Status of the reactor and gallium anomalies and implications for active-sterile neutrino mixing

Carlo Giunti

INFN, Torino, Italy

Fermilab Neutrino Seminar Series

16 December 2021

Standard Three Neutrino Mixing Paradigm

- Supported by robust, abundant, and consistent solar, atmospheric and long-baseline (accelerator and reactor) neutrino oscillation data.
- Flavor Neutrinos: ν_e , ν_μ , ν_τ produced in Weak Interactions.
- Massive Neutrinos: ν_1 , ν_2 , ν_3 propagate from Source to Detector.
- Neutrino Mixing: a Flavor Neutrino is a superposition of Massive Neutrinos:

$$\begin{pmatrix} |\nu_e\rangle\\ |\nu_\mu\rangle\\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^*\\ U_{\mu1}^* & U_{\mu2}^* & U_{\mu3}^*\\ U_{\tau1}^* & U_{\tau2}^* & U_{\tau3}^* \end{pmatrix} \begin{pmatrix} |\nu_1\rangle\\ |\nu_2\rangle\\ |\nu_3\rangle \end{pmatrix}$$

• U is the 3×3 unitary Neutrino Mixing Matrix.

$$\blacktriangleright P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i\frac{\Delta m_{kj}^{2}L}{2E}\right) \qquad (\alpha, \beta = e, \mu, \tau)$$

The oscillation probabilities depend on:

U (osc. amplitude) and $\Delta m_{kj}^2 \equiv m_k^2 - m_j^2$ (osc. phase)

Three-Neutrino Mixing Parameters

Standard Parameterization of Mixing Matrix (as CKM) $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{22} & c_{22} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{12}e^{i\delta_{13}} & 0 & c_{12} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{21}} \end{pmatrix}$ $= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$ $c_{ab} \equiv \cos \vartheta_{ab}$ $s_{ab} \equiv \sin \vartheta_{ab}$ $0 \le \vartheta_{ab} \le \frac{\pi}{2}$ $0 \le \delta_{13}, \lambda_{21}, \lambda_{31} < 2\pi$ OSCILLATION PARAMETERS $\begin{cases} 3 \text{ Mixing Angles: } \vartheta_{12}, \, \vartheta_{23}, \, \vartheta_{13} \\ 1 \text{ CPV Dirac Phase: } \delta_{13} \\ 2 \text{ independent } \Delta m_{kj}^2 \equiv m_k^2 - m_j^2 \text{: } \Delta m_{21}^2, \, \Delta m_{31}^2 \end{cases}$ 2 CPV Majorana Phases: $\lambda_{21}, \lambda_{31} \iff |\Delta L| = 2$ processes

• In the standard 3ν mixing paradigm there are two independent Δm^{2} 's:

$$\Delta m_{SOL}^2 = \Delta m_{21}^2 \simeq 7.4 \times 10^{-5} \, \text{eV}^2$$
 Solar Mass Splitting

• $\Delta m^2_{ATM} \simeq |\Delta m^2_{31}| \simeq 2.5 \times 10^{-3} \, {\rm eV}^2$ Atmospheric Mass Splitting

The solar and atmospheric mass splittings generate oscillations that are detectable at the distances

$$L_{\rm SOL}^{\rm osc} \gtrsim \frac{E_{\nu}}{\Delta m_{\rm SOL}^2} \approx 50 \, \rm km \, \frac{E_{\nu}}{\rm MeV}$$

$$L_{\rm ATM}^{\rm osc} \gtrsim \frac{E_{\nu}}{\Delta m_{\rm ATM}^2} \approx 1 \, \rm km \, \frac{E_{\nu}}{\rm MeV}$$

- The solar and atmospheric mass splittings cannot explain neutrino oscillations at shorter distances.
- A neutrino oscillation explanation of short-baseline anomalies needs the existence of larger Δm^2 's.

