Neutrino Physics Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it

Neutrino Unbound: http://www.nu.to.infn.it Torino, May 2011

This File: http://www.nu.to.infn.it/slides/2011/giunti-1105-phd-to-2.pdf Compact: http://www.nu.to.infn.it/slides/2011/giunti-1105-phd-to-2-4.pdf

Fundamentals of **Neutrino Physics** and Astrophysics THE PLACE PROFILE

C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 – 728 pages

Part I: Theory of Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
- Number of Flavor and Massive Neutrinos?
- Sterile Neutrinos

Part II: Neutrino Oscillations

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter

Part III: Phenomenology

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Anomalies Beyond Three-Neutrino Mixing
- Conclusions

Part II

Neutrino Oscillations

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter

Neutrino Oscillations in Vacuum

• Neutrino Oscillations in Vacuum

- Ultrarelativistic Approximation
- Easy Example of Neutrino Production
- Neutrino Oscillations
- Neutrinos and Antineutrinos
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter

Ultrarelativistic Approximation

Only neutrinos with energy $\gtrsim 0.1 MeV$ are detectable!

Charged-Current Processes: Threshold

u + A ightarrow B + C	$ u_e + {}^{71}Ga o {}^{71}Ge + e^-$	$E_{\rm th}=0.233{ m MeV}$
↓	$ u_e + {}^{37} ext{Cl} o {}^{37} ext{Ar} + e^-$	$E_{ m th}=0.81 m MeV$
$s=2Em_A+m_A^2\geq (m_B+m_C)^2$	$ar{ u}_e + p ightarrow n + e^+$	$E_{ m th}=1.8{ m MeV}$
\downarrow	$ u_{\mu}+n ightarrow p+\mu^{-}$	$E_{\rm th} = 110 {\rm MeV}$
$E_{\rm th} = rac{(m_B + m_C)^2}{2m_A} - rac{m_A}{2}$	$ u_{\mu}+e^{-} ightarrow u_{e}+\mu^{-}$	$E_{ m th}\simeq rac{m_{\mu}^2}{2m_e}=10.9{ m GeV}$

Elastic Scattering Processes: Cross Section \propto Energy $\nu + e^- \rightarrow \nu + e^- \qquad \sigma(E) \sim \sigma_0 E/m_e \qquad \sigma_0 \sim 10^{-44} \text{ cm}^2$ Background $\implies E_{\text{th}} \simeq 5 \text{ MeV} (\text{SK, SNO}), 0.25 \text{ MeV} (\text{Borexino})$

Laboratory and Astrophysical Limits $\implies m_{\nu} \lesssim 1\,{
m eV}$

Easy Example of Neutrino Production

Neutrino Oscillations

- ▶ 1957: Bruno Pontecorvo proposed Neutrino Oscillations in analogy with $K^0 \leftrightarrows \bar{K}^0$ oscillations (Gell-Mann and Pais, 1955)
- Flavor Neutrinos: ν_e , ν_μ , ν_τ produced in Weak Interactions
- ▶ Massive Neutrinos: ν_1 , ν_2 , ν_3 propagate from Source to Detector
- A Flavor Neutrino is a superposition of Massive Neutrinos

$$egin{aligned} |
u_e
angle &= U_{e1} \left|
u_1
angle + U_{e2} \left|
u_2
angle + U_{e3} \left|
u_3
angle \ |
u_\mu
angle &= U_{\mu 1} \left|
u_1
angle + U_{\mu 2} \left|
u_2
angle + U_{\mu 3} \left|
u_3
angle \ |
u_ au
angle &= U_{ au 1} \left|
u_1
angle + U_{ au 2} \left|
u_2
angle + U_{ au 3} \left|
u_3
angle \end{aligned}$$

U is the 3 × 3 Neutrino Mixing Matrix

 $ert
u(t=0)
angle = ert
u_e
angle = U_{e1} ert
u_1
angle + U_{e2} ert
u_2
angle + U_{e3} ert
u_3
angle$

$$|
u(t>0)
angle = U_{e1} \, e^{-iE_1 t} \, |
u_1
angle + U_{e2} \, e^{-iE_2 t} \, |
u_2
angle + U_{e3} \, e^{-iE_3 t} \, |
u_3
angle
eq |
u_e
angle$$

at the detector there is a probability > 0 to see the neutrino as a u_{μ}

Neutrino Oscillations are Flavor Transitions

 $\begin{array}{cccc}
\nu_e o
u_\mu &
u_e o
u_ au &
u_\mu o
u_e &
u_\mu o
u_ au \\
ar{
u}_e o
au_\mu &
ar{
u}_\mu o
ar{
u}_\mu o
ar{
u}_\mu o
ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{
u}_ au \\
ar{
u}_\mu o ar{$

