}\right)}}_{1} \sum_{k=1}^{3} \sum_{\alpha=e, \mu, \tau} \overline{\nu_{k L}} \underbrace{e^{-i\left(\varphi_{k}-\varphi_{1}\right)}}_{2} U_{\alpha k}^{*} \underbrace{e^{i\left(\varphi_{\alpha}-\varphi_{e}\right)}}_{2} \gamma^{\rho} \ell_{\alpha L}
\end{gathered}
$$

- There are 5 arbitrary phases of the fields that can be chosen to eliminate 5 of the 6 phases of the mixing matrix
- 5 and not 6 phases of the mixing matrix can be eliminated because a common rephasing of all the fields leaves the Charged Current invariant \Longleftrightarrow conservation of Total Lepton Number.
- The mixing matrix contains 1 Physical Phase.
- It is convenient to express the 3×3 unitary mixing matrix only in terms of the four physical parameters:

3 Mixing Angles and 1 Phase

Standard Parameterization of Mixing Matrix

$$
\begin{aligned}
&\left(\begin{array}{l}
\nu_{e L} \\
\nu_{\mu L} \\
\nu_{\tau L}
\end{array}\right)=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{l}
\nu_{1 L} \\
\nu_{2 L} \\
\nu_{3 L}
\end{array}\right) \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} i^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right)
\end{aligned}
$$

$$
c_{a b} \equiv \cos \vartheta_{a b} \quad s_{a b} \equiv \sin \vartheta_{a b} \quad 0 \leq \vartheta_{a b} \leq \frac{\pi}{2} \quad 0 \leq \delta_{13} \leq 2 \pi
$$

3 Mixing Angles $\vartheta_{12}, \vartheta_{23}, \vartheta_{13}$ and 1 Phase δ_{13}

Standard Parameterization

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example of Different Phase Convention

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} e^{i \delta_{23}} \\
0 & -s_{23} e^{-i \delta_{13}} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} \\
0 & 1 & 0 \\
-s_{13} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example of Different Parameterization

$$
U=\left(\begin{array}{ccc}
c_{12}^{\prime} & s_{12}^{\prime} e^{-i \delta_{12}^{\prime}} & 0 \\
-s_{12}^{\prime} e^{i \delta_{12}^{\prime}} & c_{12}^{\prime} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23}^{\prime} & s_{23}^{\prime} \\
0 & -s_{23}^{\prime} & c_{23}^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
c_{13}^{\prime} & 0 & s_{13}^{\prime} \\
0 & 1 & 0 \\
-s_{13}^{\prime} & 0 & c_{13}^{\prime}
\end{array}\right)
$$

CP Violation

- $U \neq U^{*} \Longrightarrow$ CP Violation
- General conditions for CP violation (14 conditions):

1. No two charged leptons or two neutrinos are degenerate in mass (6 conditions)
2. No mixing angle is equal to 0 or $\pi / 2$ (6 conditions)
3. The physical phase is different from 0 or π (2 conditions)

- These 14 conditions are combined into the single condition $\operatorname{det} C \neq 0$

$$
\begin{gathered}
C=-i\left[M^{\prime \nu} M^{\prime \nu \dagger}, M^{\prime \ell} M^{\prime \ell \dagger}\right] \\
\operatorname{det} C=-2 J\left(m_{\nu_{2}}^{2}-m_{\nu_{1}}^{2}\right)\left(m_{\nu_{3}}^{2}-m_{\nu_{1}}^{2}\right)\left(m_{\nu_{3}}^{2}-m_{\nu_{2}}^{2}\right) \\
\left(m_{\mu}^{2}-m_{e}^{2}\right)\left(m_{\tau}^{2}-m_{e}^{2}\right)\left(m_{\tau}^{2}-m_{\mu}^{2}\right)
\end{gathered}
$$

- Jarlskog rephasing invariant: $J=c_{12} s_{12} c_{23} s_{23} c_{13}^{2} s_{13} \sin \delta_{13}$ (stand. par.)
[C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039, Z. Phys. C 29 (1985) 491]
[O. W. Greenberg, Phys. Rev. D 32 (1985) 1841]
[I. Dunietz, O. W. Greenberg, Dan-di Wu, Phys. Rev. Lett. 55 (1985) 2935]
C. Giunti - Neutrino Physics - May 2011 - 32

Example: $\vartheta_{12}=0$

$$
\begin{gathered}
U=R_{23} R_{13} W_{12} \\
W_{12}=\left(\begin{array}{ccc}
\cos \vartheta_{12} & \sin \vartheta_{12} e^{-i \delta_{12}} & 0 \\
-\sin \vartheta_{12} e^{-i \delta_{12}} & \cos \vartheta_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
\vartheta_{12}=0 \quad \Longrightarrow \quad W_{12}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\mathbf{1}
\end{gathered}
$$

$$
\text { real mixing matrix } \quad U=R_{23} R_{13}
$$

$$
\begin{gathered}
U=R_{23} W_{13} R_{12} \\
W_{13}=\left(\begin{array}{ccc}
\cos \vartheta_{13} & 0 & \sin \vartheta_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-\sin \vartheta_{13} e^{i \delta_{13}} & 0 & \cos \vartheta_{13}
\end{array}\right) \\
\vartheta_{13}=\pi / 2 \quad \Longrightarrow \quad W_{13}=\left(\begin{array}{ccc}
0 & 0 & e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-e^{i \delta_{13}} & 0 & 0
\end{array}\right) \\
U=\left(\begin{array}{ccc}
0 & 0 & e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} \delta^{i \delta_{13}} & 0 \\
s_{12} s_{23}-c_{12} c_{23} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} e^{i \delta_{13}} & 0
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& U=\left(\begin{array}{ccc}
0 & 0 & e^{-i \delta_{13}} \\
\left|U_{\mu 1}\right| e^{i \lambda_{\mu 1}} & \left|U_{\mu 2}\right| e^{i \lambda_{\mu 2}} & 0 \\
\left|U_{\tau 1}\right| e^{i \lambda_{\tau 1}} & \left|U_{\tau 2}\right| e^{i \lambda_{\tau 2}} & 0
\end{array}\right) \\
& \lambda_{\mu 1}-\lambda_{\mu 2}=\lambda_{\tau 1}-\lambda_{\tau 2} \pm \pi \\
& \lambda_{\tau 1}-\lambda_{\mu 1}=\lambda_{\tau 2}-\lambda_{\mu 2} \pm \pi \\
& \nu_{k} \rightarrow e^{i \varphi_{k}} \nu_{k} \quad(k=1,2,3), \\
& \ell_{\alpha} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha} \quad(\alpha=e, \mu, \tau) \\
& U \rightarrow\left(\begin{array}{ccc}
e^{-i \varphi_{e}} & 0 & 0 \\
0 & e^{-i \varphi_{\mu}} & 0 \\
0 & 0 & e^{-i \varphi_{\tau}}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & e^{-i \delta_{13}} \\
\left|U_{\mu 1}\right| e^{i \lambda_{\mu 1}} & \left|U_{\mu 2}\right| e^{i \lambda_{\mu 2}} & 0 \\
\left|U_{\tau 1}\right| e^{i \lambda_{\tau 1}} \mid & \left|U_{\tau 2}\right| e^{i \lambda_{\tau 2}} & 0
\end{array}\right)\left(\begin{array}{ccc}
e^{i \varphi_{1}} & 0 & 0 \\
0 & e^{i \varphi_{2}} & 0 \\
0 & 0 & e^{i \varphi_{3}}
\end{array}\right) \\
& U=\left(\begin{array}{cc}
\left|U_{\mu 1}\right| e^{i\left(\lambda_{\mu 1}-\varphi_{\mu}+\varphi_{1}\right)} & \left|U_{\mu 2}\right| e^{i\left(\lambda_{\mu 2}-\varphi_{\mu}+\varphi_{2}\right)} \\
\left|U_{\tau 1}\right| e^{i\left(\lambda_{\tau 1}-\varphi_{\tau}+\varphi_{1}\right)} & \left|U_{\tau 2}\right| e^{i\left(\lambda_{\tau 2}-\varphi_{\tau}+\varphi_{2}\right)}
\end{array} 0^{i\left(-\delta_{13}-\varphi_{e}+\varphi_{3}\right)} 00 .\right. \\
& \varphi_{1}=0 \quad \varphi_{\mu}=\lambda_{\mu 1} \quad \varphi_{\tau}=\lambda_{\tau 1} \quad \varphi_{2}=\varphi_{\mu}-\lambda_{\mu 2}=\lambda_{\mu 1}-\lambda_{\mu 2} \\
& \varphi_{2}=\varphi_{\tau}-\lambda_{\tau 2} \pm \pi=\lambda_{\tau 1}-\lambda_{\tau 2} \pm \pi=\lambda_{\mu 1}-\lambda_{\mu 2} \\
& U=\left(\begin{array}{ccc}
0 & 0 & \pm 1 \\
\left|U_{\mu 1}\right| & \left|U_{\mu 2}\right| & 0 \\
\left|U_{\tau 1}\right| & -\left|U_{\tau 2}\right| & 0
\end{array}\right)
\end{aligned}
$$

