New Physics Searches with CEvNS (Theory)

Carlo Giunti

INFN, Torino, Italy

Neutrino 2022 XXX International Conference on Neutrino Physics and Astrophysics

30 May – 4 June 2022

Coherent Elastic Neutrino-Nucleus Scattering

• The nucleus $\mathcal{N}(A, Z)$ recoils without any internal change of state!

- \blacktriangleright Experimental difficulty: low nuclear recoil kinetic energy $\mathcal{T} \lesssim 10\,\mathrm{keV}$
- Prediction: 1974! [Freedman, PRD 9 (1974) 1389]
- First observation: 43 years later, in 2017 with the COHERENT Csl detector and a ν_μ + ν_e beam produced by π + μ decay at rest [COHERENT, arXiv:1708.01294]
- Second observation: in 2020 with the COHERENT Ar detector [COHERENT, arXiv:2003.10630]
- Third observation: in 2022 with a Ge detector and the ve flux produced by the Dresden-II reactor [Colaresi, Collar, Hossbach, Lewis, Yocum, arXiv:2202.09672]

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 2/29

CE*v***NS** Cross Section

Standard Model:

$$\frac{d\sigma_{\mathsf{CE}\nu\mathsf{NS}}}{dT}(\mathsf{E}_{\nu},\,T) = \frac{G_{\mathsf{F}}^2 M}{4\pi} \left(1 - \frac{MT}{2\mathsf{E}_{\nu}^2}\right) \left[Q_{\mathsf{W}}^{\mathsf{SM}}(Q^2)\right]^2$$

 $|\vec{q}| = \sqrt{2 M T}$

Weak charge of the nucleus N:

$$Q_{W}^{SM}(Q^{2}) = g_{V}^{n} N F_{N}(|\vec{q}|) + g_{V}^{p} Z F_{Z}(|\vec{q}|)$$
$$g_{V}^{n} = -\frac{1}{2} \qquad g_{V}^{p} = \frac{1}{2} - 2\sin^{2}\vartheta_{W}(Q^{2} \simeq 0) = 0.0227 \pm 0.0002$$

The neutron contribution is dominant! $\implies \frac{d\sigma_{CEVNS}}{dT} \propto N^2$

[Freedman, PRD 9 (1974) 1389; Drukier, Stodolsky, PRD 30 (1984) 2295; Barranco, Miranda, Rashba, hep-ph/0508299]

- The coherent nuclear recoil gives a big cross section enhancement for heavy nuclei: σ^{incoherent}_{NC} ∝ N ⇒ σ_{CEνNS}/σ^{incoherent}_{NC} ∝ N
- ► The nuclear form factors $F_N(|\vec{q}|)$ and $F_Z(|\vec{q}|)$ describe the loss of coherence for $|\vec{q}|R \gtrsim 1$. [Patton et al, arXiv:1207.0693; Bednyakov, Naumov, arXiv:1806.08768; Papoulias et al, arXiv:1903.03722; Ciuffoli et al, arXiv:1801.02166; Canas et al, arXiv:1911.09831; Van Dessel et al, arXiv:2007.03658]

SM and BSM CE_vNS Neutrino Interactions

Electromagnetic Interactions

BSM Scalar Mediator

Recent First Observation of Reactor $\bar{\nu}_e$ CEvNS

- For a proper analysis the background must be fitted with signal using the information in the data release in the arXiv ancillary files. Thanks!
- BSM analyses that use the residuals obtained from the official SM fit are not correct and may obtain misleading results.
- Special thanks to the COHERENT Collaboration for the excellent data releases and the availability to help!

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 5/29

Kopeikin (2012): Usual $\bar{\nu}_e$ fluxes from ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fission daughter nuclei plus low energy $\bar{\nu}_e$'s from

$$n + {}^{238}\text{U} \rightarrow {}^{239}\text{U} + \gamma$$

$${}^{239}\text{U} \rightarrow {}^{239}\text{Np} + e^- + \bar{\nu}_e$$

$${}^{239}\text{Np} \rightarrow {}^{239}\text{Pu} + e^- + \bar{\nu}_e$$

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 6/29

 Small dependence of the predicted SM CEvNS signal on the difference between the HM and EF fluxes at high energy.