Neutrino Oscillations in Vacuum

[Eliezer, Swift, NPB 105 (1976) 45] [Fritzsch, Minkowski, PLB 62 (1976) 72] [Bilenky, Pontecorvo, SJNP 24 (1976) 316]

$$\mathcal{L}_{CC} \sim W_{\rho} \left(\overline{\nu_{eL}} \gamma^{\rho} e_{L} + \overline{\nu_{\mu L}} \gamma^{\rho} \mu_{L} + \overline{\nu_{\tau L}} \gamma^{\rho} \tau_{L} \right)$$

 $\mathsf{Fields} \qquad \nu_{\alpha} = \sum_{k} U_{\alpha k} \nu_{k} \qquad \Longrightarrow \qquad |\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle \qquad \mathsf{States}$

initial flavor: lpha = e or μ or au

$$|
u_k(t,x)
angle = e^{-iE_kt+ip_kx} |
u_k
angle \implies |
u_{lpha}(t,x)
angle = \sum_k U^*_{lpha k} e^{-iE_kt+ip_kx} |
u_k
angle$$

$$|\nu_{k}\rangle = \sum_{\beta=e,\mu,\tau} U_{\beta k} |\nu_{\beta}\rangle \quad \Rightarrow \quad |\nu_{\alpha}(t,x)\rangle = \sum_{\beta=e,\mu,\tau} \underbrace{\left(\sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t + ip_{k}x} U_{\beta k}\right)}_{\mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}}(t,x)} |\nu_{\beta}\rangle$$

$$\mathcal{A}_{
u_{lpha}
ightarrow
u_{eta}}(0,0) = \sum_{k} U^{*}_{lpha k} U_{eta k} = \delta_{lpha eta} \qquad \qquad \mathcal{A}_{
u_{lpha}
ightarrow
u_{eta}}(t>0,x>0)
eq \delta_{lpha eta}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(t, x) = \left| \mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}}(t, x) \right|^{2} = \left| \sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t + ip_{k} \times} U_{\beta k} \right|^{2}$$

ultra-relativistic neutrinos $\implies t \simeq x = L$ source-detector distance

$$E_k t - p_k x \simeq (E_k - p_k) L = rac{E_k^2 - p_k^2}{E_k + p_k} L = rac{m_k^2}{E_k + p_k} L \simeq rac{m_k^2}{2E} L$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \left| \sum_{k} U_{\alpha k}^{*} e^{-im_{k}^{2}L/2E} U_{\beta k} \right|^{2}$$
$$= \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2}L}{2E}\right)$$
$$\Delta m_{k j}^{2} \equiv m_{k}^{2} - m_{j}^{2}$$

Neutrinos and Antineutrinos

Right-handed antineutrinos are described by CP-conjugated fields:

$$u^{\mathsf{CP}} = \gamma^0 \, \mathcal{C} \, \overline{
u}^{\, \mathcal{T}} = - \mathcal{C} \,
u^*$$

- $C \implies Particle \leftrightarrows Antiparticle$
- $\mathsf{P} \quad \Longrightarrow \quad \mathsf{Left}\text{-}\mathsf{Handed} \leftrightarrows \mathsf{Right}\text{-}\mathsf{Handed}$

Fields:
$$\nu_{\alpha L} = \sum_{k} U_{\alpha k} \nu_{kL} \xrightarrow{\text{CP}} \nu_{\alpha L}^{\text{CP}} = \sum_{k} U_{\alpha k}^{*} \nu_{kL}^{\text{CP}}$$

States: $|\nu_{\alpha}\rangle = \sum_{k}^{k} U_{\alpha k}^{*} |\nu_{k}\rangle \xrightarrow{\text{CP}} |\bar{\nu}_{\alpha}\rangle = \sum_{k}^{k} U_{\alpha k} |\bar{\nu}_{k}\rangle$

<u>NEUTRINOS</u> $U \hookrightarrow U^*$ <u>ANTINEUTRINOS</u>

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right)$$
$$P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\beta j} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right)$$
$$C. \text{ Giunti - Neutrino Physics - May 2011 - 97}$$

CPT, CP and T Symmetries

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
 - CPT Symmetry
 - CP Symmetry
 - T Symmetry
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter

CPT Symmetry

$$P_{\nu_{\alpha} \to \nu_{\beta}} \xrightarrow{\text{CPT}} P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}}$$
CPT Asymmetries: $A_{\alpha\beta}^{\text{CPT}} = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}}$
ocal Quantum Field Theory $\implies A_{\alpha\beta}^{\text{CPT}} = 0$ CPT Symmetry
$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right)$$
is invariant under CPT: $U \iff U^{*} \quad \alpha \iff \beta$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}}$$