Example: $m_{\nu_{2}}=m_{\nu_{3}}$

$$
\begin{gathered}
j_{W, L}^{\rho}=2 \overline{\mathbf{n}_{L}} U^{\dagger} \gamma^{\rho} \ell_{L} \\
U=R_{12} R_{13} W_{23} \Longrightarrow \quad j_{W, \mathrm{~L}}^{\rho}=2 \overline{\mathbf{n}_{L}} W_{23}^{\dagger} R_{13}^{\dagger} R_{12}^{\dagger} \gamma^{\rho} \ell_{L} \\
W_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \vartheta_{23} & \begin{array}{c}
\sin \vartheta_{23} e^{-i \delta_{23}} \\
0
\end{array} \\
-\sin \vartheta_{23} e^{-i \delta \delta_{23}} & \cos \vartheta_{23}
\end{array}\right) \\
W_{23} \mathbf{n}_{L}=\mathbf{n}_{L}^{\prime} \quad R_{12} R_{13}=U^{\prime} \quad \Longrightarrow \quad j_{W, L}^{\rho}=2 \overline{\mathbf{n}_{L}^{\prime}} U^{\prime \dagger} \gamma^{\rho} \ell_{L} \\
\nu_{2} \text { and } \nu_{3} \text { are indistinguishable }
\end{gathered}
$$ drop the prime $\quad \Longrightarrow \quad j_{W, L}^{\rho}=2 \overline{\mathbf{n}_{L}} U^{\dagger} \gamma^{\rho} \ell_{L}$

$$
\text { real mixing matrix } \quad U=R_{12} R_{13}
$$

Jarlskog Rephasing Invariant

- Simplest rephasing invariants: $\left|U_{\alpha k}\right|=U_{\alpha k} U_{\alpha k}^{*}, \quad U_{\alpha k} U_{\alpha j}^{*} U_{\beta k}^{*} U_{\beta j}$

$$
\begin{gathered}
\mathfrak{s m}\left[U_{\alpha k} U_{\alpha j}^{*} U_{\beta k}^{*} U_{\beta j}\right]= \pm J \\
J=\Im \mathfrak{m}\left[U_{e 2} U_{e 3}^{*} U_{\mu 2}^{*} U_{\mu 3}\right]=\Im \mathfrak{m}\left(\begin{array}{ccc}
\cdot & \circ & \times \\
\cdot & \times & \circ \\
\cdot & \cdot & \cdot
\end{array}\right)
\end{gathered}
$$

- In standard parameterization:

$$
\begin{aligned}
J & =c_{12} s_{12} c_{23} s_{23} c_{13}^{2} s_{13} \sin \delta_{13} \\
& =\frac{1}{8} \sin 2 \vartheta_{12} \sin 2 \vartheta_{23} \cos \vartheta_{13} \sin 2 \vartheta_{13} \sin \delta_{13}
\end{aligned}
$$

- Jarlskog invariant is useful for quantifying CP violation in a parameterization-independent way
- All measurable CP-violation effects depend on J.

Maximal CP Violation

- Maximal CP violation is defined as the case in which $|J|$ has its maximum possible value

$$
|J|_{\max }=\frac{1}{6 \sqrt{3}}
$$

- In the standard parameterization it is obtained for

$$
\vartheta_{12}=\vartheta_{23}=\pi / 4, \quad s_{13}=1 / \sqrt{3}, \quad \sin \delta_{13}= \pm 1
$$

- This case is called Trimaximal Mixing. All the absolute values of the elements of the mixing matrix are equal to $1 / \sqrt{3}$:
$U=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \mp \frac{i}{\sqrt{3}} \\ -\frac{1}{2} \mp \frac{i}{2 \sqrt{3}} & \frac{1}{2} \mp \frac{i}{2 \sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{2} \mp \frac{i}{2 \sqrt{3}} & -\frac{1}{2} \mp \frac{i}{2 \sqrt{3}} & \frac{1}{\sqrt{3}}\end{array}\right)=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 1 & \mp i \\ -e^{ \pm i \pi / 6} & e^{\mp i \pi / 6} & 1 \\ e^{\mp i \pi / 6} & -e^{ \pm i \pi / 6} & 1\end{array}\right)$

GIM Mechanism

[S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2 (1970) 1285]

- The unitarity of $V_{L}^{\ell}, V_{R}^{\ell}$ and V_{L}^{ν} implies that the expression of the neutral weak current in terms of the lepton fields with definite masses is the same as that in terms of the primed lepton fields:

$$
\begin{aligned}
j_{Z, L}^{\rho} & =2 g_{L}^{\nu} \overline{\boldsymbol{\nu}_{L}^{\prime}} \gamma^{\rho} \boldsymbol{\nu}_{L}^{\prime}+2 g_{L}^{\prime} \overline{\ell_{L}^{\prime}} \gamma^{\rho} \ell_{L}^{\prime}+2 g_{R}^{\prime} \overline{\ell_{R}^{\prime}} \gamma^{\rho} \ell_{R}^{\prime} \\
& =2 g_{L}^{\nu} \overline{\mathbf{n}_{L}} V_{L}^{\nu \dagger} \gamma^{\rho} V_{L}^{\nu} \mathbf{n}_{L}+2 g_{L}^{\prime} \overline{\ell_{L}} V_{L}^{\ell \dagger} \gamma^{\rho} V_{L}^{\ell} \ell_{L}+2 g_{R}^{\prime} \overline{\ell_{R}} V_{R}^{\ell \dagger} \gamma^{\rho} V_{R}^{\ell} \ell_{R} \\
& =2 g_{L}^{\nu} \overline{\mathbf{n}_{L}} \gamma^{\rho} \mathbf{n}_{L}+2 g_{L}^{\prime} \overline{\ell_{L}} \gamma^{\rho} \ell_{L}+2 g_{R}^{\prime} \overline{\ell_{R}} \gamma^{\rho} \ell_{R}
\end{aligned}
$$

- The unitarity of U implies the same expression for the neutral weak current in terms of the flavor neutrino fields $\nu_{L}=U \mathbf{n}_{L}$:

$$
\begin{aligned}
j_{Z, L}^{\rho} & =2 g_{L}^{\nu} \overline{\boldsymbol{\nu}_{L}} U \gamma^{\rho} U^{\dagger} \nu_{L}+2 g_{L}^{\prime} \overline{\ell_{L}} \gamma^{\rho} \ell_{L}+2 g_{R}^{\prime} \overline{\ell_{R}} \gamma^{\rho} \ell_{R} \\
& =2 g_{L}^{\nu} \overline{\boldsymbol{\nu}_{L}} \gamma^{\rho} \nu_{L}+2 g_{L}^{\prime} \overline{\ell_{L}} \gamma^{\rho} \ell_{L}+2 g_{R}^{\prime} \overline{\ell_{R}} \gamma^{\rho} \ell_{R}
\end{aligned}
$$

Lepton Numbers Violating Processes

Dirac mass term allows L_{e}, L_{μ}, L_{τ} violating processes
Example: $\mu^{ \pm} \rightarrow e^{ \pm}+\gamma, \quad \mu^{ \pm} \rightarrow e^{ \pm}+e^{+}+e^{-}$

$$
\mu^{-} \rightarrow e^{-}+\gamma
$$

$\sum_{k} U_{\mu k}^{*} U_{e k}=0 \Longrightarrow$ only part of ν_{k} propagator $\propto m_{k}$ contributes

$$
\Gamma=\frac{G_{F} m_{\mu}^{5}}{192 \pi^{3}} \underbrace{\frac{3 \alpha}{32 \pi}\left|\sum_{k} U_{\mu k}^{*} U_{e k} \frac{m_{k}^{2}}{m_{W}^{2}}\right|^{2}}_{\mathrm{BR}}
$$

Suppression factor: $\frac{m_{k}}{m_{W}} \lesssim 10^{-11}$ for $\quad m_{k} \lesssim 1 \mathrm{eV}$
$(\mathrm{BR})_{\text {the }} \lesssim 10^{-47}$
$(\mathrm{BR})_{\exp } \lesssim 10^{-11}$

Majorana Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Two-Component Theory of a Massless Neutrino
- Majorana Equation
- Majorana Lagrangian
- Majorana Antineutrino?
- Lepton Number
- CP Symmetry
- No Majorana Neutrino Mass in the SM
- Effective Majorana Mass
- Mixing of Three Majorana Neutrinos
- Mixing Matrix
- Dirac-Majorana Mass Term

Two-Component Theory of a Massless Neutrino

[L. Landau, Nucl. Phys. 3 (1957) 127], [T.D. Lee, C.N. Yang, Phys. Rev. 105 (1957) 1671], [A. Salam, Nuovo Cim. 5 (1957) 299]

- Dirac Equation: $\quad\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$
- Chiral decomposition of a Fermion Field: $\quad \psi=\psi_{L}+\psi_{R}$
- Equations for the Chiral components are coupled by mass:

$$
\begin{aligned}
& i \gamma^{\mu} \partial_{\mu} \psi_{L}=m \psi_{R} \\
& i \gamma^{\mu} \partial_{\mu} \psi_{R}=m \psi_{L}
\end{aligned}
$$

- They are decoupled for a massless fermion: Weyl Equations (1929)

$$
\begin{aligned}
& i \gamma^{\mu} \partial_{\mu} \psi_{L}=0 \\
& i \gamma^{\mu} \partial_{\mu} \psi_{R}=0
\end{aligned}
$$

