Phenomenology of Light Sterile Neutrinos Carlo Giunti

ISMD 2012, International Symposium of Mutiparticle Dynamics 16-21 September 2012, Kielce, Poland

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 1/27

Beyond Three-Neutrino Mixing

Sterile Neutrinos from Physics Beyond the SM

- Neutrinos are special in the Standard Model: the only neutral fermions
- In extensions of SM neutrinos can mix with non-SM fermions

► SM:
$$L_L = \begin{pmatrix} \nu_L \\ \ell_L \end{pmatrix}$$
 $\widetilde{\Phi} = i\sigma_2 \Phi^* = \begin{pmatrix} \phi^0 \\ \phi^- \end{pmatrix} \xrightarrow[\text{Breaking}]{\text{Symmetry}} \begin{pmatrix} v/\sqrt{2} \\ 0 \end{pmatrix}$

- SM singlet $\overline{L_L}\widetilde{\Phi}$ can couple to new singlet chiral fermion field f_R related to physics beyond the SM
- ► Known examples: light v_R from see-saw, SUSY (v_R, axino, ...), extra dimensions (Kaluza-Klein modes), mirror world, ...
- Dirac mass term $\sim \overline{L_L} \widetilde{\Phi} f_R + Majorana mass term <math>\sim \overline{f_R^c} f_R$
- ► f_R is often called Right-Handed Neutrino: $f_R \rightarrow \nu_R$

Sterile Neutrinos

• Light anti- ν_R are called sterile neutrinos

 $\nu_R^c \rightarrow \nu_{sL}$ (left-handed)

- Sterile means no standard model interactions
- Active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into sterile neutrinos (ν_s)
- Observables:
 - Disappearance of active neutrinos (neutral current deficit)
 - Indirect evidence through combined fit of data (current indication)
- Short-baseline anomalies $+ 3\nu$ -mixing:

$$\begin{array}{c|c} \Delta m_{21}^2 \ll |\Delta m_{31}^2| \ll |\Delta m_{41}^2| \leq \dots \\ \nu_1 & \nu_2 & \nu_3 & \nu_4 & \dots \\ \nu_e & \nu_\mu & \nu_\tau & \nu_{s_1} & \dots \end{array}$$

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 4/27

- In this talk I consider sterile neutrinos with mass scale ~ 1 eV in light of short-baseline LSND, MiniBooNE, Reactor Anomaly, Gallium Anomaly.
- Other possibilities (not incompatible):
 - Very light sterile neutrinos with mass scale
 1 eV: important for solar neutrino phenomenology
 [Das, Pulido, Picariello, PRD 79 (2009) 073010]

[de Holanda, Smirnov, PRD 83 (2011) 113011]

 \blacktriangleright Heavy sterile neutrinos with mass scale $\gg 1\,{\rm eV}:$ could be Warm Dark Matter

[Kusenko, Phys. Rept. 481 (2009) 1]

[Boyarsky, Ruchayskiy, Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191]

Effective SBL Oscillation Probabilities in 3+1 Schemes

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\vartheta_{\alpha\beta} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

 $\sin^2 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2$

No CP Violation!

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 6/27

Effective SBL Oscillation Probabilities in 3+2 Schemes

$$\phi_{kj} = \Delta m_{kj}^2 L/4E$$

$$\eta = \arg[U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*]$$

$$P_{\substack{(-)\\\nu_{\mu}\to\nu_{e}}}^{(-)} = 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\phi_{41} + 4|U_{e5}|^{2}|U_{\mu5}|^{2}\sin^{2}\phi_{51} + 8|U_{\mu4}U_{e4}U_{\mu5}U_{e5}|\sin\phi_{41}\sin\phi_{51}\cos(\phi_{54}\stackrel{(+)}{-}\eta)$$

$$P_{\substack{(-)\\\nu_{\alpha}\to\nu_{\alpha}}} = 1 - 4(1 - |U_{\alpha4}|^2 - |U_{\alpha5}|^2)(|U_{\alpha4}|^2 \sin^2 \phi_{41} + |U_{\alpha5}|^2 \sin^2 \phi_{51}) \\ - 4|U_{\alpha4}|^2|U_{\alpha5}|^2 \sin^2 \phi_{54}$$

[Sorel, Conrad, Shaevitz, PRD 70 (2004) 073004; Maltoni, Schwetz, PRD 76 (2007) 093005; Karagiorgi et al, PRD 80 (2009) 073001; Kopp, Maltoni, Schwetz, PRL 107 (2011) 091801; Giunti, Laveder, PRD 84 (2011) 073008; Donini et al, arXiv:1205.5230; Conrad, Ignarra, Karagiorgi, Shaevitz, Spitz, arXiv:1207.4765]

- More parameters: 7 (vs 3 in 3+1)
- CP violation
- ▶ Why not 3+3?