 $P_{\nu_{\alpha} \to \nu_{\alpha}} = P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\alpha}}$

L

(solar ν_e , reactor $\bar{\nu}_e$, accelerator ν_{μ})

CP Symmetry

$$\begin{array}{ccc} P_{\nu_{\alpha} \to \nu_{\beta}} & \xrightarrow{\mathbf{CP}} & P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}} \end{array}$$

$$\begin{array}{ccc} \mathsf{CP} & \mathsf{Asymmetries:} & A_{\alpha\beta}^{\mathsf{CP}} = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}} \end{array} \quad \begin{array}{ccc} \mathsf{CPT} & \Rightarrow & A_{\alpha\beta}^{\mathsf{CP}} = -A_{\beta\alpha}^{\mathsf{CP}} \end{array}$$

$$A_{\alpha\beta}^{CP}(L,E) = 4 \sum_{k>j} \operatorname{Im}\left[U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^*\right] \sin\left(\frac{\Delta m_{kj}^2 L}{2E}\right)$$

Jarlskog rephasing invariant: $\operatorname{Im}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] = \pm J$

$$J = c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13}\sin\delta_{13}$$

violation of CP in neutrino oscillations is proportional to

$$|U_{e3}| = \sin \vartheta_{13}$$
 and $\sin \delta_{13}$

T Symmetry

$$P_{\nu_{\alpha} \to \nu_{\beta}} \xrightarrow{\mathsf{T}} P_{\nu_{\beta} \to \nu_{\alpha}}$$

T Asymmetries: $A_{\alpha\beta}^{\mathsf{T}} = P_{\nu_{\alpha} \rightarrow \nu_{\beta}} - P_{\nu_{\beta} \rightarrow \nu_{\alpha}}$

$$\begin{array}{ll} \mathsf{CPT} & \Longrightarrow & 0 = A_{\alpha\beta}^{\mathsf{CPT}} = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}} \\ & = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\nu_{\beta} \to \nu_{\alpha}} + P_{\nu_{\beta} \to \nu_{\alpha}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}} \\ & = A_{\alpha\beta}^{\mathsf{T}} + A_{\beta\alpha}^{\mathsf{CP}} = A_{\alpha\beta}^{\mathsf{T}} - A_{\alpha\beta}^{\mathsf{CP}} \Longrightarrow & A_{\alpha\beta}^{\mathsf{T}} = A_{\alpha\beta}^{\mathsf{CP}} \end{array}$$

$$A_{\alpha\beta}^{\mathsf{T}}(L,E) = 4\sum_{k>j} \operatorname{Im}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] \sin\left(\frac{\Delta m_{k j}^{2} L}{2E}\right)$$

Jarlskog rephasing invariant: $\operatorname{Im} \left[U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \right] = \pm J$

Two-Neutrino Oscillations

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
 - Two-Neutrino Mixing and Oscillations
 - Types of Experiments
 - Average over Energy Resolution of the Detector
- Neutrino Oscillations in Matter

Two-Neutrino Mixing and Oscillations

$$|\nu_{\alpha}\rangle = \sum_{k=1}^{2} U_{\alpha k} |\nu_{k}\rangle \qquad (\alpha = e, \mu)$$

$$U = \begin{pmatrix} \cos\vartheta & \sin\vartheta \\ -\sin\vartheta & \cos\vartheta \end{pmatrix}$$

$$|\nu_{e}\rangle = \cos\vartheta |\nu_{1}\rangle + \sin\vartheta |\nu_{2}\rangle \\ |\nu_{\mu}\rangle = -\sin\vartheta |\nu_{1}\rangle + \cos\vartheta |\nu_{2}\rangle$$

$$\Delta m^2 \equiv \Delta m^2_{21} \equiv m^2_2 - m^2_1$$

Transition Probability:

$$P_{\nu_e \to \nu_{\mu}} = P_{\nu_{\mu} \to \nu_e} = \sin^2 2\vartheta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