- A massless fermion can be described by a single chiral field ψ_{L} or ψ_{R} (Weyl Spinor).
- ψ_{L} and ψ_{R} have only two independent components: in the chiral representation

$$
\psi_{L}=\binom{0}{\chi_{L}} \equiv\left(\begin{array}{c}
0 \\
0 \\
\chi_{L 1} \\
\chi_{L 2}
\end{array}\right) \quad \psi_{R}=\binom{\chi_{R}}{0} \equiv\left(\begin{array}{c}
\chi_{R 1} \\
\chi_{R 2} \\
0 \\
0
\end{array}\right)
$$

- The possibility to describe a physical particle with a Weyl spinor was rejected by Pauli in 1933 because it leads to parity violation $\left(\psi_{L} \stackrel{P}{\rightleftharpoons} \psi_{R}\right)$
- The discovery of parity violation in 1956-57 invalidated Pauli's reasoning, opening the possibility to describe massless particles with Weyl spinor fields \Longrightarrow Two-component Theory of a Massless Neutrino (1957)
- V - A Charged-Current Weak Interactions $\Longrightarrow \nu_{L}$
- In the 1960s, the Two-component Theory of a Massless Neutrino was incorporated in the SM through the assumption of the absence of ν_{R}

Majorana Equation

- Can a two-component spinor describe a massive fermion? Yes! (E. Majorana, 1937)
- Trick: ψ_{R} and ψ_{L} are not independent:

$$
\psi_{R}=C{\overline{\psi_{L}}}^{T}
$$

- $C{\overline{\psi_{L}}}^{T}$ is right-handed: $\quad P_{R} C{\overline{\psi_{L}}}^{T}=C{\overline{\psi_{L}}}^{T} \quad\left(C \gamma_{\mu}^{T} C^{-1}=-\gamma_{\mu}\right)$
- Majorana Equation:

$$
i \gamma^{\mu} \partial_{\mu} \psi_{L}=m C{\overline{\psi_{L}}}^{T}
$$

- Majorana Field: $\quad \psi=\psi_{L}+\psi_{R}=\psi_{L}+C{\overline{\psi_{L}}}^{T}$
- Majorana Condition: $\quad \psi=C \bar{\psi}^{T}=\psi^{C}$
- Only two independent components: $\quad \psi=\binom{i \sigma^{2} \chi_{L}^{*}}{\chi_{L}}=\left(\begin{array}{c}\chi_{L 2}^{*} \\ -\chi_{L 1}^{*} \\ \chi_{L 1} \\ \chi_{L 2}\end{array}\right)$
- $\psi=\psi^{C}$ implies the equality of particle and antiparticle
- Only neutral fermions can be Majorana particles
- For a Majorana field, the electromagnetic current vanishes identically:

$$
\bar{\psi} \gamma^{\mu} \psi=\overline{\psi^{C}} \gamma^{\mu} \psi^{C}=-\psi^{T} C^{\dagger} \gamma^{\mu} C \bar{\psi}^{T}=\bar{\psi} C \gamma^{\mu T} C^{\dagger} \psi=-\bar{\psi} \gamma^{\mu} \psi=0
$$

Majorana Lagrangian

$$
\begin{gathered}
\text { Dirac Lagrangian } \\
\mathscr{L}^{\mathrm{D}}=\bar{\nu}(i \not \partial-m) \nu \\
=\overline{\nu_{L}} i \not \not \nu_{L}+\overline{\nu_{R}} i \not \not \nu_{R}-m\left(\overline{\nu_{R}} \nu_{L}+\overline{\nu_{L}} \nu_{R}\right) \\
\nu_{R} \rightarrow \nu_{L}^{C}=C{\overline{\nu_{L}}}^{T} \\
\frac{1}{2} \mathscr{L}^{\mathrm{D}} \rightarrow \overline{\nu_{L}} i \not \partial \nu_{L}-\frac{m}{2}\left(-\nu_{L}^{T} C^{\dagger} \nu_{L}+\overline{\nu_{L}} C{\overline{\nu_{L}}}^{T}\right) \\
\text { Majorana Lagrangian } \\
\mathscr{L}^{\mathrm{M}}=\overline{\nu_{L}} i \not \partial \nu_{L}-\frac{m}{2}\left(-\nu_{L}^{T} C^{\dagger} \nu_{L}+\overline{\left.\nu_{L} C{\overline{\nu_{L}}}^{T}\right)}\right. \\
=\overline{\nu_{L}} i \not \partial \nu_{L}-\frac{m}{2}\left(\overline{\nu_{L}^{C}} \nu_{L}+\overline{\nu_{L}} \nu_{L}^{C}\right)
\end{gathered}
$$

- Majorana Field: $\nu=\nu_{L}+\nu_{L}^{C}$
- Majorana Condition: $\nu^{C}=\nu$
- Majorana Lagrangian: $\mathscr{L}^{\mathrm{M}}=\frac{1}{2} \bar{\nu}(i \not \partial-m) \nu$
- The factor $1 / 2$ distinguishes the Majorana Lagrangian from the Dirac Lagrangian
- Quantized Dirac Neutrino Field:

$$
\nu(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a^{(h)}(p) u^{(h)}(p) e^{-i p \cdot x}+b^{(h)^{\dagger}}(p) v^{(h)}(p) e^{i p \cdot x}\right]
$$

- Quantized Majorana Neutrino Field $\left[b^{(h)}(p)=a^{(h)}(p)\right]$

$$
\nu(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a^{(h)}(p) u^{(h)}(p) e^{-i p \cdot x}+a^{(h) \dagger}(p) v^{(h)}(p) e^{i p \cdot x}\right]
$$

- A Majorana field has half the degrees of freedom of a Dirac field

Majorana Antineutrino?

- A Majorana neutrino is the same as a Majorana antineutrino
- Neutrino interactions are described by the CC and NC Lagrangians

$$
\begin{aligned}
& \mathscr{L}_{1, \mathrm{~L}}^{\mathrm{CC}}=-\frac{g}{\sqrt{2}}\left(\overline{\nu_{L}} \gamma^{\mu} \ell_{L} W_{\mu}+\overline{\ell_{L}} \gamma^{\mu} \nu_{L} W_{\mu}^{\dagger}\right) \\
& \mathscr{L}_{1, \nu}^{\mathrm{NC}}=-\frac{g}{2 \cos \vartheta_{W}} \overline{\nu_{L}} \gamma^{\mu} \nu_{L} Z_{\mu}
\end{aligned}
$$

- In practice, since detectable neutrinos are always ultrarelativistic, the neutrino mass can be neglected in interactions
- In interaction amplitudes we neglect corrections of order m / E
- Dirac:
$\left\{\begin{array}{l}\nu_{L}\left\{\begin{array}{l}\text { destroys left-handed neutrinos } \\ \text { creates right-handed antineutrinos }\end{array}\right. \\ \overline{\nu_{L}}\left\{\begin{array}{l}\text { destroys right-handed antineutrinos } \\ \text { creates left-handed neutrinos }\end{array}\right.\end{array}\right.$

$$
\left\{\begin{array}{l}
\nu_{L}\left\{\begin{array}{l}
\text { destroys left-handed neutrinos } \\
\text { creates right-handed neutrinos }
\end{array}\right. \\
\overline{\nu_{L}}\left\{\begin{array}{l}
\text { destroys right-handed neutrinos } \\
\text { creates left-handed neutrinos }
\end{array}\right.
\end{array}\right.
$$

- Common definitions:

Majorana neutrino with negative helicity \equiv neutrino
Majorana neutrino with positive helicity \equiv antineutrino

Lepton Number

$$
\begin{gathered}
L \neq+1 \quad \nu^{2}=\nu^{C} \rightarrow L \neq-1 \\
\nu_{L} \Longrightarrow L=+1 \quad \nu_{L}^{C} \Longrightarrow L=-1 \\
\mathscr{L}^{M}=\overline{\nu_{L}} i \not \partial \nu_{L}-\frac{m}{2}\left(\overline{\nu_{L}^{C}} \nu_{L}+\overline{\nu_{L}} \nu_{L}^{C}\right)
\end{gathered}
$$

Total Lepton Number is not conserved: $\quad \Delta L= \pm 2$
Best process to find violation of Total Lepton Number:

\[

\]

CP Symmetry

- Under a CP transformation

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{CP}} \nu_{L}(x) \mathrm{U}_{\mathrm{CP}}^{-1}=\xi_{\nu}^{\mathrm{CP}} \gamma^{0} \nu_{L}^{C}\left(x_{\mathrm{P}}\right) \\
& \mathrm{U}_{\mathrm{CP}} \nu_{L}^{C}(x) \mathrm{U}_{\mathrm{CP}}^{-1}=-\xi_{\nu}^{\mathrm{CP}} \gamma^{0} \nu_{L}\left(x_{\mathrm{P}}\right) \\
& \mathrm{U}_{\mathrm{CP}} \overline{\nu_{L}}(x) \mathrm{U}_{\mathrm{CP}}^{-1}=\xi_{\nu}^{\mathrm{CP}} \overline{\nu_{L}^{C}}\left(x_{\mathrm{P}}\right) \gamma^{0} \\
& \mathrm{U}_{\mathrm{CP}} \overline{\nu_{L}^{C}}(x) \mathrm{U}_{\mathrm{CP}}^{-1}=-\xi_{\nu}^{\mathrm{CP}} \overline{\nu_{L}}\left(x_{\mathrm{P}}\right) \gamma^{0}
\end{aligned}
$$

with $\left|\xi_{\nu}^{C P}\right|^{2}=1, x^{\mu}=\left(x^{0}, \vec{x}\right)$, and $x_{P}^{\mu}=\left(x^{0},-\vec{x}\right)$

