Light Sterile Neutrinos – Theory

Carlo Giunti

INFN, Torino, Italy

VIII Pontecorvo Neutrino School

1-10 September 2019, Sinaia, Romania

Indications of SBL Oscillations Beyond 3ν

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ 20 MeV $\leq E \leq$ 52.8 MeV

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 4/77

Gallium Anomaly

Gallium Radioactive Source Experiments: GALLEX and SAGE $e^- + {}^{51}\mathrm{Cr} \rightarrow {}^{51}\mathrm{V} + \nu_e$ e^- + ³⁷Ar \rightarrow ³⁷Cl + ν_e ν_e Sources: $E \simeq 0.81 \, \text{MeV}$ $E \simeq 0.75 \,\mathrm{MeV}$ $^{71}\text{Ga} \rightarrow ^{71}\text{Ge} + e^{-}$ Test of Solar ν_e Detection: Ð GALLEX SAGE Cr 0.1 $R = N_{exp}/N_{cal}$ GALLEX SAGE GaCl Ar RCI 0.9 (54 m³, 110 t) 0.8 $\overline{R} = 0.84 \pm 0.05$ 0.7 $\approx 2.9\sigma$ deficit $\langle L \rangle_{\text{GALLEX}} = 1.9 \,\text{m}$ $\langle L \rangle_{\text{SAGE}} = 0.6 \,\text{m}$ [SAGE, PRC 73 (2006) 045805; PRC 80 (2009) 015807; Laveder et al. Nucl. Phys. Proc. Suppl. 168 (2007) 344. MPLA 22 (2007) 2499, PRD 78 (2008) 073009, $\Delta m_{\rm SPL}^2 \ge 1 \, {\rm eV}^2 \gg \Delta m_{\rm ATM}^2$ PRC 83 (2011) 065504]

Reactor Electron Antineutrino Anomaly

[Mention et al, PRD 83 (2011) 073006]

New reactor $\bar{\nu}_e$ fluxes: Huber-Mueller (HM)

[Mueller et al, PRC 83 (2011) 054615; Huber, PRC 84 (2011) 024617]

 $pprox 2.8\sigma$ deficit

Standard Three Neutrino Mixing

- Flavor Neutrinos: ν_e , ν_μ , ν_τ produced in Weak Interactions
- Massive Neutrinos: ν_1 , ν_2 , ν_3 propagate from Source to Detector
- Neutrino Mixing: a Flavor Neutrino is a superposition of Massive Neutrinos

$$\begin{pmatrix} |\nu_e\rangle\\ |\nu_\mu\rangle\\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^*\\ U_{\mu1}^* & U_{\mu2}^* & U_{\mu3}^*\\ U_{\tau1}^* & U_{\tau2}^* & U_{\tau3}^* \end{pmatrix} \begin{pmatrix} |\nu_1\rangle\\ |\nu_2\rangle\\ |\nu_3\rangle \end{pmatrix}$$

• U is the 3×3 unitary Neutrino Mixing Matrix

Neutrino Oscillations

 $|
u(t=0)
angle = |
u_{lpha}
angle = U_{lpha1}^{*} |
u_1
angle + U_{lpha2}^{*} |
u_2
angle + U_{lpha3}^{*} |
u_3
angle$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\beta} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

The oscillation probabilities depend on U and $\Delta m_{ki}^2 \equiv m_k^2 - m_i^2$

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 8/77

In the standard framework of three-neutrino mixing there are two independent Δm²'s:

•
$$\Delta m_{\rm SOL}^2 = \Delta m_{21}^2 \simeq 7.4 \times 10^{-5} \, {\rm eV}^2$$

•
$$\Delta m^2_{
m ATM} \simeq |\Delta m^2_{
m 31}| \simeq 2.5 imes 10^{-3} \, {
m eV}^2$$

Atmospheric and solar neutrino oscillations are detectable at the distances

$$L_{\text{ATM}}^{\text{osc}} \gtrsim \frac{E_{\nu}}{\Delta m_{\text{ATM}}^2} \approx 1 \text{ km } \frac{E_{\nu}}{\text{MeV}}$$

$$L_{\text{SOL}}^{\text{osc}} \gtrsim \frac{E_{\nu}}{\Delta m_{\text{SOL}}^2} \approx 50 \text{ km } \frac{E_{\nu}}{\text{MeV}}$$

The atmospheric and solar neutrino oscillations cannot explain flavor neutrino transitions at shorter distances.

Number of Flavor and Massive Neutrinos?

$$N_{
u} = 2.9840 \pm 0.0082$$

 $e^+e^-
ightarrow Z \xrightarrow{\text{invisible}} \sum_{a= ext{active}}
u_a ar
u_a \implies
u_e \
u_\mu \
u_ au$

3 light active flavor neutrinos

$$\begin{array}{ll} \mbox{mixing} & \Rightarrow & \nu_{\alpha L} = \sum_{k=1}^{N} U_{\alpha k} \nu_{k L} & \alpha = e, \mu, \tau & N \geq 3 \\ & \mbox{no upper limit!} \\ & \mbox{Mass Basis:} & \nu_1 & \nu_2 & \nu_3 & \nu_4 & \nu_5 & \cdots \\ & \mbox{Flavor Basis:} & \nu_e & \nu_\mu & \nu_\tau & \nu_{s_1} & \nu_{s_2} & \cdots \\ & \mbox{ACTIVE} & \mbox{STERILE} \\ \\ & \mbox{$\nu_{\alpha L} = \sum_{k=1}^{N} U_{\alpha k} \nu_{k L} & \alpha = e, \mu, \tau, s_1, s_2, \dots $ \end{array}$$