 ν_2

Survival Probabilities: $P_{\nu_e \rightarrow \nu_e} = P_{\nu_\mu \rightarrow \nu_\mu} = 1 - P_{\nu_e \rightarrow \nu_\mu}$

two-neutrino mixing transition probability

$$\alpha \neq \beta \qquad \alpha, \beta = e, \mu, \tau$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sin^{2} 2\vartheta \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right)$$

$$= \sin^{2} 2\vartheta \sin^{2} \left(1.27 \frac{\Delta m^{2} [eV^{2}] L[m]}{E[MeV]}\right)$$

$$= \sin^{2} 2\vartheta \sin^{2} \left(1.27 \frac{\Delta m^{2} [eV^{2}] L[km]}{E[GeV]}\right)$$

oscillation length

$$L^{\rm osc} = \frac{4\pi E}{\Delta m^2} = 2.47 \frac{E \,[{\rm MeV}]}{\Delta m^2 \,[{\rm eV}^2]} \,\mathrm{m} = 2.47 \frac{E \,[{\rm GeV}]}{\Delta m^2 \,[{\rm eV}^2]} \,\mathrm{km}$$

Types of Experiments

Two-Neutrino Mixing

$$P_{\nu_{lpha} o
u_{eta}}(L, E) = \sin^2 2 \vartheta \sin^2 \left(\frac{\Delta m^2 L}{4E} \right)$$

 $egin{array}{c} {
m observable \ if} \ {\Delta m^2 L\over 4E}\gtrsim 1 \end{array}$

 $\label{eq:BL} \begin{array}{ll} {\rm SBL} & {\rm Reactor:} \ L \sim 10 \, {\rm m} \ , \ E \sim 1 \, {\rm MeV} \\ L/E \lesssim 10 \, {\rm eV}^{-2} {\Rightarrow} \Delta m^2 \gtrsim 0.1 \, {\rm eV}^2 & {\rm Accelerator:} \ L \sim 1 \, {\rm km} \ , \ E \gtrsim 0.1 \, {\rm GeV} \end{array}$

 $\begin{array}{ll} \mbox{ATM \& LBL} & \mbox{Reactor: } L \sim 1 \mbox{ km} \ , \ E \sim 1 \mbox{ MeV CHOOZ, PALO VERDE} \\ \hline L/E \lesssim 10^4 \mbox{ eV}^{-2} \ \mbox{Accelerator: } L \sim 10^3 \mbox{ km} \ , \ E \gtrsim 1 \mbox{ GeV K2K, MINOS, CNGS} \\ & \mbox{ Atmospheric: } L \sim 10^2 - 10^4 \mbox{ km} \ , \ E \sim 0.1 - 10^2 \mbox{ GeV} \\ \hline \Delta m^2 \gtrsim 10^{-4} \mbox{ eV}^2 \ \ \mbox{Kamiokande, IMB, Super-Kamiokande, Soudan, MACRO, MINOS} \end{array}$

 $\underbrace{SUN}_{L} \qquad L \sim 10^8 \text{ km}, \quad E \sim 0.1 - 10 \text{ MeV}$ $\underbrace{L}_{E} \sim 10^{11} \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-11} \text{ eV}^2 \xrightarrow{\text{Homestake, Kamiokande, GALLEX, SAGE, Super-Kamiokande, GNO, SNO, Borexino}$ Matter Effect (MSW) $\Rightarrow 10^{-4} \lesssim \sin^2 2\vartheta \lesssim 1, \ 10^{-8} \text{ eV}^2 \lesssim \Delta m^2 \lesssim 10^{-4} \text{ eV}^2$ $\underbrace{\text{VLBL}}_{L/E \lesssim 10^5 \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-5} \text{ eV}^2 } \xrightarrow{\text{Reactor: } L \sim 10^2 \text{ km}, \ E \sim 1 \text{ MeV} }$ $\underbrace{\text{Reactor: } L \sim 10^2 \text{ km}, \ E \sim 1 \text{ MeV} }_{\text{C. Giunti - Neutrino Physics - May 2011 - 105}}$

Average over Energy Resolution of the Detector

Exclusion Curves

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle = \frac{1}{2} \sin^2 2\vartheta \left[1 - \int \cos\left(\frac{\Delta m^2 L}{2E}\right) \phi(E) dE \right] \qquad (\alpha \neq \beta)$$

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle \leq P_{\nu_{\alpha} \to \nu_{\beta}}^{\max} \implies \sin^{2} 2\vartheta \leq \frac{2 P_{\nu_{\alpha} \to \nu_{\beta}}^{\max}}{1 - \int \cos\left(\frac{\Delta m^{2}L}{2E}\right) \phi(E) dE}$$

