Neutrino Physics

Part III: Phenomenology of Massive Neutrinos

Carlo Giunti

INFN, Torino, Italy
giunti@to.infn.it
Neutrino Unbound: http://www.nu.to.infn.it
Torino Graduate School in Physics and Astrophysics

$$
\text { Torino, December } 2019
$$

http://personalpages.to.infn.it/~giunti/slides/2019/

C. Giunti and C.W. Kim

Fundamentals of Neutrino Physics and Astrophysics
Oxford University Press
15 March 2007 - 728 pages

Three-Neutrino Mixing Paradigm

$$
\nu_{\alpha L}=\sum_{k=1}^{3} U_{\alpha k} \nu_{k L}
$$

$$
\alpha=e, \mu, \tau
$$

$$
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L, E)=\delta_{\alpha \beta}-4 \sum_{k>j} \operatorname{Re}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] \sin ^{2}\left(\frac{\Delta m_{k j}^{2} L}{4 E}\right)
$$

CP conserving

$$
+2 \sum_{k>j} \operatorname{Im}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] \sin \left(\frac{\Delta m_{k j}^{2} L}{2 E}\right)
$$

CP violating

- Squared-mass differences: $\Delta m_{k j}^{2}=m_{k}^{2}-m_{j}^{2}$
- Mixing: $\quad U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \quad$ quartic rephasing invariants
- Jarlskog invariant: $\quad J_{\mathrm{CP}}=\operatorname{Im}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right]$
C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 2/76

Standard Parameterization of Mixing Matrix

$$
\begin{aligned}
& \text { Acc LBL } \nu_{\mu} \rightarrow \nu_{\mu} \quad \text { Acc LBL } \nu_{\mu} \rightarrow \nu_{e} \quad \text { KamLAND } \\
& =\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \lambda_{21}} & 0 \\
0 & 0 & e^{i \lambda_{31}}
\end{array}\right) \\
& c_{a b} \equiv \cos \vartheta_{a b} \quad s_{a b} \equiv \sin \vartheta_{a b} \quad 0 \leq \vartheta_{a b} \leq \frac{\pi}{2} \quad 0 \leq \delta_{13}, \lambda_{21}, \lambda_{31}<2 \pi
\end{aligned}
$$

2 CPV Majorana Phases: $\lambda_{21}, \lambda_{31} \Longleftrightarrow|\Delta L|=2$ processes $\left(\beta \beta_{0 \nu}\right)$

[^0]
Three-Neutrino Mixing Ingredients

[M. Tortola @ Neutrino 2018]

Three-Neutrino Mixing Ingredients

$U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)$
Atmospheric
$\nu_{\mu} \rightarrow \nu_{\tau}$$\quad\left(\begin{array}{c}\text { Super-Kamiokande } \\ \text { Kamiokande, IMB } \\ \text { MACRO, Soudan-2 } \\ \text { IceCube, ANTARES }\end{array}\right)$

LBL Accelerator ν_{μ} disappearance (\quad T2K, NO $\left.\nu \mathrm{A}\right)$

LBL Accelerator

$$
\begin{equation*}
\nu_{\mu} \rightarrow \nu_{\tau} \tag{OPERA}
\end{equation*}
$$

Atmosferic Neutrinos

The Super-Kamiokande Experiment

50 ktons of water, Cherenkov detector, 1000 m underground

[^1]
The Super-Kamiokande Up-Down Asymmetry

$E_{\nu} \gtrsim 1 \mathrm{GeV} \Rightarrow$ isotropic flux of cosmic rays

$$
\begin{aligned}
\phi_{\nu_{\alpha}}^{(A)}\left(\theta_{z}^{A B}\right) & =\phi_{\nu_{\alpha}}^{(B)}\left(\theta_{z}^{A B}\right) \\
\phi_{\nu_{\alpha}}^{(A)}\left(\theta_{z}^{A B}\right) & =\phi_{\nu_{\alpha}}^{(B)}\left(\pi-\theta_{z}^{A B}\right) \\
& \Downarrow \\
\phi_{\nu_{\alpha}}^{(B)}\left(\theta_{z}\right) & =\phi_{\nu_{\alpha}}^{(B)}\left(\pi-\theta_{z}\right)
\end{aligned}
$$

$$
A_{\nu_{\mu}}^{\text {up-down }}(\mathrm{SK})=\left(\frac{N_{\nu_{\mu}}^{\text {up }}-N_{\nu_{\mu}}^{\text {down }}}{N_{\nu_{\mu}}^{\text {pp }}+N_{\nu_{\mu}}^{\text {down }}}\right)=-0.296 \pm 0.048 \pm 0.01
$$

[Super-Kamiokande, Phys. Rev. Lett. 81 (1998) 1562, hep-ex/9807003]

6σ MODEL INDEPENDENT EVIDENCE OF ν_{μ} DISAPPEARANCE!

(T. Kajita: 2015 Physics Nobel Prize)

Fit of Super-Kamiokande Atmospheric Data

Best Fit: $\left\{\begin{array}{l}\overline{\Delta m^{2}=2} .1 \times 10^{-3} \mathrm{eV}^{2} \\ \sin ^{2} 2 \theta=1.0\end{array}\right.$
1489.2 live-days (Apr 1996-Jul 2001)
[Super-Kamiokande, PRD 71 (2005) 112005, hep-ex/0501064]

Measure of ν_{τ} CC Int. is Difficult:

- $E_{\mathrm{th}}=3.5 \mathrm{GeV} \Longrightarrow \sim 20$ events $/ \mathrm{yr}$
- τ-Decay \Longrightarrow Many Final States
ν_{τ}-Enriched Sample
$N_{\nu_{\tau}}^{\text {the }}=78 \pm 26 @ \Delta m^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}$

$$
N_{\nu_{\tau}}^{\exp }=138_{-58}^{+50}
$$

$$
N_{\nu_{\tau}}>0 @ 2.4 \sigma
$$

[Super-Kamiokande, PRL 97(2006) 171801, hep-ex/0607059]

Check: OPERA $\left(\nu_{\mu} \rightarrow \nu_{\tau}\right)$ CERN to Gran Sasso (CNGS) $L \simeq 732 \mathrm{~km} \quad\langle E\rangle \simeq 18 \mathrm{GeV}$
[NJP 8 (2006) 303, hep-ex/0611023]

Kamiokande, Soudan-2, MACRO and MINOS

[Kamiokande, hep-ex/9806038]

[MACRO, hep-ex/0304037]

[Soudan 2, hep-ex/0507068]

K2K

confirmation of atmospheric allowed region

(June 2002)

KEK to Kamioka (Super-Kamiokande) 250 km

$$
\nu_{\mu} \rightarrow \nu_{\mu}
$$

[K2K, PRL 94 (2005) 081802, hep-ex/0411038]

MINOS

May 2005 - Feb 2006

Near Detector: 1 km
http://www-numi.fnal.gov/

$$
\begin{gathered}
\Delta m^{2}=2.74_{-0.26}^{+0.44} \times 10^{-3} \mathrm{eV}^{2} \\
\sin ^{2} 2 \vartheta>0.87 @ 68 \% C L
\end{gathered}
$$

[MINOS, PRL 97 (2006) 191801, hep-ex/0607088]

OPERA

Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

The OPERA experiment was designed to search for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ν_{τ} interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ν_{τ} candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations in appearance mode with a significance larger than 5σ.