Historical Short-Baseline Anomalies

2011 Reactor Anomaly: $\bar{\nu}_e \rightarrow \bar{\nu}_x \ (\approx 2.5\sigma)$ 2005 G

2005 Gallium Anomaly: $\nu_e \rightarrow \nu_x ~(\approx 2.9\sigma)$

2008 MiniBooNE Anomaly: $\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}$ (4.8 σ)

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 5/38

Beyond Three-Neutrino Mixing: Sterile Neutrinos

 3ν mixing: effective 4ν mixing with $|U_{e4}|, |U_{\mu4}|, |U_{\tau4}| \ll 1$

[Janot, Jadach, arXiv:1912.02067]

 $= 2.9963 \pm 0.0074$

 $N_{\nu_{\text{active}}}$

Terminology: a eV-scale sterile neutrino means: a eV-scale massive neutrino which is mainly sterile

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 6/38

Effective 3+1 SBL Oscillation Probabilities

$$\underbrace{\text{Appearance } (\alpha \neq \beta)}_{\substack{P_{(-)}^{(-)}(-)\\\nu_{\alpha} \rightarrow \nu_{\beta}}} \simeq \sin^{2} 2\vartheta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m_{41}^{2}L}{4E}\right) \qquad P_{(-)}^{\text{SBL}} \simeq 1 - \sin^{2} 2\vartheta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m_{41}^{2}L}{4E}\right) \\
 \operatorname{sin}^{2} 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^{2}|U_{\beta4}|^{2} \qquad \sin^{2} 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^{2} \left(1 - |U_{\alpha4}|^{2}\right) \\
 U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\pi1} & U_{\pi2} & U_{\pi3} \\ U_{51} & U_{52} & U_{53} \end{pmatrix} \\
 & \text{SBL}$$

$$\Delta m^2_{\mathsf{SBL}} = \Delta m^2_{41} \simeq \Delta m^2_{42} \simeq \Delta m^2_{43}$$

Common Parameterization of 4ν **Mixing**

$$U = \left[W^{34} R^{24} W^{14} R^{23} W^{13} R^{12} \right] \operatorname{diag} \left(1, e^{i\lambda_{21}}, e^{i\lambda_{31}}, e^{i\lambda_{41}} \right)$$

 $=\begin{pmatrix} c_{12}c_{13}c_{14} & s_{12}c_{13}c_{14} & c_{14}s_{13}e^{-i\delta_{13}} & s_{14}e^{-i\delta_{14}} \\ \dots & \dots & c_{14}s_{24} \\ \dots & \dots & c_{14}c_{24}s_{34}e^{-i\delta_{34}} \\ \dots & \dots & c_{14}c_{24}c_{34} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 & 0 \\ 0 & 0 & e^{i\lambda_{31}} & 0 \\ 0 & 0 & 0 & e^{i\lambda_{41}} \end{pmatrix}$

$$|U_{e4}|^2 = \sin^2 \vartheta_{14} \implies \sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) = \sin^2 2\vartheta_{14}$$
$$U_{\mu4}|^2 = \cos^2 \vartheta_{14} \sin^2 \vartheta_{24} \simeq \sin^2 \vartheta_{24} \Rightarrow \sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq \sin^2 2\vartheta_{24}$$

Effective short-baseline survival probability of ν_e (Gallium) and $\bar{\nu}_e$ (reactor):

$$P_{ee}^{\text{SBL}} \simeq 1 - \sin^2 2 \vartheta_{ee} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E} \right)$$

with different notations in the literature:

$$\vartheta_{ee} = \vartheta_{14} = \vartheta_{\mathsf{new}} = \vartheta$$

and

$$\Delta m_{41}^2 = \Delta m_{\text{SBL}}^2 = \Delta m_{\text{new}}^2 = \Delta m^2$$

Reactor Electron Antineutrino Anomaly

- SBL oscillations are averaged at the Daya Bay, RENO, and Double Chooz near detectors no spectral distortion
- The Reactor Antineutrino Anomaly is model dependent (depends on the theoretical reactor neutrino flux calculation; is it reliable?).

