Neutrino and Nuclear Properties from Coherent Elastic Neutrino-Nucleus Scattering

Carlo Giunti

INFN, Torino, Italy

Colloquium at Roma Tre University, 8 June 2021

Coherent Elastic Neutrino-Nucleus Scattering

- ► CE_νNS: pronounced "sevens"
- Weak Neutral-Current (NC) interaction:

- The nucleus $\mathcal{N}(A, Z)$ recoils as a whole!
- So what? E allora? Embè?

Big cross section enhancement for heavy nuclei N(A, Z) with many nucleons N_i:

[Papoulias, Kosmas, Kuno, arXiv:1911.00916]

Neutrino-Nucleus Scattering

 $|\vec{q}| R \lesssim 1 \leftarrow \text{Natural Units}$

 $ert ec q ert {
m {\it R}} \lesssim 1$

- Heavy target nucleus $\mathcal{N}(A, Z)$: $A \sim 100 \quad M \sim 100 \text{ GeV}$ $R \approx 1.2 A^{1/3} \text{ fm} \approx 5 \text{ fm}$
- $CE\nu NS$ for $|\vec{q}| \lesssim 40 \text{ MeV}$
- Non-Relativistic nuclear recoil:

Observable nuclear recoil kinetic energy:

$$T \simeq rac{|ec{q}|^2}{2\,M} \lesssim 10 \, {
m keV} \quad \leftarrow \quad {
m Very \ Small!}$$

[Freedman, PRD 9 (1974) 1389]

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. Experimentally the most conspicuous and most difficult feature of our process is that the only detectable reaction product is a recoil nucleus of low momentum. Ideally the apparatus should

► CE ν NS was observed for the first time 43 years later, in 2017 by the COHERENT experiment at the Oak Ridge Spallation Neutron Source with CsI (${}^{133}_{55}$ Cs₇₈, ${}^{127}_{53}$ I₇₄) and a threshold $T_{thr} \simeq 5 \text{ keV}$ [arXiv:1708.01294]

Maximum momentum transfer for $ec{p}_{
u_f} = -ec{p}_{
u_i}$

$$\vec{q} = \vec{p}_{\nu_i} - \vec{p}_{\nu_f} \Longrightarrow \underbrace{|\vec{q}|}_{\sqrt{2 M T}} \le 2 |\vec{p}_{\nu_i}| = 2 E_{\nu}$$

Low-energy neutrinos are needed!

 $T \lesssim 10 \text{ keV}$ and $M \sim 100 \text{ GeV}$ \implies $E_{\nu} \lesssim 30 \text{ MeV}$

Natural sources of low-energy neutrinos

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – Roma Tre – 8 June 2021 – 8/45

Artificial sources of low-energy neutrinos

C. Giunti – Neutrino and Nuclear Properties from CEvNS – Roma Tre – 8 June 2021 – 9/45

CEvNS search and study experiments around the world

[Konovalov @ Magnificent CE vNS 2020]

Reactor vs stopped-pion for CEvNS

Source	Flux/ v's per s	Flavor	Energy	Pros	Cons
Reactor	2e20 per GW	nuebar	few MeV	• huge flux	 lower xscn require very low threshold CW
Stopped pion	1e15	numu/ nue/ nuebar	0-50 MeV	 higher xscn higher energy recoils pulsed beam for bg rejection multiple flavors 	 lower flux potential fast neutron in-time bg

[Scholberg @ CNNP2017]

Reactor CEvNS Experiments

Experiment	Technology	Location	
CONUS	HPGe	Germany	
Ricochet	Ge, Zn bolometers	France	
CONNIE	Si CCDs	Brazil	
RED	LXe dual phase	Russia	
Nu-Cleus	$\begin{array}{c} \text{Cryogenic} \text{CaWO}_4 \text{ ,} \\ \text{Al}_2\text{O}_3 \text{calorimeter} \\ \text{array} \end{array}$	Europe	
MINER	Ge iZIP detectors	USA	