- The theory is CP-symmetric if there are values of the phase $\xi_{\nu}^{C P}$ such that the Lagrangian transforms as

$$
\mathrm{U}_{\mathrm{CP}} \mathscr{L}(x) \mathrm{U}_{\mathrm{CP}}^{-1}=\mathscr{L}\left(x_{\mathrm{P}}\right)
$$

in order to keep invariant the action $I=\int \mathrm{d}^{4} x \mathscr{L}(x)$

- The Majorana Mass Term

$$
\mathscr{L}_{\text {mass }}^{\mathrm{M}}(x)=-\frac{1}{2} m\left[\overline{\nu_{L}^{C}}(x) \nu_{L}(x)+\overline{\nu_{L}}(x) \nu_{L}^{C}(x)\right]
$$

transforms as

$$
\begin{aligned}
\mathrm{U}_{\mathrm{CP}} \mathscr{L}_{\text {mass }}^{\mathrm{M}}(x) \mathrm{U}_{\mathrm{CP}}^{-1}=-\frac{1}{2} m & {\left[-\left(\xi_{\nu}^{\mathrm{CP}}\right)^{2} \overline{\nu_{L}}\left(x_{\mathrm{P}}\right) \nu_{L}^{C}\left(x_{\mathrm{P}}\right)\right.} \\
& \left.-\left(\xi_{\nu}^{\mathrm{CP}}\right)^{*} \overline{\nu_{L}^{C}}\left(x_{\mathrm{P}}\right) \nu_{L}\left(x_{\mathrm{P}}\right)\right]
\end{aligned}
$$

- $\mathrm{U}_{\mathrm{CP}} \mathscr{L}_{\text {mass }}^{\mathrm{M}}(x) \mathrm{U}_{\mathrm{CP}}^{-1}=\mathscr{L}_{\text {mass }}^{\mathrm{M}}\left(x_{\mathrm{P}}\right) \quad$ for $\quad \xi_{\nu}^{\mathrm{CP}}= \pm i$
- The one-generation Majorana theory is CP-symmetric
- The Majorana case is different from the Dirac case, in which the CP phase $\xi_{\nu}^{C P}$ is arbitrary

No Majorana Neutrino Mass in the SM

- Majorana Mass Term $\propto\left[\nu_{L}^{T} C^{\dagger} \nu_{L}-\overline{\nu_{L}} C \bar{\nu}_{L}{ }^{T}\right]$ involves only the neutrino left-handed chiral field ν_{L}, which is present in the SM (one for each lepton generation)
- Eigenvalues of the weak isospin I, of its third component I_{3}, of the hypercharge Y and of the charge Q of the lepton and Higgs multiplets:
$\left.\left.\begin{array}{|l|c|c|c|c|}\hline & I & I_{3} & Y & Q=I_{3}+\frac{Y}{2} \\ \hline \text { lepton doublet } \quad L_{L}=\binom{\nu_{L}}{\ell_{L}} & 1 / 2 & \begin{array}{c}1 / 2 \\ -1 / 2\end{array} & -1 & 0 \\ -1\end{array} \right\rvert\, \begin{array}{l}\text { lepton singlet } \quad \ell_{R} \\ \hline \text { Higgs doublet } \Phi(x)=\binom{\phi_{+}(x)}{\phi_{0}(x)} \\ \hline 1 / 2\end{array} \begin{array}{c}1 / 2 \\ -1 / 2\end{array}\right)$
- $\nu_{L}^{T} C^{\dagger} \nu_{L}$ has $I_{3}=1$ and $Y=-2 \Longrightarrow$ needed Higgs triplet with $Y=2$

Effective Majorana Mass

- Dimensional analysis: Fermion Field $\sim[E]^{3 / 2} \quad$ Boson Field $\sim[E]$
- Dimensionless action: $\quad I=\int \mathrm{d}^{4} x \mathscr{L}(x) \Longrightarrow \mathscr{L}(x) \sim[E]^{4}$
- Kinetic terms: $\bar{\psi} i \not \partial \psi \sim[E]^{4}, \quad\left(\partial_{\mu} \phi\right)^{\dagger} \partial^{\mu} \phi \sim[E]^{4}$
- Mass terms: $\quad m \bar{\psi} \psi \sim[E]^{4}, \quad m^{2} \phi^{\dagger} \phi \sim[E]^{4}$
- CC weak interaction: $g \overline{\nu_{L}} \gamma^{\rho} \ell_{L} W_{\rho} \sim[E]^{4}$
- Yukawa couplings: \quad y $\overline{L_{L}} \Phi \ell_{R} \sim[E]^{4}$
- Product of fields \mathscr{O}_{d} with energy dimension $d \equiv \operatorname{dim}$ - d operator
- $\mathscr{L}_{\left(\mathscr{O}_{d}\right)}=C_{\left(\mathscr{O}_{d}\right)} \mathscr{O}_{d} \quad \Longrightarrow \quad C_{\left(\mathscr{O}_{d}\right)} \sim[E]^{4-d}$
- $\mathscr{O}_{d>4}$ are not renormalizable
- SM Lagrangian includes all $\mathscr{O}_{d \leq 4}$ invariant under $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$
- SM cannot be considered as the final theory of everything
- SM is an effective low-energy theory
- It is likely that SM is the low-energy product of the symmetry breaking of a high-energy unified theory
- It is plausible that at low-energy there are effective non-renormalizable $\mathscr{O}_{d>4}$ [S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566]
- All \mathscr{O}_{d} must respect $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$, because they are generated by the high-energy theory which must include the gauge symmetries of the SM in order to be effectively reduced to the SM at low energies
- $\mathscr{O}_{d>4}$ is suppressed by a coefficient \mathcal{M}^{4-d}, where \mathcal{M} is a heavy mass characteristic of the symmetry breaking scale of the high-energy unified theory:

$$
\mathscr{L}=\mathscr{L}_{\mathrm{SM}}+\frac{g_{5}}{\mathcal{M}} \mathscr{O}_{5}+\frac{g_{6}}{\mathcal{M}^{2}} \mathscr{O}_{6}+\ldots
$$

- Analogy with $\mathscr{L}_{\text {eff }}^{(\mathrm{CC})} \propto G_{F}\left(\overline{\nu_{e L}} \gamma^{\rho} e_{L}\right)\left(\overline{e_{L}} \gamma_{\rho} \nu_{e L}\right)+\ldots$

$$
\mathscr{O}_{6} \rightarrow\left(\overline{\nu_{e L}} \gamma^{\rho} e_{L}\right)\left(\overline{e_{L}} \gamma_{\rho} \nu_{e L}\right)+\ldots \quad \frac{g_{6}}{\mathcal{M}^{2}} \rightarrow \frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 m_{W}^{2}}
$$

- \mathcal{M}^{4-d} is a strong suppression factor which limits the observability of the low-energy effects of the new physics beyond the SM
- The difficulty to observe the effects of the effective low-energy non-renormalizable operators increase rapidly with their dimensionality
- $\mathscr{O}_{5} \Longrightarrow$ Majorana neutrino masses (Lepton number violation)
- $\mathscr{O}_{6} \Longrightarrow$ Baryon number violation (proton decay)
- Only one dim-5 operator:

$$
\begin{aligned}
\mathscr{O}_{5} & =\left(L_{L}^{T} \sigma_{2} \Phi\right) C^{\dagger}\left(\Phi^{T} \sigma_{2} L_{L}\right)+\text { H.c. } \\
& =\frac{1}{2}\left(L_{L}^{T} C^{\dagger} \sigma_{2} \vec{\sigma} L_{L}\right) \cdot\left(\Phi^{T} \sigma_{2} \vec{\sigma} \Phi\right)+\text { H.c. } \\
\mathscr{L}_{5} & =\frac{g_{5}}{2 \mathcal{M}}\left(L_{L}^{T} C^{\dagger} \sigma_{2} \vec{\sigma} L_{L}\right) \cdot\left(\Phi^{T} \sigma_{2} \vec{\sigma} \Phi\right)+\text { H.c. }
\end{aligned}
$$

- Electroweak Symmetry Breaking: $\Phi=\binom{\phi_{+}}{\phi_{0}} \xrightarrow[\text { Breaking }]{\text { Symmetry }}\binom{0}{v / \sqrt{2}}$
- $\mathscr{L}_{5} \xrightarrow[\text { Breaking }]{\text { Symmetry }} \mathscr{L}_{\text {mass }}^{\mathrm{M}}=\frac{1}{2} \frac{g_{5} v^{2}}{\mathcal{M}} \nu_{L}^{T} c^{\dagger} \nu_{L}+$ H.c. $\Rightarrow m=\frac{g_{5} v^{2}}{\mathcal{M}}$
- The study of Majorana neutrino masses provides the most accessible low-energy window on new physics beyond the SM
- $m \propto \frac{v^{2}}{\mathcal{M}} \propto \frac{m_{D}^{2}}{\mathcal{M}}$ natural explanation of smallness of neutrino masses
(special case: See-Saw Mechanism)
- Example: $m_{\mathrm{D}} \sim v \sim 10^{2} \mathrm{GeV}$ and $\mathcal{M} \sim 10^{15} \mathrm{GeV} \Longrightarrow m \sim 10^{-2} \mathrm{eV}$