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 - 10/38

Reactor Antineutrino 5 MeV Bump (Shoulder)

- Discovered in 2014 by RENO, Double Chooz, Daya Bay.
- Cannot be explained by neutrino oscillations (SBL oscillations are averaged in RENO, DC, DB).
- If it is due to a theoretical miscalculation of the spectrum, it can have opposite effects on the anomaly:

[see: Berryman, Huber, arXiv:1909.09267]

 If it is a 4-6 MeV excess it increases the anomaly: recent HKSS flux calculation
 [Hayen, Kostensalo, Severijns, Suhonen, arXiv:1908.08302]
 If it is a 1-4 MeV suppression it decreases the anomaly: recent EF flux calculation

 [Estienne, Fallot, et al, arXiv:1904.09358]
 new KI ²³⁵U flux renormalization
 [Kopeikin, Skorokhvatov, Titov, arXiv:2103.01684]

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 11/38

Reactor $\bar{\nu}_e$ **Flux Calculation**

Reactor $\bar{\nu}_e$ flux produced by the β decays of the fission products of

²³⁵U ²³⁸U ²³⁹Pu ²⁴¹Pu

[Dayman, Biegalski, Haas, Rad. Nucl. Chem. 305 (2015) 213]

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 12/38

For each allowed β decay the electron spectrum is

$$S_{\beta}(E_{e}) = K p_{e} E_{e} (E_{e} - E_{0})^{2} F(Z, E_{e}) \qquad (E_{\nu} = E_{0} - E_{e})$$
$$S_{\nu}(E_{\nu}) = K \sqrt{(E_{0} - E_{e})^{2} - m_{e}^{2}} (E_{0} - E_{e}) E_{\nu}^{2} F(Z, E_{e})$$

Aggregate reactor spectrum (electron or neutrino):

 $S_{\text{tot}}(E, t) = \sum_{k} F_{k}(t) S_{k}(E)$ (k = 235, 238, 239, 241) fission fractions allowed or forbidden $S_k(E) = \sum_n Y_n^k \qquad \sum_b BR_n^b \quad S_n^b(E) \leftarrow \frac{\text{forbidde}}{\text{decay}}$ spectrum cumulative branching fission ratio yield

- The *ab initio* calculation of each $S_k^{\nu}(E_{\nu})$ requires knowledge of about 1000 spectra and branching ratios (k = 235, 238, 239, 241).
- Nuclear data tables are incomplete and sometimes inexact.
- Semi-empirical method: conversion of the aggregate β spectra $S_k^{\beta}(E_e)$ measured at ILL in the 80's with ~ 30 virtual β branches.

- In the 80's Schreckenbach et al. measured the aggregate β spectra of ²³⁵U, ²³⁹Pu, and ²⁴¹Pu exposing thin foils to the thermal neutron flux of the ILL reactor in Grenoble.
- ▶ The standard reactor $\bar{\nu}_e$ fluxes and spectra from ²³⁵U, ²³⁹Pu, and ²⁴¹Pu were obtained with the virtual-branches conversion method:

[Huber, PRC 84 (2011) 024617]

The conversion method was estimated to have about 1% uncertainty. [Vogel, PRC 76 (2007) 025504]

Estimated total uncertainties on the neutrino detection rates:

 $2.4\%(^{235}U)$ $2.9\%(^{239}Pu)$ $2.6\%(^{241}Pu)$

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 15/38

- ► The ²³⁸U $\bar{\nu}_e$ flux was calculated ab initio with estimated 8% uncertainty. [Mueller et al, PRC 83 (2011) 054615]
- Approximate agreement with the 2014 β spectrum measurement at FRM II in Garching using a fast neutron beam. [Haag et al, PRL 112 (2014) 122501]

[Mueller et al, PRC 83 (2011) 054615]

Reactor Electron Antineutrino Anomaly

[Mention et al, PRD 83 (2011) 073006]

2011: new reactor $\bar{\nu}_e$ fluxes: Huber-Mueller (HM)

[Mueller et al, PRC 83 (2011) 054615; Huber, PRC 84 (2011) 024617]

 $\approx 2.5 \sigma$ deficit \implies Anomaly!

[CG, Li, Ternes, Xin, arXiv:2110.06820]

2019: new summation reactor $\bar{\nu}_e$ fluxes: EF

[Estienne, Fallot, et al, arXiv:1904.09358]

$\approx 1.2 \sigma$ deficit \implies No Anomaly!

[See also: Berryman, Huber, arXiv:2005.01756]

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 18/38

2019: new converted reactor $\bar{\nu}_e$ fluxes: HKSS

[Hayen, Kostensalo, Severijns, Suhonen, arXiv:1908.08302]

 $\approx 2.9 \sigma$ deficit \implies Anomaly larger than the $\approx 2.5 \sigma$ HM anomaly!