Novel low-background, low-threshold technologies [Scholberg @ CNNP2017]

C. Giunti – Neutrino and Nuclear Properties from $CE\nu NS$ – Roma Tre – 8 June 2021 – 12/45

Stopped-Pion (π **DAR**) Neutrinos

[M. Green @ Magnificent CEvNS 2019]

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – Roma Tre – 8 June 2021 – 13/45

Stopped-Pion Neutrino Spectrum

Prompt monochromatic ν_μ from stopped pion decays:

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$

$$\frac{dN_{\nu_{\mu}}}{dE_{\nu}} = \eta \,\delta\left(E_{\nu} - \frac{m_{\pi}^2 - m_{\mu}^2}{2m_{\pi}}\right)$$

Delayed ν

μ
 and ν
e
 from the subsequent muon decays:

$$\mu^+
ightarrow e^+ + ar{
u}_\mu +
u_e$$

$$\begin{aligned} \frac{dN_{\nu_{\bar{\mu}}}}{dE_{\nu}} &= \eta \, \frac{64E_{\nu}^2}{m_{\mu}^3} \left(\frac{3}{4} - \frac{E_{\nu}}{m_{\mu}}\right) \\ \frac{dN_{\nu_e}}{dE_{\nu}} &= \eta \, \frac{192E_{\nu}^2}{m_{\mu}^3} \left(\frac{1}{2} - \frac{E_{\nu}}{m_{\mu}}\right) \end{aligned}$$

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – Roma Tre – 8 June 2021 – 14/45

Stopped-Pion Neutrino Sources Worldwide

[Scholberg, GSSI Seminar 2020]

[Scholberg, GSSI Seminar 2020]

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

The neutrinos are free!

27

[Scholberg @ CNNP2017]

Time structure of the SNS source

60 Hz pulsed source

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – Roma Tre – 8 June 2021 – 18/45

The COHERENT Experiment

Oak Ridge Spallation Neutron Source

[COHERENT, arXiv:1803.09183]

COHERENT 2017: Cesium Iodide (Csl)

[arXiv:1708.01294]

COHERENT 2020: Argon (Ar)

C. Giunti – Neutrino and Nuclear Properties from CEvNS – Roma Tre – 8 June 2021 – 21/45

CE*v***NS** Cross Section

$$rac{d\sigma_{
u\mathcal{N}}}{dT}(E_
u,\,T) = rac{G_{\mathsf{F}}^2M}{4\pi}\left(1-rac{MT}{2E_
u^2}
ight)\left[Q_W^\mathcal{N}(Q^2)
ight]^2$$

• Weak charge of the nucleus \mathcal{N} :

 $Q_W^{\mathcal{N}}(Q^2) = g_V^n \, N_{\mathcal{N}} \, F_N^{\mathcal{N}}(|\vec{q}|^2) + g_V^p \, Z_{\mathcal{N}} \, F_Z^{\mathcal{N}}(|\vec{q}|^2)$

$$g_V^n = -\frac{1}{2}$$
 $g_V^p = \frac{1}{2} - 2\sin^2\vartheta_W(Q^2 \simeq 0) = 0.0227 \pm 0.0002$

The neutron contribution is dominant! =

 $\implies \frac{d\sigma_{\nu\mathcal{N}}}{dT} \propto N_{\mathcal{N}}^2$

► The form factors $F_N(|\vec{q}|^2)$ and $F_Z(|\vec{q}|^2)$ describe the loss of coherence for $|\vec{q}|R \gtrsim 1$. [see: Bednyakov, Naumov, arXiv:1806.08768]

In the COHERENT experiment neutrino-nucleus scattering is not completely coherent. For CsI:

[Cadeddu, CG, Y.F. Li, Y.Y. Zhang, PRL 120 (2018) 072501, arXiv:1710.02730]

Partial coherency gives information on the nuclear neutron form factor F_N(|q|²), which is the Fourier transform of the neutron distribution in the nucleus.