	Expected background					
Channel	Charm	Had. reinterac.	Large μ scat.	Total	Expected signal	Observed
$\tau \rightarrow 1 h$	0.017 ± 0.003	0.022 ± 0.006		0.04 ± 0.01	0.52 ± 0.10	3
$\tau \rightarrow 3 h$	0.17 ± 0.03	0.003 ± 0.001		0.17 ± 0.03	0.73 ± 0.14	1
$\tau \rightarrow \mu$	0.004 ± 0.001		0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1
$\tau \rightarrow e$	0.03 ± 0.01			0.03 ± 0.01	0.78 ± 0.16	0
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.0001	0.25 ± 0.05	2.64 ± 0.53	5

C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 14/76

Difficulty of measuring precisely ϑ_{23}

$$
\begin{gathered}
P_{\nu_{\mu} \rightarrow \nu_{\mu}}^{\mathrm{LBL}} \simeq 1-\sin ^{2} 2 \vartheta_{23} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \\
\sin ^{2} 2 \vartheta_{23}=4 \sin ^{2} \vartheta_{23}\left(1-\sin ^{2} \vartheta_{23}\right)
\end{gathered}
$$

The octant degeneracy is resolved by small ϑ_{13} effects:
$P_{\nu_{\mu} \rightarrow \nu_{\mu}}^{\mathrm{LBL}} \simeq 1-\left[\sin ^{2} 2 \vartheta_{23} \cos ^{2} \vartheta_{13}+\sin ^{4} \vartheta_{23} \sin ^{2} 2 \vartheta_{13}\right] \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)$
$P_{\nu_{\mu} \rightarrow \nu_{e}}^{\mathrm{LBL}} \simeq \sin ^{2} \vartheta_{23} \sin ^{2} 2 \vartheta_{13} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)$

Three-Neutrino Mixing Ingredients

LBL Accelerator

$$
\nu_{\mu} \rightarrow \nu_{e}
$$

(T2K, MINOS, NO $\nu \mathrm{A}$)
$\begin{array}{c}\text { LBL Reactor } \\ \bar{\nu}_{e} \text { disappearance }\end{array}\binom{$ Daya Bay, RENo }{ Double Chooz }$)$

$$
\rightarrow\left\{\begin{array}{c}
\Delta m_{\mathrm{A}}^{2} \simeq\left|\Delta m_{31}^{2}\right| \simeq 2.5 \times 10^{-3} \mathrm{eV}^{2} \\
\sin ^{2} \vartheta_{13} \simeq 0.022
\end{array}\right.
$$

Towards a precise determination of neutrino mixing

only the mass composition of ν_{e} is well determined

Mass Ordering

Normal Ordering
$\Delta m_{31}^{2}>\Delta m_{32}^{2}>0$

ν_{e}	ν_{μ}	ν_{τ}
m^{2}		

Inverted Ordering
$\Delta m_{32}^{2}<\Delta m_{31}^{2}<0$
absolute scale is not determined by neutrino oscillation data
C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 20/76

Open Problems

$-\vartheta_{23} \lesseqgtr 45^{\circ}$?

- T2K (Japan), NO ν A (USA), ...
- CP violation ? $\delta_{13} \approx 3 \pi / 2$?
- T2K (Japan), NO ν A (USA), DUNE (USA), HyperK (Japan), ...
- Mass Ordering ?
- JUNO (China), PINGU (Antarctica), ORCA (EU), INO (India), ...
- Absolute Mass Scale ?
- β Decay, Neutrinoless Double- β Decay, Cosmology, ...
- Dirac or Majorana ?
- Neutrinoless Double- β Decay, ...
- Beyond Three-Neutrino Mixing ? Sterile Neutrinos ?

Determination of Mass Ordering

1. Matter Effects: Atmospheric (PINGU, ORCA), Long-Baseline, Supernova Experiments

- $\nu_{e} \leftrightarrows \nu_{\mu}$ MSW resonance: $\quad V=\frac{\Delta m_{31}^{2} \cos 2 \vartheta_{13}}{2 E} \Leftrightarrow \Delta m_{31}^{2}>0 \quad$ NO
- $\bar{\nu}_{e} \leftrightarrows \bar{\nu}_{\mu}$ MSW resonance: $\quad V=-\frac{\Delta m_{31}^{2} \cos 2 \vartheta_{13}}{2 E} \Leftrightarrow \Delta m_{31}^{2}<0 \quad 10$

2. Phase Difference: Reactor $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$ (JUNO)

Normal Ordering	$\begin{gathered} m^{2} \\ \uparrow \nu_{3} \end{gathered}$	$\begin{gathered} m^{2} \\ \uparrow \nu_{2} \end{gathered}$	Inverted Ordering
$\begin{gathered} \left\|\Delta m_{31}^{2}\right\| \\ \left\|\Delta m_{32}^{2}\right\|+\left\|\Delta m_{21}^{2}\right\| \end{gathered}$		${ }^{\nu_{1}}$	$\begin{gathered} \left\|\Delta m_{31}^{2}\right\| \\ \left\|\Delta m_{32}^{2}\right\|-\left\|\Delta m_{21}^{2}\right\| \end{gathered}$
$\left\|\Delta m_{31}^{2}\right\|>\left\|\Delta m_{32}^{2}\right\|$	$\frac{\nu_{2}}{\nu_{1}}$		$\left\|\Delta m_{31}^{2}\right\|<\left\|\Delta m_{32}^{2}\right\|$

C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December $2019-22 / 76$

Neutrino Physics with JUNO, arXiv:1507.05613

$$
\begin{aligned}
& \substack{(-)(-) \\
\nu_{e} \rightarrow \nu_{e}} \\
&-\cos ^{4} \vartheta_{13} \sin ^{2} 2 \vartheta_{12} \sin ^{2}\left(\Delta m_{21}^{2} L / 4 E\right) \\
&-\cos ^{2} \vartheta_{12} \sin ^{2} 2 \vartheta_{13} \sin ^{2}\left(\Delta m_{31}^{2} L / 4 E\right) \\
&-\sin ^{2} \vartheta_{12} \sin ^{2} 2 \vartheta_{13} \sin ^{2}\left(\Delta m_{32}^{2} L / 4 E\right)
\end{aligned}
$$

[Petcov, Piai, PLB 533 (2002) 94; Choubey, Petcov, Piai, PRD 68 (2003) 113006; Learned, Dye, Pakvasa, Svoboda, PRD 78 (2008) 071302; Zhan, Wang, Cao, Wen, PRD 78 (2008) 111103, PRD 79 (2009) 073007]

CP Violation?

$$
\begin{gathered}
A_{\alpha \beta}^{\mathrm{CP}}=P_{\nu_{\alpha} \rightarrow \nu_{\beta}}-P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}} \\
=-16 J_{\alpha \beta} \sin \left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \sin \left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \sin \left(\frac{\Delta m_{32}^{2} L}{4 E}\right) \\
J_{\alpha \beta}=\operatorname{Im}\left(U_{\alpha 1} U_{\alpha 2}^{*} U_{\beta 1}^{*} U_{\beta 2}\right)= \pm J \\
J=s_{12} c_{12} s_{23} c_{23} s_{13} c_{13}^{2} \sin \delta_{13}
\end{gathered}
$$