Beyond Three-Neutrino Mixing: Sterile Neutrinos

Terminology: a eV-scale sterile neutrino means: a eV-scale massive neutrino which is mainly sterile

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 12/77

Sterile Neutrinos from Physics Beyond the SM

- Neutrinos are special in the Standard Model: the only neutral fermions
- Active left-handed neutrinos can mix with non-SM singlet fermions often called right-handed neutrinos
- Light left-handed anti- ν_R are light sterile neutrinos

 $\nu_R^c \rightarrow \nu_{sL}$ (left-handed)

Sterile means no standard model interactions

[Pontecorvo, Sov. Phys. JETP 26 (1968) 984]

- Active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into light sterile neutrinos (ν_s)
- Observables:
 - Disappearance of active neutrinos (neutral current deficit)
 - Indirect evidence through combined fit of data (current indication)
- Short-baseline anomalies $+ 3\nu$ -mixing:

 $\begin{array}{c|c} \Delta m_{21}^2 \ll |\Delta m_{31}^2| \ll |\Delta m_{41}^2| \leq \dots \\ \nu_1 & \nu_2 & \nu_3 & \nu_4 & \dots \\ \hline \nu_e & \nu_\mu & \nu_\tau & \nu_{s_1} & \dots \\ \hline \text{C. Giunti - Light Sterile Neutrinos - Theory - VIII Pontecorvo Neutrino School - Sinaia - 5 Sept 2019 - 13/77} \end{array}$

- Here I consider sterile neutrinos with mass scale ~ 1 eV in light of short-baseline anomalies.
- Other possibilities (not incompatible):
 - ► Very light sterile neutrinos with mass scale ≪ 1 eV: important for solar neutrino phenomenology

[de Holanda, Smirnov, PRD 69 (2004) 113002; PRD 83 (2011) 113011] [Das, Pulido, Picariello, PRD 79 (2009) 073010]

Recent Daya Bay constraints for $10^{-3} \lesssim \Delta m^2 \lesssim 10^{-1}\, {
m eV}^2$ [PRL 113 (2014) 141802]

Heavy sterile neutrinos with mass scale >> 1 eV: could be Warm Dark Matter [Asaka, Blanchet, Shaposhnikov, PLB 631 (2005) 151; Asaka, Shaposhnikov, PLB 620 (2005) 17; Asaka, Shaposhnikov, Kusenko, PLB 638 (2006) 401; Asaka, Laine, Shaposhnikov, JHEP 0606 (2006) 053, JHEP 0701 (2007) 091]

[Reviews: Kusenko, Phys. Rept. 481 (2009) 1; Boyarsky, Ruchayskiy, Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191; Boyarsky, lakubovskyi, Ruchayskiy, Phys. Dark Univ. 1 (2012) 136; Drewes, IJMPE, 22 (2013) 1330019]

Short-Baseline Neutrino Oscillations?

Three-Neutrino Mixing

 $\left|\nu_{\rm source}\right\rangle = \left|\nu_{\alpha}\right\rangle = U_{\alpha 1}^{*}\left|\nu_{1}\right\rangle + U_{\alpha 2}^{*}\left|\nu_{2}\right\rangle + U_{\alpha 3}^{*}\left|\nu_{3}\right\rangle$

 $\begin{aligned} |\nu_{detector}\rangle &\simeq & U_{\alpha 1}^* e^{-iEL} |\nu_1\rangle + U_{\alpha 2}^* e^{-iEL} |\nu_2\rangle + U_{\alpha 3}^* e^{-iEL} |\nu_3\rangle \\ &= & e^{-iEL} \left(U_{\alpha 1}^* |\nu_1\rangle + U_{\alpha 2}^* |\nu_2\rangle + U_{\alpha 3}^* |\nu_3\rangle \right) = e^{-iEL} |\nu_\alpha\rangle \end{aligned}$

 $P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\beta} | \nu_{\text{detector}} \rangle|^{2} \simeq |e^{-iEL} \langle \nu_{\beta} | \nu_{\alpha} \rangle|^{2} = \delta_{\alpha\beta}$

No Short-Baseline Neutrino Oscillations!

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 15/77

Short-Baseline Neutrino Oscillations?

3+1 Neutrino Mixing

 $\left|\nu_{\rm source}\right\rangle = \left|\nu_{\alpha}\right\rangle = U_{\alpha 1}^{*}\left|\nu_{1}\right\rangle + U_{\alpha 2}^{*}\left|\nu_{2}\right\rangle + U_{\alpha 3}^{*}\left|\nu_{3}\right\rangle + U_{\alpha 4}^{*}\left|\nu_{4}\right\rangle$

 $|\nu_{\text{detector}}\rangle \simeq e^{-iEL} \left(U_{\alpha 1}^* |\nu_1\rangle + U_{\alpha 2}^* |\nu_2\rangle + U_{\alpha 3}^* |\nu_3\rangle \right) + U_{\alpha 4}^* e^{-iE_4L} |\nu_3\rangle \not\propto |\nu_\alpha\rangle$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\beta} | \nu_{\text{detector}} \rangle|^2 \neq \delta_{\alpha\beta}$$

Short-Baseline Neutrino Oscillations!

The oscillation probabilities depend on U and $\Delta m_{SBL}^2 = \Delta m_{41}^2 \simeq \Delta m_{42}^2 \simeq \Delta m_{43}^2$

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 16/77

Some authors that probably did not think about the quantum mechanics of neutrino oscillations present $\nu_{\mu} \rightarrow \nu_{e}$ short-baseline transitions due to sterile neutrinos as

 $\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}$

This is wrong!

THERE IS NO INTERMEDIATE ν_s !