[See also: Berryman, Huber, arXiv:2005.01756]

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 19/38

2021: new converted reactor $\bar{\nu}_e$ fluxes: KI

[Kurchatov Institute: Kopeikin, Skorokhvatov, Titov, arXiv:2103.01684]

 $\approx 1.1 \sigma$ deficit \implies No Anomaly!

Approximate agreement with ab initio EF fluxes!

Reactor Fuel Evolution

 \blacktriangleright Reactor $\bar{\nu}_e$ flux produced by the β 100 Fission fraction (%) - 235U decays of the fission products of 90 ---- ²³⁹Pu 80 23511 ²³⁸U ²³⁹Pu ²⁴¹PII 238 70 - ²⁴¹Pu Effective fission fractions: 60 Others 50 F235 F238 F239 F241 40 30 E Cross section per fission (IBD yield): 20 $\sigma_f = \sum_k F_k \, \sigma_{f,k}$ 10 n 5000 10000 15000 20000 for k = 235, 238, 239, 241Burn-up (MWD/TU) $\underbrace{\overline{F}_{239}}{0.3}$ F_{235} 0.35 0.25 0.63 0.60 0.57 0.54 0.51 6.05 Data cm² / fission] f_{f} [10⁻⁴³ cm² / fission] Model (scaled by -6.0%) RENO 6.00 Best fit Daya Bay 5.95 ---- Identical spectra 5.9 5.90 5.85 [arXiv:1704.01082] $[10^{-43}]$ 5.8 5.80 Model (Rescaled) Best fit [arXiv:1806.00574] 5.75 Average Dava Bav ⁵ 5.70 5 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.5 0.55 0.6 0.65 \overline{F}_{235} F_{239}

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 21/38

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 22/38

[CG, Li, Ternes, Xin, arXiv:2110.06820]

- Tension with HM (2.6 σ), HKSS (2.8 σ), and HKSS-KI (1.9 σ).
- Agreement with EF (0.8σ) and KI (1.2σ) .

[CG, Li, Ternes, Xin, arXiv:2110.06820]

• Tension with HM (2.6 σ), HKSS (2.8 σ), and HKSS-KI (1.9 σ).

Agreement with EF (0.8σ) and KI (1.2σ) .

Best-fit reactor flux model

Goodness of fit tests assuming no (or negligible) SBL oscillations

- The KI model is the best among the conversion models.
 - The summation EF model is approximately equally good.

Implications for oscillations

[CG, Li, Ternes, Xin, arXiv:2110.06820]

The favored KI and EF models are compatible with the absence of SBL oscillations and give only 2σ upper bounds on the effective mixing parameter sin² 2ϑ_{ee} = sin² 2ϑ₁₄.

Independently from the reactor neutrino flux model, $\sin^2 2\vartheta_{ee} \lesssim 0.25$ at 2σ .

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 26/38

Implications for oscillations

[CG, Li, Ternes, Xin, arXiv:2110.06820]

• There is agreement with the solar neutrino bound on $\sin^2 2\vartheta_{ee}$.

[Goldhagen, Maltoni, Reichard, Schwetz, arXiv:2109.14898]

There is a tension with the BEST Gallium anomaly region. [BEST, arXiv:2109.11482]

Gallium Anomaly

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 28/38

► Deficit could be due to an overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$

First calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

• $\sigma_{G.S.}$ from $T_{1/2}(^{71}\text{Ge}) = 11.43 \pm 0.03 \text{ days}$

[Hampel, Remsberg, PRC 31 (1985) 666]

$$\sigma_{\rm G.S.}({}^{51}{
m Cr}) = (5.54 \pm 0.02) \times 10^{-45} \, {
m cm}^2$$

• $\sigma(^{51}\text{Cr}) = \sigma_{\text{G.S.}}(^{51}\text{Cr})\left(1 + 0.669 \frac{\text{BGT}_{175}}{\text{BGT}_{\text{G.S.}}} + 0.220 \frac{\text{BGT}_{500}}{\text{BGT}_{\text{G.S.}}}\right)$