Necessary conditions for observation of CP violation:

- Sensitivity to all mixing angles, including small ϑ_{13}
- Sensitivity to oscillations due to Δm_{21}^{2} and Δm_{31}^{2}

LDL $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

$$
\begin{gathered}
\Delta=\frac{\Delta m_{31}^{2} L}{4 E} \quad A=\frac{2 E V}{\Delta m_{31}^{2}} \quad V=\sqrt{2} G_{F} N_{e} \\
\sin \theta_{13} \ll 1 \quad \Delta m_{21}^{2} / \Delta m_{31}^{2} \ll 1 \\
P_{\nu_{\mu} \rightarrow \nu_{e}}^{\mathrm{LBL}} \simeq \sin ^{2} 2 \vartheta_{13}^{\downarrow} \sin ^{2} \vartheta_{23}^{\downarrow} \frac{\sin ^{2}[(1-A) \Delta]}{(1-A)^{2}} \\
+\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sin 2 \vartheta_{13} \sin 2 \vartheta_{12} \sin 2 \vartheta_{23} \cos \left(\Delta+\delta_{13}\right) \frac{\sin (A \Delta)}{A} \frac{\sin [(1-A) \Delta]}{1-A} \\
+\left(\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}\right)^{2} \sin ^{2} 2 \vartheta_{12} \cos ^{2} \vartheta_{23} \frac{\sin ^{2}(A \Delta)}{A^{2}} \\
\mathrm{NO}: \quad \Delta m_{31}^{2}>0 \quad \mathrm{IPV} \quad \Delta m_{31}^{2}<0
\end{gathered}
$$

For antineutrinos: $\quad \delta_{13} \rightarrow-\delta_{13}(\mathrm{CPV}) \quad$ and $\quad A \rightarrow-A$ (Matter Effect)

Why it is important to measure accurately the neutrino mixing parameters?

- They are fundamental parameters.
- They lead to selection in huge model space. Examples:
- Deviation from Tribimaximal Mixing $U \simeq\left(\begin{array}{ccc}\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\ -1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\ 1 / \sqrt{6} & -1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right)$
- Violation of $\mu-\tau$ symmetry $\left(\left|U_{\mu k}\right|=\left|U_{\tau k}\right|\right)$
- They have phenomenological usefulness (e.g. to determine the initial flavor composition of high-energy astrophysical neutrinos).
- CP conservation would need an explanation (a new symmetry?).
- CP violation may be linked to the CP violation in the sector of heavy neutrinos which generate the matter-antimatter asymmetry in the Universe through leptogenesis (CP-violating decay of heavy neutrinos)

High-Energy Astrophysical Neutrinos

C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 27/76

\odot High-energy ($E \gtrsim 200 \mathrm{TeV}$) upgoing tracks: $\mathrm{CC}\left(\nu_{\mu}, \bar{\nu}_{\mu}\right)$.
$\otimes \& \oplus$ HESE (High-Energy Starting Events): high-energy neutrinos ($E \gtrsim 100 \mathrm{TeV}$) interacting inside the detector (all-sky directions). \otimes Tracks: CC $\left(\nu_{\mu}, \bar{\nu}_{\mu}\right)$. \oplus Cascades: CC $\left(\nu_{e}, \bar{\nu}_{e}, \nu_{\tau}, \bar{\nu}_{\tau}\right)+$ NC. The thin circles indicate the median angular resolution of the cascade events.

- The blue-shaded region indicates the zenith-dependent range where Earth absorption of 100 TeV neutrinos becomes important, reaching more than 90% close to the nadir.
- Dashed line: horizon. Star: Galactic Center.
- The numbers give the energies of the four most energetic events.

Neutrino Flavor Composition

Source: $\left(f_{e, \mathrm{~S}}: f_{\mu, \mathrm{S}}: f_{\tau, \mathrm{S}}\right) \quad \rightarrow \quad$ Earth: $\left(f_{e, \oplus}: f_{\mu, \oplus}: f_{\tau, \oplus}\right)$

	$f_{e, \mathrm{~S}}$	$f_{\mu, \mathrm{S}}$	$f_{\tau, \mathrm{S}}$	\rightarrow	$f_{e, \oplus}$	$f_{\mu, \oplus}$	$f_{\tau, \oplus}$
Pion and Muon Decay	$1 / 3$	$2 / 3$	0		$1 / 3$	$1 / 3$	$1 / 3$
Pion only Decay	0	1	0		$4 / 18$	$7 / 18$	$7 / 18$
Charmed Meson Decay	$1 / 2$	$1 / 2$	0		$14 / 36$	$11 / 36$	$11 / 36$
Neutron Decay	1	0	0		$5 / 9$	$2 / 9$	$2 / 9$

$$
\begin{gathered}
f_{\beta, \oplus}=\sum_{\alpha=e, \mu, \tau} f_{\alpha, \mathrm{S}}\left\langle P_{\nu_{\alpha} \rightarrow \nu_{\beta}}\right\rangle \\
\left\langle P_{\nu_{\alpha} \rightarrow \nu_{\beta}}\right\rangle=\sum_{k=1}^{3}\left|U_{\alpha k}\right|^{2}\left|U_{\beta k}\right|^{2} \simeq \frac{1}{18}\left(\begin{array}{ccc}
10 & 4 & 4 \\
4 & 7 \\
4 & 7 & 7
\end{array}\right)
\end{gathered}
$$

[Bustamante, Beacom, Winter, PRL 115 (2015) 161302 (arXiv:1506.02645)]
C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 30/76

The Glashow Resonance

$\bar{\nu}_{e}+e^{-} \rightarrow W^{-} \rightarrow$ anything at $E_{\nu}=\frac{m_{W}^{2}}{2 m_{e}}=6.32 \mathrm{PeV}$
[Glashow, Phys. Rev. 118 (1960) 316]

	$f_{e, S}$	$f_{\mu, S}$	$f_{\tau, S}$	\rightarrow	$f_{e, \oplus}$	$f_{\mu, \oplus}$	$f_{\tau, \oplus}$	$R_{\bar{\nu}_{e}}$
Pion and Muon Decay	$1 / 3$	$2 / 3$	0		$1 / 3$	$1 / 3$	$1 / 3$	0.17
Pion only Decay	0	1	0		$4 / 18$	$7 / 18$	$7 / 18$	0.11
Charmed Meson Decay	$1 / 2$	$1 / 2$	0		$14 / 36$	$11 / 36$	$11 / 36$	0.19
Neutron Decay	1	0	0		$5 / 9$	$2 / 9$	$2 / 9$	0.56

[Barger, Fu, Learned, Marfatia, Pakvasa, Weiler, PRD 90 (2014) 121301 (arXiv:1407.3255)]

$-\Phi_{\nu} \propto E_{\nu}^{-\gamma}$

- Standard Fermi shock-acceleration mechanism: $\gamma=2.0$.
- 2014 IceCube data: events with $E_{\nu} \lesssim 2 \mathrm{PeV}$.
- $\gamma \geq 2.3$ at $90 \% \mathrm{CL}$.
[Anchordoqui et al, PRD 89 (2014) 083003]
- PeV Energy Partially-contained Events (PEPE) search, with special focus on the Glashow resonance.

