Neutrino Physics Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it

Neutrino Unbound: http://www.nu.to.infn.it Torino, May 2011

This File: http://www.nu.to.infn.it/slides/2011/giunti-1105-phd-to-3.pdf Compact: http://www.nu.to.infn.it/slides/2011/giunti-1105-phd-to-3-4.pdf

Fundamentals of **Neutrino Physics** and Astrophysics THE PLACE PROFILE

C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 – 728 pages

Part I: Theory of Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
- Number of Flavor and Massive Neutrinos?
- Sterile Neutrinos

Part II: Neutrino Oscillations

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter

Part III: Phenomenology

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Anomalies Beyond Three-Neutrino Mixing
- Conclusions

Part III

Phenomenology

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Anomalies Beyond Three-Neutrino Mixing
- Conclusions

Solar Neutrinos and KamLAND

- Solar Neutrinos and KamLAND
 - The Sun
 - Standard Solar Model (SSM)
 - Homestake
 - Gallium Experiments
 - SAGE: Soviet-American Gallium Experiment
 - GALLEX: GALLium EXperiment
 - GNO: Gallium Neutrino Observatory
 - Kamiokande
 - Super-Kamiokande
 - SNO: Sudbury Neutrino Observatory
 - KamLAND
 - Sterile Neutrinos in Solar Neutrino Flux?
 - Determination of Solar Neutrino Fluxes
 - Details of Solar Neutrino Oscillations
 - BOREXino

The Sun

Extreme ultraviolet Imaging Telescope (EIT) 304 Å images of the Sun emission in this spectral line (He II) shows the upper chromosphere at a temperature of about 60,000 K

[The Solar and Heliospheric Observatory (SOHO), http://sohowww.nascom.nasa.gov/]

Standard Solar Model (SSM)

[Castellani, Degl'Innocenti, Fiorentini, Lissia, Ricci, Phys. Rept. 281 (1997) 309, astro-ph/9606180]

Flux

[Castellani, Degl'Innocenti, Fiorentini, Lissia, Ricci, Phys. Rept. 281 (1997) 309, astro-ph/9606180]

Homestake

Gallium Experiments

SAGE, GALLEX, GNO

radiochemical experiments

 $u_e + {}^{71}\text{Ga}
ightarrow {}^{71}\text{Ge} + e^-$ [Kuzmin (1965)]

threshold: $E_{\text{th}}^{\text{Ga}} = 0.233 \text{ MeV} \implies pp$, ⁷Be, ⁸B, *pep*, *hep*, ¹³N, ¹⁵O, ¹⁷F

SAGE+GALLEX+GNO
$$\implies \frac{R_{Ga}^{exp}}{R_{Ga}^{SSM}} = 0.56 \pm 0.03$$

 $R_{Ga}^{exp} = 72.4 \pm 4.7 \,\text{SNU}$ $R_{Ga}^{SSM} = 128^{+9}_{-7} \,\text{SNU}$

SAGE: Soviet-American Gallium Experiment

Baksan Neutrino Observatory, northern Caucasus 50 tons of metallic ⁷¹Ga, 2000 m deep, 4700 m.w.e. $\Rightarrow \Phi_{\mu} \simeq 2.6 \text{ m}^{-2} \text{ day}^{-1}$ detector test: ⁵¹Cr Source: $R = 0.95^{+0.11+0.06}_{-0.10-0.05}$ [PRC 59 (1999) 2246] $\frac{R_{Ga}^{SAGE}}{R_{C}^{SSM}} = 0.54 \pm 0.05 \text{ [astro-ph/0204245]}$ 1990 - 2001400 beak only 300 Capture rate (SNU) 200 100 0 1990 1991 1992 1993 1994 1995 1998 1999 2000 2001 1996 Mean extraction time C. Giunti – Neutrino Physics – May 2011 – 142

Gran Sasso Underground Laboratory, Italy, overhead shielding: 3300 m.w.e. 30.3 tons of gallium in 101 tons of gallium chloride (GaCl₃-HCl) solution May 1991 – Jan 1997 $\implies \frac{R_{Ga}^{GALLEX}}{R_{Ga}^{SSM}} = 0.61 \pm 0.06$ [PLB 477 (1999) 127]

GNO: Gallium Neutrino Observatory

Kamiokande

water Cherenkov detector $\nu + e^- \rightarrow \nu + e^-$ Sensitive to ν_e , ν_{μ} , ν_{τ} , but $\sigma(\nu_e) \simeq 6 \sigma(\nu_{\mu,\tau})$ Kamioka mine (200 km west of Tokyo), 1000 m underground, 2700 m.w.e. 3000 tons of water, 680 tons fiducial volume, 948 PMTs threshold: $E_{th}^{Kam} \simeq 6.75 \text{ MeV} \Longrightarrow {}^{8}\text{B}$, hep Jan 1987 – Feb 1995 (2079 days) $\frac{R_{\nu e}^{\text{Kam}}}{R^{\text{SSM}}} = 0.55 \pm 0.08$ [PRL 77 (1996) 1683]

Super-Kamiokande

continuation of Kamiokande

50 ktons of water, 22.5 ktons fiducial volume, 11146 PMTs threshold: $E_{th}^{Kam} \simeq 4.75 \text{ MeV} \implies {}^{8}\text{B}$, hep 1996 – 2001 (1496 days) $\frac{R_{\nu e}^{SK}}{R_{\nu e}^{SSM}} = 0.465 \pm 0.015$ [SK, PLB 539 (2002) 179]

the Super-Kamiokande underground water Cherenkov detector located near Higashi-Mozumi, Gifu Prefecture, Japan access is via a 2 km long truck tunnel

[R. J. Wilkes, SK, hep-ex/0212035]

Super-Kamiokande $\cos \theta_{sun}$ distribution

Event/day/kton/bin 55

0.2

0.15

0.1

0.05

-1

the peak at $\cos heta_{
m sun} = 1$ is due to solar neutrinos

Super-Kamiokande energy spectrum normalized to BP2000 SSM

Day-Night asymmetry as a function of energy solar zenith angle (θ_z) dependence of Super-Kamiokande data

[Smy, hep-ex/0208004]

Time variation of the Super-Kamiokande data

The gray data points are measured every 10 days.

The black data points are measured every 1.5 months.

The black line indicates the expected annual 7% flux variation.

The right-hand panel combines the 1.5 month bins to search for yearly variations.

The gray data points (open circles) are obtained from the black data points

by subtracting the expected 7% variation.

[Smy, hep-ex/0208004]

SNO: Sudbury Neutrino Observatory

water Cherenkov detector, Sudbury, Ontario, Canada 1 kton of D₂O, 9456 20-cm PMTs 2073 m underground, 6010 m.w.e. $\begin{array}{ll} \mathsf{CC:} & \nu_e + d \to p + p + e^- \\ \mathsf{NC:} & \nu + d \to p + n + \nu \end{array}$ ES: $\nu + e^- \rightarrow \nu + e^ \left. \begin{array}{l} \mbox{CC threshold: } E_{th}^{SNO}(CC) \simeq 8.2 \, \mbox{MeV} \\ \mbox{NC threshold: } E_{th}^{SNO}(NC) \simeq 2.2 \, \mbox{MeV} \\ \mbox{ES threshold: } E_{th}^{SNO}(ES) \simeq 7.0 \, \mbox{MeV} \end{array} \right\} \Longrightarrow {}^8\mbox{B, hep}$ D₂O phase: 1999 – 2001 NaCl phase: 2001 – 2002 $\frac{\frac{R_{CC}^{SNO}}{R_{RSM}^{SNO}} = 0.35 \pm 0.02$ $\frac{\frac{R_{NC}^{SNO}}{R_{NC}^{SNO}} = 1.01 \pm 0.13$ $\frac{\frac{R_{NC}^{SNO}}{R_{ES}^{SNO}} = 0.47 \pm 0.05$ $\frac{\frac{R_{CC}^{SNO}}{R_{cS}^{SSM}} = 0.31 \pm 0.02}{\frac{R_{NC}^{SNO}}{R_{cS}^{SSM}}} = 1.03 \pm 0.09$ $\frac{\frac{R_{NC}^{SNO}}{R_{cS}^{SSM}}}{\frac{R_{cS}^{SSM}}{R_{cS}^{SSM}}} = 0.44 \pm 0.06$ [PRL 89 (2002) 011301] [nucl-ex/0309004]

$$\begin{split} \Phi_{\nu_e}^{\text{SNO}} &= 1.76 \pm 0.11 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1} \\ \Phi_{\nu_{\mu},\nu_{\tau}}^{\text{SNO}} &= 5.41 \pm 0.66 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1} \end{split}$$

SNO solved solar neutrino problem ↓ Neutrino Physics (April 2002)

[SNO, PRL 89 (2002) 011301, nucl-ex/0204008]

 $u_e
ightarrow
u_\mu,
u_ au$ oscillations \Downarrow Large Mixing Angle solution $\Delta m^2 \simeq 7 \times 10^{-5} \, \mathrm{eV}^2$ $\tan^2 artheta \simeq 0.45$

[SNO, PRC 72 (2005) 055502, nucl-ex/0502021]

KamLAND

Kamioka Liquid scintillator Anti-Neutrino Detector

long-baseline reactor $\bar{\nu}_e$ experiment

Kamioka mine (200 km west of Tokyo), 1000 m underground, 2700 m.w.e.