• The contribution of excited states is only $\sim 5\%!$

[Bahcall, hep-ph/9710491]

$\nu_e+{\rm ^{71}Ga} \rightarrow {\rm ^{71}Ge}+e^-$ cross sections in units of $10^{-45}\,{\rm cm^2}$:

		⁵¹ Cr		³⁷ Ar	
		$\sigma_{ m tot}$	δ_{exc}	$\sigma_{ m tot}$	δ_{exc}
Ground State [Semenov, Phys.Atom.Nucl. 83 (2020) 1549]	$T_{1/2}(^{71}{ m Ge})$	5.539 ± 0.019	_	6.625 ± 0.023	_
Bahcall (1997) [hep-ph/9710491]	$^{71}{ m Ga}(p,n)^{71}{ m Ge}$	5.81 ± 0.16	4.7%	7.00 ± 0.21	5.4%
Haxton (1998) [nucl-th/9804011]	Shell Model	6.39 ± 0.65	13.3%	7.72 ± 0.81	14.2%
Frekers et al. (2015) [PRC 91 (2015) 034608]	⁷¹ Ga(³ He, ³ H) ⁷¹ Ge	5.92 ± 0.11	6.4%	7.15 ± 0.14	7.3%
Kostensalo et al. (2019) [arXiv:1906.10980]	Shell Model	5.67 ± 0.06	2.3%	6.80 ± 0.08	2.6%
Semenov (2020) [Phys.Atom.Nucl. 83 (2020) 1549]	⁷¹ Ga(³ He, ³ H) ⁷¹ Ge	5.938 ± 0.116	6.7%	7.169 ± 0.147	7.6%

_

[BEST, arXiv:2109.11482]

GALLEX+SAGE+BEST with Bahcall cross section

BEST tension with solar bound

[Berryman, Coloma, Huber, Schwetz, Zhou, arXiv:2111.12530]

BEST agreement with hypothetical MicroBooNE ν_e disappearance

[Denton, arXiv:2111.05793]

Model Indep. Measurements of Reactor ν Osc.

Ratios of spectra at different distances

DANSS on a lifting platform

Neutrino-4

PROSPECT

STEREO Acrylic buffers Gamma-catcher scintillator (no Gr

SoLid

C. Giunti – Status of the reactor and gallium anomalies – Fermilab – 16 December 2021 – 35/38

▶ 2018: remarkable agreement of the DANSS and NEOS best-fit regions at $\Delta m_{41}^2 \approx 1.3 \text{ eV}^2 \implies$ model independent indication in favor of SBL oscillations. [Gariazzo, CG, Laveder, Li, arXiv:1801.06467]

[Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz, arXiv:1803.10661]

- 2019: decreased agreement between NEOS and DANSS allowed regions. [CG, Y.F. Li, Y.Y. Zhang, arXiv:1912.12956]
- ► 2020: No 2σ DANSS allowed regions (exclusion curve). No compelling indication of oscillations. In practice these reactor experiments exclude large values of $|U_{e4}|^2$ for $0.1 \lesssim \Delta m_{41}^2 \lesssim 10 \, \text{eV}^2$

[Berryman, Coloma, Huber, Schwetz, Zhou, arXiv:2111.12530]

Kostensalo et al. Gallium cross section [arXiv:1906.10980]

Conclusions

- ► Light Sterile Neutrinos can be powerful messengers of BSM New Physics.
- Historically, the existence of light sterile neutrinos is motivated by the LSND, Gallium, and Reactor Short-Baseline Anomalies.
- ► The Reactor Antineutrino Anomaly, discovered in 2011, is fading away.
- The Gallium Neutrino Anomaly, discovered in 2007, has been revived by the BEST results.
- We are back by 10 years, when there was a Gallium-Reactor tension, before the Reactor Antineutrino Anomaly.
- CPT violation explanation of the Reactor Antineutrino–Gallium Neutrino tension? [CG, Laveder, arXiv:1008.4750]
 - Theoretically challenging.
 - Cannot resolve the tension between the the Gallium Neutrino Anomaly and the solar neutrino bound.
- Topic for another seminar (by somebody else): even more confusing status of appearance data (MicroBooNE vs MiniBooNE), global fits, and the appearance-disappearance tension.