[Ahlers, Halzen, arXiv:1805.11112]
- For the highest energy event the median energy of the parent neutrino is about 7 PeV .
- The energy lost by the muon inside the instrumented detector volume is $2.6 \pm 0.3 \mathrm{PeV}$.
- The calculation of the probability density function takes into account the additional tracks from charged current interactions of $\nu_{\tau}+\bar{\nu}_{\tau}$ and resonant interactions of $\bar{\nu}_{e}$ with electrons (Glashow resonance).
- Assumption: a democratic composition of neutrino and antineutrino flavors.
- The cosmic neutrino flux is well described by a power law with a spectral index $\gamma=2.19 \pm 0.10$ and a normalization at 100 TeV neutrino energy of

$$
\left(1.01_{-0.23}^{+0.26}\right) \times 10^{-18} \mathrm{GeV}^{-1} \mathrm{~cm}^{-2} \mathrm{sr}^{-1}
$$

A 5.9 PeV event in IceCube

Glashow Resonance

Resonance: $\mathrm{E}_{v}=6.3 \mathrm{PeV}$

Work in progress

 Typical visible energy is 93%

Event identified in a partially-contained PeV search (PEPE)
Deposited energy: $5.9 \pm 0.18 \mathrm{PeV}$ (stat only) ICRC 2017 arXiv:1710.01191

Potential hadronic nature of this event under study

Why it is important to measure accurately the neutrino mixing parameters?

They are fundamental parameters

They lead to selection in huge model space. Examples:

- Deviation from Tribimaximal Mixing
> Violation of $\mu-\tau$ symmetry

They have phenomenological usefulness (e.g. to determine the initial flavor composition of high-energy astrophysical neutrinos)

- CP:
- CP conservation would need an explanation (a new symmetry?).
- CP violation may be linked to the CP violation in the sector of heavy neutrinos which generate the matter-antimatter asymmetry in the Universe through leptogenesis (CP-violating decay of heavy neutrinos).

Leptogenesis

$$
\mathcal{L}_{I} \sim \overline{L_{L}} \Phi^{\dagger} Y N_{R}
$$

$$
A_{L} \sim \frac{\sum_{k, \alpha}\left[\Gamma\left(N_{k} \rightarrow \Phi \ell_{\alpha}\right)-\Gamma\left(N_{k} \rightarrow \bar{\Phi} \bar{\ell}_{\alpha}\right)\right]}{\sum_{k, \alpha}\left[\Gamma\left(N_{k} \rightarrow \Phi \ell_{\alpha}\right)+\Gamma\left(N_{k} \rightarrow \bar{\Phi} \bar{\ell}_{\alpha}\right)\right]}
$$

$$
\text { Seesaw } \Longrightarrow Y \sim \frac{1}{v} \underbrace{M_{R}^{1 / 2} R}_{\text {inaccessible }} \underbrace{m_{\nu}^{1 / 2} U_{3 \times 3}}_{\text {measurable }} \quad\left(R R^{T}=\mathbb{1}\right)
$$

CP-violating $U_{3 \times 3} \Longrightarrow$ plausible CP-violating Y

$$
\begin{aligned}
& M_{R 1}=5 \times 10^{11} \mathrm{GeV} \\
& M_{R 1} \ll M_{R 2} \ll M_{R 3} \\
& R_{12}=0.86 \\
& R_{13}=0.5
\end{aligned}
$$

C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 35/76

Absolute Scale of Neutrino Masses

Mass Hierarchy or Degeneracy?

Quasi-Degenerate for $m_{1} \simeq m_{2} \simeq m_{3} \simeq m_{\nu} \gtrsim \sqrt{\Delta m_{\mathrm{A}}^{2}} \simeq 5 \times 10^{-2} \mathrm{eV}$ 95\% Cosmological Limit: Planck TT + lowP + BAO [arxiv:1502.01589]

Tritium Beta-Decay

$$
\begin{gathered}
{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\bar{\nu}_{e} \\
\frac{\mathrm{~d} \Gamma}{\mathrm{~d} T}=\frac{\left(\cos \vartheta_{C} G_{\mathrm{F}}\right)^{2}}{2 \pi^{3}}|\mathcal{M}|^{2} F(E) p E K^{2}(T)
\end{gathered}
$$

Kurie function: $\quad K(T)=\left[(Q-T) \sqrt{(Q-T)^{2}-m_{\nu_{e}}^{2}}\right]^{1 / 2}$

$$
Q=M_{{ }^{3} \mathrm{H}}-M_{3^{\mathrm{He}}}-m_{e}=18.58 \mathrm{keV}
$$

$$
\begin{gathered}
m_{\nu_{e}}<1.1 \mathrm{eV} \quad(90 \% \text { C.L. }) \\
\text { KATRIN }
\end{gathered}
$$

[PRL 123 (2019) 221802, arXiv:1909.06048]
Expected final sensitivity:

$$
m_{\nu_{e}} \approx 0.2 \mathrm{eV}
$$

The Karlsruhe Tritium Neutrino Experiment KATRIN - overview

C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 39/76

Transport of the KATRIN spectrometer from the Rhine river to the Karlsruhe Institute of Technology.
(Novembre 2006)
C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December $2019-40 / 76$

Neutrino Mixing $\Longrightarrow K(T)=\left[(Q-T) \sum_{k}\left|U_{e k}\right|^{2} \sqrt{(Q-T)^{2}-m_{k}^{2}}\right]$

analysis of data is different from the no-mixing case: $2 N-1$ parameters $\left(\sum_{k}\left|U_{e k}\right|^{2}=1\right)$
if experiment is not sensitive to masses ($m_{k} \ll Q-T$)
effective mass: $m_{\beta}^{2}=\sum_{k}\left|U_{e k}\right|^{2} m_{k}^{2}$

$$
\begin{aligned}
K^{2} & =(Q-T)^{2} \sum_{k}^{k}\left|U_{e k}\right|^{2} \sqrt{1-\frac{m_{k}^{2}}{(Q-T)^{2}}} \simeq(Q-T)^{2} \sum_{k}\left|U_{e k}\right|^{2}\left[1-\frac{1}{2} \frac{m_{k}^{2}}{(Q-T)^{2}}\right] \\
& =(Q-T)^{2}\left[1-\frac{1}{2} \frac{m_{\beta}^{2}}{(Q-T)^{2}}\right] \simeq(Q-T) \sqrt{(Q-T)^{2}-m_{\beta}^{2}}
\end{aligned}
$$

Predictions of 3ν-Mixing Paradigm

$$
m_{\beta}^{2}=\left|U_{e 1}\right|^{2} m_{1}^{2}+\left|U_{e 2}\right|^{2} m_{2}^{2}+\left|U_{e 3}\right|^{2} m_{3}^{2}
$$

- Quasi-Degenerate:

$$
m_{\beta}^{2} \simeq m_{\nu}^{2} \sum_{k}\left|U_{e k}\right|^{2}=m_{\nu}^{2}
$$

- Inverted Hierarchy:

$$
m_{\beta}^{2} \simeq\left(1-s_{13}^{2}\right) \Delta m_{\mathrm{A}}^{2} \simeq \Delta m_{\mathrm{A}}^{2}
$$