53 nuclear power reactors in Japan and Korea

6.7% of flux from one reactor at 88 kmaverage distance from reactors: 180 km79% of flux from 26 reactors at 138–214 km14.3% of flux from other reactors at >295 km

1 kt liquid scintillator detector: $ar{
u}_e + p
ightarrow e^+ + n$, energy threshold: $E_{
m th}^{ar{
u}_e p} = 1.8\,{
m MeV}$

data taking: 4 March - 6 October 2002, 145.1 days (162 ton yr)

expected number of reactor neutrino events (no osc.): expected number of background events: observed number of neutrino events:

$$\frac{\textit{N}_{\textit{observed}}^{\textit{KamLAND}} - \textit{N}_{\textit{background}}^{\textit{KamLAND}}}{\textit{N}_{\textit{expected}}^{\textit{KamLAND}}} = 0.611 \pm 0.085 \pm 0.041$$

 $\begin{array}{l} N_{expected}^{KamLAND} = 86.8 \pm 5.6 \\ N_{background}^{KamLAND} = 0.95 \pm 0.99 \\ N_{observed}^{KamLAND} = 54 \end{array}$

99.95% C.L. evidence of $\bar{\nu}_e$ disappearance

[KamLAND, PRL 100 (2008) 221803]

Sterile Neutrinos in Solar Neutrino Flux?

Determination of Solar Neutrino Fluxes

[Bahcall, Peña-Garay, hep-ph/0305159]

fit of solar and KamLAND neutrino data with fluxes as free parameters

+ luminosity constraint
+ luminosity constraint

$$\sum_{r} \alpha_{r} \Phi_{r} = K_{\odot} \quad (r = pp, pep, hep, {}^{7}\text{Be}, {}^{8}\text{B}, {}^{13}\text{N}, {}^{15}\text{O}, {}^{17}\text{F})$$

$$K_{\odot} \equiv \mathcal{L}_{\odot}/4\pi (1a.u.)^{2} = 8.534 \times 10^{11} \text{ MeV cm}^{-2} \text{ s}^{-1}$$
solar constant

$$\Delta m^{2} = 7.3^{+0.4}_{-0.6} \text{ eV}^{2} \quad \tan^{2}\vartheta = 0.42^{+0.08}_{-0.06} \begin{pmatrix} +0.39 \\ -0.19 \end{pmatrix}$$

$$\frac{\Phi_{8B}}{\Phi_{8B}^{SSM}} = 1.01^{+0.06}_{-0.17} \begin{pmatrix} +0.22 \\ \Phi_{7Be}^{SSM} \end{bmatrix} = 0.97^{+0.28}_{-0.54} \begin{pmatrix} +0.85 \\ -0.97 \end{pmatrix} \qquad \frac{\Phi_{pp}}{\Phi_{pp}^{SSM}} = 1.02^{+0.02}_{-0.02} \begin{pmatrix} +0.07 \\ -0.07 \end{pmatrix}$$
moderate uncertainty
will improve with new SNO
NC data (salt phase) (KamLAND, Borexino?)

 $\label{eq:CNO} \mbox{luminosity:} \quad {\cal L}_{CNO} / {\cal L}_{\odot} = 0.0^{+2.8}_{-0.0} \, (^{+7.3}_{-0.0})$

[Bahcall, Gonzalez-Garcia, Peña-Garay, PRL 90 (2003) 131301]

Details of Solar Neutrino Oscillations

best fit of reactor + solar neutrino data: $\Delta m^2 \simeq 7 \times 10^{-5} \,\mathrm{eV}^2$ $\tan^2 \vartheta \simeq 0.4$ $\overline{P}^{\mathsf{sun}}_{
u_e o
u_e} = rac{1}{2} + \left(rac{1}{2} - P_\mathsf{c}
ight) \mathsf{cos} 2artheta^{\mathsf{0}}_\mathsf{M} \; \mathsf{cos} 2artheta$ $P_{\rm c} = \frac{\exp\left(-\frac{\pi}{2}\gamma F\right) - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)}{1 - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)} \qquad \gamma = \frac{\Delta m^2 \sin^2 2\vartheta}{2E \cos 2\vartheta \left|\frac{d\ln A}{dx}\right|_{\rm P}} \qquad F = 1 - \tan^2\vartheta$ $A_{\rm CC} \simeq 2\sqrt{2}EG_{\rm F}N_e^{\rm c}\exp\left(-\frac{x}{x_0}\right) \implies \left|\frac{{\rm d}\ln A}{{\rm d}x}\right| \simeq \frac{1}{x_0} = \frac{10.54}{R_{\odot}} \simeq 3 \times 10^{-15} \, {\rm eV}$ $\gamma \simeq 2 \times 10^4 \left(\frac{E}{MeV}\right)^{-1}$ $\tan^2 \vartheta \simeq 0.4 \implies \sin^2 2\vartheta \simeq 0.82, \cos 2\vartheta \simeq 0.43$ $\gamma \gg 1 \implies P_{\rm c} \ll 1 \implies \overline{P}_{\nu_e o \nu_e}^{{
m sun,LMA}} \simeq rac{1}{2} + rac{1}{2} \cos 2 artheta_{
m M}^0 \cos 2 artheta$

each neutrino experiment is mainly sensitive to one flux each neutrino experiment is mainly sensitive to ϑ accurate pp experiment can improve determination of ϑ

[Bahcall, Peña-Garay, hep-ph/0305159]

BOREXino

[BOREXino, arXiv:0708.2251]

Real-time measurement of ⁷Be solar neutrinos (0.862 MeV)

 $\nu + e \rightarrow \nu + e$ $E = 0.862 \,\mathrm{MeV} \implies \sigma_{\nu_e} \simeq 5.5 \,\sigma_{\nu_u, \nu_\tau}$

Atmospheric and LBL Oscillation Experiments

• Solar Neutrinos and KamLAND

• Atmospheric and LBL Oscillation Experiments

- Atmospheric Neutrinos
- Super-Kamiokande Up-Down Asymmetry
- Fit of Super-Kamiokande Atmospheric Data
- Kamiokande, Soudan-2, MACRO and MINOS
- K2K
- MINOS
- Sterile Neutrinos in Atmospheric Neutrino Flux?
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses

Anomalies Beyond <u>Three-Neutrino Mixing</u>
 C. Giunti – Neutrino Physics – May 2011 – 163
Atmospheric Neutrinos

$$rac{N(
u_{\mu}+ar{
u}_{\mu})}{N(
u_{e}+ar{
u}_{e})}\simeq 2$$
 at $E\lesssim 1\,{
m GeV}$

uncertainty on ratios: \sim 5%

uncertainty on fluxes: \sim 30%

ratio of ratios

$$R\equiv rac{[N(
u_{\mu}+ar{
u}_{\mu})/N(
u_{e}+ar{
u}_{e})]_{\mathsf{data}}}{[N(
u_{\mu}+ar{
u}_{\mu})/N(
u_{e}+ar{
u}_{e})]_{\mathsf{MC}}}$$

 $\textit{R}_{sub-GeV}^{K} = 0.60 \pm 0.07 \pm 0.05$

[Kamiokande, PLB 280 (1992) 146]

$$R_{
m multi-GeV}^{
m K} = 0.57 \pm 0.08 \pm 0.07$$

[Kamiokande, PLB 335 (1994) 237]

Super-Kamiokande Up-Down Asymmetry

 $E_{
u}\gtrsim 1\,{
m GeV}$ \Rightarrow isotropic flux of cosmic rays

$$\phi^{(A)}_{
u_{lpha}}(heta^{AB}_{lpha})=\phi^{(B)}_{
u_{lpha}}(\pi- heta^{AB}_{lpha}) \hspace{0.5cm} \phi^{(A)}_{
u_{lpha}}(heta^{AB}_{lpha})=\phi^{(B)}_{
u_{lpha}}(heta^{AB}_{lpha})
onumber \ \psi^{(A)}_{
u_{lpha}}(heta_{lpha})=\phi^{(A)}_{
u_{lpha}}(\pi- heta_{lpha})$$

(December 1998)

 $\mathcal{A}_{\nu_{\mu}}^{\text{up-down}}(\text{SK}) = \left(\frac{\textit{N}_{\nu_{\mu}}^{\text{up}} - \textit{N}_{\nu_{\mu}}^{\text{down}}}{\textit{N}_{\nu_{\mu}}^{\text{up}} + \textit{N}_{\nu_{\mu}}^{\text{down}}}\right) = -0.296 \pm 0.048 \pm 0.01$

[Super-Kamiokande, Phys. Rev. Lett. 81 (1998) 1562, hep-ex/9807003]

 6σ MODEL INDEPENDENT EVIDENCE OF ν_{μ} DISAPPEARANCE!

Fit of Super-Kamiokande Atmospheric Data

Measure of ν_{τ} CC Int. is Difficult:

- $E_{\rm th} = 3.5 \, {\rm GeV} \Longrightarrow \sim 20 {\rm events/yr}$
- τ -Decay \implies Many Final States

$$\begin{split} \nu_{\tau}\text{-Enriched Sample} \\ N_{\nu_{\tau}}^{\text{the}} &= 78\pm26\ @\ \Delta m^2 = 2.4\times10^{-3}\ \text{eV}^2 \\ \hline N_{\nu_{\tau}}^{\text{exp}} &= 138^{+50}_{-58} \\ N_{\nu_{\tau}} &> 0 \quad @ \quad 2.4\sigma \end{split}$$

[Super-Kamiokande, PRL 97(2006) 171801, hep-ex/0607059]

 $\begin{array}{l} \mbox{Check: OPERA } (\nu_{\mu} \rightarrow \nu_{\tau}) \\ \mbox{CERN to Gran Sasso (CNGS)} \\ \mbox{L} \simeq 732 \mbox{ km } \langle E \rangle \simeq 18 \mbox{ GeV} \\ \\ \mbox{[NJP 8 (2006) 303, hep-ex/0611023]} \end{array}$

Kamiokande, Soudan-2, MACRO and MINOS

K2K

confirmation of atmospheric allowed region (June 2002)

KEK to Kamioka (Super-Kamiokande) 250 km $u_{\mu}
ightarrow
u_{\mu}$

MINOS

May 2005 - Feb 2006

http://www-numi.fnal.gov/

[MINOS, PRL 97 (2006) 191801, hep-ex/0607088]

$$|\Delta m_{31}^2| = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \,\mathrm{eV^2}$$

 $\sin^2 2\vartheta_{23} > 0.90 \quad (90\% \text{ C.L.})$

[arXiv:1103.0340v1]

Sterile Neutrinos in Atmospheric Neutrino Flux?