C. Giunti – Neutrino and Nuclear Properties from CE vNS – Roma Tre – 8 June 2021 – 23/45

C. Giunti – Neutrino and Nuclear Properties from $CE\nu NS$ – Roma Tre – 8 June 2021 – 24/45

C. Giunti – Neutrino and Nuclear Properties from $CE\nu NS$ – Roma Tre – 8 June 2021 – 25/45

The Nuclear Proton and Neutron Distributions

- The nuclear proton distribution (charge density) is probed with electromagnetic interactions.
- Most sensitive are electron-nucleus elastic scattering and muonic atom spectroscopy.
- Hadron scattering experiments give information on the nuclear neutron distribution, but their interpretation depends on the model used to describe non-perturbative strong interactions.
- More reliable are neutral current weak interaction measurements.
 But they are more difficult.
- Before 2017 there was only one measurement of *R_n* with neutral-current weak interactions through parity-violating electron scattering:

 $R_n(^{208}\text{Pb}) = 5.78^{+0.16}_{-0.18} \,\text{fm}$

[PREX, PRL 108 (2012) 112502]

The charge radii of ¹³³Cs and ¹²⁷I have been determined with muonic atom spectroscopy: [Angeli, Marinova, ADNDT 99 (2013) 69]

> $R_{\rm c}(^{133}{\rm Cs}) = 4.8041 \pm 0.0046 \,{\rm fm}$ $R_{\rm c}(^{127}{\rm I}) = 4.7500 \pm 0.0081 \,{\rm fm}$

Radius of the proton distribution: $R_p^2 = R_c^2 - \frac{N}{Z} \langle r_n^2 \rangle_c$ [Ong, Berengut, Flambaum, arXiv:1006.5508; Horowitz et al, arXiv:1202.1468]

Squared charge radius of the neutron:

 $\langle r_n^2
angle_c = -0.1161 \pm 0.0022 \, {
m fm}^2$ [PDG 2018]

▶ Radii of the proton distributions of ¹³³Cs and ¹²⁷I:

 $R_p(^{133}\text{Cs}) = 4.821 \pm 0.005 \,\text{fm}$ $R_p(^{127}\text{I}) = 4.766 \pm 0.008 \,\text{fm}$ Fit of the 2017 COHERENT CsI data to get $R_n(^{133}Cs) \simeq R_n(^{127}I)$:

First determination of R_n with neutrino-nucleus scattering:

 $R_n(Csl) = 5.5^{+0.9}_{-1.1} \, \text{fm}$

[Cadeddu, Giunti, Li, Zhang, arXiv:1710.02730]

With new 2020 COHERENT Csl data:

 $R_n(Csl) = 5.55 \pm 0.44 \, \text{fm}$

[Pershey @ Magnificent CEvNS 2020]

[Cadeddu et al, arXiv:2102.06153]

$R_n(Csl) = 5.55 \pm 0.44 \, \text{fm}$

- The uncertainty is large, but it can be improved in future.
- ▶ Predictions of nuclear models: $R_n(Csl) \approx 4.9 5.1 \text{ fm}$
- ► A large *R_n* has important implications for:
 - Nuclear physics: a larger pressure of neutrons
 - Astrophysics: a larger size of neutron stars

BSM Neutrino Interactions in CE*v***NS**

Neutrino Electromagnetic Interactions

Effective Hamiltonian: $\mathcal{H}_{em}^{(\nu)}(x) = j_{\mu}^{(\nu)}(x)A^{\mu}(x) = \sum_{k,j=1} \overline{\nu_k}(x)\Lambda_{\mu}^{kj}\nu_j(x)A^{\mu}(x)$