Mixing of Three Majorana Neutrinos

$$
\begin{aligned}
\mathscr{L}_{\text {mass }}^{M} & =\frac{1}{2} \nu_{L}^{\prime \top} C^{\dagger} M^{L} \nu_{L}^{\prime}+\text { H.c. } \\
& =\frac{1}{2} \sum_{\alpha, \beta=e, \mu, \tau} \nu_{\alpha L}^{\prime \top} C^{\dagger} M_{\alpha \beta}^{L} \nu_{\beta L}^{\prime}+\text { H.c. } .
\end{aligned}
$$

- In general, the matrix M^{L} is a complex symmetric matrix

$$
\begin{aligned}
\sum_{\alpha, \beta} \nu_{\alpha L}^{\prime T} C^{\dagger} M_{\alpha \beta}^{L} \nu_{\beta L}^{\prime} & =-\sum_{\alpha, \beta} \nu_{\beta L}^{\prime T} M_{\alpha \beta}^{L}\left(C^{\dagger}\right)^{T} \nu_{\alpha L}^{\prime} \\
& =\sum_{\alpha, \beta} \nu_{\beta L}^{\prime T} C^{\dagger} M_{\alpha \beta}^{L} \nu_{\alpha L}^{\prime}=\sum_{\alpha, \beta} \nu_{\alpha L}^{\prime T} C^{\dagger} M_{\beta \alpha}^{L} \nu_{\beta L}^{\prime} \\
M_{\alpha \beta}^{L} & =M_{\beta \alpha}^{L} \Longleftrightarrow M^{L}=M^{L T}
\end{aligned}
$$

- $\mathscr{L}_{\text {mass }}^{M}=\frac{1}{2} \nu_{L}^{\prime T} C^{\dagger} M^{L} \nu_{L}^{\prime}+$ H.c.
- $\nu_{L}^{\prime}=V_{L}^{\nu} \mathbf{n}_{L} \quad \Longrightarrow \quad \mathscr{L}_{\text {mass }}^{M}=\frac{1}{2} \nu_{L}^{\prime T}\left(V_{L}^{\nu}\right)^{T} C^{\dagger} M^{L} V_{L}^{\nu} \nu_{L}^{\prime}+$ H.c.
- $\left(V_{L}^{\nu}\right)^{T} M^{L} V_{L}^{\nu}=M, \quad M_{k j}=m_{k} \delta_{k j} \quad(k, j=1,2,3)$
- Left-handed chiral fields with definite mass: $\mathbf{n}_{L}=V_{L}^{\nu \dagger} \nu_{L}^{\prime}=\left(\begin{array}{c}\nu_{1 L} \\ \nu_{2 L} \\ \nu_{3 L}\end{array}\right)$

$$
\begin{aligned}
\mathscr{L}_{\text {mass }}^{\mathrm{M}} & =\frac{1}{2}\left(\mathbf{n}_{L}^{T} C^{\dagger} M \mathbf{n}_{L}-\overline{\mathbf{n}_{L}} M C \mathbf{n}_{L}^{T}\right) \\
& =\frac{1}{2} \sum_{k=1}^{3} m_{k}\left(\nu_{k L}^{T} C^{\dagger} \nu_{k L}-\overline{\nu_{k L}} C \nu_{k L}^{T}\right)
\end{aligned}
$$

- Majorana fields of massive neutrinos: $\nu_{k}=\nu_{k L}+\nu_{k L}^{C}$

$$
\nu_{k}^{C}=\nu_{k}
$$

- $\mathbf{n}=\left(\begin{array}{l}\nu_{1} \\ \nu_{2} \\ \nu_{3}\end{array}\right) \Longrightarrow \mathscr{L}^{M}=\frac{1}{2} \sum_{k=1}^{3} \overline{\nu_{k}}\left(i \not \partial-m_{k}\right) \nu_{k}=\frac{1}{2} \overline{\mathbf{n}}(i \not \partial-M) \mathbf{n}$

Mixing Matrix

- Leptonic Weak Charged Current:

$$
j_{W, L}^{\rho}=2 \overline{\mathbf{n}_{L}} U^{\dagger} \gamma^{\rho} \ell_{L} \quad \text { with } \quad U=V_{L}^{\ell \dagger} V_{L}^{\nu}
$$

- Definition of the left-handed flavor neutrino fields:

$$
\nu_{L}=U \mathbf{n}_{L}=V_{L}^{\ell \dagger} \nu_{L}^{\prime}=\left(\begin{array}{c}
\nu_{e L} \\
\nu_{\mu L} \\
\nu_{\tau L}
\end{array}\right)
$$

- Leptonic Weak Charged Current has the SM form

$$
j_{W, L}^{\rho}=2 \overline{\nu_{L}} \gamma^{\rho} \ell_{L}=2 \sum_{\alpha=e, \mu, \tau} \overline{\nu_{\alpha L}} \gamma^{\rho} \ell_{\alpha L}
$$

- Important difference with respect to Dirac case:

Two additional CP-violating phases: Majorana phases

- Majorana Mass Term $\mathscr{L}_{\text {mass }}^{\mathrm{M}}=\frac{1}{2} \sum_{k=1}^{3} m_{k} \nu_{k L}^{T} C^{\dagger} \nu_{k L}+$ H.c. is not invariant under the global $\mathrm{U}(1)$ gauge transformations

$$
\nu_{k L} \rightarrow e^{i \varphi_{k}} \nu_{k L} \quad(k=1,2,3)
$$

- Left-handed massive neutrino fields cannot be rephased in order to eliminate two Majorana phases factorized on the right of mixing matrix:

$$
U=U^{\mathrm{D}} D^{\mathrm{M}}
$$

$$
D^{\mathrm{M}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \lambda_{2}} & 0 \\
0 & 0 & e^{i \lambda_{3}}
\end{array}\right)
$$

- U^{D} is analogous to a Dirac mixing matrix, with one Dirac phase
- Standard parameterization:

$$
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \lambda_{2}} & 0 \\
0 & 0 & e^{i \lambda_{3}}
\end{array}\right)
$$

- Jarlskog rephasing invariant: $J=c_{12} s_{12} c_{23} s_{23} c_{13}^{2} s_{13} \sin \delta_{13}$
- $D^{\mathrm{M}}=\operatorname{diag}\left(e^{i \lambda_{1}}, e^{i \lambda_{2}}, e^{i \lambda_{3}}\right)$, but only two Majorana phases are physical
- All measurable quantities depend only on the differences of the Majorana phases

$$
\ell_{\alpha} \rightarrow e^{i \varphi} \ell_{\alpha} \Longrightarrow e^{i \lambda_{k}} \rightarrow e^{i\left(\lambda_{k}-\varphi\right)}
$$

$e^{i\left(\lambda_{k}-\lambda_{j}\right)}$ remains constant

- Our convention: $\lambda_{1}=0 \Longrightarrow D^{M}=\operatorname{diag}\left(1, e^{i \lambda_{2}}, e^{i \lambda_{3}}\right)$
- CP is conserved if all the elements of each column of the mixing matrix are either real or purely imaginary:

$$
\delta_{13}=0 \text { or } \pi \quad \text { and } \quad \lambda_{k}=0 \text { or } \pi / 2 \text { or } \pi \text { or } 3 \pi / 2
$$

Dirac-Majorana Mass Term

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
- One Generation
- Real Mass Matrix
- Maximal Mixing
- Dirac Limit
- Pseudo-Dirac Neutrinos
- See-Saw Mechanism
- Majorana Neutrino Mass?
- Fundamental Fields in QFT
- Right-Handed Neutrino Mass Term
- Singlet Majoron Model
- Three-Generation Mixing

One Generation

If ν_{R} exists, the most general mass term is the

$$
\begin{gathered}
\text { Dirac-Majorana Mass Term } \\
\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\mathscr{L}_{\text {mass }}^{\mathrm{D}}+\mathscr{L}_{\text {mass }}^{L}+\mathscr{L}_{\text {mass }}^{R} \\
\mathscr{L}_{\text {mass }}^{\mathrm{D}}=-m_{\mathrm{D}} \overline{\nu_{R}} \nu_{L}+\text { H.c. } \quad \text { Dirac Mass Term } \\
\mathscr{L}_{\text {mass }}^{L}=\frac{1}{2} m_{L} \nu_{L}^{T} C^{\dagger} \nu_{L}+\text { H.c. } \quad \text { Majorana Mass Term } \\
\mathscr{L}_{\text {mass }}^{R}=\frac{1}{2} m_{R} \nu_{R}^{T} C^{\dagger} \nu_{R}+\text { H.c. } \quad \text { New Majorana Mass Term! }
\end{gathered}
$$

- Column matrix of left-handed chiral fields: $N_{L}=\binom{\nu_{L}}{\nu_{R}^{C}}=\binom{\nu_{L}}{C \frac{\nu_{R}}{\nu^{\prime}} T}$

$$
\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\frac{1}{2} N_{L}^{T} C^{\dagger} M N_{L}+\text { H.c. } \quad M=\left(\begin{array}{cc}
m_{L} & m_{\mathrm{D}} \\
m_{\mathrm{D}} & m_{R}
\end{array}\right)
$$