Nature of atmospheric Oscillation

Mode	Best fit	Δχ2	σ
$v_{\mu}-v_{\tau}$	$\sin^2 2\theta = 1.00; \Delta m^2 = 2.5 \times 10^{-3} eV^2$	0.0	0.0
ν _μ -ν _e	sin ² 2θ=0.97; Δm ² =5.0x10 ⁻³ eV ²	79.3	8.9
ν _μ -ν _s	sin ² 2θ=0.96; Δm ² =3.6x10 ⁻³ eV ²	19.0	4.4
LxE	sin ² 2θ=0.90; α=5.3x10 ⁻⁴	67.1	8.2
v_{μ} Decay	$\cos^2\theta=0.47; \alpha=3.0x10^{-3}eV^2$	81.1	9.0
ν_{μ} Decay to ν_{s}	cos ² θ=0.33; α=1.1x10 ⁻² eV ²	14.1	3.8

[Smy (SK), Moriond 2002]

[Nakaya (SK), hep-ex/0209036]

Phenomenology of Three-Neutrino Mixing

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
 - Experimental Evidences of Neutrino Oscillations
 - Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Anomalies Beyond Three-Neutrino Mixing
- Conclusions

Experimental Evidences of Neutrino Oscillations

Three-Neutrino Mixing

$$u_{lpha L} = \sum_{k=1}^{3} U_{lpha k} \,
u_{kL} \qquad (lpha = e, \mu, au)$$

three flavor fields: u_e , u_μ , $u_ au$

three massive fields: ν_1 , ν_2 , ν_3

$$\Delta m_{21}^2 + \Delta m_{32}^2 + \Delta m_{13}^2 = m_2^2 - m_1^2 + m_3^2 - m_2^2 + m_1^2 - m_3^2 = 0$$

$$\Delta m^2_{
m SOL} = \Delta m^2_{
m 21} \simeq (7.6 \pm 0.2) imes 10^{-5} \, {
m eV}^2$$

 $\Delta m^2_{
m ATM} \simeq |\Delta m^2_{
m 31}| \simeq |\Delta m^2_{
m 32}| \simeq (2.4 \pm 0.1) imes 10^{-3} \, {
m eV^2}$

Allowed Three-Neutrino Schemes

Mixing Matrix

[Palo Verde, PRD 64 (2001) 112001]

$$\begin{split} |U_{e1}|^2 &\simeq \cos^2 \vartheta_{\text{SOL}} & |U_{e2}|^2 &\simeq \sin^2 \vartheta_{\text{SOL}} \\ |U_{\mu3}|^2 &\simeq \sin^2 \vartheta_{\text{ATM}} & |U_{\tau3}|^2 &\simeq \cos^2 \vartheta_{\text{ATM}} \end{split}$$

Effective ATM and LBL Oscillation Probability in Vacuum

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{k=1}^{3} U_{\alpha k}^{*} U_{\beta k} e^{-iE_{k}t} \right|^{2} * \left| e^{iE_{1}t} \right|^{2}$$
$$= \left| \sum_{k=1}^{3} U_{\alpha k}^{*} U_{\beta k} e^{-i(E_{k} - E_{1})t} \right|^{2} \to \left| \sum_{k=1}^{3} U_{\alpha k}^{*} U_{\beta k} \exp\left(-i\frac{\Delta m_{k1}^{2}L}{2E} \right) \right|^{2}$$

$$E_{k} \simeq E + \frac{m_{k}^{2}}{2E} \qquad \frac{\Delta m_{21}^{2}L}{2E} \ll 1 \qquad \Delta m_{31}^{2} \to \Delta m^{2}$$
$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| U_{\alpha 1}^{*}U_{\beta 1} + U_{\alpha 2}^{*}U_{\beta 2} + U_{\alpha 3}^{*}U_{\beta 3}\exp\left(-i\frac{\Delta m^{2}L}{2E}\right) \right|^{2}$$
$$U_{\alpha 1}^{*}U_{\beta 1} + U_{\alpha 2}^{*}U_{\beta 2} = \delta_{\alpha\beta} - U_{\alpha 3}^{*}U_{\beta 3}$$

$$\begin{split} P_{\nu_{\alpha} \to \nu_{\beta}} &= \left| \delta_{\alpha\beta} - U_{\alpha3}^{*} U_{\beta3} \left[1 - \exp\left(-i\frac{\Delta m^{2}L}{2E} \right) \right] \right|^{2} \\ &= \delta_{\alpha\beta} + |U_{\alpha3}|^{2} |U_{\beta3}|^{2} \left(2 - 2\cos\frac{\Delta m^{2}L}{2E} \right) \\ &- 2\delta_{\alpha\beta} |U_{\alpha3}|^{2} \left(1 - \cos\frac{\Delta m^{2}L}{2E} \right) \\ &= \delta_{\alpha\beta} - 2|U_{\alpha3}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta3}|^{2} \right) \left(1 - \cos\frac{\Delta m^{2}L}{2E} \right) \\ &= \delta_{\alpha\beta} - 4|U_{\alpha3}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta3}|^{2} \right) \sin^{2}\frac{\Delta m^{2}L}{4E} \\ \alpha \neq \beta \implies P_{\nu_{\alpha} \to \nu_{\beta}} = 4|U_{\alpha3}|^{2} |U_{\beta3}|^{2} \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right) \\ \alpha = \beta \implies P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - 4|U_{\alpha3}|^{2} \left(1 - |U_{\alpha3}|^{2} \right) \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right) \\ \hline \mathbf{C}. \text{ Giunti - Neutrino Physics - May 2011 - 178} \end{split}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^{2} 2\vartheta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right) \quad (\alpha \neq \beta)$$

$$\sin^{2} 2\vartheta_{\alpha\beta} = 4|U_{\alpha3}|^{2}|U_{\beta3}|^{2}$$

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^{2} 2\vartheta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right)$$

$$\sin^{2} 2\vartheta_{\alpha\alpha} = 4|U_{\alpha3}|^{2} \left(1 - |U_{\alpha3}|^{2}\right)$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}$$

$$\lim_{U_{\tau3}} U_{\tau3} = \frac{\sin^{2} 2\vartheta_{ee}}{4}$$

$$\lim_{U_{\pi3}} U_{\mu3} = \frac{\sin^{2} 2\vartheta_{ee}}{4}$$

• ν_e disappearance experiments:

$$\sin^2 2\vartheta_{ee} = 4|U_{e3}|^2 \left(1 - |U_{e3}|^2\right) \simeq 4|U_{e3}|^2$$

• ν_{μ} disappearance experiments:

$$\sin^2 2 \vartheta_{\mu\mu} = 4 |U_{\mu3}|^2 \left(1 - |U_{\mu3}|^2\right)$$

$$|U_{\mu3}|^2 = \frac{1}{2} \left(1 \pm \sqrt{1 - \sin^2 2\vartheta_{\mu\mu}} \right)$$

• $u_{\mu} \rightarrow \nu_{e} \text{ experiments:}$

$$\sin^2 2\vartheta_{\mu e} = 4|U_{e3}|^2|U_{\mu 3}|^2$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$

$$\frac{\vartheta_{12} \simeq \vartheta_{\text{SOL}}}{\vartheta_{12} \simeq \vartheta_{\text{SOL}}} \beta \beta_{0\nu}$$

$$=\begin{pmatrix}c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}}\\-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13}\\s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13}\end{pmatrix}\begin{pmatrix}1 & 0 & 0\\0 & e^{i\lambda_2} & 0\\0 & 0 & e^{i\lambda_3}\end{pmatrix}$$

$$\begin{split} \Delta m^2_{21} &= \left(7.65^{+0.23}_{-0.20}\right) \times 10^{-5} \,\text{eV}^2 & |\Delta m^2_{31}| = \left(2.40^{+0.12}_{-0.11}\right) \times 10^{-3} \,\text{eV}^2 \\ &\sin^2 \vartheta_{12} = 0.304^{+0.022}_{-0.016} & \sin^2 \vartheta_{23} = 0.50^{+0.07}_{-0.06} \\ &\sin^2 \vartheta_{13} < 0.035 \quad (90\% \text{ C.L.}) \\ & \text{[Schwetz, Tortola, Valle, arXiv:0808.2016v3, 11 Feb 2010]} \end{split}$$

Current Research

measure $\vartheta_{13} \neq 0 \implies CP$ violation, matter effects, mass hierarchy C. Giunti – Neutrino Physics – May 2011 – 181