Effective electromagnetic vertex:

$$\langle \nu_f(p_f) | j^{(\nu)}_{\mu}(0) | \nu_i(p_i) \rangle = \overline{u_f}(p_f) \Lambda^{fi}_{\mu}(q) u_i(p_i)$$

$$q = p_i - p_f$$

Vertex function:

$$\Lambda_{\mu}(q) = (\gamma_{\mu} - q_{\mu} q/q^{2}) \begin{bmatrix} F_{Q}(q^{2}) + F_{A}(q^{2})q^{2}\gamma_{5} \end{bmatrix} - i\sigma_{\mu\nu}q^{\nu} \begin{bmatrix} F_{M}(q^{2}) + iF_{E}(q^{2})\gamma_{5} \end{bmatrix}$$
Lorentz-invariant charge anapole magnetic electric
$$q^{2} = 0 \implies q \qquad a \qquad \mu \qquad \varepsilon$$
helicity-conserving helicity-flipping

Electromagnetic Vertex Function

- ▶ Hermitian form factors: $F_Q = F_Q^{\dagger}$, $F_A = F_A^{\dagger}$, $F_M = F_M^{\dagger}$, $F_E = F_E^{\dagger}$
- ▶ Majorana neutrinos: $F_Q = -F_Q^T$, $F_A = F_A^T$, $F_M = -F_M^T$, $F_E = -F_E^T$ no diagonal charges and electric and magnetic moments in the mass basis
- For left-handed ultrarelativistic neutrinos γ₅→ − 1 ⇒ The phenomenology of the charge and anapole are similar and the phenomenology of the magnetic and electric moments are similar.
- For ultrarelativistic neutrinos the charge and anapole terms conserve helicity, whereas the magnetic and electric terms invert helicity.

Neutrino Charge Radius

- In the Standard Model neutrinos are neutral and there are no electromagnetic interactions at the tree-level.
- Radiative corrections generate an effective electromagnetic interaction vertex

In the Standard Model:

[Bernabeu et al, PRD 62 (2000) 113012, NPB 680 (2004) 450]

$$\langle r_{\nu_{\ell}}^{2} \rangle_{\rm SM} = -\frac{G_{\rm F}}{2\sqrt{2}\pi^{2}} \begin{bmatrix} 3 - 2\log\left(\frac{m_{\ell}^{2}}{m_{W}^{2}}\right) \end{bmatrix} \qquad \begin{cases} \langle r_{\nu_{\ell}}^{2} \rangle_{\rm SM} = -8.2 \times 10^{-33} \, \rm cm^{2} \\ \langle r_{\nu_{\mu}}^{2} \rangle_{\rm SM} = -4.8 \times 10^{-33} \, \rm cm^{2} \\ \langle r_{\nu_{\mu}}^{2} \rangle_{\rm SM} = -3.0 \times 10^{-33} \, \rm cm^{2} \end{cases}$$

C. Giunti – Neutrino and Nuclear Properties from CE_VNS – Roma Tre – 8 June 2021 – 33/45

Experimental Bounds

Method	Experiment	Limit [cm ²]	CL	Year
Reactor $\bar{\nu}_e e^-$	Krasnoyarsk	$ \langle r^2_{ u_e} angle < 7.3 imes 10^{-32}$	90%	1992
	TEXONO	$-4.2 imes 10^{-32} < \langle r^2_{ u_e} angle < 6.6 imes 10^{-32}$	90%	2009
Accelerator $\nu_e e^-$	LAMPF	$-7.12 imes 10^{-32} < \langle r^2_{ u_e} angle < 10.88 imes 10^{-32}$	90%	1992
	LSND	$-5.94 imes 10^{-32} < \langle r^2_{ u_e} angle < 8.28 imes 10^{-32}$	90%	2001
Accelerator $ u_{\mu} e^{-}$	BNL-E734	$-5.7 imes 10^{-32} < \langle r^2_{ u_{\mu}} angle < 1.1 imes 10^{-32}$	90%	1990
	CHARM-II	$ \langle r^2_{ u_\mu} angle < 1.2 imes 10^{-32}$	90%	1994