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 7/27

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $\bar{
u}_{\mu}
ightarrow \bar{
u}_{e}$ $L \simeq 30 \, {
m m}$

 $20 \,\mathrm{MeV} \le E \le 200 \,\mathrm{MeV}$

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 8/27

MiniBooNE Neutrinos

[PRL 98 (2007) 231801; PRL 102 (2009) 101802]

 $u_{\mu}
ightarrow
u_{e} \qquad L \simeq 541 \,\mathrm{m} \qquad 200 \,\mathrm{MeV} \leq E \lesssim 3 \,\mathrm{GeV}$

• no $\nu_{\mu} \rightarrow \nu_{e}$ signal corresponding to LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal ($E > 475 \,\text{MeV}$)

Iow-energy anomaly

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 9/27

MiniBooNE Antineutrinos - 2009-2010

[PRL 103 (2009) 111801; PRL 105 (2010) 181801]

- ▶ agreement with LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal ($E > 475 \, \text{MeV}$)
- similar L/E but different L and $E \Longrightarrow$ oscillations
- CP violation?

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 10/27

MiniBooNE $\overline{\nu}$ - Neutrino 2012 - 6 June

		1st half			2nd half	
	data	mc	excess	data	mc	excess
200-475	119	100.5±14.3	18.5 (1.3s)	138	100.0±14.1	38 (2.7s)
475-1250	120	99.1±14.0	20.9 (1.5s)	101	103.1±14.4	-2.2 (-0.2s)

agreement with LSND signal is sadly vanishing

C. Giunti – Phe	enomenology of Light	Sterile Neutrinos -	ISMD 2012 -	20 Sep 2012 -	11/27
-----------------	----------------------	---------------------	-------------	---------------	-------

MiniBooNE ν and $\bar{\nu}$ - arXiv:1207.4809

Fit of low-energy excess is marginal

- It requires $\Delta m^2_{41} \lesssim 0.4 {
 m eV}^2$
- Neutrino energy reconstruction problem?

[Martini, Ericson, Chanfray, arXiv:1202.4745]

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 12/27

- $\nu_{\mu} \rightarrow \nu_{e}$
- $L = 730 \,\mathrm{km}$ (CNGS)
- ▶ 10 < *E* < 30 GeV

•
$$3 \times 10^{-3} < \frac{E}{L} < 9 \times 10^{-3} \,\mathrm{eV}^2$$

- 2 observed ν_e events
- 3.7 background ν_e events

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 13/27

Reactor Electron Antineutrino Anomaly

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 14/27

Gallium Anomaly

Gallium Radioactive Source Experiments Tests of the solar neutrino detectors GALLEX (Cr1, Cr2) and SAGE (Cr, Ar) Detection Process: $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^ \nu_e$ Sources: $e^- + {}^{51}Cr \rightarrow {}^{51}V + \nu_e$ $e^- + {}^{37}Ar \rightarrow {}^{37}Cl + \nu_e$ GALLEX Cr1 1.1 SAGE Cr $F \sim 0.7 \,\mathrm{MeV}$ p(measured)/p(predicted) 1.0 $\langle L \rangle_{\text{GALLEX}} = 1.9 \,\text{m}$ 0.9 $\langle L \rangle_{SAGE} = 0.6 \,\mathrm{m}$ 0.8 $\overline{R}_{\mathrm{B}} = 0.86 \pm 0.05$ 0.7 GALLEX Cr2 SAGE Ar [SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

- ► Deficit could be due to overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$
- Calculation: Bahcall, PRC 56 (1997) 3391

▶ $\sigma_{
m G.S.}$ from $T_{1/2}(^{71}
m{Ge}) = 11.43 \pm 0.03 \,
m{days}$ [Hampel, Remsberg, PRC 31 (1985) 666]

$$\sigma_{ ext{G.S.}}(^{51} ext{Cr}) = 55.3 imes 10^{-46} ext{ cm}^2 \left(1 \pm 0.004
ight)_{3\sigma}$$

• $\sigma(^{51}\text{Cr}) = \sigma_{G.S.}(^{51}\text{Cr})\left(1 + 0.669 \frac{\text{BGT}_{175}}{\text{BGT}_{G.S.}} + 0.220 \frac{\text{BGT}_{500}}{\text{BGT}_{G.S.}}\right)$

Contribution of Excited States only 5%!

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 16/27

		BGT ₁₇₅ BGT _{G.S.}	BGT ₅₀₀ BGT _{G.S.}
Krofcheck et al. PRL 55 (1985) 1051	71 Ga $(p, n)^{71}$ Ge	< 0.056	0.126 ± 0.023
Haxton PLB 431 (1998) 110	Shell Model	0.19 ± 0.18	
Frekers et al. PLB 706 (2011) 134	71 Ga $(^{3}$ He $, ^{3}$ H $)^{71}$ Ge	0.039 ± 0.030	0.202 ± 0.016
Haxton:	model calculation is	[Haxton, Pl	_B 431 (1998) 110

to the first excited state in ⁷¹Ge. The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements"

- ► Does Haxton argument apply also to (³He, ³H) measurements?
- 2.7 σ discrepancy of BGT₅₀₀/BGT_{G.S.} measurements!
- Anyhow, new ⁷¹Ga(³He, ³H)⁷¹Ge data support Gallium Anomaly!
 C. Giunti Phenomenology of Light Sterile Neutrinos ISMD 2012 20 Sep 2012 17/27