Two possible interpretations of $\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}$:

- There is a transition from ν_μ to ν_s, and then to ν_e: wrong! Because the intermediate determination of the neutrino flavor interrupts the quantum evolution. Moreover, ν_s is not detectable!
- There is an intermediate linear combination of massive neutrinos that corresponds to |ν_s⟩: wrong! This is possible only with the mixing (|a|² + |b|² + |c|² = 1)

$$\begin{pmatrix} |\nu_{e}\rangle\\ |\nu_{\mu}\rangle\\ |\nu_{\tau}\rangle\\ |\nu_{s}\rangle \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \cdots & \cdots & \cdots & 0\\ a & b & c & 1\\ \cdots & \cdots & 0\\ -a & -b & -c & 1 \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle\\ |\nu_{2}\rangle\\ |\nu_{3}\rangle\\ |\nu_{4}\rangle \end{pmatrix}$$
$$|\nu(L)\rangle = \frac{e^{-iEL}}{\sqrt{2}} \left[a |\nu_{1}\rangle + b |\nu_{2}\rangle + c |\nu_{3}\rangle + e^{-i(E_{4} - E)L} |\nu_{4}\rangle \right]$$

 $|
u(L)
angle = |
u_{\mu}
angle$ for L = 0 and $|
u(L)
angle \propto |
u_{s}
angle$ for $e^{-i(E_{4}-E)L} = -1$

but in this case there are no SBL $\nu_{\mu} \rightarrow \nu_{e}$ transitions!

Four-Neutrino Schemes: 2+2, 3+1 and 1+3

2+2 Four-Neutrino Schemes

After LSND (1995) 2+2 was preferred to 3+1, because of the 3+1 appearance-disappearance tension

[Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, CG, Grimus, EPJC 1 (1998) 247]

► This is not a perturbation of 3-ν Mixing ⇒ Large active-sterile oscillations for solar or atmospheric neutrinos!

2+2 Schemes are Strongly Disfavored

Solar: Matter Effects + SNO NC

Atmospheric: Matter Effects

$$\begin{split} \eta_{s} &= |U_{s1}|^{2} + |U_{s2}|^{2} = 1 - |U_{s3}|^{2} + |U_{s4}|^{2} \\ \\ 99\% \text{ CL:} \quad \left\{ \begin{array}{l} \eta_{s} < 0.25 \quad \text{(Solar + KamLAND)} \\ \eta_{s} > 0.75 \quad \text{(Atmospheric + K2K)} \end{array} \right. \end{split}$$

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122]

3+1 and 1+3 Four-Neutrino Schemes

Perturbation of 3-\nu Mixing: |U_{e4}|^2, |U_{\mu4}|^2, |U_{\tau4}|^2 \ll 1 |U_{s4}|^2 \simeq 1
 1+3 schemes are disfavored by cosmology (ACDM):

 $\sum m_k \lesssim 0.2 \, \mathrm{eV}$ [Planck, Astron. Astrophys. 594 (2016) A13 (arXiv:1502.01589)]

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 22/77

Effective 3+1 SBL Oscillation Probabilities

$$|
u_{lpha}
angle = \sum_{k=1}^{4} U_{lpha k}^{*} |
u_{k}
angle \quad \stackrel{t}{\longrightarrow} \quad |
u_{lpha}(t)
angle = \sum_{k=1}^{4} U_{lpha k}^{*} e^{-iE_{k}t} |
u_{k}
angle$$

$$egin{aligned} \mathcal{A}_{
u_lpha
ightarrow
u_eta}(t) &= \langle
u_eta |
u_lpha(t)
angle = \sum_{k=1}^4 U^*_{lpha k} U_{eta k} e^{-i E_k t} \qquad (\langle
u_eta |
u_k
angle = U_{eta k}) \end{aligned}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-iE_{k}t} \right|^{2}$$
$$= \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-iE_{k}t} \right|^{2} * \left| e^{iE_{1}t} \right|^{2}$$
$$= \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-i(E_{k} - E_{1})t} \right|^{2}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-i(E_{k} - E_{1})t} \right|^{2}$$

$$E_k = \sqrt{p^2 + m_k^2} \simeq p + \frac{m_k^2}{2p} \implies E_k - E_1 \simeq \frac{\Delta m_{k1}^2}{2p}$$

$$E = \rho$$
 $t \simeq L$

$$P_{
u_{lpha} o
u_{eta}} \simeq \left| \sum_{k=1}^{4} U_{lpha k}^{*} U_{eta k} \exp\left(-i \frac{\Delta m_{k1}^{2} L}{2E}\right) \right|^{2}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| U_{\alpha 1}^{*} U_{\beta 1} + U_{\alpha 2}^{*} U_{\beta 2} \exp\left(-i\frac{\Delta m_{21}^{2}L}{2E}\right) + U_{\alpha 3}^{*} U_{\beta 3} \exp\left(-i\frac{\Delta m_{31}^{2}L}{2E}\right) + U_{\alpha 4}^{*} U_{\beta 4} \exp\left(-i\frac{\Delta m_{41}^{2}L}{2E}\right) \right|^{2}$$

$$\mathsf{SBL} \quad \Longrightarrow \quad \frac{\Delta m_{21}^2 L}{2E} \ll 1 \qquad \frac{\Delta m_{31}^2 L}{2E} \ll 1$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}^{\mathsf{SBL}} \simeq \left| U_{\alpha 1}^* U_{\beta 1} + U_{\alpha 2}^* U_{\beta 2} + U_{\alpha 3}^* U_{\beta 3} + U_{\alpha 4}^* U_{\beta 4} \exp\left(-i\frac{\Delta m_{41}^2 L}{2E}\right) \right|^2$$