Bilarge Mixing

 $|U_{e3}|^2 \ll 1$ $U \simeq \begin{pmatrix} c_{\vartheta_{\mathsf{S}}} & s_{\vartheta_{\mathsf{S}}} & 0\\ -s_{\vartheta_{\mathsf{S}}} c_{\vartheta_{\mathsf{A}}} & c_{\vartheta_{\mathsf{S}}} c_{\vartheta_{\mathsf{A}}} & s_{\vartheta_{\mathsf{A}}}\\ s_{\vartheta_{\mathsf{S}}} s_{\vartheta_{\mathsf{A}}} & -c_{\vartheta_{\mathsf{S}}} s_{\vartheta_{\mathsf{A}}} & c_{\vartheta_{\mathsf{A}}} \end{pmatrix} \Longrightarrow \begin{cases} \nu_e = c_{\vartheta_{\mathsf{S}}} \nu_1 + s_{\vartheta_{\mathsf{S}}} \nu_2\\ \nu_a^{(\mathsf{S})} = -s_{\vartheta_{\mathsf{S}}} \nu_1 + c_{\vartheta_{\mathsf{S}}} \nu_2\\ = -s_{\vartheta_{\mathsf{S}}} \nu_1 + c_{\vartheta_{\mathsf{S}}} \nu_2 \\ = -s_{\vartheta_{\mathsf{A}}} \nu_\mu - s_{\vartheta_{\mathsf{A}}} \nu_\tau \end{cases}$ $\sin^2 2\vartheta_{\mathsf{A}} \simeq 1 \Longrightarrow \vartheta_{\mathsf{A}} \simeq \frac{\pi}{4} \Longrightarrow U \simeq \begin{pmatrix} c_{\vartheta_{\mathsf{S}}} & s_{\vartheta_{\mathsf{S}}} & 0\\ -s_{\vartheta_{\mathsf{S}}}/\sqrt{2} & c_{\vartheta_{\mathsf{S}}}/\sqrt{2} & 1/\sqrt{2}\\ s_{\vartheta_{\mathsf{S}}}/\sqrt{2} & -c_{\vartheta_{\mathsf{S}}}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$ Solar $u_e
ightarrow
u_a^{(S)} \simeq rac{1}{r/2} \left(
u_\mu -
u_ au
ight)$ $\frac{\Phi_{\text{CC}}^{\text{SNO}}}{\Phi^{\text{SSM}}} \simeq \frac{1}{3} \Longrightarrow \Phi_{\nu_e} \simeq \Phi_{\nu_{\mu}} \simeq \Phi_{\nu_{\tau}} \text{ for } E \gtrsim 6 \text{ MeV}$ $\sin^2 \vartheta_{\mathsf{S}} \simeq \frac{1}{3} \Longrightarrow U \simeq \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2}\\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$

Tri-Bimaximal Mixing [Harrison, Perkins, Scott, hep-ph/0202074]

[Mezzetto, Schwetz, arXiv:1003.5800, 10 Aug 2010]

Hint of $\vartheta_{13} > 0$

[Fogli, Lisi, Marrone, Palazzo, Rotunno, NO-VE, April 2008] [Balantekin, Yilmaz, JPG 35 (2008) 075007]

 $\sin^2artheta_{13}=0.016\pm0.010$ [Fogli, Lisi, Marrone, Palazzo, Rotunno, PRL 101 (2008) 141801]

[Schwetz, Tortola, Valle, arXiv:0808.2016v3, 11 Feb 2010]

[Mezzetto, Schwetz, arXiv:1003.5800, 10 Aug 2010]

 $P_{\substack{(-) \ \nu_e \to \nu_e}} \simeq \begin{cases} \left(1 - \sin^2 \vartheta_{13}\right)^2 \left(1 - 0.5 \sin^2 \vartheta_{12}\right) & \text{SOL low-energy \& KamLAND} \\ \left(1 - \sin^2 \vartheta_{13}\right)^2 \sin^2 \vartheta_{12} & \text{SOL high-energy (matter effect)} \end{cases}$ C. Giunti – Neutrino Physics – May 2011 – 184

The Hunt for ϑ_{13}

 3σ sensitivities. Bands reflect dependence of sensitivity on the CP violating phase δ_{13} .

"Branching point" refers to the decision between an upgraded superbeam and/or detector and a neutrino factory program. Neutrino factory is assumed to switch polarity after 2.5 years.

[Physics at a Fermilab Proton Driver, Albrow et al, hep-ex/0509019]

Effective LBL Oscillation Probabilities

$$\Delta = \frac{\Delta m_{31}^2 L}{4E} \qquad \alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \qquad A = \frac{2EV}{\Delta m_{31}^2 L} \qquad V = \sqrt{2}G_{\rm F}N_e$$
$$\sin\theta_{13} \ll 1 \qquad \alpha \ll 1$$

 $P^{\text{LBL}}_{\nu_e \rightarrow \nu_e} \simeq 1 - \sin^2 2\vartheta_{13} \sin^2 \Delta - \alpha^2 \Delta^2 \sin^2 2\vartheta_{12}$

$$\begin{split} P^{\text{LBL}}_{\nu_{\mu} \to \nu_{e}} \simeq \sin^{2} 2\vartheta_{13} \sin^{2} \vartheta_{23} \frac{\sin^{2}[(1-A)\Delta]}{(1-A)^{2}} \\ &+ \alpha \sin 2\vartheta_{13} \sin 2\vartheta_{12} \sin 2\vartheta_{23} \cos(\Delta + \delta_{13}) \frac{\sin(A\Delta)}{A} \frac{\sin[(1-A)\Delta]}{1-A} \\ &+ \alpha^{2} \sin^{2} 2\vartheta_{12} \cos^{2} \vartheta_{23} \frac{\sin^{2}(A\Delta)}{A^{2}} \end{split}$$

[Mezzetto, Schwetz, arXiv:1003.5800]

MINOS

[arXiv:1006.0996v1]

CP Violation

$$P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} = -16J_{\alpha\beta}\sin\left(\frac{\Delta m_{21}^2 L}{4E}\right)\sin\left(\frac{\Delta m_{31}^2 L}{4E}\right)\sin\left(\frac{\Delta m_{32}^2 L}{4E}\right)$$
$$J_{\alpha\beta} = \operatorname{Im}(U_{\alpha 1}U_{\alpha 2}^*U_{\beta 1}^*U_{\beta 2}) = \pm J$$
$$J = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2\sin\delta_{13}$$

Necessary conditions for observation of CP violation:

- Sensitivity to small ϑ_{13}
- Sensitivity to oscillations due to Δm_{21}^2 and Δm_{31}^2

Mass Hierarchy

•
$$\nu_e \leftrightarrows \nu_\mu$$
 MSW resonance: $\cos 2\vartheta_{13} = \frac{2EV}{\Delta m_{13}^2}$
Requires $\Delta m_{13}^2 > 0$

•
$$\bar{\nu}_e \leftrightarrows \bar{\nu}_\mu$$
 MSW resonance: $\cos 2\vartheta_{13} = -\frac{2EV}{\Delta m_{13}^2}$

Requires $\Delta m_{13}^2 < 0$

Off-Axis Experiments

high-intensity WB beam detector shifted by a small angle from axis of beam almost monochromatic neutrino energy

 cm

 γ

$$E_{\rm cm} = p_{\rm cm} = \frac{m_{\pi}}{2} \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2} \right) \simeq 29.79 \,\text{MeV}$$
$$= (1 - v^2)^{-1/2} = E_{\pi}/m_{\pi} \gg 1 \qquad \begin{cases} E = \gamma \left(E_{\rm cm} + v \, p_{\rm cm}^z \right) \\ p^z = \gamma \left(v \, E_{\rm cm} + p_{\rm cm}^z \right) \end{cases}$$
$$p^z = p \, \cos \theta \qquad \Longrightarrow \qquad E = \frac{E_{\rm cm}}{(1 - v^2)^2}$$

lab

 $\gamma (1 - v \cos \theta)$

$$\cos\theta \simeq 1 - \theta^2/2 \quad \text{and} \quad v \simeq 1$$

$$E = \frac{E_{\text{cm}}}{\gamma \left(1 - v \cos\theta\right)} \simeq \frac{\gamma \left(1 + v\right)}{1 + \gamma^2 \theta^2 v \left(1 + v\right)/2} E_{\text{cm}} \simeq \frac{2\gamma}{1 + \gamma^2 \theta^2} E_{\text{cm}}$$

$$E \simeq \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right) \frac{E_{\pi}}{1 + \gamma^2 \theta^2} = \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right) \frac{E_{\pi} m_{\pi}^2}{m_{\pi}^2 + E_{\pi}^2 \theta^2}$$

• $\theta = 0 \implies E \propto E_{\pi}$ WB beam

• $E_{\pi} \theta \gg m_{\pi} \implies E \propto rac{m_{\pi}^2}{E_{\pi} \, \theta^2}$ high-energy π^+ give low-energy u_{μ}

$$\frac{\mathrm{d}E}{\mathrm{d}E_{\pi}} \simeq \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right) \frac{1 - \gamma^2 \,\theta^2}{\left(1 + \gamma^2 \,\theta^2\right)^2}$$
$$\frac{\mathrm{d}E}{\mathrm{d}E_{\pi}} \simeq 0 \quad \text{for} \quad \theta = \gamma^{-1} = \frac{m_{\pi}}{E_{\pi}} \implies E \simeq \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right) \frac{m_{\pi}}{2\theta} \simeq \frac{29.79 \,\mathrm{MeV}}{\theta}$$

• *E* can be tuned on oscillation peak $E_{\text{peak}} = \Delta m^2 L/2\pi$

► small $E \implies$ short $L_{\text{osc}} = \frac{4\pi E}{\Delta m^2} \implies$ sensitivity to small values of Δm^2 **C. Giunti** - Neutrino Physics - May 2011 - 192

 $heta = 0.0^\circ, 0.5^\circ, 1.0^\circ, 1.5^\circ, 2.0^\circ$

flux suppression requires superbeam

Absolute Scale of Neutrino Masses

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
 - Mass Hierarchy or Degeneracy?
 - Tritium Beta-Decay
 - Neutrinoless Double-Beta Decay
 - Cosmological Bound on Neutrino Masses
- Anomalies Beyond Three-Neutrino Mixing
- Conclusions

Mass Hierarchy or Degeneracy?