- Normal Hierarchy:

$$
\begin{aligned}
& m_{\beta}^{2} \simeq s_{12}^{2} c_{13}^{2} \Delta m_{\mathrm{S}}^{2}+s_{13}^{2} \Delta m_{\mathrm{A}}^{2} \\
& \simeq 2 \times 10^{-5}+6 \times 10^{-5} \mathrm{eV}^{2}
\end{aligned}
$$

- If $m_{\beta} \lesssim 4 \times 10^{-2} \mathrm{eV}$

Normal Spectrum

Neutrinoless Double-Beta Decay

Two-Neutrino Double- β Decay: $\Delta L=0$

$\mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z+2)+e^{-}+e^{-}$

$$
+\bar{\nu}_{e}+\bar{\nu}_{e}
$$

$$
\left(T_{1 / 2}^{2 \nu}\right)^{-1}=G_{2 \nu}\left|\mathcal{M}_{2 \nu}\right|^{2}
$$

second order weak interaction process
in the Standard Model

Neutrinoless Double- β Decay: $\Delta L=2$
$\mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z+2)+e^{-}+e^{-}$
$\left(T_{1 / 2}^{0 \nu}\right)^{-1}=G_{0 \nu}\left|\mathcal{M}_{0 \nu}\right|^{2}\left|m_{\beta \beta}\right|^{2}$
$\underset{\substack{\text { effective } \\ \text { Majorana } \\ \text { mass }}}{\text { Ma }} \quad\left|m_{\beta \beta}\right|=\left|\sum_{k} U_{e k}^{2} m_{k}\right|$

Effective Majorana Neutrino Mass

$$
\begin{gathered}
m_{\beta \beta}=\sum_{k} U_{e k}^{2} m_{k} \quad \text { complex } U_{e k} \Rightarrow \text { possible cancellations } \\
m_{\beta \beta}=\left|U_{e 1}\right|^{2} m_{1}+\left|U_{e 2}\right|^{2} e^{i \alpha_{2}} m_{2}+\left|U_{e 3}\right|^{2} e^{i \alpha_{3}} m_{3} \\
\alpha_{2}=2 \lambda_{2} \quad \alpha_{3}=2\left(\lambda_{3}-\delta_{13}\right)
\end{gathered}
$$

90\% C.L. Experimental Bounds

$\beta \beta^{-}$decay	experiment	$T_{1 / 2}^{0 \nu}[\mathrm{y}]$	$m_{\beta \beta}[\mathrm{eV}]$
${ }_{20}^{48} \mathrm{Ca} \rightarrow{ }_{22}^{48} \mathrm{Ti}$	ELEGANT-VI	$>1.4 \times 10^{22}$	$<6.6-31$
${ }_{32}^{76} \mathrm{Ge} \rightarrow{ }_{34}^{76} \mathrm{Se}$	Heidelberg-Moscow	$>1.9 \times 10^{25}$	$<0.23-0.67$
	IGEX	$>1.6 \times 10^{25}$	$<0.25-0.73$
	Majorana	$>4.8 \times 10^{25}$	$<0.20-0.43$
	GERDA	$>8.0 \times 10^{25}$	$<0.12-0.26$
${ }_{34}^{82} \mathrm{Se} \rightarrow{ }_{36}^{82} \mathrm{Kr}$	NEMO-3	$>1.0 \times 10^{23}$	$<1.8-4.7$
${ }_{42}^{100} \mathrm{Mo} \rightarrow{ }_{44}^{100} \mathrm{Ru}$	NEMO-3	$>2.1 \times 10^{25}$	$<0.32-0.88$
${ }_{48}^{116} \mathrm{Cd} \rightarrow{ }_{50}^{116} \mathrm{Sn}$	Solotvina	$>1.7 \times 10^{23}$	$<1.5-2.5$
${ }_{52}^{128} \mathrm{Te} \rightarrow{ }_{54}^{128} \mathrm{Xe}$	CUORICINO	$>1.1 \times 10^{23}$	$<7.2-18$
${ }_{52}^{130} \mathrm{Te} \rightarrow{ }_{54}^{130} \mathrm{Xe}$	CUORE	$>1.5 \times 10^{25}$	$<0.11-0.52$
${ }_{54}^{136} \mathrm{Xe} \rightarrow{ }_{56}^{136} \mathrm{Ba}$	EXO	$>1.1 \times 10^{25}$	$<0.17-0.49$
	KamLAND-Zen	$>1.1 \times 10^{26}$	$<0.06-0.16$
${ }_{60}^{150} \mathrm{Nd} \rightarrow{ }_{62}^{150} \mathrm{Sm}$	NEMO-3	$>2.1 \times 10^{25}$	$<2.6-10$

[Bilenky, CG, IJMPA 30 (2015) 0001]

Predictions of 3ν-Mixing Paradigm

$$
m_{\beta \beta}=\left|U_{e 1}\right|^{2} m_{1}+\left|U_{e 2}\right|^{2} e^{i \alpha_{2}} m_{2}+\left|U_{e 3}\right|^{2} e^{i \alpha_{3}} m_{3}
$$

$$
m_{\beta \beta}=\left|U_{e 1}\right|^{2} m_{1}+\left|U_{e 2}\right|^{2} e^{i \alpha_{2}} m_{2}+\left|U_{e 3}\right|^{2} e^{i \alpha_{3}} m_{3}
$$

- Quasi-Degenerate:

$$
\left|m_{\beta \beta}\right| \simeq m_{\nu} \sqrt{1-s_{2 \vartheta_{12}}^{2} s_{\alpha_{2}}^{2}}
$$

- Inverted Hierarchy:

$$
\begin{aligned}
& \left|m_{\beta \beta}\right| \simeq \sqrt{\Delta m_{A}^{2}\left(1-s_{2 \vartheta_{12}}^{2} s_{\alpha_{2}}^{2}\right)} \\
& \text { Normal Hierarchy: }
\end{aligned}
$$

$$
\begin{aligned}
& \left|m_{\beta \beta}\right| \simeq\left|s_{12}^{2} \sqrt{\Delta m_{\mathrm{S}}^{2}}+e^{i \alpha} s_{13}^{2} \sqrt{\Delta m_{\mathrm{A}}^{2}}\right| \\
& \quad \simeq\left|2.7+1.2 e^{i \alpha}\right| \times 10^{-3} \mathrm{eV}
\end{aligned}
$$

$$
\text { - If }\left|m_{\beta \beta}\right| \underset{\substack{\Downarrow \\ \Downarrow}}{ } 10^{-2} \mathrm{eV}
$$

Normal Spectrum

$\beta \beta_{0 \nu}$ Decay \Leftrightarrow Majorana Neutrino Mass

- $\left|m_{\beta \beta}\right|$ can vanish because of unfortunate cancellations among the ν_{1}, ν_{2}, ν_{3} contributions or because neutrinos are Dirac particles.
- However, $\beta \beta_{0 \nu}$ decay can be generated by another mechanism beyond the Standard Model.
- In this case, a Majorana mass for ν_{e} is generated by radiative corrections:

[Schechter, Valle, PRD 25 (1982) 2951; Takasugi, PLB 149 (1984) 372]
- Majorana Mass Term:

$$
\mathcal{L}_{e L}^{\mathrm{M}}=-\frac{1}{2} m_{e e}\left(\overline{\nu_{e L}^{c}} \nu_{e L}+\overline{\nu_{e L}} \nu_{e L}^{c}\right)
$$

- Very small four-loop diagram contribution: $m_{e e} \sim 10^{-24} \mathrm{eV}$
[Duerr, Lindner, Merle, JHEP 06 (2011) 091 (arXiv:1105.0901)]
- In any case finding $\beta \beta_{0 \nu}$ decay is important for
- Finding total Lepton number violation ($\Delta L= \pm 2$).
- Establishing the Majorana (or pseudo-Dirac) nature of neutrinos.
- On the other hand, even if $\beta \beta_{0 \nu}$ decay is not found, it is not possible to prove experimentally that neutrinos are Dirac particles, because
- A Dirac neutrino is equivalent to 2 Majorana neutrinos with the same mass.
- It is impossible to prove experimentally that the mass splitting is exactly zero.