$$U^*_{lpha 1}U_{eta 1}+U^*_{lpha 2}U_{eta 2}+U^*_{lpha 3}U_{eta 3}=\delta_{lphaeta}-U^*_{lpha 4}U_{eta 4}$$

$$\begin{split} P_{\nu_{\alpha} \to \nu_{\beta}}^{\text{SBL}} \simeq & \left| \delta_{\alpha\beta} - U_{\alpha4}^{*} U_{\beta4} \left[1 - \exp\left(-i\frac{\Delta m_{41}^{2}L}{2E} \right) \right] \right|^{2} \\ &= \delta_{\alpha\beta} + |U_{\alpha4}|^{2} |U_{\beta4}|^{2} \left(2 - 2\cos\frac{\Delta m_{41}^{2}L}{2E} \right) \\ &- 2\delta_{\alpha\beta} |U_{\alpha4}|^{2} \left(1 - \cos\frac{\Delta m_{41}^{2}L}{2E} \right) \\ &= \delta_{\alpha\beta} - 2|U_{\alpha4}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta4}|^{2} \right) \left(1 - \cos\frac{\Delta m_{41}^{2}L}{2E} \right) \\ &= \delta_{\alpha\beta} - 4|U_{\alpha4}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta4}|^{2} \right) \sin^{2}\frac{\Delta m_{41}^{2}L}{4E} \\ &\alpha \neq \beta \implies P_{\nu_{\alpha} \to \nu_{\beta}}^{\text{SBL}} \simeq 4|U_{\alpha4}|^{2} |U_{\beta4}|^{2} \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right) \\ &\alpha = \beta \implies P_{\nu_{\alpha} \to \nu_{\alpha}}^{\text{SBL}} \simeq 1 - 4|U_{\alpha4}|^{2} \left(1 - |U_{\alpha4}|^{2} \right) \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right) \end{split}$$

Appearance
$$(\alpha \neq \beta)$$
Disappearance $P_{(-)}^{SBL}_{\nu_{\alpha} \rightarrow \nu_{\beta}} \simeq \sin^2 2\vartheta_{\alpha\beta} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$ $P_{(-)}^{SBL}_{\nu_{\alpha} \rightarrow \nu_{\alpha}} \simeq 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$ $\sin^2 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2$ $\sin^2 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^2(1 - |U_{\alpha4}|^2)$ $U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \\ U_{51} & U_{52} & U_{53} \end{pmatrix}$ $U = \Delta m_{5BL}^2 = \Delta m_{41}^2 \simeq \Delta m_{42}^2 \simeq \Delta m_{43}^2$ $P = (D_{\alpha4} = 1)^{1/2} = 10^{1/2}$

Common Parameterization of 4×4 Mixing Matrix

$$U = \left[W^{34} R^{24} W^{14} R^{23} W^{13} R^{12} \right] \mathsf{diag} \left(1, e^{i\lambda_{21}}, e^{i\lambda_{31}}, e^{i\lambda_{41}} \right)$$

$$|U_{e4}|^2 = \sin^2 \vartheta_{14} \implies \sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) = \sin^2 2\vartheta_{14}$$
$$U_{\mu4}|^2 = \cos^2 \vartheta_{14} \sin^2 \vartheta_{24} \simeq \sin^2 \vartheta_{24} \Rightarrow \sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq \sin^2 2\vartheta_{24}$$

3+1: Appearance vs Disappearance

- SBL Oscillation parameters: $\Delta m_{41}^2 |U_{e4}|^2 |U_{\mu4}|^2 (|U_{\tau4}|^2)$
- Amplitude of ν_e disappearance:

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \simeq 4|U_{e4}|^2$$

• Amplitude of ν_{μ} disappearance:

$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq 4|U_{\mu4}|^2$$

• Amplitude of $\nu_{\mu} \rightarrow \nu_{e}$ transitions:

$$\sin^{2} 2\vartheta_{e\mu} = 4|U_{e4}|^{2}|U_{\mu4}|^{2} \simeq \frac{1}{4}\sin^{2} 2\vartheta_{ee}\sin^{2} 2\vartheta_{\mu\mu}$$

quadratically suppressed for small $|U_{e4}|^{2}$ and $|U_{\mu4}|^{2}$
 \Downarrow
Appearance-Disappearance Tension

[Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, CG, Grimus, EPJC 1 (1998) 247]

Average over Energy Resolution of the Detector

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sin^{2} 2\vartheta \sin^{2} \left(\frac{\Delta m^{2} L}{4E}\right) = \frac{1}{2} \sin^{2} 2\vartheta \left[1 - \cos\left(\frac{\Delta m^{2} L}{2E}\right)\right]$$

$$\Downarrow$$

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle = \frac{1}{2} \sin^2 2\vartheta \left[1 - \int \cos\left(\frac{\Delta m^2 L}{2E}\right) \phi(E) dE \right] \qquad (\alpha \neq \beta)$$

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 30/77

ν_e and $\bar{\nu}_e$ Disappearance

Short-Baseline Reactor Neutrino Oscillations

 $\Delta m^2_{
m SBL}\gtrsim 0.5\,{
m eV}^2\gg\Delta m^2_{
m ATM}$

 SBL oscillations are averaged at the Daya Bay, RENO, and Double Chooz near detectors — no spectral distortion

Reactor Antineutrino 5 MeV Bump

- Cannot be explained by neutrino oscillations (SBL oscillations are averaged in RENO, DC, DB).
- It is likely due to a theoretical miscalculation of the spectrum.
- Heretic solution: detector energy nonlinearity. [Mention et al, PLB 773 (2017) 307]
- ~ 3% effect on total flux, but if it is an excess it increases the anomaly!
- No post-bump complete calculation of the neutrino fluxes.
 - Nominal Huber-Mueller flux calculation uncertainty: ~ 2.7%.
 - Post-bump estimate of the flux uncertainty due to unknown forbidden decays: $\sim 5\%$. [Hayes and Vogel, ARNPS 66 (2016) 219]