- The Dirac-Majorana Mass Term has the structure of a Majorana Mass Term for two chiral neutrino fields coupled by the Dirac mass
- Diagonalization: $n_{L}=U^{\dagger} N_{L}=\binom{\nu_{1 L}}{\nu_{2 L}}$

$$
U^{T} M U=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right) \quad \text { Real } m_{k} \geq 0
$$

- $\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\frac{1}{2} \sum_{k=1,2} m_{k} \nu_{k L}^{T} C^{\dagger} \nu_{k L}+$ H.c. $=-\frac{1}{2} \sum_{k=1,2} m_{k} \overline{\nu_{k}} \nu_{k}$

$$
\nu_{k}=\nu_{k L}+\nu_{k L}^{C}
$$

- Massive neutrinos are Majorana! $\quad \nu_{k}=\nu_{k}^{C}$

Real Mass Matrix

- CP is conserved if the mass matrix is real: $M=M^{*}$
- $M=\left(\begin{array}{ll}m_{L} & m_{\mathrm{D}} \\ m_{\mathrm{D}} & m_{R}\end{array}\right)$ we consider real and positive m_{R} and m_{D} and real m_{L}
- A real symmetric mass matrix can be diagonalized with $U=\mathcal{O} \rho$

$$
\mathcal{O}=\left(\begin{array}{cc}
\cos \vartheta & \sin \vartheta \\
-\sin \vartheta & \cos \vartheta
\end{array}\right) \quad \rho=\left(\begin{array}{cc}
\rho_{1} & 0 \\
0 & \rho_{2}
\end{array}\right) \quad \rho_{k}^{2}= \pm 1
$$

- $\mathcal{O}^{T} M \mathcal{O}=\left(\begin{array}{cc}m_{1}^{\prime} & 0 \\ 0 & m_{2}^{\prime}\end{array}\right)$

$$
\tan 2 \vartheta=\frac{2 m_{\mathrm{D}}}{m_{R}-m_{L}}
$$

$$
m_{2,1}^{\prime}=\frac{1}{2}\left[m_{L}+m_{R} \pm \sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}\right]
$$

- m_{1}^{\prime} is negative if $m_{L} m_{R}<m_{\mathrm{D}}^{2}$

$$
U^{T} M U=\rho^{T} \mathcal{O}^{T} M O \rho=\left(\begin{array}{cc}
\rho_{1}^{2} m_{1}^{\prime} & 0 \\
0 & \rho_{2}^{2} m_{2}^{\prime}
\end{array}\right) \Longrightarrow m_{k}=\rho_{k}^{2} m_{k}^{\prime}
$$

- m_{2}^{\prime} is always positive:

$$
m_{2}=m_{2}^{\prime}=\frac{1}{2}\left[m_{L}+m_{R}+\sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}\right]
$$

- If $m_{L} m_{R} \geq m_{\mathrm{D}}^{2}$, then $m_{1}^{\prime} \geq 0$ and $\rho_{1}^{2}=1$

$$
\begin{gathered}
m_{1}=\frac{1}{2}\left[m_{L}+m_{R}-\sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}\right] \\
\rho_{1}=1 \text { and } \rho_{2}=1 \Longrightarrow U=\left(\begin{array}{cc}
\cos \vartheta & \sin \vartheta \\
-\sin \vartheta & \cos \vartheta
\end{array}\right)
\end{gathered}
$$

- If $m_{L} m_{R}<m_{\mathrm{D}}^{2}$, then $m_{1}^{\prime}<0$ and $\rho_{1}^{2}=-1$

$$
\begin{gathered}
m_{1}=\frac{1}{2}\left[\sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}-\left(m_{L}+m_{R}\right)\right] \\
\rho_{1}=i \text { and } \rho_{2}=1 \Longrightarrow U=\left(\begin{array}{cc}
i \cos \vartheta & \sin \vartheta \\
-i \sin \vartheta & \cos \vartheta
\end{array}\right)
\end{gathered}
$$

- If Δm^{2} is small, there are oscillations between active ν_{a} generated by ν_{L} and sterile ν_{s} generated by ν_{R}^{C} :

$$
\begin{gathered}
P_{\nu_{\mathrm{a}} \rightarrow \nu_{s}}(L, E)=\sin ^{2} 2 \vartheta \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) \\
\Delta m^{2}= \\
m_{2}^{2}-m_{1}^{2}=\left(m_{L}+m_{R}\right) \sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}
\end{gathered}
$$

- It can be shown that the CP parity of ν_{k} is $\xi_{k}^{\mathrm{CP}}=i \rho_{k}^{2}$:

$$
\mathrm{U}_{\mathrm{CP}} \nu_{k}(x) \mathrm{U}_{\mathrm{CP}}^{-1}=i \rho_{k}^{2} \gamma^{0} \nu_{k}\left(x_{\mathrm{P}}\right)
$$

- Special cases:
- $m_{L}=m_{R} \quad \Longrightarrow \quad$ Maximal Mixing
- $m_{L}=m_{R}=0 \Longrightarrow$ Dirac Limit
- $\left|m_{L}\right|, m_{R} \ll m_{D} \Longrightarrow$ Pseudo-Dirac Neutrinos
- $m_{L}=0 \quad m_{\mathrm{D}} \ll m_{R} \quad \Longrightarrow$ See-Saw Mechanism

Maximal Mixing

$$
\begin{gathered}
m_{L}=m_{R} \\
\vartheta=\pi / 4 \\
\left\{\begin{array}{c}
m_{2,1}^{\prime}=m_{L} \pm m_{\mathrm{D}} \\
\rho_{1}^{2}=+1, \quad m_{1}=m_{L}-m_{\mathrm{D}} \\
\quad \text { if } \quad m_{L} \geq m_{\mathrm{D}}
\end{array}\right. \\
\left\{\begin{array}{c}
m_{1}=m_{\mathrm{D}}-m_{L} \quad \text { if } \quad m_{L}<m_{\mathrm{D}} \\
m_{2}=m_{L}+m_{\mathrm{D}}
\end{array}\right. \\
\nu_{1 L}=\frac{m_{L}<m_{\mathrm{D}}}{\sqrt{2}}\left(\nu_{L}-\nu_{R}^{C}\right) \\
\left\{\begin{array}{c}
\frac{1}{\sqrt{2}}\left(\nu_{L}+\nu_{R}^{C}\right) \\
\nu_{1}=\nu_{1 L}+\nu_{1 L}^{C}=\frac{-i}{\sqrt{2}}\left[\left(\nu_{L}+\nu_{R}\right)-\left(\nu_{L}^{C}+\nu_{R}^{C}\right)\right]
\end{array}\right. \\
\nu_{2}=\nu_{2 L}+\nu_{2 L}^{C}=\frac{1}{\sqrt{2}}\left[\left(\nu_{L}+\nu_{R}\right)+\left(\nu_{L}^{C}+\nu_{R}^{C}\right)\right]
\end{gathered}
$$

Dirac Limit

$$
m_{L}=m_{R}=0
$$

$\triangleright m_{2,1}^{\prime}= \pm m_{\mathrm{D}} \Longrightarrow \begin{cases}\rho_{1}^{2}=-1, & m_{1}=m_{\mathrm{D}} \\ \rho_{2}^{2}=+1, & m_{2}=m_{\mathrm{D}}\end{cases}$

- The two Majorana fields ν_{1} and ν_{2} can be combined to give one Dirac field:

$$
\nu=\frac{1}{\sqrt{2}}\left(i \nu_{1}+\nu_{2}\right)=\nu_{L}+\nu_{R}
$$

- A Dirac field ν can always be split in two Majorana fields:

$$
\begin{aligned}
\nu & =\frac{1}{2}\left[\left(\nu-\nu^{C}\right)+\left(\nu+\nu^{C}\right)\right] \\
& =\frac{i}{\sqrt{2}}\left(-i \frac{\nu-\nu^{C}}{\sqrt{2}}\right)+\frac{1}{\sqrt{2}}\left(\frac{\nu+\nu^{C}}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}\left(i \nu_{1}+\nu_{2}\right)
\end{aligned}
$$

- A Dirac field is equivalent to two Majorana fields with the same mass and opposite CP parities

Pseudo-Dirac Neutrinos

$$
\left|m_{L}\right|, m_{R} \ll m_{\mathrm{D}}
$$

$-m_{2,1}^{\prime} \simeq \frac{m_{L}+m_{R}}{2} \pm m_{\mathrm{D}}$

- $m_{1}^{\prime}<0 \Longrightarrow \rho_{1}^{2}=-1 \Longrightarrow m_{2,1} \simeq m_{\mathrm{D}} \pm \frac{m_{L}+m_{R}}{2}$
- The two massive Majorana neutrinos have opposite CP parities and are almost degenerate in mass
- The best way to reveal pseudo-Dirac neutrinos are active-sterile neutrino oscillations due to the small squared-mass difference

$$
\Delta m^{2} \simeq m_{D}\left(m_{L}+m_{R}\right)
$$

- The oscillations occur with practically maximal mixing:

$$
\tan 2 \vartheta=\frac{2 m_{\mathrm{D}}}{m_{R}-m_{L}} \gg 1 \Rightarrow \vartheta \simeq \pi / 4
$$