Quasi-Degenerate for $m_1\simeq m_2\simeq m_3\simeq m_
u\gg \sqrt{\Delta m_{\rm ATM}^2}\simeq 5 imes 10^{-2}\,{\rm eV}$

Tritium Beta-Decay

Neutrino Mixing
$$\implies K(T) = \left[(Q - T) \sum_{k} |U_{ek}|^2 \sqrt{(Q - T)^2 - m_k^2} \right]^{1/2}$$

analysis of data is
different from the
no-mixing case:
 $2N - 1$ parameters
 $\left(\sum_{k} |U_{ek}|^2 = 1 \right)$
if experiment is not sensitive to masses $(m_k \ll Q - T)$
effective mass: $m_{\beta}^2 = \sum_{k} |U_{ek}|^2 m_k^2$
 $K^2 = (Q - T)^2 \sum_{k} |U_{ek}|^2 \sqrt{1 - \frac{m_k^2}{(Q - T)^2}} \simeq (Q - T)^2 \sum_{k} |U_{ek}|^2 \left[1 - \frac{1}{2} \frac{m_k^2}{(Q - T)^2} \right]$

$m_{\beta}^2 = |U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2$

Quasi-Degenerate: $m_1 \simeq m_2 \simeq m_3 \simeq m_\nu \implies m_\beta^2 \simeq m_\nu^2 \sum_k |U_{ek}|^2 = m_\nu^2$ FUTURE: IF $m_\beta \lesssim 4 \times 10^{-2} \text{ eV} \implies$ NORMAL HIERARCHY

C. Giunti – Neutrino Physics – May 2011 – 198

Neutrinoless Double-Beta Decay

Two-Neutrino Double- β Decay: $\Delta L = 0$

$$\mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z+2) + e^- + e^- + ar{
u}_e + ar{
u}_e$$

 $(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |\mathcal{M}_{2\nu}|^2$

second order weak interaction process in the Standard Model

u

Effective Majorana Neutrino Mass

FUTURE EXPERIMENTSCOBRA, XMASS, CAMEO, CANDLES $|m_{\beta\beta}| \sim \text{few } 10^{-1} \text{ eV}$ EXO, MOON, Super-NEMO, CUORE, Majorana, GEM, GERDA $|m_{\beta\beta}| \sim \text{few } 10^{-2} \text{ eV}$

Bounds from Neutrino Oscillations

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3$

CP conservation

 $lpha_{21} = 0\,,\;\pi \qquad lpha_{31} = 0\,,\;\pi$

CP Conservation: Normal Scheme

CP Conservation: Inverted Scheme

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3$

FUTURE: IF $|m_{\beta\beta}| \lesssim 10^{-2} \, \text{eV} \implies$ NORMAL HIERARCHY

Experimental Positive Indication

[Klapdor et al., MPLA 16 (2001) 2409]

$\beta \beta_{0\nu}$ Decay \Leftrightarrow Majorana Neutrino Mass

[Schechter, Valle, PRD 25 (1982) 2951] [Takasugi, PLB 149 (1984) 372]

Majorana Mass Term

$$\mathcal{L}_{eL}^{\mathrm{M}} = -\frac{1}{2} \, m_{ee} \left(\overline{\nu_{eL}^{c}} \, \nu_{eL} + \overline{\nu_{eL}} \, \nu_{eL}^{c} \right)$$

Cosmological Bound on Neutrino Masses

Lyman-alpha Forest

Rest-frame Lyman α , β , γ wavelengths: $\lambda_{\alpha}^{0} = 1215.67$ Å, $\lambda_{\beta}^{0} = 1025.72$ Å, $\lambda_{\gamma}^{0} = 972.54$ Å Lyman- α forest: The region in which only Ly α photons can be absorbed: $[(1 + z_q)\lambda_{\beta}^{0}, (1 + z_q)\lambda_{\alpha}^{0}]$

Relic Neutrinos

neutrinos are in equilibrium in primeval plasma through weak interaction reactions $\nu \bar{\nu} \leftrightarrows e^+ e^- \quad \stackrel{(-)}{\nu} e \leftrightarrows \stackrel{(-)}{\nu} N \stackrel{(-)}{\hookrightarrow} N \stackrel{(-)}{\hookrightarrow} N \quad \nu_e n \leftrightarrows p e^- \quad \bar{\nu}_e p \leftrightarrows n e^+ \quad n \leftrightarrows p e^- \bar{\nu}_e$

weak interactions freeze out $\Gamma_{\text{weak}} = N\sigma v \sim G_{\text{F}}^2 T^5 \sim T^2 / M_P \sim \sqrt{G_N T^4} \sim \sqrt{G_N \rho} \sim H \Longrightarrow \frac{T_{\text{dec}} \sim 1 \text{ MeV}}{T_{\text{neutrino decoupling}}}$

Relic Neutrinos:
$$T_{\nu} = \left(\frac{4}{11}\right)^{\frac{1}{3}} T_{\gamma} \simeq 1.945 \,\mathrm{K} \Longrightarrow k \,T_{\nu} \simeq 1.676 \times 10^{-4} \,\mathrm{eV}$$

number density:
$$n_f = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g_f T_f^3 \implies n_{\nu_k, \bar{\nu}_k} \simeq 0.1827 T_{\nu}^3 \simeq 112 \,\mathrm{cm}^{-3}$$

density contribution:
$$\Omega_{k} = \frac{n_{\nu_{k},\bar{\nu}_{k}} m_{k}}{\rho_{c}} \simeq \frac{1}{h^{2}} \frac{m_{k}}{94.14 \text{ eV}} \Longrightarrow \qquad \Omega_{\nu} h^{2} = \frac{\sum_{k} m_{k}}{94.14 \text{ eV}}$$

$$[\text{Gershtein, Zeldovich, JETP Lett. 4 (1966) 120] [Cowsik, McClelland, PRL 29 (1972) 669]}$$

$$h \sim 0.7, \quad \Omega_{\nu} \lesssim 0.3 \qquad \Longrightarrow \qquad \sum_{k} m_{k} \lesssim 14 \text{ eV}$$

C. Giunti – Neutrino Physics – May 2011 – 211

k

Power Spectrum of Density Fluctuations

prevents early galaxy formation $\delta(\vec{x}) \equiv \frac{\rho(\vec{x}) - \overline{\rho}}{\overline{\rho}}$ $\langle \delta(\vec{x}_1)\delta(\vec{x}_2) \rangle = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} e^{i\vec{k}\cdot\vec{x}} P(\vec{k})$ small scale suppression $\frac{\Delta P(k)}{P(k)} \approx -8 \frac{\Omega_{\nu}}{\Omega_{m}}$ $\approx -0.8 \left(\frac{\sum_k m_k}{1 \text{ eV}}\right) \left(\frac{0.1}{\Omega_m h^2}\right)$ for

hot dark matter

$$k\gtrsim k_{
m nr}pprox 0.026\, \sqrt{rac{m_
u}{1\,{
m eV}}}\sqrt{\Omega_m}\,h\,{
m Mpc}^{-1}$$

[Hu, Eisenstein, Tegmark, PRL 80 (1998) 5255]

WMAP (First Year), AJ SS 148 (2003) 175, astro-ph/0302209 CMB (WMAP, ...) + LSS (2dFGRS) + HST + SN-Ia \implies Flat \land CDM $T_0 = 13.7 \pm 0.2 \,\text{Gyr}$ $h = 0.71^{+0.04}_{-0.03}$ $\Omega_0 = 1.02 \pm 0.02$ $\Omega_b = 0.044 \pm 0.004$ $\Omega_m = 0.27 \pm 0.04$ $\Omega_{\nu} h^2 < 0.0076 \quad (95\% \text{ conf.}) \implies \sum_{k=1}^{3} m_k < 0.71 \text{ eV}$ k=1WMAP (Five Years), AJS 180 (2009) 330, astro-ph/0803.0547 CMB + HST + SN-Ia + BAO $T_0 = 13.72 \pm 0.12 \,\text{Gyr}$ $h = 0.705 \pm 0.013$ $-0.0179 < \Omega_0 - 1 < 0.0081$ (95% C.L.) $\Omega_b = 0.0456 \pm 0.0015$ $\Omega_m = 0.274 \pm 0.013$ $\sum m_k < 0.67 \, {
m eV} \quad (95\% \, {
m C.L.}) \qquad N_{
m eff} = 4.4 \pm 1.5$ k=1

Fogli, Lisi, Marrone, Melchiorri, Palazzo, Rotunno, Serra, Silk, Slosar

[PRD 78 (2008) 033010, hep-ph/0805.2517]

Flat **ACDM**

Case	Cosmological data set	Σ (at 2σ)
1	СМВ	$< 1.19 \mathrm{eV}$
2	CMB + LSS	< 0.71 eV
3	CMB + HST + SN-Ia	$< 0.75 { m eV}$
4	CMB + HST + SN-Ia + BAO	< 0.60 eV
5	$CMB + HST + SN-Ia + BAO + Ly\alpha$	$< 0.19 \mathrm{eV}$

 2σ (95% C.L.) constraints on the sum of ν masses Σ .

Indication of $\beta \beta_{0\nu}$ Decay: $0.22 \,\mathrm{eV} \lesssim |m_{\beta\beta}| \lesssim 1.6 \,\mathrm{eV}$ (~ 3σ range)

[Klapdor et al., MPLA 16 (2001) 2409; FP 32 (2002) 1181; NIMA 522 (2004) 371; PLB 586 (2004) 198]

tension among oscillation data, CMB+LSS+BAO(+Ly α) and $\beta\beta_{0\nu}$ signal

95% allowed regions (2 dof) 95% upper bounds on $\sum m_{\nu}$

[Gonzalez-Garcia, Maltoni, Salvado,

JHEP08 (2010) 117, arXiv:1006.3795v2]

C. Giunti – Neutrino Physics – May 2011 – 217

Anomalies Beyond Three-Neutrino Mixing

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Anomalies Beyond Three-Neutrino Mixing
- Conclusions

LSND

[LSND, PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 30 \, \mathrm{m}$

 $20 \,{\rm MeV} < E < 200 \,{\rm MeV}$

MiniBooNE Neutrinos

[PRL 98 (2007) 231801; PRL 102 (2009) 101802]

C. Giunti – Neutrino Physics – May 2011 – 220

MiniBooNE Antineutrinos

[PRL 103 (2009) 111801; PRL 105 (2010) 181801]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$ $L \simeq 541 \, {
m m}$

Agreement with LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal!