Short-Baseline Neutrino Oscillation Anomalies

- In the standard framework of three-neutrino mixing there are two independent Δm^{2} 's:
- $\Delta m_{\mathrm{SOL}}^{2}=\Delta m_{21}^{2} \simeq 7.4 \times 10^{-5} \mathrm{eV}^{2}$
- $\Delta m_{\text {ATM }}^{2} \simeq\left|\Delta m_{31}^{2}\right| \simeq 2.5 \times 10^{-3} \mathrm{eV}^{2}$
- Atmospheric and solar neutrino oscillations are detectable at the distances
$-L_{\text {ATM }}^{\text {ose }} \gtrsim \frac{E_{\nu}}{\Delta m_{\text {ATM }}^{2}} \approx 1 \mathrm{~km} \frac{E_{\nu}}{\mathrm{MeV}}$
- $L_{\mathrm{SOL}}^{\mathrm{OSC}} \gtrsim \frac{E_{\nu}}{\Delta m_{\mathrm{SOL}}^{2}} \approx 50 \mathrm{~km} \frac{E_{\nu}}{\mathrm{MeV}}$
- The atmospheric and solar neutrino oscillations cannot explain flavor neutrino transitions at shorter distances.

$$
\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \quad 20 \mathrm{MeV} \leq E \leq 52.8 \mathrm{MeV}
$$

$\Delta m_{\mathrm{SBL}}^{2} \gtrsim 0.1 \mathrm{eV}^{2} \gg \Delta m_{\text {ATM }}^{2}$

- Well-known and pure source of $\bar{\nu}_{\mu}$

Well-known detection process of $\bar{\nu}_{e}$

- $\approx 3.8 \sigma$ excess
- But signal not seen by KARMEN at $L \simeq 18 \mathrm{~m}$ with the same method
[PRD 65 (2002) 112001]

Gallium Anomaly

Gallium Radioactive Source Experiments: GALLEX and SAGE
ν_{e} Sources: $\quad e^{-}+{ }^{51} \mathrm{Cr} \rightarrow{ }^{51} \mathrm{~V}+\nu_{e} \quad e^{-}+{ }^{37} \mathrm{Ar} \rightarrow{ }^{37} \mathrm{Cl}+\nu_{e}$ $E \simeq 0.75 \mathrm{MeV}$

Test of Solar ν_{e} Detection:

$\langle L\rangle_{\text {GALLEX }}=1.9 \mathrm{~m} \quad\langle L\rangle_{\text {SAGE }}=0.6 \mathrm{~m}$

$$
\Delta m_{\mathrm{SBL}}^{2} \gtrsim 1 \mathrm{eV}^{2} \gg \Delta m_{\mathrm{ATM}}^{2}
$$

[SAGE, PRC 73 (2006) 045805; PRC 80 (2009) 015807; Laveder et al, Nucl.Phys.Proc.Suppl. 168 (2007) 344, MPLA 22 (2007) 2499, PRD 78 (2008) 073009, PRC 83 (2011) 065504]
$>{ }^{3} \mathrm{He}+{ }^{71} \mathrm{Ga} \rightarrow{ }^{71} \mathrm{Ge}+{ }^{3} \mathrm{H}$ cross section measurement [Frekers et al., PLB 706 (2011) 134]
C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 56/76

Reactor Electron Antineutrino Anomaly

[Mention et al, PRD 83 (2011) 073006]
New reactor $\bar{\nu}_{e}$ fluxes: Huber-Mueller (HM)
[Mueller et al, PRC 83 (2011) 054615; Huber, PRC 84 (2011) 024617]

$\approx 2.8 \sigma$ deficit

Beyond Three-Neutrino Mixing: Sterile Neutrinos

$$
N_{\nu_{\text {active }}}^{\mathrm{LEP}}=2.9840 \pm 0.0082
$$

Terminology: a eV-scale sterile neutrino means: a eV-scale massive neutrino which is mainly sterile

Short-Baseline Neutrino Oscillations

Three-Neutrino Mixing

$$
\left|\nu_{\text {source }}\right\rangle=\left|\nu_{\alpha}\right\rangle=U_{\alpha 1}\left|\nu_{1}\right\rangle+U_{\alpha 2}\left|\nu_{2}\right\rangle+U_{\alpha 3}\left|\nu_{3}\right\rangle
$$

$$
\begin{gathered}
\left|\nu_{\text {detector }}\right\rangle \simeq U_{\alpha 1} e^{-i E L}\left|\nu_{1}\right\rangle+U_{\alpha 2} e^{-i E L}\left|\nu_{2}\right\rangle+U_{\alpha 3} e^{-i E L}\left|\nu_{3}\right\rangle=e^{-i E L}\left|\nu_{\alpha}\right\rangle \\
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L)=\left|\left\langle\nu_{\beta} \mid \nu_{\text {detector }}\right\rangle\right|^{2} \simeq\left|e^{-i E L}\left\langle\nu_{\beta} \mid \nu_{\alpha}\right\rangle\right|^{2}=\delta_{\alpha \beta}
\end{gathered}
$$

No Observable Short-Baseline Neutrino Oscillations!

Short-Baseline Neutrino Oscillations

3+1 Neutrino Mixing

$$
\left|\nu_{\text {source }}\right\rangle=\left|\nu_{\alpha}\right\rangle=U_{\alpha 1}\left|\nu_{1}\right\rangle+U_{\alpha 2}\left|\nu_{2}\right\rangle+U_{\alpha 3}\left|\nu_{3}\right\rangle+U_{\alpha 4}\left|\nu_{4}\right\rangle
$$

$$
\begin{gathered}
\left|\nu_{\text {detector }}\right\rangle \simeq e^{-i E L}\left(U_{\alpha 1}\left|\nu_{1}\right\rangle+U_{\alpha 2}\left|\nu_{2}\right\rangle+U_{\alpha 3}\left|\nu_{3}\right\rangle\right)+U_{\alpha 4} e^{-i E_{4} L}\left|\nu_{3}\right\rangle \neq\left|\nu_{\alpha}\right\rangle \\
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L)=\left|\left\langle\nu_{\beta} \mid \nu_{\text {detector }}\right\rangle\right|^{2} \neq \delta_{\alpha \beta}
\end{gathered}
$$

Observable Short-Baseline Neutrino Oscillations!
The oscillation probabilities depend on U and

$$
\Delta m_{\mathrm{SBL}}^{2}=\Delta m_{41}^{2} \simeq \Delta m_{42}^{2} \simeq \Delta m_{43}^{2}
$$

- Some authors that probably did not think about the quantum mechanics of neutrino oscillations present $\nu_{\mu} \rightarrow \nu_{e}$ short-baseline transitions due to sterile neutrinos as

$$
\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}
$$

- This is wrong!