See-Saw Mechanism

[Minkowski, PLB 67 (1977) 42; Yanagida (1979); Gell-Mann, Ramond, Slansky (1979); Mohapatra, Senjanovic, PRL 44 (1980) 912]

$$
m_{L}=0 \quad m_{\mathrm{D}} \ll m_{R}
$$

- $\mathscr{L}_{\text {mass }}^{L}$ is forbidden by SM symmetries $\Longrightarrow m_{L}=0$
- $m_{\mathrm{D}} \lesssim v \sim 100 \mathrm{GeV}$ is generated by SM Higgs Mechanism (protected by SM symmetries)
- m_{R} is not protected by SM symmetries $\Rightarrow m_{R} \sim \mathcal{M}_{\text {GUT }} \gg v$
$\left.-\begin{array}{l}m_{1}^{\prime} \simeq-\frac{m_{\mathrm{D}}^{2}}{m_{R}} \\ m_{2}^{\prime} \simeq m_{R}\end{array}\right\} \Longrightarrow \begin{cases}\rho_{1}^{2}=-1, & m_{1} \simeq \frac{m_{\mathrm{D}}^{2}}{m_{R}} \\ \rho_{2}^{2}=+1, & m_{2} \simeq m_{R}\end{cases}$

- Natural explanation of smallness of neutrino masses
- Mixing angle is very small: $\tan 2 \vartheta=2 \frac{m_{\mathrm{D}}}{m_{R}} \ll 1$
- ν_{1} is composed mainly of active $\nu_{L}: \nu_{1 L} \simeq-i \nu_{L}$
- ν_{2} is composed mainly of sterile $\nu_{R}: \nu_{2 L} \simeq \nu_{R}^{C}$

$$
\text { C. Giunti - Neutrino Physics - May } 2011 \text { - } 73
$$

Connection with Effective Lagrangian Approach

- Dirac-Majorana neutrino mass term with $m_{L}=0$:

$$
\mathscr{L}^{\mathrm{D}+\mathrm{M}}=-m_{\mathrm{D}}\left(\overline{\nu_{R}} \nu_{L}+\overline{\nu_{L}} \nu_{R}\right)+\frac{1}{2} m_{R}\left(\nu_{R}^{T} C^{\dagger} \nu_{R}+\nu_{R}^{\dagger} C \nu_{R}^{*}\right)
$$

- Above the electroweak symmetry-breaking scale:

$$
\mathscr{L}^{\mathrm{D}+\mathrm{M}}=-y^{\nu}\left(\overline{\nu_{R}} \tilde{\Phi}^{\dagger} L_{L}+\overline{L_{L}} \tilde{\Phi} \nu_{R}\right)+\frac{1}{2} m_{R}\left(\nu_{R}^{T} C^{\dagger} \nu_{R}+\nu_{R}^{\dagger} C \nu_{R}^{*}\right)
$$

- If $m_{R} \gg v \Longrightarrow \nu_{R}$ is static \Longrightarrow kinetic term in equation of motion can be neglected:

$$
\begin{gathered}
0 \simeq \frac{\partial \mathscr{L}^{\mathrm{D}+\mathrm{M}}}{\partial \nu_{R}}=m_{R} \nu_{R}^{T} C^{\dagger}-y^{\nu} \overline{L_{L}} \tilde{\Phi} \\
\nu_{R} \simeq-\frac{y^{\nu}}{m_{R}} \tilde{\Phi}^{T} C{\overline{L_{L}}}^{T} \\
\mathscr{L}^{\mathrm{D}+\mathrm{M}} \rightarrow \mathscr{L}_{5}^{\mathrm{D}+\mathrm{M}} \simeq-\frac{1}{2} \frac{\left(y^{\nu}\right)^{2}}{m_{R}}\left(L_{L}^{T} \sigma_{2} \Phi\right) C^{\dagger}\left(\Phi^{T} \sigma_{2} L_{L}\right)+\text { H.c. }
\end{gathered}
$$

$$
\begin{gathered}
\mathscr{L}_{5}=\frac{g}{\mathcal{M}}\left(L_{L}^{T} \sigma_{2} \Phi\right) C^{\dagger}\left(\Phi^{T} \sigma_{2} L_{L}\right)+\text { H.c. } \\
\mathscr{L}_{5}^{\mathrm{D}+\mathrm{M}} \simeq-\frac{1}{2} \frac{\left(y^{\nu}\right)^{2}}{m_{R}}\left(L_{L}^{T} \sigma_{2} \Phi\right) C^{\dagger}\left(\Phi^{T} \sigma_{2} L_{L}\right)+\text { H.c. } \\
g=-\frac{\left(y^{\nu}\right)^{2}}{2} \quad \mathcal{M}=m_{R}
\end{gathered}
$$

- See-saw mechanism is a particular case of the effective Lagrangian approach.
- See-saw mechanism is obtained when dimension-five operator is generated only by the presence of ν_{R} with $m_{R} \sim \mathcal{M}$.
- In general, other terms can contribute to \mathscr{L}_{5}.

Majorana Neutrino Mass?

known natural explanation of smallness of ν masses
New High Energy Scale $\mathcal{M} \Rightarrow\left\{\begin{array}{l}\text { See-Saw Mechanism (if } \nu_{R} \text { 's exist) } \\ \text { 5-D Non-Renormaliz. Eff. Operator }\end{array}\right.$
both imply $\left\{\begin{array}{l}\text { Majorana } \nu \text { masses } \Longleftrightarrow|\Delta L|=2 \Longleftrightarrow \beta \beta_{0 \nu} \text { decay } \\ \text { see-saw type relation } m_{\nu} \sim \frac{\mathcal{M}_{\mathrm{EW}}^{2}}{\mathcal{M}}\end{array}\right.$
Majorana neutrino masses provide the most accessible window on New Physics Beyond the Standard Model

Fundamental Fields in QFT

- Each elementary particle is described by a field which is an irreducible representation of the Poincaré group (Lorentz group + space-time translations).
- In this way
- Under Poincaré transformation an elementary particle remains itself.
- Lagrangian is constructed with invariant products of elementary fields.
- Spinorial structure of a particle is determined by its representation under the restricted Lorentz group of proper and orthochronous Lorentz transformation (no space or time inversions).
- Restricted Lorentz group is isomorphic to $\mathrm{SU}(2) \times \mathrm{SU}(2)$.
- Classification of fundamental representations:

$$
\begin{aligned}
(0,0) & \text { scalar } \varphi \\
(1 / 2,0) & \text { left-handed Weyl spinor } \chi_{L} \text { (Majorana if massive) } \\
(0,1 / 2) & \text { right-handed Weyl spinor } \chi_{R} \text { (Majorana if massive) }
\end{aligned}
$$

- All representations are constructed combining the two fundamental Weyl spinor representations.

$$
\begin{aligned}
(1 / 2,1 / 2) & \text { four-vector } v^{\mu} \text { (irreducible) } \\
(1 / 2,0)+(0,1 / 2) & \text { four-component Dirac spinor } \psi \text { (reducible) }
\end{aligned}
$$

- Two-component Weyl (Majorana if massive) spinor is more fundamental than four-component Dirac spinor.
- Two-component left-handed Weyl (Majorana if massive) spinor:

$$
\chi_{L}=\binom{\chi_{L 1}}{\chi_{L 2}}
$$

- Two-component right-handed Weyl (Majorana if massive) spinor:

$$
\chi_{R}=\binom{\chi_{R 1}}{\chi_{R 2}}
$$

- Four-component Dirac spinor: $\quad \psi=\binom{\chi_{R}}{\chi_{L}}=\left(\begin{array}{c}\chi_{R 1} \\ \chi_{R 2} \\ \chi_{L 1} \\ \chi_{L 2}\end{array}\right)$
- Lorentz transformation:

$$
v^{\mu} \rightarrow v^{\prime \mu}=\Lambda_{\nu}^{\mu} v^{\nu}
$$

$$
g_{\mu \nu} \Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{\nu}=g_{\rho \sigma} \quad g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)
$$

- Restricted Lorentz transformation: $\quad \Lambda_{\nu}^{\mu}=\left[e^{\omega}\right]_{\nu}^{\mu} \quad \omega_{\mu \nu}=-\omega_{\nu \mu}$

$$
\omega_{\mu \nu}=\left(\begin{array}{cccc}
0 & v_{1} & v_{2} & v_{3} \\
-v_{1} & 0 & \theta_{3} & -\theta_{2} \\
-v_{2} & -\theta_{3} & 0 & \theta_{1} \\
-v_{3} & \theta_{2} & -\theta_{1} & 0
\end{array}\right)
$$

- 6 parameters:
- 3 for rotations: $\vec{\theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$
- 3 for boosts: $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$

$$
\begin{array}{ll}
\chi_{L} \rightarrow \chi_{L}^{\prime}=\Lambda_{L} \chi_{L} & \Lambda_{L}=e^{i(\vec{\theta}-i \vec{v}) \cdot \vec{\sigma} / 2} \\
\chi_{R} \rightarrow \chi_{R}^{\prime}=\Lambda_{R} \chi_{R} & \Lambda_{R}=e^{i(\vec{\theta}+i \vec{v}) \cdot \vec{\sigma} / 2}
\end{array}
$$