Global ν_e and $\bar{\nu}_e$ Disappearance

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 18/27

Testable Implications: β **Decay**

relative deviation of Kurie plot

$$\frac{(Q-T)-K(T)}{Q-T}$$

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 19/27

Testable Implications: $(\beta\beta)_{0\nu}$ **Decay**

$$m_{\beta\beta} = \left|\sum_{k} U_{ek}^2 m_k\right|$$

$$m^{(4)}_{etaeta} = |U_{e4}|^2 \sqrt{\Delta m^2_{41}}$$

caveat: possible cancellation with $m^{(3
u-IH)}_{\beta\beta}$

```
[Rodejohann, arXiv:1206.2560]
```

Global 3+1 Fit: Disappearance Constraints

• ν_e disappearance experiments:

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \simeq 4|U_{e4}|^2$$

• ν_{μ} disappearance experiments:

$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq 4|U_{\mu4}|^2$$

• $\nu_{\mu} \rightarrow \nu_{e}$ experiments:

$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$$

► Upper bounds on $\sin^2 2\vartheta_{ee}$ and $\sin^2 2\vartheta_{\mu\mu} \implies$ strong limit on $\sin^2 2\vartheta_{e\mu}$ [Okada, Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694] [Bilenky, Giunti, Grimus, Eur. Phys. J. C1 (1998) 247]

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 21/27

<u>3+1</u>

- ▶ GoF = 9.3%
- ▶ PGoF = 0.002%
- ► 3+1 & 3+2 & 3+N: App-Dis tension
- ► Tension reduced in 3+1+NSI [Akhmedov, Schwetz, JHEP 10 (2010) 115]

 No tension in 3+1+CPTV
 [Barger et al, PLB 576 (2003) 303]
 [Giunti, Laveder, PRD 83 (2011) 053006]

<u>3+2</u>

- ▶ 3+2 is preferred to 3+1 only if there is CP-violating difference of $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ transitions
- 2010 MiniBooNE antineutrino data indicated neutrino-antineutrino difference
- in 2010 it was reasonable and useful to consider 3+2
- neutrino-antineutrino difference almost disappeared with 2012 MiniBooNE antineutrino data
- ▶ in 2012 3+2 is reduced to 3+1 by Okkam razor shaving

3+1 Global Fit

Cosmology

- N_s = number of thermalized sterile neutrinos (not necessarily integer)
- ► CMB and LSS in ACDM: $N_s = 1.3 \pm 0.9$ $m_s < 0.66 \,\text{eV} (95\% \,\text{C.L.})$

[Hamann, Hannestad, Raffelt, Tamborra, Wong, PRL 105 (2010) 181301]

 $N_s = 1.61 \pm 0.92$ $m_s < 0.70 \,\mathrm{eV}$ (95% C.L.)

[Giusarma, Corsi, Archidiacono, de Putter, Melchiorri, Mena, Pandolfi, PRD 83 (2011) 115023]

- $\blacktriangleright \text{ BBN: } \begin{cases} N_s = 0.22 \pm 0.59 & \text{[Cyburt, Fields, Olive, Skillman, AP 23 (2005) 313]} \\ N_s = 0.64^{+0.40}_{-0.35} & \text{[Izotov, Thuan, ApJL 710 (2010) L67]} \\ N_s \leq 1 \text{ at } 95\% \text{ C.L. } & \text{[Mangano, Serpico, PLB 701 (2011) 296]} \end{cases}$
- ► CMB+LSS+BBN: $N_s = 0.85^{+0.39}_{-0.56}$ (95% C.L.)

[Hamann, Hannestad, Raffelt, Wong, JCAP 1109 (2011) 034]

Standard ACDM: 3+1 allowed, 3+2 disfavored

Combined Oscillation and Cosmology Fit

- Cosmology: $m_4 < 0.73 \,\mathrm{eV}^2$ (95% Bayesian CL)
- Oscillation + Cosmology: $0.85 < m_4 < 1.18 \, {\rm eV}^2$ (95% Bayesian CL)

C. Giunti – Phenomenology of Light Sterile Neutrinos – ISMD 2012 – 20 Sep 2012 – 26/27

Conclusions

- ▶ Short-baseline neutrino oscillation anomalies ⇒ sterile neutrinos
- ▶ After 2010 excitement Short-Baseline $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Signal is not feeling well:
 - MiniBooNE 2012 antineutrino data are similar to neutrino data (LSND signal diminished and low-energy anomaly appeared)
 - Probably there is no CP violation \implies no need of 3+2
 - The decrease of MiniBooNE-LSND agreement is discouraging
 - Better experiments are needed to clarify situation
- ▶ Short-Baseline ν_e and $\bar{\nu}_e$ Disappearance is in good health:
 - Reactor $\bar{\nu}_e$ anomaly is alive and exciting
 - Gallium ν_e anomaly strengthened by new cross-section measurements
 - ► Many promising projects to test short-baseline v_e and v_e disappearance in a few years with reactors, radioactive sources and accelerators
 - ▶ Independent tests through effects of m_4 in β -decay and $(\beta\beta)_{0\nu}$ -decay