THERE IS NO INTERMEDIATE ν_{s} !

Two possible interpretations of $\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}$:

1. There is a transition from ν_{μ} to ν_{s}, and then to ν_{e} : wrong!

Because the intermediate determination of the neutrino flavor interrupts the quantum evolution.
Moreover, ν_{s} is not detectable!
2. There is an intermediate linear combination of massive neutrinos that corresponds to $\left|\nu_{s}\right\rangle$: wrong!
This is possible only with the mixing $\quad\left(|a|^{2}+|b|^{2}+|c|^{2}=1\right)$

$$
\begin{gathered}
\left(\begin{array}{l}
\left|\nu_{e}\right\rangle \\
\left|\nu_{\mu}\right\rangle \\
\left|\nu_{\tau}\right\rangle \\
\left|\nu_{s}\right\rangle
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
\cdots & \cdots & \cdots & 0 \\
a & b & c & 1 \\
\cdots & \cdots & \cdots & 0 \\
-a & -b & -c & 1
\end{array}\right)\left(\begin{array}{l}
\left|\nu_{1}\right\rangle \\
\left|\nu_{2}\right\rangle \\
\left|\nu_{3}\right\rangle \\
\left|\nu_{4}\right\rangle
\end{array}\right) \\
|\nu(L)\rangle=\frac{e^{-i E L}}{\sqrt{2}}\left[a\left|\nu_{1}\right\rangle+b\left|\nu_{2}\right\rangle+c\left|\nu_{3}\right\rangle+e^{-i\left(E_{4}-E\right) L}\left|\nu_{4}\right\rangle\right] \\
|\nu(L)\rangle=\left|\nu_{\mu}\right\rangle \text { for } L=0 \quad \text { and }|\nu(L)\rangle \propto\left|\nu_{s}\right\rangle \text { for } \quad e^{-i\left(E_{4}-E\right) L}=-1
\end{gathered}
$$

but in this case there are no $\operatorname{SBL} \nu_{\mu} \rightarrow \nu_{e}$ transitions!

Short-Baseline Reactor Neutrino Oscillations

$$
\Delta m_{\mathrm{SBL}}^{2} \gtrsim 0.5 \mathrm{eV}^{2} \gg \Delta m_{\text {ATM }}^{2}
$$

- SBL oscillations are averaged at the Daya Bay, RENO, and Double Chooz near detectors $\quad \Longrightarrow \quad$ no spectral distortion

Four-Neutrino Schemes: $2+2,3+1$ and $1+3$

$2+2$ Four-Neutrino Schemes

- After LSND (1995) $2+2$ was preferred to $3+1$, because of the $3+1$ appearance-disappearance tension
[Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, CG, Grimus, EPJC 1 (1998) 247]
- This is not a perturbation of $3-\nu$ Mixing \Longrightarrow Large active-sterile oscillations for solar or atmospheric neutrinos!

$2+2$ Schemes are Strongly Disfavored

Solar: Matter Effects + SNO NC
Atmospheric: Matter Effects

$$
\begin{gathered}
\eta_{s}=\left|U_{s 1}\right|^{2}+\left|U_{s 2}\right|^{2}=1-\left|U_{s 3}\right|^{2}+\left|U_{s 4}\right|^{2} \\
99 \% \text { CL: } \quad \begin{cases}\eta_{s}<0.25 & \text { (Solar + KamLAND) } \\
\eta_{s}>0.75 & \text { (Atmospheric }+ \text { K2K) }\end{cases}
\end{gathered}
$$

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122]
$3+1$ and $1+3$ Four-Neutrino Schemes

$$
\left|U_{e 4}\right|^{2},\left|U_{\mu 4}\right|^{2},\left|U_{\tau 4}\right|^{2} \ll 1 \quad\left|U_{s 4}\right|^{2} \simeq 1
$$

$1+3$ schemes are disfavored by cosmology ($\Lambda C D M)$:

$$
\sum_{k=1}^{3} m_{k} \lesssim 0.2 \mathrm{eV} \quad \text { [Planck, Astron. Astrophys. } 594 \text { (2016) A13 (arXiv:1502.01589)] }
$$

Effective 3+1 SBL Oscillation Probabilities

$$
\begin{gathered}
\left|\nu_{\alpha}\right\rangle=\sum_{k=1}^{4} U_{\alpha k}^{*}\left|\nu_{k}\right\rangle \quad \stackrel{t}{\longrightarrow}\left|\nu_{\alpha}(t)\right\rangle=\sum_{k=1}^{4} U_{\alpha k}^{*} e^{-i E_{k} t}\left|\nu_{k}\right\rangle \\
A_{\nu_{\alpha} \rightarrow \nu_{\beta}}(t)=\left\langle\nu_{\beta} \mid \nu_{\alpha}(t)\right\rangle=\sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-i E_{k} t} \quad\left(\left\langle\nu_{\beta} \mid \nu_{k}\right\rangle=U_{\beta k}\right) \\
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}=\left|\sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-i E_{k} t}\right|^{2} \\
=\left|\sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-i E_{k} t}\right|^{2} *\left|e^{i E_{1} t}\right|^{2} \\
=\left|\sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-i\left(E_{k}-E_{1}\right) t}\right|^{2}
\end{gathered}
$$

$$
\begin{gathered}
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}=\left|\sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-i\left(E_{k}-E_{1}\right) t}\right|^{2} \\
E_{k}=\sqrt{p^{2}+m_{k}^{2}} \simeq p+\frac{m_{k}^{2}}{2 p} \Longrightarrow \quad E_{k}-E_{1} \simeq \frac{\Delta m_{k 1}^{2}}{2 p} \\
E=p \quad t \simeq L \\
P_{\nu_{\alpha} \rightarrow \nu_{\beta}} \simeq\left|\sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} \exp \left(-i \frac{\Delta m_{k 1}^{2} L}{2 E}\right)\right|^{2}
\end{gathered}
$$

$$
\begin{aligned}
& P_{\nu_{\alpha} \rightarrow \nu_{\beta}}= \left\lvert\, U_{\alpha 1}^{*} U_{\beta 1}+U_{\alpha 2}^{*} U_{\beta 2} \exp \left(-i \frac{\Delta m_{21}^{2} L}{2 E}\right)\right. \\
&+U_{\alpha 3}^{*} U_{\beta 3} \exp \left(-i \frac{\Delta m_{31}^{2} L}{2 E}\right)+\left.U_{\alpha 4}^{*} U_{\beta 4} \exp \left(-i \frac{\Delta m_{41}^{2} L}{2 E}\right)\right|^{2} \\
& \mathrm{SBL} \Longrightarrow \quad \frac{\Delta m_{21}^{2} L}{2 E} \ll 1 \quad \frac{\Delta m_{31}^{2} L}{2 E} \ll 1 \\
& P_{\nu_{\alpha} \rightarrow \nu_{\beta}}^{\mathrm{SBL}} \simeq\left|U_{\alpha 1}^{*} U_{\beta 1}+U_{\alpha 2}^{*} U_{\beta 2}+U_{\alpha 3}^{*} U_{\beta 3}+U_{\alpha 4}^{*} U_{\beta 4} \exp \left(-i \frac{\Delta m_{41}^{2} L}{2 E}\right)\right|^{2} \\
& U_{\alpha 1}^{*} U_{\beta 1}+U_{\alpha 2}^{*} U_{\beta 2}+U_{\alpha 3}^{*} U_{\beta 3}=\delta_{\alpha \beta}-U_{\alpha 4}^{*} U_{\beta 4}
\end{aligned}
$$