[see the review Giunti, Studenikin, arXiv:1403.6344

and the update in Cadeddu, Giunti, Kouzakov, Y.F. Li, Studenikin, Y.Y. Zhang, arXiv:1810.05606]

Neutrino charge radii contributions to v_l-N CEvNS:

$$\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT}(E_{\nu},T) = \frac{G_{\mathsf{F}}^{2}M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^{2}}\right) \left\{ \left[\underbrace{-\frac{1}{2}}_{g_{\nu}^{N}} NF_{N}(|\vec{q}|^{2}) + \left(\underbrace{\frac{1}{2} - 2\sin^{2}\vartheta_{W}}_{g_{\nu}^{P}} - \frac{2}{3}m_{W}^{2}\sin^{2}\vartheta_{W}\langle r_{\nu_{\ell}\ell}^{2}\rangle \right) ZF_{Z}(|\vec{q}|^{2}) \right]^{2} + \frac{4}{9}m_{W}^{4}\sin^{4}\vartheta_{W}Z^{2}F_{Z}^{2}(|\vec{q}|^{2})\sum_{\ell'\neq\ell} |\langle r_{\nu_{\ell'}\ell}^{2}\rangle|^{2} \right\}$$

- ► In the Standard Model there are only diagonal charge radii $\langle r_{\nu_{\ell}}^2 \rangle \equiv \langle r_{\nu_{\ell\ell}}^2 \rangle$ because lepton numbers are conserved.
- Diagonal charge radii generate the coherent shifts

$$\sin^2\!\vartheta_W o \sin^2\!\vartheta_W \left(1 + rac{1}{3} m_W^2 \langle r_{
u_\ell}^2
angle
ight) \quad \Longleftrightarrow \quad
u_\ell + \mathcal{N} o
u_\ell + \mathcal{N}$$

► Transition charge radii generate the incoherent contribution $\frac{4}{9} m_W^4 \sin^4 \vartheta_W Z^2 F_Z^2(|\vec{q}|^2) \sum_{\ell' \neq \ell} |\langle r_{\nu_{\ell'\ell}}^2 \rangle|^2 \iff \nu_\ell + \mathcal{N} \rightarrow \sum_{\substack{\ell' \neq \ell \\ [Kouzakov, Studenikin, PRD 95 (2017) 055013, arXiv:1703.00401]}}$

C. Giunti – Neutrino and Nuclear Properties from CE vNS – Roma Tre – 8 June 2021 – 35/45

COHERENT constraints on neutrino charge radii

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – Roma Tre – 8 June 2021 – 36/45

Neutrino Electric Charges

 Neutrinos can be millicharged particles in theories beyond the Standard Model.

• Neutrino charge contributions to ν_{ℓ} - \mathcal{N} CE ν NS:

$$\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT}(E_{\nu},T) = \frac{G_{\mathsf{F}}^{2}M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^{2}}\right) \left\{ \left[\underbrace{-\frac{1}{2}}_{g_{\nu}^{n}}NF_{\mathcal{N}}(|\vec{q}|^{2}) + \left(\frac{1}{2} - 2\sin^{2}\vartheta_{W} + \frac{2m_{W}^{2}\sin^{2}\vartheta_{W}}{MT}q_{\nu_{\ell\ell}}\right) ZF_{Z}(|\vec{q}|^{2}) \right]^{2} + \frac{4m_{W}^{4}\sin^{4}\vartheta_{W}}{M^{2}T^{2}}Z^{2}F_{Z}^{2}(|\vec{q}|^{2})\sum_{\ell'\neq\ell}|q_{\nu_{\ell\ell'}}|^{2} \right\}$$

• $q_{\overline{\nu}_{\ell\ell'}} = -q_{\nu_{\ell\ell'}}$, but also $g_V^{p,n}(\overline{\nu}) = -g_V^{p,n}(\nu)$.