Reactor Fuel Evolution

- Reactor $\bar{\nu}_e$ flux produced by the β decays of the fission products of 23511 23811 ²³⁹Pu ²⁴¹Pu
- Effective fission fractions:

100

90

80

70

60

50 40

30 20 10

0

5000

Fission fraction (%)

F235 F238 F239 F241

Cross section per fission (IBD yield):

 $\sigma_f = \sum$ $F_k \sigma_{f,k}$ k=235.238.239.241

10000

15000

 $\chi^2/\text{NDF} = 8.7/14$ GoF = 85% $\chi^2/\text{NDF} = 8.8/14$ GoF = 85% [Giunti, Li, Littleiohn, Surukuchi, arXiv:1901.01807]

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 36/77
- Daya Bay and RENO favor a suppression of the ²³⁵U flux (235) over oscillations (OSC).
- However, a practically equally good fit is obtained with the hybrid model 235+OSC.
- Moreover, the addition of other reactor data favors oscillations or, better, ²³⁵U and/or ²³⁹U flux suppression plus oscillations.

[Giunti, Ji, Laveder, Li, Littlejohn, JHEP 1710 (2017) 143, arXiv:1708.01133]

- Even if there are short-baseline neutrino oscillations, it is likely that the reactor antineutrino flux calculations must be corrected (most likely the ²³⁵U flux) to fit:
 - 1. The 5 MeV bump
 - 2. The fuel evolution data
- The search for short-baseline neutrino oscillations needs model-independent information

ratios of spectra at different distances

NEOS

[PRL 118 (2017) 121802, arXiv:1610.05134]

- Hanbit Nuclear Power Complex in Yeong-gwang, Korea.
- Thermal power of 2.8 GW.
- Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 24 m from the reactor core.
- The measured antineutrino event rate is 1976 per day with a signal to background ratio of about 22.

DANSS

[PLB 787 (2018) 56, arXiv:1804.04046]

Detector of reactor AntiNeutrino based on Solid Scintillator

- Installed on a movable platform under a 3 GW reactor.
- Large neutrino flux.
- Reactor shielding of cosmic rays.
- Variable source-detector distance with the same detector!

 $\begin{array}{rcl} \mathsf{Down} &=& 12.7\,\mathrm{m} \\ \mathsf{Up} &=& 10.7\,\mathrm{m} \end{array}$

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 39/77

Model-Independent $\bar{\nu}_e$ SBL Oscillations

[Gariazzo, Giunti, Laveder, Li, PLB 782 (2018) 13, arXiv:1801.06467]

[See also Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz,

JHEP 1808 (2018) 010, arXiv:1803.10661

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 40/77

Comparison with the Reactor and Gallium Anomalies

Global Model-Independent ν_e and $\bar{\nu}_e$ Disappearance

[See also Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz, arXiv:1803.10661]

Tritium Beta-Decay: ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \bar{\nu}_{e}$

$$Q = M_{^{3}\text{H}} - M_{^{3}\text{He}} - m_{e} = 18.58 \text{ keV}$$

$$\frac{d\Gamma}{dT} = \frac{(\cos\vartheta_{C}G_{F})^{2}}{2\pi^{3}} |\mathcal{M}|^{2} F(E) p E K^{2}(T)$$

$$\frac{K^{2}(T)}{Q - T} = \sum_{k} |U_{ek}|^{2} \sqrt{(Q - T)^{2} - m_{k}^{2}} \, \theta(Q - T - m_{k})$$

$$m_{4} \gg m_{1,2,3} \Rightarrow \simeq (1 - |U_{e4}|^{2}) \sqrt{(Q - T)^{2} - m_{\beta}^{2}} \, \theta(Q - T - m_{\beta})$$

$$+ |U_{e4}|^{2} \sqrt{(Q - T)^{2} - m_{4}^{2}} \, \theta(Q - T - m_{4})$$

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 43/77

Mainz and Troitsk Limit on $\Delta m_{41}^2 \simeq m_4^2$

$$m_4 \gg m_{1,2,3} \implies \Delta m_{41}^2 \equiv m_4^2 - m_1^2 \simeq m_4^2$$

[Kraus, Singer, Valerius, Weinheimer, EPJC 73 (2013) 2323]

[Belesev et al, JPG 41 (2014) 015001]

New DANSS results @ EPS-HEP 2019

- The DANSS-2019 best fit has too large mixing.
- The agreement between NEOS and DANSS has diminished.
- Reactor indications in favor of SBL oscillations seem to be fading away.
- We wait independent checks of PROSPECT, STEREO and SoLiD.

Gallium Anomaly

Gallium Radioactive Source Experiments: GALLEX and SAGE $e^- + {}^{51}\mathrm{Cr} \rightarrow {}^{51}\mathrm{V} + \nu_e$ e^- + ³⁷Ar \rightarrow ³⁷Cl + ν_e ν_e Sources: $E \simeq 0.81 \, \text{MeV}$ $E \simeq 0.75 \,\mathrm{MeV}$ $^{71}\text{Ga} \rightarrow ^{71}\text{Ge} + e^{-}$ Test of Solar ν_e Detection: Ð GALLEX SAGE Cr 0.1 $R = N_{exp}/N_{cal}$ GALLEX SAGE GaCl Ar RCI 0.9 (54 m³, 110 t) 0.8 $\overline{R} = 0.84 \pm 0.05$ 0.7 $\approx 2.9\sigma$ deficit $\langle L \rangle_{\text{GALLEX}} = 1.9 \,\text{m}$ $\langle L \rangle_{\text{SAGE}} = 0.6 \,\text{m}$ [SAGE, PRC 73 (2006) 045805; PRC 80 (2009) 015807; Laveder et al. Nucl. Phys. Proc. Suppl. 168 (2007) 344. MPLA 22 (2007) 2499, PRD 78 (2008) 073009, $\Delta m_{\rm SPL}^2 \ge 1 \, {\rm eV}^2 \gg \Delta m_{\rm ATM}^2$ PRC 83 (2011) 065504]