$$
\begin{aligned}
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}^{\mathrm{SBL}} \simeq & \left|\delta_{\alpha \beta}-U_{\alpha 4}^{*} U_{\beta 4}\left[1-\exp \left(-i \frac{\Delta m_{41}^{2} L}{2 E}\right)\right]\right|^{2} \\
= & \delta_{\alpha \beta}+\left|U_{\alpha 4}\right|^{2}\left|U_{\beta 4}\right|^{2}\left(2-2 \cos \frac{\Delta m_{41}^{2} L}{2 E}\right) \\
& -2 \delta_{\alpha \beta}\left|U_{\alpha 4}\right|^{2}\left(1-\cos \frac{\Delta m_{41}^{2} L}{2 E}\right) \\
= & \delta_{\alpha \beta}-2\left|U_{\alpha 4}\right|^{2}\left(\delta_{\alpha \beta}-\left|U_{\beta 4}\right|^{2}\right)\left(1-\cos \frac{\Delta m_{41}^{2} L}{2 E}\right) \\
= & \delta_{\alpha \beta}-4\left|U_{\alpha 4}\right|^{2}\left(\delta_{\alpha \beta}-\left|U_{\beta 4}\right|^{2}\right) \sin ^{2} \frac{\Delta m_{41}^{2} L}{4 E} \\
\alpha \neq \beta \Longrightarrow & P_{\nu_{\alpha} \rightarrow \nu_{\beta}}^{\mathrm{SBL}} \simeq 4\left|U_{\alpha 4}\right|^{2}\left|U_{\beta 4}\right|^{2} \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) \\
\alpha=\beta \Longrightarrow & P_{\nu_{\alpha} \rightarrow \nu_{\alpha}}^{\mathrm{SBL}} \simeq 1-4\left|U_{\alpha 4}\right|^{2}\left(1-\left|U_{\alpha 4}\right|^{2}\right) \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right)
\end{aligned}
$$

- 6 mixing angles
- 3 Dirac CP phases
- 3 Majorana CP phases

053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD 91 (2015) 073017, PLB 757 (2016) 142; Kayser et al, JHEP 1511 (2015) 039, JHEP 1611 (2016) 122] and solar exp. sensitive to $\Delta m_{\text {SOL }}^{2} \quad$ [Long, Li, CG, PRD 87, 113004 (2013) 113004]

Common Parameterization of 4×4 Mixing Matrix

$$
\begin{aligned}
& U=\left[W^{34} R^{24} W^{14} R^{23} W^{13} R^{12}\right] \operatorname{diag}\left(1, e^{i \lambda_{21}}, e^{i \lambda_{31}}, e^{i \lambda_{41}}\right) \\
&=\left(\begin{array}{cccc}
c_{12} c_{13} c_{14} & s_{12} c_{13} c_{14} & c_{14} s_{13} e^{-i \delta_{13}} & s_{14} e^{-i \delta_{14}} \\
\cdots & \cdots & \cdots & c_{14} s_{24} \\
\cdots & \cdots & \cdots & c_{14} c_{24} s_{34} e^{-i \delta_{34}} \\
\cdots & \cdots & \cdots & c_{14} c_{24} c_{34}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & e^{i \lambda_{21}} & 0 & 0 \\
0 & 0 & e^{i \lambda_{31}} & 0 \\
0 & 0 & 0 & e^{i \lambda_{41}}
\end{array}\right) \\
&\left|U_{e 4}\right|^{2}=\sin ^{2} \vartheta_{14} \Rightarrow \sin ^{2} 2 \vartheta_{e e}=4\left|U_{e 4}\right|^{2}\left(1-\left|U_{e 4}\right|^{2}\right)=\sin ^{2} 2 \vartheta_{14} \\
&\left|U_{\mu 4}\right|^{2}= \cos ^{2} \vartheta_{14} \sin ^{2} \vartheta_{24} \simeq \sin ^{2} \vartheta_{24} \Rightarrow \sin ^{2} 2 \vartheta_{\mu \mu}=4\left|U_{\mu 4}\right|^{2}\left(1-\left|U_{\mu 4}\right|^{2}\right) \simeq \sin ^{2} 2 \vartheta_{24}
\end{aligned}
$$

3+1: Appearance vs Disappearance

- SBL Oscillation parameters: $\begin{array}{cllll}\Delta m_{41}^{2} & \left|U_{e 4}\right|^{2} & \left|U_{\mu 4}\right|^{2} & \left(\left|U_{\tau 4}\right|^{2}\right)\end{array}$
- Amplitude of ν_{e} disappearance:

$$
\sin ^{2} 2 \vartheta_{e e}=4\left|U_{e 4}\right|^{2}\left(1-\left|U_{e 4}\right|^{2}\right) \simeq 4\left|U_{e 4}\right|^{2}
$$

- Amplitude of ν_{μ} disappearance:

$$
\sin ^{2} 2 \vartheta_{\mu \mu}=4\left|U_{\mu 4}\right|^{2}\left(1-\left|U_{\mu 4}\right|^{2}\right) \simeq 4\left|U_{\mu 4}\right|^{2}
$$

- Amplitude of $\nu_{\mu} \rightarrow \nu_{e}$ transitions:

$$
\sin ^{2} 2 \vartheta_{e \mu}=4\left|U_{e 4}\right|^{2}\left|U_{\mu 4}\right|^{2} \simeq \frac{1}{4} \sin ^{2} 2 \vartheta_{e e} \sin ^{2} 2 \vartheta_{\mu \mu}
$$

quadratically suppressed for small $\left|U_{e 4}\right|^{2}$ and $\left|U_{\mu 4}\right|^{2}$
\Downarrow
Appearance-Disappearance Tension
[Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, CG, Grimus, EPJC 1 (1998) 247]

Neutrinoless Double-Beta Decay

$$
m_{\beta \beta}=\left|\left|U_{e 1}\right|^{2} m_{1}+\left|U_{e 2}\right|^{2} e^{i \alpha_{21}} m_{2}+\left|U_{e 3}\right|^{2} e^{i \alpha_{31}} m_{3}+\left|U_{e 4}\right|^{2} e^{i \alpha_{41}} m_{4}\right|
$$

C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 75/76

Conclusions

- Mainstream 3ν-mixing research: precise measurements of mass ordering, masses, mixing angles and CP violating phases with neutrino oscillations, β decay, $\beta \beta_{0 \nu}$ decay.
- Neutrinos provide a Window to the New Physics beyond the Standard Model through:
- Small (Majorana) Masses.
- Sterile Neutrinos.
- Non-Standard Interactions. [see Ohlsson, RPP 76 (2013) 044201, arXiv:1209.2710]
- Electromagnetic Interactions. [see CG, Studenikin, RMP 87 (2015) 531, arXi:1403.6344]

[^0]: C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 3/76

[^1]: C. Giunti - Neutrino Physics - III - Torino PhD Course - Torino - December 2019 - 8/76