Approximate limits on neutrino millicharges

Limit	Method	Reference
$ q_{ u_e} \lesssim 3 imes 10^{-21} e$	Neutrality of matter	Raffelt (1999)
$ q_{ u_e} \lesssim 3.7 imes 10^{-12} e$	Nuclear reactor	Gninenko et al, (2006)
$ q_{ u_e} \lesssim 1.5 imes 10^{-12} e$	Nuclear reactor	Studenikin (2013)
$ q_{ u_{ au}} \lesssim 3 imes 10^{-4} e$	SLAC e^- beam dump	Davidson et al, (1991)
$ q_{ u_{ au}} \lesssim 4 imes 10^{-4} e$	BEBC beam dump	Babu et al, (1993)
$ q_ u \lesssim 6 imes 10^{-14} e$	Solar cooling (plasmon decay)	Raffelt (1999)
$ q_ u \lesssim 2 imes 10^{-14} e$	Red giant cooling (plasmon decay)	Raffelt (1999)

Neutrality of matter

From electric charge conservation in neutron beta decay (n → p + e⁻ + ν_e) q_{νe} = q_n - (q_p + q_e) = A/Z (q_n - q_{mat}) with q_{mat} = Z(q_p + q_e) + Nq_n A
q_{mat} = (-0.1 ± 1.1) × 10⁻²¹ e with SF₆, which has A = 146.06 and Z = 70 [Bressi, et al., PRA 83 (2011) 052101, arXiv:1102.2766]
q_n = (-0.4 ± 1.1) × 10⁻²¹ e [Baumann, Kalus, Gahler, Mampe, PRD 37 (1988) 3107]

[Giunti, Studenikin, arXiv:1403.6344]

C. Giunti – Neutrino and Nuclear Properties from CEvNS – Roma Tre – 8 June 2021 – 38/45

• $q_{\nu} = (-0.6 \pm 3.2) \times 10^{-21} e$

COHERENT constraints on neutrino millicharges

[Cadeddu et al, arXiv:2005.01645]

 The bounds on the charges involving the electron neutrino flavor

 $q_{\nu_{ee}} \quad q_{\nu_{e\mu}} \quad q_{\nu_{e\tau}}$ are not competitive with respect to those obtained in reactor neutrino experiments, that are at the level of $10^{-12} e$ in neutrino-electron elastic scattering experiments.

The bounds on

 $\begin{array}{cc} q_{\nu_{\mu\mu}} & q_{\nu_{\mu\tau}} \\ \text{are the first ones obtained} \\ \text{from laboratory data.} \end{array}$

Neutrino Magnetic and Electric Moments

Extended Standard Model with right-handed neutrinos and ΔL = 0:

$$\mu_{kk}^{\rm D} \simeq 3.2 \times 10^{-19} \mu_{\rm B} \left(\frac{m_k}{\rm eV}\right) \qquad \varepsilon_{kk}^{\rm D} = 0$$
$$\mu_{kj}^{\rm D} \\ i\varepsilon_{kj}^{\rm D} \\ \right\} \simeq -3.9 \times 10^{-23} \mu_{\rm B} \left(\frac{m_k \pm m_j}{\rm eV}\right) \sum_{\ell=e,\mu,\tau} U_{\ell k}^* U_{\ell j} \left(\frac{m_\ell}{m_\tau}\right)^2$$

off-diagonal moments are GIM-suppressed

[Fujikawa, Shrock, PRL 45 (1980) 963; Pal, Wolfenstein, PRD 25 (1982) 766; Shrock, NPB 206 (1982) 359; Dvornikov, Studenikin, PRD 69 (2004) 073001, JETP 99 (2004) 254]

Extended Standard Model with Majorana neutrinos $(|\Delta L| = 2)$:

GIM-suppressed, but additional model-dependent contributions of the scalar sector can enhance the Majorana transition dipole moments

[Pal, Wolfenstein, PRD 25 (1982) 766; Barr, Freire, Zee, PRL 65 (1990) 2626; Pal, PRD 44 (1991) 2261]

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – Roma Tre – 8 June 2021 – 40/45