• Deficit could be due to overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$

Calculation: Bahcall, PRC 56 (1997) 3391

• $\sigma_{
m G.S.}$ from $T_{1/2}(^{71}
m{Ge}) = 11.43 \pm 0.03\,
m{days}$ [Hampel, Remsberg, PRC 31 (1985) 666]

$$\sigma_{\rm G.S.}(^{51}{\rm Cr}) = 55.3 \times 10^{-46} \, {\rm cm}^2 \, (1 \pm 0.004)_{3\sigma}$$

• $\sigma(^{51}\text{Cr}) = \sigma_{\text{G.S.}}(^{51}\text{Cr})\left(1 + 0.669 \frac{\text{BGT}_{175}}{\text{BGT}_{\text{G.S.}}} + 0.220 \frac{\text{BGT}_{500}}{\text{BGT}_{\text{G.S.}}}\right)$

Contribution of excited states only 5%!

		BGT ₁₇₅ BGT _{G.S.}	BGT ₅₀₀ BGT _{G.S.}
Krofcheck et al. PRL 55 (1985) 1051	$^{71}{ m Ga}(p,n)^{71}{ m Ge}$	< 0.057	0.126 ± 0.023
Haxton PLB 431 (1998) 110	Shell Model $+ Exp.$	0.19 ± 0.18	
Frekers et al. PLB 706 (2011) 134	⁷¹ Ga(³ He, ³ H) ⁷¹ Ge	0.040 ± 0.031	0.207 ± 0.016

► The ⁷¹Ga(³He, ³H)⁷¹Ge data confirm the contribution of the two excited states.

► Haxton: for BGT₁₇₅ "the calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements"

$\langle f O_{(p,n)} i \rangle = \langle f O_{GT} i$	$\langle \rangle + \delta \langle f O_{L=2} i \rangle$	$\delta pprox 0.097$	7
*			
F			11:1

Transition	$\langle f \ O_{GT} \ i \rangle$	$\langle f \ O_{L=2} \ i \rangle$
$3/2^- \to 1/2^- (0 \text{ keV})$	-0.451	0.348
$3/2^- \rightarrow 5/2^-$ (175 keV)	0.082	-2.23
$3/2^- \rightarrow 3/2^-$ (500 keV)	0.056	0.104

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 49/77

The Gallium Anomaly Revisited

[Kostensalo, Suhonen, Giunti, Srivastava, PLB 795 (2019) 542, arXiv:1906.10980]

New JUN45 shell-model calculation of the cross section of $u_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

Transition	$\langle f O_{ m GT} i angle$	$\langle f O_{L=2} i \rangle$	$\mathrm{BGT}^{\mathrm{SM}}_\beta$	$\mathrm{BGT}^{\mathrm{SM}}_{(\mathrm{p},\mathrm{n})}$
$3/2^{\rm g.s.} \rightarrow 1/2^{\rm g.s.}$	-0.795	0.465	0.158	0.141
$3/2^{ m g.s.} o 5/2^-$ (175 keV)	0.144	-1.902	0.0052	0.0004
$3/2^{ m g.s.} o 3/2^-$ (500 keV)	0.100	0.0482	0.0025	0.0027

		BGT ₁₇₅ BGT _{G.S.}	BGT ₅₀₀ BGT _{G.S.}
Krofcheck et al. (1985)	$^{71}{ m Ga}(p,n)^{71}{ m Ge}$	< 0.057	0.126 ± 0.023
Haxton (1998)	Shell Model $+ Exp.$	0.19 ± 0.18	
Frekers et al. (2011)	71 Ga $(^{3}$ He $, ^{3}$ H $)^{71}$ Ge	0.040 ± 0.031	0.207 ± 0.016
JUN45 (2019)	Shell Model	0.033 ± 0.017	0.016 ± 0.008

• With the new JUN45 shell-model calculation the statistical significance of the gallium anomaly is reduced from 3.0σ to 2.3σ .

The Gallium data are more compatible with the indication of SBL oscillations obtained from the reactor neutrino NEOS and 2018 DANSS data, or with the absence of SBL oscillations.

Neutrinoless Double-Beta Decay

 $m_{\beta\beta} = \left| |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3 + |U_{e4}|^2 e^{i\alpha_{41}} m_4 \right|$

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 53/77

 $\bar{\nu}_{\mu}
ightarrow \bar{\nu}_{e}$ and $\nu_{\mu}
ightarrow \nu_{e}$ Appearance

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 54/77

MiniBooNE

- Purpose: check the LSND signal
- Different $L \simeq 541 \,\mathrm{m}$
- Different 200 MeV $\leq E \lesssim$ 3 GeV
- Similar $L/E \iff$ oscillations
- No money, no Near Detector
- LSND signal expected for $E \gtrsim 475 \,\mathrm{MeV}$
- New low-energy anomaly for