Anatomy of Exclusion Plots

•
$$\Delta m^2 \gg \langle L/E \rangle^{-1}$$

 $P_{\max} \simeq \frac{1}{2} \sin^2 2\vartheta \Rightarrow \sin^2 2\vartheta \simeq$
 $2P_{\max}$
• Min $\left\langle \cos\left(\frac{\Delta m^2 L}{2E}\right) \right\rangle \ge -1$
 $\sin^2 2\vartheta = \frac{2P_{\max}}{1 - \text{Min}\left\langle \cos\left(\frac{\Delta m^2 L}{2E}\right) \right\rangle} \ge P_{\max}$
 $\Delta m^2 \simeq 2\pi \langle L/E \rangle^{-1}$
• $\Delta m^2 \ll 2\pi \langle L/E \rangle^{-1}$
 $\cos\left(\frac{\Delta m^2 L}{2E}\right) \simeq 1 - \frac{1}{2} \left(\frac{\Delta m^2 L}{2E}\right)^2$
 $\Delta m^2 \simeq 4 \left\langle \frac{L}{E} \right\rangle^{-1} \sqrt{\frac{P_{\max}}{\sin^2 2\vartheta}}$

Neutrino Oscillations in Matter

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter
 - Effective Potentials in Matter
 - Evolution of Neutrino Flavors in Matter
 - MSW Effect (Resonant Transitions in Matter)
 - Solar Neutrinos
 - In Neutrino Oscillations Dirac = Majorana

Effective Potentials in Matter

$V_e = V_{\rm CC} + V_{\rm NC}$	$V_{\mu}=V_{ au}=V_{NC}$
---------------------------------	--------------------------

only $V_{\mathsf{CC}} = V_e - V_\mu = V_e - V_ au$ is important for flavor transitions

antineutrinos: $\overline{V}_{CC} = -V_{CC}$ $\overline{V}_{NC} = -V_{NC}$

Matter Effects

a flavor neutrino u_{lpha} with momentum p is described by

$$|
u_{lpha}(p)
angle = \sum_{k} U^{*}_{lpha k} \ket{
u_{k}(p)}$$

 $\mathcal{H}_0\ket{
u_k(p)}= oldsymbol{E}_k\ket{
u_k(p)}$

in matter $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_I$ $\mathcal{H}_I |\nu_{\alpha}(p)\rangle = V_{\alpha} |\nu_{\alpha}(p)\rangle$

 $E_k = \sqrt{p^2 + m_k^2}$

 $V_{lpha}=$ effective potential due to coherent interactions with the medium

forward elastic CC and NC scattering

Evolution of Neutrino Flavors in Matter

Schrödinger picture:

$$i \frac{d}{dt} |\nu(p, t)\rangle = \mathcal{H} |\nu(p, t)\rangle, \qquad |\nu(p, 0)\rangle = |\nu_{\alpha}(p)\rangle$$
flavor transition amplitudes:

$$\varphi_{\beta}(p, t) = \langle \nu_{\beta}(p) | \nu(p, t) \rangle, \qquad \varphi_{\beta}(p, 0) = \delta_{\alpha\beta}$$

$$i \frac{d}{dt} \varphi_{\beta}(p, t) = \langle \nu_{\beta}(p) | \mathcal{H} | \nu(p, t) \rangle = \langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu(p, t) \rangle + \langle \nu_{\beta}(p) | \mathcal{H}_{1} | \nu(p, t) \rangle$$

$$\langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu(p, t) \rangle = \sum_{\rho} \langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu_{\rho}(p) \rangle \underbrace{\langle \nu_{\rho}(p) | \nu(p, t) \rangle}_{\varphi_{\rho}(p, t)}$$

$$= \sum_{\rho} \sum_{k,j} U_{\beta k} \underbrace{\langle \nu_{k}(p) | \mathcal{H}_{0} | \nu_{j}(p) \rangle}_{\delta_{kj} E_{k}} \underbrace{\langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu_{\beta}(p, t) \rangle}_{\delta_{kj} E_{k}}$$

$$\langle
u_eta(p) | \mathcal{H}_I |
u(p,t)
angle = \sum_
ho \underbrace{\langle
u_eta(p) | \mathcal{H}_I |
u_
ho(p)
angle}_{\delta_{eta
ho} V_eta} arphi_
ho(p,t) = V_eta \, arphi_eta(p,t)$$

$$i \frac{\mathrm{d}}{\mathrm{d}t} \varphi_{\beta} = \sum_{
ho} \left(\sum_{k} U_{\beta k} E_{k} U_{\rho k}^{*} + \delta_{\beta \rho} V_{\beta} \right) \varphi_{\rho}$$

ultrarelativistic neutrinos: $E_k = p + \frac{m_k^2}{2E}$ E = p t = x $V_e = V_{CC} + V_{NC}$ $V_{\mu} = V_{\tau} = V_{NC}$ $i \frac{d}{dx} \varphi_{\beta}(p, x) = (p + V_{NC}) \varphi_{\beta}(p, x) + \sum_{\rho} \left(\sum_{k} U_{\beta k} \frac{m_k^2}{2E} U_{\rho k}^* + \delta_{\beta e} \delta_{\rho e} V_{CC} \right) \varphi_{\rho}(p, x)$