Similar L/E but different L and $E \Longrightarrow$ Oscillations!

Beyond Three-Neutrino Mixing

Standard Model

- Neutrinos are the only massless fermions
- Neutrinos are the only fermions with only left-handed component ν_L

Extension of the SM: Massive Neutrinos

- Simplest extension: introduce right-handed component ν_R
- Dirac mass $m_{\rm D}\overline{\nu_R}\nu_L$ + Majorana mass $m_{\rm M}\overline{\nu_R^c}\nu_R$
- ► ν_{eL} , $\nu_{\mu L}$, $\nu_{\tau L}$ + ν_{eR} , $\nu_{\mu R}$, $\nu_{\tau R}$ \implies 6 massive Majorana neutrinos

Sterile Neutrinos

• Light anti- ν_R are called sterile neutrinos

 $\nu_R^c \rightarrow \nu_{sL}$ (left-handed)

- Sterile means no standard model interactions
- Active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into sterile neutrinos (ν_s)
- Observables:
 - Disappearance of active neutrinos
 - Indirect evidence through combined fit of data (current indication)
- Powerful window on new physics beyond the Standard Model

Cosmology

• N_s = number of thermalized sterile neutrinos (not necessarily integer)

Direct Searches of Active-Sterile Transitions

[PRD 59 (1999) 031101, arXiv:hep-ex/9809023]

MINOS

NC sample: 89% efficiency and 61% purity 97% of ν_e -induced CC events misidentified as NC

[arXiv:1104.3922]

New Calculation of Reactor $\bar{\nu}_e$ Flux

- Th. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, F. Yermia, Improved Predictions of Reactor Antineutrino Spectra, arXiv:1101.2663
- detected flux normalization is increased by about 3%

- G. Mention, M. Fechner, Th. Lasserre, Th. A. Mueller, D. Lhuillier, M. Cribier, A. Letourneau, The Reactor Antineutrino Anomaly, arXiv:1101.2755
- \blacktriangleright ratio of observed and predicted event rates: 0.937 ± 0.027
- deviation from unity at 98.4% C.L.: reactor antineutrino anomaly

C. Giunti – Neutrino Physics – May 2011 – 230

Reactor Antineutrino Anomaly

Standard Reactor $\bar{\nu}_e$ Fluxes

New Reactor $\bar{\nu}_e$ Fluxes

► New reactor neutrino flux has several implications: fit of solar and KamLAND data, determination of ϑ₁₃, short-baseline ν
_e disappearance, ...

Hint of $\vartheta_{13} > 0$

[Fogli et al., PRL 101 (2008) 141801]

[Mention et al., arXiv:1101.2755]

[Mention et al., arXiv:1101.2755]

Four-Neutrino Schemes: 2+2 and 3+1

2+2 Four-Neutrino Schemes

2+2 Schemes are strongly disfavored by solar and atmospheric data

3+1 Four-Neutrino Schemes

Effective SBL Oscillation Probabilities in 3+1 Schemes

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-iE_{k}t} \right|^{2} * \left| e^{iE_{1}t} \right|^{2}$$
$$= \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-i(E_{k} - E_{1})t} \right|^{2} \to \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} \exp\left(-i\frac{\Delta m_{k1}^{2}L}{2E} \right) \right|^{2}$$

$$E_{k} \simeq E + \frac{m_{k}^{2}}{2E} \qquad \frac{\Delta m_{21}^{2}L}{2E} \ll 1 \qquad \frac{\Delta m_{31}^{2}L}{2E} \ll 1 \qquad \Delta m_{41}^{2} \to \Delta m^{2}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| U_{\alpha1}^{*}U_{\beta1} + U_{\alpha2}^{*}U_{\beta2} + U_{\alpha3}^{*}U_{\beta3} + U_{\alpha4}^{*}U_{\beta4} \exp\left(-i\frac{\Delta m^{2}L}{2E}\right) \right|^{2}$$

$$U_{\alpha1}^{*}U_{\beta1} + U_{\alpha2}^{*}U_{\beta2} + U_{\alpha3}^{*}U_{\beta3} = \delta_{\alpha\beta} - U_{\alpha4}^{*}U_{\beta4}$$

$$\begin{split} P_{\nu_{\alpha} \to \nu_{\beta}} &= \left| \delta_{\alpha\beta} - U_{\alpha4}^{*} U_{\beta4} \left[1 - \exp\left(-i\frac{\Delta m^{2}L}{2E} \right) \right] \right|^{2} \\ &= \delta_{\alpha\beta} + |U_{\alpha4}|^{2} |U_{\beta4}|^{2} \left(2 - 2\cos\frac{\Delta m^{2}L}{2E} \right) \\ &- 2\delta_{\alpha\beta} |U_{\alpha4}|^{2} \left(1 - \cos\frac{\Delta m^{2}L}{2E} \right) \\ &= \delta_{\alpha\beta} - 2|U_{\alpha4}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta4}|^{2} \right) \left(1 - \cos\frac{\Delta m^{2}L}{2E} \right) \\ &= \delta_{\alpha\beta} - 4|U_{\alpha4}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta4}|^{2} \right) \sin^{2}\frac{\Delta m^{2}L}{4E} \\ \alpha \neq \beta \implies P_{\nu_{\alpha} \to \nu_{\beta}} = 4|U_{\alpha4}|^{2} |U_{\beta4}|^{2} \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right) \\ \alpha = \beta \implies P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - 4|U_{\alpha4}|^{2} \left(1 - |U_{\alpha4}|^{2} \right) \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right) \\ \hline C. \text{ Giunti - Neutrino Physics - May 2011 - 238} \end{split}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\vartheta_{\alpha\beta} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$\sin^2 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2$$

No CP Violation!

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) \quad \sin^2 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^2 \left(1 - |U_{\alpha4}|^2\right)$$

Perturbation of 3ν Mixing

- ► Tension between LSND + KARMEN + MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and MiniBooNE $\nu_{\mu} \rightarrow \nu_{e} \implies$ CP Violation?
- → 3+2 ⇒ CP Violation OK [Sorel, Conrad, Shaevitz, PRD 70 (2004) 073004, hep-ph/0305255; Maltoni, Schwetz, PRD 76, 093005 (2007), arXiv:0705.0107; Karagiorgi et al, PRD 80 (2009) 073001, arXiv:0906.1997]
 → 3+1+NSI ⇒ CP Violation OK [Akhmedov, Schwetz, JHEP 10 (2010) 115, arXiv:1007.4171]

Goodness of Fit

- GoF = $\int_{\chi^2_{\min}}^{\infty} p_{\chi^2}(z, \text{NDF}) dz$ $p_{\chi^2}(z, n) = \frac{z^{n/2-1}e^{-z/2}}{2^{n/2}\Gamma(n/2)}$

Parameter Goodness of Fit

Maltoni, Schwetz, PRD 68 (2003) 033020, arXiv:hep-ph/0304176

- Measure compatibility of two (or more) sets of data points A and B under fitting model
- $\chi^2_{PGoF} = (\chi^2_{min})_{A+B} [(\chi^2_{min})_A + (\chi^2_{min})_B]$
- ► χ^2_{PGoF} has χ^2 distribution with Number of Degrees of Freedom NDF_{PGoF} = $N_P^A + N_P^B - N_P^{A+B}$
- $PGoF = \int_{\chi^2_{PGoF}}^{\infty} p_{\chi^2}(z, NDF_{PGoF}) dz$

SBL Oscillation Probabilities in 3+2 Schemes

 $\phi_{kj} = \Delta m_{kj}^2 L/4E$ $\eta = \arg[U_{e4}^* U_{\mu 4} U_{e5} U_{\mu 5}^*]$

$$\begin{aligned} P_{\substack{(-) \ \nu_{\mu} \to \nu_{e}}}^{(-)} &= 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\phi_{41} + 4|U_{e5}|^{2}|U_{\mu5}|^{2}\sin^{2}\phi_{51} \\ &+ 4|U_{e4}U_{\mu4}U_{e5}U_{\mu5}|\cos\eta\left[\sin^{2}\phi_{41} + \sin^{2}\phi_{51} - \sin^{2}\phi_{54}\right] \\ &\stackrel{(+)}{-} 2|U_{e4}U_{\mu4}U_{e5}U_{\mu5}|\sin\eta\left[\sin(2\phi_{41}) - \sin(2\phi_{51}) + \sin(2\phi_{54})\right] \end{aligned}$$

MiniBooNE $ u_{\mu} ightarrow u_{e}$ and $ar{ u}_{\mu} ightarrow ar{ u}_{e}$		
		$MBar{ u} + MB u$
No Osc.	χ^2	35.5
	NDF	32
	GoF	0.31
Osc. (3+2)	$\chi^2_{ m min}$	21.1
	NDF	25
	GoF	0.69
	Δm_{41}^2	0.087
	Δm_{51}^2	4.57
	$4 U_{e4} ^2 U_{\mu4} ^2$	0.19
	$4 U_{e5} ^2 U_{\mu5} ^2$	0.002
	η/π^{-1}	1.40
	$4 U_{\mu4} ^2(1- U_{\mu4} ^2)$	0.93
	$4 U_{\mu5} ^2(1- U_{\mu5} ^2)$	0.0025
PGoF	$\Delta\chi^2_{ m min}$	5.72
	NDF	7
	PGoF	0.57
C. Giunti – Neutrino Physics – May 2011 – 243		

MiniBooNE $u_{\mu} \rightarrow \nu_{e} \text{ and } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

Disappearance Constraints

$\bar{\nu}_e$ Disappearance

$u_{\mu} \text{ and } ar{ u}_{\mu}$ Disappearance

New Reactor $\bar{\nu}_e$ Fluxes

[Mueller et al., arXiv:1101.2663]

[Mention et al., arXiv:1101.2755]

[Maltoni, Schwetz, PRD 76 (2007) 093005, arXiv:0705.0107]

• ν_e disappearance experiments:

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \simeq 4|U_{e4}|^2$$

• ν_{μ} disappearance experiments:

$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq 4|U_{\mu4}|^2$$

• $u_{\mu} \rightarrow \nu_{e} \text{ experiments:}$

$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$$

► Upper bounds on $\sin^2 2\vartheta_{ee}$ and $\sin^2 2\vartheta_{\mu\mu} \implies$ strong limit on $\sin^2 2\vartheta_{e\mu}$ [Okada, Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694, arXiv:hep-ph/9606411] [Bilenky, Giunti, Grimus, Eur. Phys. J. C1 (1998) 247, arXiv:hep-ph/9607372]

3+1 Schemes

- Strong tension between $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance and disappearance limits $(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e} \text{ and mainly } \nu_{\mu} \rightarrow \nu_{\mu})$
- ► Tension reduced in 3+2, 3+1+NSI
- CPT Violation?