 $E < 475 \,\mathrm{MeV}$

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 55/77

MiniBooNE

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 56/77

ν_{μ} and $\bar{\nu}_{\mu}$ Disappearance

MINOS+

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 59/77

Global Appearance-Disappearance Tension

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 60/77

Global Appearance-Disappearance Tension

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 61/77

Goodness of Fit

Assumption or approximation: Gaussian uncertainties and linear model
\$\chi_{min}^2\$ has \$\chi^2\$ distribution with Number of Degrees of Freedom
NDF = \$N_D - N_P\$

\$N_D = Number of Data
\$N_P = Number of Fitted Parameters
\$\langle \chi_{min}^2 \rangle = NDF\$
\$\langle \chi_{min}^2 \rangle = 2NDF\$
\$GoF = \$\int_{\chi_{min}^2}^2 p_{\chi_2}(z, NDF) dz\$
\$p_{\chi_2}^2(z, n) = \frac{z^{n/2-1}e^{-z/2}}{2^{n/2}\Gamma(n/2)}\$

Parameter Goodness of Fit

Maltoni, Schwetz, PRD 68 (2003) 033020 (arXiv:hep-ph/0304176)

Measure compatibility of two (or more) sets of data points A and B under fitting model

•
$$\chi^2_{PGoF} = (\chi^2_{min})_{A+B} - [(\chi^2_{min})_A + (\chi^2_{min})_B]$$

•
$$\chi^2_{\mathsf{PGoF}}$$
 has χ^2 distribution with Number of Degrees of Freedom

$$\mathsf{NDF}_{\mathsf{PGoF}} = N_{\mathsf{P}}^{\mathsf{A}} + N_{\mathsf{P}}^{\mathsf{B}} - N_{\mathsf{P}}^{\mathsf{A}+\mathsf{B}}$$

• $PGoF = \int_{\chi^2_{PGoF}}^{\infty} p_{\chi^2}(z, NDF_{PGoF}) dz$

Global Fit Without MiniBooNE

 $\chi^2/NDF = 768.9/763$ GoF = 43%

 $\chi^2_{PG}/NDF_{PG} = 28.7/2$ GoF_{PG} = 6 × 10⁻⁷ \leftarrow \bigcirc

Global Fit Without LSND

 $\chi^2/\mathsf{NDF}=802.9/793$ GoF = 40%

 $\chi^2_{\rm PG}/{\rm NDF}_{\rm PG} = 22.1/2$ GoF_{PG} = 2 × 10⁻⁵ \leftarrow \bigcirc

Global Fit Without LSND and MiniBooNE

 $\chi^2/\text{NDF} = 727.4/759$ GoF = 79%

 $\chi^2_{PG}/NDF_{PG} = 0/2$ GoF_{PG} = 1 $\leftarrow \bigcirc$

New Dedicated Experiments

Effective 3+1 LBL Oscillation Probabilities

 [de Gouvea et al, PRD 91 (2015) 053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD 91 (2015) 073017, PLB 757 (2016) 142, JHEP 1602 (2016) 111, JHEP 1609 (2016) 016, PRL 118 (2017) 031804;
 Kayser et al, JHEP 1511 (2015) 039, JHEP 1611 (2016) 122; Capozzi et al, PRD 95 (2017) 033006]

$$\begin{split} |U_{e3}| &\simeq \sin \vartheta_{13} \simeq 0.15 \sim \varepsilon \implies \varepsilon^2 \sim 0.03 \\ |U_{e4}| &\simeq \sin \vartheta_{14} \simeq 0.17 \sim \varepsilon \\ |U_{\mu4}| &\simeq \sin \vartheta_{24} \simeq 0.11 \sim \varepsilon \\ \alpha &\equiv \frac{\Delta m_{21}^2}{|\Delta m_{31}^2|} \simeq \frac{7 \times 10^{-5}}{2.4 \times 10^{-3}} \simeq 0.031 \sim \varepsilon^2 \end{split}$$
At order ε^3 : [Klop, Palazzo, PRD 91 (2015) 073017] $\Delta_{kj} \equiv \Delta m_{kj}^2 L/4E$

 $\begin{aligned} P_{\nu_{\mu} \to \nu_{e}}^{\text{LBL}} &\simeq 4 \sin^{2} \vartheta_{13} \sin^{2} \vartheta_{23} \sin^{2} \Delta_{31} &\sim \varepsilon^{2} \\ &+ 2 \sin \vartheta_{13} \sin 2 \vartheta_{12} \sin 2 \vartheta_{23} (\alpha \Delta_{31}) \sin \Delta_{31} \cos(\Delta_{32} + \delta_{13}) &\sim \varepsilon^{3} \\ &+ 4 \sin \vartheta_{13} \sin \vartheta_{14} \sin \vartheta_{24} \sin \vartheta_{23} \sin \Delta_{31} \sin(\Delta_{31} + \delta_{13} - \delta_{14}) &\sim \varepsilon^{3} \end{aligned}$

Alternative Explanations of MiniBooNE

Generation by a particle X produced in the MiniBooNE target is excluded by the angular distribution of the ν_e-like events, that is not strongly forward peaked.