$$\psi_{\beta}(p, x) = \varphi_{\beta}(p, x) e^{ipx + i \int_{0}^{x} V_{NC}(x') dx'}$$
$$\downarrow$$
$$i \frac{d}{dx} \psi_{\beta} = e^{ipx + i \int_{0}^{x} V_{NC}(x') dx'} \left(-p - V_{NC} + i \frac{d}{dx}\right) \varphi_{\beta}$$

$$i \frac{\mathsf{d}}{\mathsf{d}x} \psi_{\beta} = \sum_{\rho} \left(\sum_{k} U_{\beta k} \frac{m_{k}^{2}}{2E} U_{\rho k}^{*} + \delta_{\beta e} \, \delta_{\rho e} \, V_{\mathsf{CC}} \right) \psi_{\rho}$$

$$P_{
u_lpha
ightarrow
u_eta} = |arphi_eta|^2 = |\psi_eta|^2$$

evolution of flavor transition amplitudes in matrix form

$$i \frac{\mathrm{d}}{\mathrm{d}x} \Psi_{\alpha} = \frac{1}{2E} \left(U \mathbb{M}^2 U^{\dagger} + \mathbb{A} \right) \Psi_{\alpha}$$

$$\Psi_{\alpha} = \begin{pmatrix} \psi_{e} \\ \psi_{\mu} \\ \psi_{\tau} \end{pmatrix} \qquad \mathbb{M}^{2} = \begin{pmatrix} m_{1}^{2} & 0 & 0 \\ 0 & m_{2}^{2} & 0 \\ 0 & 0 & m_{3}^{2} \end{pmatrix} \qquad \mathbb{A} = \begin{pmatrix} A_{CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A_{\rm CC} = 2EV_{\rm CC} = 2\sqrt{2}EG_{\rm F}N_{\rm e}$$

 $\underset{\substack{\text{matrix}\\\text{in vacuum}}}{\text{matrix}} \mathbb{M}_{\text{VAC}}^2 = U \mathbb{M}^2 U^{\dagger} \xrightarrow{\text{matter}} U \mathbb{M}^2 U^{\dagger} + 2 E \mathbb{V} = \mathbb{M}_{\text{MAT}}^2$ $\underset{\substack{\text{potential due to coherent}\\\text{forward elastic scattering}}}{\text{matrix}}$

Two-Neutrino Mixing

 $u_e
ightarrow
u_\mu$ transitions with $U = \begin{pmatrix} \cos artheta & \sin artheta \\ -\sin artheta & \cos artheta \end{pmatrix}$

$$U \mathbb{M}^{2} U^{\dagger} = \begin{pmatrix} \cos^{2}\vartheta m_{1}^{2} + \sin^{2}\vartheta m_{2}^{2} & \cos\vartheta \sin\vartheta (m_{2}^{2} - m_{1}^{2}) \\ \cos\vartheta \sin\vartheta (m_{2}^{2} - m_{1}^{2}) & \sin^{2}\vartheta m_{1}^{2} + \cos^{2}\vartheta m_{2}^{2} \end{pmatrix}$$
$$= \frac{1}{2}\Sigma m^{2} + \frac{1}{2} \begin{pmatrix} -\Delta m^{2} \cos 2\vartheta & \Delta m^{2} \sin 2\vartheta \\ \Delta m^{2} \sin 2\vartheta & \Delta m^{2} \cos 2\vartheta \end{pmatrix}$$

irrelevant common phase

$$\Sigma m^2 \equiv m_1^2 + m_2^2$$
 $\Delta m^2 \equiv m_2^2 - m_1^2$

$$i\frac{d}{dx}\begin{pmatrix}\psi_e\\\psi_\mu\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta m^2\cos 2\vartheta + 2A_{CC} & \Delta m^2\sin 2\vartheta\\\Delta m^2\sin 2\vartheta & \Delta m^2\cos 2\vartheta\end{pmatrix}\begin{pmatrix}\psi_e\\\psi_\mu\end{pmatrix}$$

initial
$$u_e \implies \begin{pmatrix} \psi_e(0) \\ \psi_\mu(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$egin{aligned} & P_{
u_e o
u_\mu}(x) = |\psi_\mu(x)|^2 \ & P_{
u_e o
u_e}(x) = |\psi_e(x)|^2 = 1 - P_{
u_e o
u_\mu}(x) \end{aligned}$$