[Barger, Marfatia, Whisnant, PLB 576 (2003) 303] [Giunti, Laveder, PRD 82 (2010) 093016, PRD 83 (2011) 053006]

Global 3+2 Fit

[Kopp, Maltoni, Schwetz, arXiv:1103.4570]

Best fit:

$$\begin{cases} \Delta m_{41}^2 = 0.47 \,\mathrm{eV}^2 & \Delta m_{51}^2 = 0.87 \,\mathrm{eV}^2 \\ |U_{e4}| = 0.128 & |U_{e5}| = 0.138 \\ |U_{\mu4}| = 0.165 & |U_{\mu5}| = 0.148 & \eta = 1.64\pi \end{cases}$$

 $\chi^2_{\rm min}/{
m NDF}=110.1/130$

LSND + MiniBooNE($\bar{\nu}$) vs rest $\chi^2_{\mathsf{PGof}}/\mathsf{NDF}_{\mathsf{PGof}} = 19.9/5$ PGof = 0.13%

MINOS Hint of CPT Violation?

CDF Hint of CPT Violation?

Measurement of the mass difference between t and \overline{t} quarks, arXiv:1103.2782v1 [hep-ex]

 $m_t - m_{\bar{t}} = -3.3 \pm 1.4 \pm 1.0 \, \text{GeV}$

"approximately two standard deviations away from the CPT hypothesis of zero mass difference"

Phenomenological Approach: Consider $\bar{\nu}$'s Only

Parameter Goodness-of-Fit

 $\Delta \chi^2_{\rm min} = 5.9$ NdF = 4 GoF = 21%

[Giunti, Laveder, PRD 82 (2010) 093016, arXiv:1010.1395]

C. Giunti – Neutrino Physics – May 2011 – 254

Conservation of Probability

$$\sum_{\alpha} P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{e}} = 1$$

$$P_{\bar{\nu}_e \to \bar{\nu}_e} + P_{\bar{\nu}_\mu \to \bar{\nu}_e} + P_{\bar{\nu}_\tau \to \bar{\nu}_e} + P_{\bar{\nu}_s \to \bar{\nu}_e} = 1$$

$$P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}} = 1 - P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}} - P_{\bar{\nu}_{\tau} \rightarrow \bar{\nu}_{e}} - P_{\bar{\nu}_{s} \rightarrow \bar{\nu}_{e}}$$

$$P_{ar{
u}_{\mu}
ightarrowar{
u}_{e}} \leq 1 - P_{ar{
u}_{e}
ightarrowar{
u}_{e}}$$

Reactor $\bar{\nu}_e$ disappearance bound is unavoidable!

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$ and $ar{
u}_{e}
ightarrow ar{
u}_{e}$

 $\chi^{2}_{min} = 81.4$ NdF = 82
GoF = 50%
sin² 2 ϑ = 0.014 Δm^{2} = 0.46 eV²

Parameter Goodness-of-Fit

 $\Delta \chi^2_{\rm min} = 3.0$ NdF = 2 GoF = 22%

[Giunti, Laveder, PRD 82 (2010) 093016, arXiv:1010.1395]

C. Giunti – Neutrino Physics – May 2011 – 256

Antineutrino Oscillations in 3+1 Schemes

 $\Delta m^2 = 0.42 \text{ eV}^2 \quad \sin^2 2\vartheta_{e\mu} = 0.016 \quad \sin^2 2\vartheta_{ee} = 0.020 \quad \sin^2 2\vartheta_{\mu\mu} = 0.65$ Prediction: large SBL $\bar{\nu}_{\mu}$ disappearance at $\Delta m^2 \gtrsim 0.1 \text{ eV}^2$

[Giunti, Laveder, PRD 83 (2011) 053006, arXiv:1012.0267]

Gallium Anomaly

Gallium Radioactive Source Experiments

Tests of the solar neutrino detectors GALLEX (Cr1, Cr2) and SAGE (Cr, Ar)

Detection Process: $u_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

 $u_e \text{ Sources:} \qquad e^- + {}^{51}\text{Cr} \rightarrow {}^{51}\text{V} + \nu_e \qquad e^- + {}^{37}\text{Ar} \rightarrow {}^{37}\text{Cl} + \nu_e$

[SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

[SAGE, PRC 59 (1999) 2246, hep-ph/9803418]

[SAGE, PRC 59 (1999) 2246, hep-ph/9803418]

 $\langle L \rangle_{\text{GALLEX}} = 1.9 \,\text{m}$

$$\langle L \rangle_{\mathsf{SAGE}} = 0.6 \,\mathrm{m}$$

[SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

 $\begin{array}{rcl} R_{\rm B}^{\rm Gallex-Cr1} & = & 0.953 \pm 0.11 \\ R_{\rm B}^{\rm Gallex-Cr2} & = & 0.812^{+0.10}_{-0.11} \\ R_{\rm B}^{\rm SAGE-Cr} & = & 0.95 \pm 0.12 \\ R_{\rm B}^{\rm SAGE-Ar} & = & 0.791^{+0.084}_{-0.078} \end{array}$

$$\textit{R}_{B}^{Ga}=0.86\pm0.05$$

Bahcall cross section

Only exp uncertainties!

- ► Deficit could be due to overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$
- Calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

• $\sigma_{G.S.}$ related to measured $\sigma(e^- + {}^{71}\text{Ge} \rightarrow {}^{71}\text{Ga} + \nu_e)$:

$$\sigma_{\mathsf{G.S.}}(^{51}\mathsf{Cr}) = 55.3 imes 10^{-46} \, \mathsf{cm}^2 \left(1 \pm 0.004
ight)_{3\sigma}$$

• $\sigma(^{51}\text{Cr}) = \sigma_{G.S.}(^{51}\text{Cr})\left(1 + 0.669 \frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{G.S.}} + 0.220 \frac{\text{BGT}_{500 \text{ keV}}}{\text{BGT}_{G.S.}}\right)$

Contribution of Excited States only 5%!

Bahcall:

[Bahcall, PRC 56 (1997) 3391, hep-ph/9710491]

from $p + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + n$ measurements [Krofcheck et al., PRL 55 (1985) 1051]

$$\frac{BGT_{175 \text{ keV}}}{BGT_{G.S.}} < 0.056 \Rightarrow \frac{BGT_{175 \text{ keV}}}{BGT_{G.S.}} = \frac{0.056}{2} \qquad \frac{BGT_{500 \text{ keV}}}{BGT_{G.S.}} = 0.146$$

$$3\sigma \text{ lower limit: } \frac{BGT_{175 \text{ keV}}}{BGT_{G.S.}} = \frac{BGT_{500 \text{ keV}}}{BGT_{G.S.}} = 0$$

$$3\sigma \text{ upper limit: } \frac{BGT_{175 \text{ keV}}}{BGT_{G.S.}} < 0.056 \times 2 \qquad \frac{BGT_{500 \text{ keV}}}{BGT_{G.S.}} = 0.146 \times 2$$

$$\sigma(^{51}\text{Cr}) = 58.1 \times 10^{-46} \text{ cm}^2 \left(1^{+0.036}_{-0.028}\right)_{1\sigma} \implies \qquad R_B^{Ga} = 0.86 \pm 0.06$$

Haxton: [Hata, Haxton, PLB 353 (1995) 422, nucl-th/9503017; Haxton, PLB 431 (1998) 110, nucl-th/9804011] "a sophisticated shell model calculation is performed ... for the transition to the first excited state in ⁷¹Ge. The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements."

$$\sigma(^{51}\text{Cr}) = 63.9 \times 10^{-46} \text{ cm}^2 (1 \pm 0.106)_{1\sigma} \implies R_{\text{H}}^{\text{Ga}} = 0.78 \pm 0.13$$

• $R_{\rm H}^{\rm Ga} = 0.78 \pm 0.13$

exp and the uncertainties added in quadrature

 $\blacktriangleright R^{Ga} = R_{exp}^{Ga} / R_{the}^{Ga}$

probability distribution of ratio is not Gaussian

$$p_{R^{Ga}}(r) = \int_{R_{gs}^{Ga}}^{\infty} p_{R_{exp}^{Ga}}(rs) p_{R_{the}^{Ga}}(s) s \, ds$$

$$R^{Ga} = 0.76_{-0.08}^{+0.09}$$

$$R^{Gallex-Cr1} = 0.84_{-0.12}^{+0.13}$$

$$R^{Gallex-Cr2} = 0.71_{-0.11}^{+0.12}$$

$$R^{SAGE-Cr} = 0.84_{-0.13}^{+0.14}$$

$$R^{SAGE-Ar} = 0.70_{-0.09}^{+0.10}$$

[Giunti, Laveder, arXiv:1006.3244]

C. Giunti – Neutrino Physics – May 2011 – 262

ľ

Gallium Radioactive Source Experiments are Short-BaseLine Neutrino Oscillation Experiments

Fig. 1. Region of electron neutrino oscillation parameters ruled out at 90% C.L. by the GALLEX ⁵¹Cr source experiment.