[Jordan, Kahn, Krnjaic, Moschella, Spitz, PRL 122 (2019) 081801]

Heavy Neutrino Generation in the Detector

Neutrino Neutral-Current Weak Interaction Lagrangian:

$$\mathscr{L}_{\mathsf{I}}^{(\mathsf{NC})} = -\frac{g}{2\cos\vartheta_{\mathsf{W}}} Z_{\rho} \sum_{\alpha=e,\mu,\tau} \overline{\nu_{\alpha L}} \gamma^{\rho} \nu_{\alpha L}$$

• Sterile neutrinos:
$$\nu_{\alpha L} = \sum_{k=1}^{3+N_s} U_{\alpha k} \nu_{kL}$$
 $(\alpha = e, \mu, \tau, s_1, \dots, s_{N_s})$

$$\text{No GIM:} \quad \mathscr{L}_{I}^{(\text{NC})} = -\frac{g}{2\cos\vartheta_{\text{W}}} Z_{\rho} \sum_{j=1}^{3+N_{s}} \sum_{k=1}^{3+N_{s}} \overline{\nu_{jL}} \gamma^{\rho} \nu_{kL} \sum_{\alpha=e,\mu,\tau} U_{\alpha j}^{*} U_{\alpha k}$$
$$\sum_{\alpha=e,\mu,\tau, s_{1},...} U_{\alpha j}^{*} U_{\alpha k} = \delta_{jk} \quad \text{but} \quad \sum_{\alpha=e,\mu,\tau} U_{\alpha j}^{*} U_{\alpha k} \neq \delta_{jk}$$

A heavy neutrino ν_h with h ≥ 4 can be generated in the detector by neutral-current ν_μ scattering.

Heavy Sterile Neutrino Radiative Decay

[Gninenko, PRL 103 (2009) 241802, PRD 83 (2011) 015015, PRD 83 (2011) 093010, PLB 710 (2012) 86]

▶ It needs a fast radiative decay $\tau_{\nu_h} \lesssim 10^{-9}$ s that can be generated by a transition magnetic moment $|\mu_{hi}| \gtrsim 10^{-8} \mu_{\rm B}$:

$$\Gamma_{\nu_h \to \nu_i + \gamma} = \frac{|\mu_{hi}|^2}{8\pi} m_{\nu_h}^3 \left(1 - \frac{m_{\nu_i}^2}{m_{\nu_h}^2} \right)^3$$

Simplest extensions of the Standard Model:

$$|\mu_{hi}| \sim 10^{-11} \, \mu_{\rm B} \, \frac{m_{\nu_h}}{100 \, {\rm MeV}} |U_{\ell h}| \sim 10^{-12} \, \mu_{\rm B} \,$$
 not enough

▶ More exotic extensions of the Standard Model may give the needed $|\mu_{hi}| \gtrsim 10^{-8} \, \mu_{\rm B}$

It is interesting that this mechanism can explain why the LSND signal was not observed in KARMEN:

This mechanism can be ruled out by Liquid Argon Time Projection Chamber (LArTPC) detectors that distinguish between electrons and photons: MicroBooNE, ICARUS, SBND (Fermilab Short-Baseline Neutrino Oscillation Program).

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 72/77
Interacting Heavy Sterile Neutrino

[Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121 (2018) 241801]

[Arguelles, Hostert, Tsai, arXiv:1812.08768]

$$\mathcal{L} \supset \frac{m_{Z'}^2}{2} Z'_{\mu} Z'^{\mu} + g_{\mathcal{D}} Z'_{\mu} \overline{\nu}_s \gamma^{\mu} \nu_s + e \epsilon Z'^{\mu} J^{\mathrm{em}}_{\mu} + \frac{g}{c_W} \epsilon' Z'^{\mu} J^{\mathrm{Z}}_{\mu}$$

$$\Gamma_{\nu_4 \to Z' + \nu_{\mu}} = \frac{\alpha_{\mathcal{D}}}{2} |U_{\mu4}|^2 \frac{m_{\nu_4}^3}{m_{Z'}^2} \left(1 - \frac{m_{Z'}^2}{m_{\nu_4}^2}\right) \left(1 + \frac{m_{Z'}^2}{m_{\nu_4}^2} - 2\frac{m_{Z'}^4}{m_{\nu_4}^4}\right)$$

 $\Gamma_{Z'\to e^+e^-}\approx \frac{\alpha\,\epsilon^2}{3}\,m_{Z'}$

[Bertuzzo et al, PRL 121 (2018) 241801]

Heavy New Gauge Boson

[Ballett, Pascoli, Ross-Lonergan, PRD 99 (2019) 071701]

C. Giunti – Light Sterile Neutrinos – Theory – VIII Pontecorvo Neutrino School – Sinaia – 5 Sept 2019 – 75/77

Conclusions I

- Neutrinos can be powerful messengers of new physics beyond the SM as the existence of light sterile neutrinos indicated by the reactor, Gallium and LSND anomalies.
- Exciting 2018 model-independent indication of light sterile neutrinos at the eV scale from the NEOS and DANSS experiments in approximate agreement with the reactor and Gallium anomalies.
- 2019 DANSS data do not confirm the 2018 indication and the reactor indications in favor of SBL oscillations seem to be fading away.
- Important checks in the near future by the reactor experiments PROSPECT, STEREO, SoLid. (Neutrino-4?)
- ▶ Independent tests through the effect of m_4 in β -decay (KATRIN), electron-capture (ECHo, HOLMES) and $\beta\beta_{0\nu}$ -decay experiments.

Conclusions II

- ▶ In principle, the simplest explanation of the LSND and MiniBooNE ν_e -like excesses is neutrino oscillations, that requires a new Δm_{SBL}^2 associated with a sterile neutrino.
- Unfortunately, the LSND and MiniBooNE ν_e-like excesses are too large to be compatible with the existing bounds on ν_e and ν_μ disappearance in the framework of 3 + N_s active-sterile neutrino mixing:

APPEARANCE-DISAPPEARANCE TENSION

- Alternative explanations exist with a heavy sterile neutrino produced and decayed in the detector.
- Promising Fermilab SBN program aimed at a conclusive solution of the mystery with three Liquid Argon Time Projection Chamber (LArTPC): a near detector (LAr1-ND), an intermediate detector (MicroBooNE) and a far detector (ICARUS-T600).
- ► It is important that LArTPC detectors can distinguish a single ν_e -induced electron from a γ or a collimated e^+e^- pair.