Constant Matter Density

Effective Mixing Angle in Matter

$$an 2artheta_{\mathsf{M}} = rac{ an 2artheta}{1 - rac{ extsf{A}_{\mathsf{CC}}}{\Delta m^2 \cos 2artheta}}$$

Effective Squared-Mass Difference

$$\Delta m_{\mathsf{M}}^2 = \sqrt{\left(\Delta m^2\cos 2artheta - \mathcal{A}_{\mathsf{CC}}
ight)^2 + \left(\Delta m^2\sin 2artheta
ight)^2}$$

Resonance
$$(\vartheta_{\rm M} = \pi/4)$$

 $A_{\rm CC}^{\rm R} = \Delta m^2 \cos 2\vartheta \implies N_e^{\rm R} = \frac{\Delta m^2 \cos 2\vartheta}{2\sqrt{2}EG_{\rm F}}$

$$i\frac{d}{dx}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta m_{M}^{2} & 0\\ 0 & \Delta m_{M}^{2}\end{pmatrix}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix}$$
$$\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M} & \sin\vartheta_{M}\\-\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} \Rightarrow \begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M} & -\sin\vartheta_{M}\\\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix}$$
$$\nu_{e} \rightarrow \nu_{\mu} \implies \begin{pmatrix}\psi_{e}(0)\\\psi_{\mu}(0)\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} \implies \begin{pmatrix}\psi_{1}(0)\\\psi_{2}(0)\end{pmatrix}\begin{pmatrix}\cos\vartheta_{M}\\\sin\vartheta_{M}\end{pmatrix}$$
$$\psi_{1}(x) = \cos\vartheta_{M}\exp\left(i\frac{\Delta m_{M}^{2}x}{4E}\right)$$
$$\psi_{2}(x) = \sin\vartheta_{M}\exp\left(-i\frac{\Delta m_{M}^{2}x}{4E}\right)$$

 $P_{
u_e
ightarrow
u_\mu}(x) = |\psi_\mu(x)|^2 = |-\sin \vartheta_{\mathsf{M}} \psi_1(x) + \cos \vartheta_{\mathsf{M}} \psi_2(x)|^2$

$$P_{\nu_e o
u_\mu}(x) = \sin^2 2 \vartheta_{\mathsf{M}} \sin^2 \left(\frac{\Delta m_{\mathsf{M}}^2 x}{4E} \right)$$

MSW Effect (Resonant Transitions in Matter)

$$\begin{pmatrix} \psi_{e} \\ \psi_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{M} & \sin\vartheta_{M} \\ -\sin\vartheta_{M} & \cos\vartheta_{M} \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix}$$

$$i \frac{d}{dx} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix} = \begin{bmatrix} \frac{A_{CC}}{4E} + \frac{1}{4E} \begin{pmatrix} -\Delta m_{M}^{2} & 0 \\ 0 & \Delta m_{M}^{2} \end{pmatrix} + \begin{pmatrix} 0 & -i\frac{d\vartheta_{M}}{dx} \\ i\frac{d\vartheta_{M}}{dx} & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix}$$

$$irrelevant common phase \uparrow maximum near resonance$$

$$\begin{pmatrix} \psi_{1}(0) \\ \psi_{2}(0) \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{M}^{0} & -\sin\vartheta_{M}^{0} \\ \sin\vartheta_{M}^{0} & \cos\vartheta_{M}^{0} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{M}^{0} \\ \sin\vartheta_{M}^{0} \end{pmatrix}$$

$$\psi_{1}(x) \simeq \begin{bmatrix} \cos\vartheta_{M}^{0} \exp\left(i\int_{0}^{x_{R}} \frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{11}^{R} + \sin\vartheta_{M}^{0} \exp\left(-i\int_{0}^{x_{R}} \frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{21}^{R} \end{bmatrix}$$

$$\times \exp\left(i\int_{x_{R}}^{x} \frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{12}^{R} + \sin\vartheta_{M}^{0} \exp\left(-i\int_{0}^{x_{R}} \frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{22}^{R} \end{bmatrix}$$

$$\times \exp\left(-i\int_{x_{R}}^{x} \frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{12}^{R} + \sin\vartheta_{M}^{0} \exp\left(-i\int_{0}^{x_{R}} \frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{22}^{R} \end{bmatrix}$$