[Bahcall, Krastev, Lisi, PLB 348 (1995) 121]

$$P_{\nu_e o \nu_e}^{\mathrm{SBL}}(L, E) = 1 - \sin^2 2\vartheta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$R^{k}(\sin^{2}2\vartheta,\Delta m^{2}) = \frac{\int_{k} \mathrm{d}V \, L^{-2} \sum_{i} b_{i}^{k} \, \sigma_{i}^{k} \, P_{\nu_{e} \rightarrow \nu_{e}}^{\text{DBL}}(L,E_{i})}{\sum_{i} b_{i}^{k} \, \sigma_{i}^{k} \, \int_{k} \mathrm{d}V \, L^{-2}}$$

k = GALLEX-Cr1, GALLEX-Cr2, SAGE-Cr, SAGE-Ar

 $R^{k} = R^{k}_{exp}/R^{k}_{the}$ fully correlated theoretical uncertainty!

$$p_{\vec{R}}(\vec{r}) = \int_{R_{gs}^k}^{\infty} \left[\prod_k p_{R_{exp}^k}(r^k s) \right] \, p_{R_{the}^k}(s) \, s^4 \, \mathrm{d}s$$

 $\mathcal{L}(\sin^2 2\vartheta, \Delta m^2) = \rho_{\vec{R}}(\vec{R}(\sin^2 2\vartheta, \Delta m^2))$

 $\chi^2(\sin^2 2artheta,\Delta m^2) = -2\ln\mathcal{L}(\sin^2 2artheta,\Delta m^2) + ext{constant}$

C. Giunti – Neutrino Physics – May 2011 – 265

 (2.7σ)

Osc.

Reactor Antineutrino Anomaly

• $\overline{R}_{rates} = 0.946 \pm 0.024$

- Improved hint of oscillations given by Bugey energy spectrum with old reactor fluxes [Acero, Giunti, Laveder, PRD 78 (2008) 073009, arXiv:0711.4222]
- $\sin^2 2\vartheta_{\rm bf} = 0.059$ $\Delta m_{\rm bf}^2 = 1.89 \,{\rm eV}^2$

Reactor Antineutrino Anomaly

Gallium Neutrino Anomaly

 $\sin^2 2\vartheta_{\rm bf} = 0.059$ $\Delta m_{\rm bf}^2 = 1.89\,{\rm eV}^2$

 $\sin^2 2\vartheta_{\rm bf} = 0.51$ $\Delta m_{\rm bf}^2 = 2.24 \, {\rm eV}^2$

Gallium Anomaly + Reactor Anomaly

PGoF = 4.6%

Old Reactor $\bar{\nu}_e$ Fluxes

Implications of Gallium and Reactor Anomalies

 β Decay

 $(\beta\beta)_{0\nu}$ Decay

9 9 99.73% 99.73% Gallium Gallium æ Reactors Reactors œ Tritium Tritium Combined Combined 99% 9 ŝ $\Delta \chi^2$ $\Delta \chi^2$ 4 95.45% 95.45% 90% 2 2 68.27% 68.27% 0 10-2 10-3 10-1 10⁻¹ 10-2 $|U_{e4}|^2 \sqrt{\Delta m^2}$ [eV] $|U_{e4}|\sqrt{\Delta m^2}$ [eV] $m_{eta}^2 = \sum_k |U_{ek}|^2 m_k^2$ $m_{\beta\beta} = \left| \sum_{L} U_{ek}^2 m_k \right|$ [Giunti, Laveder, In Preparation]

MiniBooNE Low-Energy Anomaly

Our Hypothesis: $N_{\nu,j}^{\text{the}} = f_{\nu} \left(P_{\nu_e \to \nu_e} N_{\nu_e,j}^{\text{cal}} + N_{\nu_{\mu},j}^{\text{cal}} \right)$

[Giunti, Laveder, PRD 77 (2008) 093002, arXiv:0707.4593; PRD 80 (2009) 013005, arXiv:0902.1992]
$$N_{
u,j}^{ ext{the}} = f_{
u} \left(P_{
u_e
ightarrow
u_e} N_{
u_e,j}^{ ext{cal}} + N_{
u_\mu,j}^{ ext{cal}}
ight)$$

- Estimated 15% uncertainty of the calculated neutrino flux [MiniBooNE, PRD 79 (2009) 072002, arXiv:0806.1449] is consistent with measured ratio 1.21 \pm 0.24 of detected and predicted charged-current quasi-elastic ν_{μ} events [MiniBooNE, PRL 100 (2008) 032301, arXiv:0706.0926]
- We fit MiniBooNE ν_e and ν_μ data using the info at http://www-boone.fnal.gov/for_physicists/data_release/lowe/

MiniBooNE + Gallium

MiniBooNE + Gallium + Reactors

Future

MiniBooNE is continuing to take antineutrino data.

$$ar{
u}_\mu o ar{
u}_e + ar{
u}_\mu o ar{
u}_\mu$$

- ► ICARUS@CERN-PS: $L \sim 1 \text{km}$ $E \sim 1 \text{GeV}$ [C. Rubbia et al, CERN-SPSC-2011-012] $\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}} + \stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{\mu}} + \stackrel{(-)}{\nu_{e}} \rightarrow \stackrel{(-)}{\nu_{e}}$
- MicroBooNE will test the MiniBooNE low-energy anomaly by measuring $\pi^0 \rightarrow 2\gamma$ background.

- ν_e disappearance: new SAGE Gallium source experiments with 2 spherical shells [Gavrin et al, arXiv:1006.2103]
- CPT test: ν_e and $\bar{\nu}_e$ disappearance
- ► Beta-Beam experiments: [Antusch, Fernandez-Martinez, PLB 665 (2008) 190, arXiv:0804.2820]

$$egin{aligned} & \mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z+1) + e^- + ar{
u}_e & (eta^-) \ & \mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z-1) + e^+ +
u_e & (eta^+) \end{aligned}$$

► Neutrino Factory experiments: [Giunti, Laveder, Winter, PRD 80 (2009) 073005, arXiv:0907.5487]

$$\mu^+
ightarrow ar{
u}_\mu + e^+ +
u_e$$
 $\mu^-
ightarrow
u_\mu + e^- + ar{
u}_e$

Neutrino Factory

[Giunti, Laveder, Winter, PRD 80 (2009) 073005, arXiv:0907.5487]

Near Detectors: Scintillator or Iron Calorimeter with perfect flavor identification

Systematic Uncertainties:

Cross Section, Detector Normalization, Energy Resolution and Calibration, Backgrounds

ν_e Disappearance

[Giunti, Laveder, Winter, PRD 80 (2009) 073005, arXiv:0907.5487]

С.	Giunti –	Neutrino	Physics -	May 2011	- 279
----	----------	----------	-----------	----------	-------

New ν_e and ν
_e radioactive source experiments with low-threshold neutrino elastic scattering detectors.

• Borexino: $\stackrel{(-)}{\nu_e} + e^- \rightarrow \stackrel{(-)}{\nu_e} + e^-$ [Pallavicini, talk at BEYOND3NU] [Ianni, Montanino, Scioscia, EPJC 8 (1999) 609, arXiv:hep-ex/9901012]

- ► LENS (Low Energy Neutrino Spectroscopy): [Agarwalla, Raghavan, arXiv:1011.4509] $\nu_e + {}^{115}$ In $\rightarrow {}^{115}$ Sn $+ e^- + 2\gamma$ $E_{th} = 0.1$ MeV $\bar{\nu}_e + p \rightarrow n + e^+$ $E_{th} = 1.8$ MeV
- Spherical Gaseous TPC:

[Vergados, Giomataris, Novikov, arXiv:1103.5307]

- ► Targets: ¹³¹Xe, ⁴⁰Ar, ²⁰Ne, ⁴He.
- ► Sources: ³⁷Ar, ⁵¹Cr, ⁶⁵Zn, ³²P.

Conclusions

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Anomalies Beyond Three-Neutrino Mixing
- Conclusions

Conclusions - Three-Neutrino Mixing

Conclusions - Anomalies - 1

- Suggestive LSND and MiniBooNE agreement on SBL $ar{
 u}_\mu o ar{
 u}_e$
- Hint in favor of sterile neutrinos is compatible with cosmological data, but mass is limited
- Two experimental tensions:
 - ▶ LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ vs MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$ (CP violation?)
 - ▶ LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ vs $\bar{\nu}_{e}$ and ν_{μ} disappearance limits
- CPT-invariant 3+1 Four-Neutrino Mixing is strongly disfavored (no CP violation and tension between appearance and disappearance)
- ► 3+2 can explain CP violation and reduce tension between appearance and disappearance with New Reactor v
 e Fluxes
- ► 3+1+NSI has CP violation and reduced appearance-disappearance tension
- CPT-violating 3+1 Mixing \implies testable large SBL $\bar{\nu}_{\mu}$ disappearance

C. Giunti – Neutrino Physics – May 2011 – 283

Conclusions - Anomalies - 2

- Interesting possible agreement of
 - Gallium Anomaly (SBL ν_e disappearance)
 - Reactor Anomaly (SBL $\bar{\nu}_e$ disappearance)
- Testable Predictions:
 - $m_{\beta} \sim 0.12 0.71 \,\mathrm{eV}$ (2 σ)
 - $m_{\beta\beta} \sim 0.011 0.15 \,\mathrm{eV}$ (2 σ)
- Exciting experimental results in favor of sterile neutrinos.
- More work to do because interpretation is not clear:
 - Explanation of all data needs at least two new physical effects.
 - Without CPT violation tensions do not disappear completely.
 - Possible that some experiments are giving misleading information.
- New short-baseline neutrino oscillation experiments are needed!

C. Giunti – Neutrino Physics – May 2011 – 284