- Four-component form of two-component left-handed Weyl (Majorana if massive) spinor:

$$
\psi_{L}=\binom{0}{\chi_{L}}=\left(\begin{array}{c}
0 \\
0 \\
\chi_{L 1} \\
\chi_{L 2}
\end{array}\right)
$$

- Majorana mass term:

$$
\begin{gathered}
\mathscr{L}_{\text {mass }}^{L}=\frac{1}{2} m_{L} \psi_{L}^{T} C^{\dagger} \psi_{L}+\text { H.c. }=-\frac{1}{2} m_{L} \chi_{L}^{T} i \sigma^{2} \chi_{L}+\text { H.c. } \\
(1 / 2,0) \times(1 / 2,0)=\underset{\text { two-component form }}{(1,0)}+\underset{\text { symmetric }}{(0,0)} \quad \sigma^{2} \text { is antisymmmetrisymetric }
\end{gathered}
$$

- Anticommutativity of spinors is necessary, otherwise

$$
\chi_{L}^{T} i \sigma^{2} \chi_{L}=\left(\chi_{L}^{T} i \sigma^{2} \chi_{L}\right)^{T}=-\chi_{L}^{T} i \sigma^{2} \chi_{L}=0
$$

Right-Handed Neutrino Mass Term

Majorana mass term for ν_{R} respects the $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ Standard Model Symmetry!

$$
\mathcal{L}_{R}^{\mathrm{M}}=-\frac{1}{2} m\left(\overline{\nu_{R}^{c}} \nu_{R}+\overline{\nu_{R}} \nu_{R}^{c}\right)
$$

Majorana mass term for ν_{R} breaks Lepton number conservation!

Three possibilities:
(- Lepton number can be explicitly broken

- Lepton number is spontaneously broken locally, with a massive vector boson coupled to the lepton number current
- Lepton number is spontaneously broken globally and a massless Goldstone boson appears in the theory (Majoron)

Singlet Majoron Model

[Chikashige, Mohapatra, Peccei, Phys. Lett. B98 (1981) 265, Phys. Rev. Lett. 45 (1980) 1926]

$$
\begin{aligned}
& \mathcal{L}_{\Phi}=-y_{d}\left(\overline{L_{L}} \Phi \nu_{R}+\overline{\nu_{R}} \Phi^{\dagger} L_{L}\right) \underset{\langle\Phi\rangle \neq 0}{\longrightarrow}-m_{\mathrm{D}}\left(\overline{\nu_{L}} \nu_{R}+\overline{\nu_{R}} \nu_{L}\right) \\
& \mathcal{L}_{\eta}=-y_{s}\left(\eta \overline{\nu_{R}^{c}} \nu_{R}+\eta^{\dagger} \overline{\nu_{R}} \nu_{R}^{c}\right) \quad \underset{\langle\eta\rangle \neq 0}{ }-\frac{1}{2} m_{R}\left(\overline{\nu_{R}^{c}} \nu_{R}+\overline{\nu_{R}} \nu_{R}^{c}\right) \\
& \eta=2^{-1 / 2}(\langle\eta\rangle+\rho+i \chi) \quad \quad \mathcal{L}_{\text {mass }}=-\frac{1}{2}\left(\overline{\nu_{L}^{c}} \overline{\nu_{R}}\right)\left(\begin{array}{cc}
0 & m_{D} \\
m_{\mathrm{D}} & m_{R}
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{L}}+\text { H.c. } \\
& \underset{\text { scale of } L \text { violation }}{m_{R}} \gg m_{\mathrm{D}} \Longrightarrow \text { See-Saw: } m_{1} \simeq \frac{m_{D}^{2}}{m_{R}}
\end{aligned}
$$

$\rho=$ massive scalar, $\chi=$ Majoron (massless pseudoscalar Goldstone boson)
The Majoron is weakly coupled to the light neutrino

$$
\mathcal{L}_{\chi-\nu}=\frac{i y_{s}}{\sqrt{2}} \chi\left[\overline{\nu_{2}} \gamma^{5} \nu_{2}-\frac{m_{\mathrm{D}}}{m_{R}}\left[\overline{\nu_{2}} \gamma^{5} \nu_{1}+\overline{\nu_{1}} \gamma^{5} \nu_{2}\right)+\left(\frac{m_{\mathrm{D}}}{m_{R}}\right)^{2} \overline{\nu_{1}} \gamma^{5} \nu_{1}\right]
$$

Three-Generation Mixing

$$
\begin{gathered}
\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\mathscr{L}_{\text {mass }}^{\mathrm{D}}+\mathscr{L}_{\text {mass }}^{L}+\mathscr{L}_{\text {mass }}^{R} \\
\mathscr{L}_{\text {mass }}^{\mathrm{D}}=-\sum_{s=1}^{N_{s}} \sum_{\alpha=e, \mu, \tau} \overline{\nu_{s R}^{\prime}} M_{s \alpha}^{\mathrm{D}} \nu_{\alpha L}^{\prime}+\text { H.c. } \\
\mathscr{L}_{\text {mass }}^{L}=\frac{1}{2} \sum_{\alpha, \beta=,, \mu, \tau} \nu_{\alpha L}^{\prime \top} C^{\dagger} M_{\alpha \beta}^{L} \nu_{\beta L}^{\prime}+\text { H.c. } \\
\mathscr{L}_{\text {mass }}^{R}=\frac{1}{2} \sum_{s, s^{\prime}=1}^{N_{s}} \nu_{s R}^{\prime \top} C^{\dagger} M_{s s^{\prime}}^{R} \nu_{s^{\prime} R}^{\prime}+\text { H.c. } \\
\mathbf{N}_{L}^{\prime} \equiv\binom{\nu^{\prime}}{\nu_{R}^{\prime C}} \quad \nu_{L}^{\prime} \equiv\left(\begin{array}{c}
\nu_{e L}^{\prime} \\
\nu_{\mu L}^{\prime} \\
\nu_{\tau L}^{\prime}
\end{array}\right) \quad \nu_{R}^{\prime C} \equiv\left(\begin{array}{c}
\nu_{1 R}^{\prime} c \\
\vdots \\
\nu_{N_{S} R}^{\prime}
\end{array}\right) \\
\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\frac{1}{2} \mathbf{N}_{L}^{\prime \top} C^{\dagger} M^{\mathrm{D}+\mathrm{M}} \mathbf{N}_{L}^{\prime}+\text { H.c. } \quad M^{\mathrm{D}+\mathrm{M}}=\left(\begin{array}{cc}
M^{L} & M^{\mathrm{D} T} \\
M^{\mathrm{D}} & M^{R}
\end{array}\right)
\end{gathered}
$$

- Diagonalization of the Dirac-Majorana Mass Term \Longrightarrow massive Majorana neutrinos
- See-Saw Mechanism \Longrightarrow right-handed neutrinos have large Majorana masses and are decoupled from the low-energy phenomenology.
- If all right-handed neutrinos have large Majorana masses, at low energy we have an effective mixing of three Majorana neutrinos.
- It is possible that not all right-handed neutrinos have large Majorana masses: some right-handed neutrinos may correspond to low-energy Majorana particles which belong to new physics beyond the Standard Model (as a light neutralino in supersymmetric models).
- Light anti- ν_{R} are called sterile neutrinos

$$
\nu_{R}^{c} \rightarrow \nu_{s} \quad \text { (left-handed) }
$$

Number of Flavor and Massive Neutrinos?

[LEP, Phys. Rept. 427 (2006) 257, arXiv:hep-ex/0509008]

$$
\begin{gathered}
\Gamma_{Z}=\sum_{\ell=e, \mu, \tau} \Gamma_{Z \rightarrow \ell \bar{\ell}}+\sum_{q \neq t} \Gamma_{Z \rightarrow q \bar{q}}+\Gamma_{\text {inv }} \quad \Gamma_{\text {inv }}=N_{\nu} \Gamma_{Z \rightarrow \nu \bar{\nu}} \\
N_{\nu}=2.9840 \pm 0.0082
\end{gathered}
$$

$$
e^{+} e^{-} \rightarrow Z \xrightarrow{\text { invisible }} \sum_{a=\text { active }} \nu_{a} \bar{\nu}_{a} \Longrightarrow \nu_{e} \nu_{\mu} \nu_{\tau}
$$

3 light active flavor neutrinos

$$
\begin{array}{cccccccc}
\text { mixing } \Rightarrow & \nu_{\alpha L}=\sum_{k=1}^{N} U_{\alpha k} \nu_{k L} & & \alpha=e, \mu, \tau & & & & N \geq 3 \\
\text { no upper limit! }
\end{array}
$$

$$
\nu_{\alpha L}=\sum_{k=1}^{N} U_{\alpha k} \nu_{k L} \quad \alpha=e, \mu, \tau, s_{1}, s_{2}, \ldots
$$

Sterile Neutrinos

- Sterile means no standard model interactions
- Obviously no electromagnetic interactions as normal active neutrinos
- Thus sterile means no standard weak interactions
- But sterile neutrinos are not absolutely sterile:
- Gravitational Interactions
- New non-standard interactions of the physics beyond the Standard Model which generates the masses of sterile neutrinos
- Active neutrinos $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$ can oscillate into sterile neutrinos $\left(\nu_{s}\right)$
- Observables:
- Disappearance of active neutrinos
- Indirect evidence through combined fit of data
- Powerful window on new physics beyond the Standard Model