Averaged Survival Probability

$$\psi_e(x) = \cos \vartheta_{\mathsf{M}}^{\times} \psi_1(x) + \sin \vartheta_{\mathsf{M}}^{\times} \psi_2(x)$$

neglect interference (averaged over energy spectrum)

$$\begin{split} \overline{P}_{\nu_e \to \nu_e}(x) &= |\langle \psi_e(x) \rangle|^2 = \cos^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \cos^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{11}^{\mathsf{R}}|^2 + \cos^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \sin^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{21}^{\mathsf{R}}|^2 \\ &+ \sin^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \cos^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{12}^{\mathsf{R}}|^2 + \sin^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \sin^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{22}^{\mathsf{R}}|^2 \end{split}$$

conservation of probability (unitarity)

 $|\mathcal{A}_{12}^{\mathsf{R}}|^2 = |\mathcal{A}_{21}^{\mathsf{R}}|^2 = P_{\mathsf{c}}$ $|\mathcal{A}_{11}^{\mathsf{R}}|^2 = |\mathcal{A}_{22}^{\mathsf{R}}|^2 = 1 - P_{\mathsf{c}}$

 $P_{\rm c} \equiv$ crossing probability

$$\overline{P}_{\nu_e \to \nu_e}(x) = \frac{1}{2} + \left(\frac{1}{2} - P_{\mathsf{c}}\right) \cos 2\vartheta_{\mathsf{M}}^{\mathsf{o}} \cos 2\vartheta_{\mathsf{M}}^{\mathsf{x}}$$

[Parke, PRL 57 (1986) 1275]

Crossing Probability

39 (1989) 1930]

$$P_{\rm c} = \frac{\exp\left(-\frac{\pi}{2}\gamma F\right) - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)}{1 - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)} \qquad \text{[Kuo, Pantaleone, PRD]}$$

adiabaticity parameter:
$$\gamma = \frac{\Delta m_{\rm M}^2/2E}{2|d\vartheta_{\rm M}/dx|}\Big|_{\rm R} = \frac{\Delta m^2 \sin^2 2\vartheta}{2E \cos 2\vartheta \left|\frac{d \ln A_{\rm CC}}{dx}\right|_{\rm R}}$$

 $A \propto x$ F = 1 (Landau-Zener approximation) [Parke, PRL 57 (1986) 1275] $A \propto 1/x$ $F = (1 - \tan^2 \vartheta)^2 / (1 + \tan^2 \vartheta)$ [Kuo, Pantaleone, PRD 39 (1989) 1930]

 $A \propto \exp(-x) \qquad F = 1 - \tan^2 \vartheta \qquad \text{[Pizzochero, PRD 36 (1987) 2293]}$

Review: [Kuo, Pantaleone, RMP 61 (1989) 937]

Solar Neutrinos

Electron Neutrino Regeneration in the Earth

[Mikheev, Smirnov, Sov. Phys. Usp. 30 (1987) 759], [Baltz, Weneser, PRD 35 (1987) 528]

[Giunti, Kim, Monteno, NP B 521 (1998) 3]

 $P_{\nu_2 \rightarrow \nu_e}^{\text{earth}}$ is usually calculated numerically approximating the Earth density profile with a step function.

Effective massive neutrinos propagate as plane waves in regions of constant density.

Wave functions of flavor neutrinos are joined at the boundaries of steps.

Phenomenology of Solar Neutrinos

LMA (Large Mixing Angle): LOW (LOW Δm^2): SMA (Small Mixing Angle): QVO (Quasi-Vacuum Oscillations): VAC (VACuum oscillations):

[de Gouvea, Friedland, Murayama, PLB 490 (2000) 125]

[Bahcall, Krastev, Smirnov, JHEP 05 (2001) 015]

In Neutrino Oscillations Dirac = Majorana

Evolution of Amplitudes:

$$i \frac{\mathrm{d}\psi_{lpha}}{\mathrm{d}x} = \frac{1}{2E} \sum_{eta} \left(U M^2 U^{\dagger} + 2EV \right)_{lphaeta} \psi_{eta}$$

difference: $\begin{cases} \text{Dirac:} & U^{(D)} \\ \text{Majorana:} & U^{(M)} = U^{(D)}D(\lambda) \end{cases}$

$$D(\lambda) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & e^{i\lambda_{21}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{i\lambda_{N1}} \end{pmatrix} \quad \Rightarrow \quad D^{\dagger} = D^{-1}$$

$$M^{2} = \begin{pmatrix} m_{1}^{2} & 0 & \cdots & 0 \\ 0 & m_{2}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m_{N}^{2} \end{pmatrix} \implies DM^{2} = M^{2}D \implies DM^{2}D^{\dagger} = M^{2}$$

 $U^{(M)}M^{2}(U^{(M)})^{\dagger} = U^{(D)}DM^{2}D^{\dagger}(U^{(D)})^{\dagger} = U^{(D)}M^{2}(U^{(D)})^{\dagger}$