Method	Experiment	Limit $[\mu_B]$	CL	Year
	Krasnoyarsk	$\mu_{ u_e} < 2.4 imes 10^{-10}$	90%	1992
	Rovno	$\mu_{ u_e} < 1.9 imes 10^{-10}$	95%	1993
Reactor $\bar{\nu}_e e^-$	MUNU	$\mu_{ u_e} < 9 imes 10^{-11}$	90%	2005
	TEXONO	$\mu_{ u_e} < 7.4 imes 10^{-11}$	90%	2006
	GEMMA	$\mu_{ u_e} < 2.9 imes 10^{-11}$	90%	2012
Accelerator $\nu_e e^-$	LAMPF	$\mu_{ u_e} < 1.1 imes 10^{-9}$	90%	1992
Accelerator $(u_{\mu}, ar{ u}_{\mu}) e^{-}$	BNL-E734	$\mu_{ u_{\mu}} < 8.5 imes 10^{-10}$	90%	1990
	LAMPF	$\mu_{ u_\mu} < 7.4 imes 10^{-10}$	90%	1992
	LSND	$\mu_{ u_\mu} < 6.8 imes 10^{-10}$	90%	2001
Accelerator $(u_{ au}, ar{ u}_{ au}) e^-$	DONUT	$\mu_{ u_ au} < 3.9 imes 10^{-7}$	90%	2001
Solar $\nu_e e^-$	Super-Kamiokande	$\mu_{S}(\textit{E}_{ u}\gtrsim5MeV) < 1.1 imes10^{-10}$	90%	2004
	Borexino	$\mu_{\sf S}({\it E}_ u\lesssim 1{\sf MeV}) < 2.8 imes 10^{-11}$	90%	2017

[see the review Giunti, Studenikin, arXiv:1403.6344]

Gap of about 8 orders of magnitude between the experimental limits and the $\lesssim 10^{-19} \mu_{\rm B}$ prediction of the minimal Standard Model extensions.

▶ $\mu_{\nu} \gg 10^{-19} \mu_{\rm B}$ discovery \Rightarrow non-minimal new physics beyond the SM.

Neutrino spin-flavor precession in a magnetic field

[Lim, Marciano, PRD 37 (1988) 1368; Akhmedov, PLB 213 (1988) 64]

► Neutrino magnetic (and electric) moment contributions to CE ν NS $\nu_{\ell} + \mathcal{N} \rightarrow \sum_{\ell'} \nu_{\ell'} + \mathcal{N}$:

$$\begin{aligned} \frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT}(E_{\nu},T) &= \frac{G_{\mathsf{F}}^{2}M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^{2}}\right) \left[g_{V}^{n}NF_{N}(|\vec{q}|^{2}) + g_{V}^{p}ZF_{Z}(|\vec{q}|^{2})\right]^{2} \\ &+ \frac{\pi\alpha^{2}}{m_{e}^{2}} \left(\frac{1}{T} - \frac{1}{E_{\nu}}\right) Z^{2}F_{Z}^{2}(|\vec{q}|^{2}) \sum_{\ell'\neq\ell} \frac{|\mu_{\ell\ell'}|^{2}}{\mu_{\mathsf{B}}^{2}} \end{aligned}$$

- The magnetic moment interaction adds incoherently to the weak interaction because it flips helicity.
- The m_e is due to the definition of the Bohr magneton: $\mu_B = e/2m_e$.

COHERENT constraints on ν magnetic moments

[Cadeddu et al, arXiv:2005.01645]

The sensitivity to |µ_{ν_e}| is not competitive with that of reactor experiments:

 $|\mu_{
u_e}| < 2.9 imes 10^{-11} \, \mu_{
m B} \quad \mbox{(90\% CL)}$ [gemma, ahep 2012 (2012) 350150]

The constraint on |μ_{νμ}| is not too far from the best current laboratory limit:

Conclusions

[E. Lisi, Neutrino 2018]