 $E_{\nu}^{\min}(\text{CEvNS}) \simeq \sqrt{\frac{MT_{nr}}{2}}$: e.g., $T_{nr} \simeq 0.2 \text{ keV} \implies E_{\nu}^{\min}(\text{CEvNS}) \simeq 2.5 \text{ MeV}$

- The Quenching Factor describes the suppression of the ionization yield produced by a nuclear recoil compared to an electron recoil.
 - Electron-equivalent energy:

 $T_{\rm e} = f_{\rm Q}(T_{\rm nr}) T_{\rm nr}$

- Dresden-II Ge Quenching Factor models:
 - Fef: iron filtered neutron beam
 - YBe: photo-neutron ⁸⁸Y/Be source [Colaresi et al, arXiv:2202.09672]
- The difference between Fef and YBe is considered as the Quenching Factor systematic uncertainty [Coloma et al, arXiv:2202.10829]

Neutrino Electromagnetic Interactions

Ultrarelativistic neutrinos at low q²:

 $\Lambda_{\mu}(q) \simeq \left(\gamma_{\mu} - q_{\mu} q/q^{2}\right) \left[F_{Q}(q^{2}) - Aq^{2}\right] - i\sigma_{\mu\nu}q^{\nu}\left[\mu - i\varepsilon\right]$

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 9/29

Neutrino Charge Radius

- In the Standard Model neutrinos are neutral and there are no electromagnetic interactions at the tree-level.
- Radiative corrections generate an effective electromagnetic interaction vertex

► In the Standard Model:

[Bernabeu et al, PRD 62 (2000) 113012, NPB 680 (2004) 450]

$$\langle r_{\nu_{\alpha}}^{2} \rangle_{\rm SM} = -\frac{G_{\rm F}}{2\sqrt{2}\pi^{2}} \begin{bmatrix} 3 - 2\log\left(\frac{m_{\alpha}^{2}}{m_{W}^{2}}\right) \end{bmatrix} \qquad \begin{cases} \langle r_{\nu_{e}}^{2} \rangle_{\rm SM} = -8.2 \times 10^{-33} \, \rm{cm}^{2} \\ \langle r_{\nu_{\mu}}^{2} \rangle_{\rm SM} = -4.8 \times 10^{-33} \, \rm{cm}^{2} \\ \langle r_{\nu_{\mu}}^{2} \rangle_{\rm SM} = -3.0 \times 10^{-33} \, \rm{cm}^{2} \end{cases}$$

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 10/29

• Neutrino charge radii contributions to ν_{α} - \mathcal{N} CE ν NS:

$$\frac{d\sigma_{\nu_{\alpha}-\mathcal{N}}}{dT}(E_{\nu},T) = \frac{G_{\mathsf{F}}^{2}M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^{2}}\right) \left\{ \left[\underbrace{-\frac{1}{2}}_{g_{\nu}^{N}} NF_{N}(|\vec{q}|) + \left(\underbrace{\frac{1}{2} - 2\sin^{2}\vartheta_{W}}_{g_{\nu}^{P}} - \frac{2}{3}m_{W}^{2}\sin^{2}\vartheta_{W}\langle r_{\nu_{\alpha\alpha}}^{2}\rangle \right) ZF_{Z}(|\vec{q}|) \right]^{2} + \frac{4}{9}m_{W}^{4}\sin^{4}\vartheta_{W}Z^{2}F_{Z}^{2}(|\vec{q}|)\sum_{\beta\neq\alpha} |\langle r_{\nu_{\beta\alpha}}^{2}\rangle|^{2} \right\}$$

- ▶ In the Standard Model there are only diagonal charge radii $\langle r_{\nu_{\alpha}}^2 \rangle \equiv \langle r_{\nu_{\alpha\alpha}}^2 \rangle$ because lepton flavor is conserved.
- Diagonal charge radii generate the coherent shifts

$$\sin^2 \vartheta_W \to \sin^2 \vartheta_W \left(1 + \frac{1}{3} m_W^2 \langle r_{\nu_\alpha}^2 \rangle \right) \quad \Longleftrightarrow \quad \nu_\alpha + \mathcal{N} \to \nu_\alpha + \mathcal{N}$$

Transition charge radii generate the incoherent contribution

$$\frac{4}{9} m_{W}^{4} \sin^{4} \vartheta_{W} Z^{2} F_{Z}^{2}(|\vec{q}|) \sum_{\beta \neq \alpha} |\langle r_{\nu_{\beta\alpha}}^{2} \rangle|^{2} \iff \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzakov, Studenikin, arXiv:1703.00401]}} \nu_{\alpha} + \mathcal{N} \rightarrow \sum_{\substack{\beta \neq \alpha \\ [Kouzako$$

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 11/29

Bounds on Diagonal Neutrino Charge Radii

- The transition charge radii are assumed to be zero or negligible.
- Test of SM prediction and search for lepton flavor conserving BSM physics. Dresden-II data analysis options:

• Reactor $\bar{\nu}_e$ flux:

- ► HMVE: Huber-Mueller (2011)
 + Vogel-Engel (1989) (E_ν < 2 MeV)
 ► HMK: Huber-Mueller
 + Kopeikin (2012) (E_ν < 2 MeV)
 ► EFK: Estienne-Fallot (2019)
 + Kopeikin (2012) (E_ν < 0.44 MeV)
 ► Quenching factor:
 ► Fef: iron filter
 - ► YBe: photo-neutron
- Previous bounds (orange):
 - Reactor $\bar{\nu}_e e^-$: TEXONO
 - Accelerator $\nu_{\mu} e^-$: BNL-E734

Bounds on Diagonal Neutrino Charge Radii

Method	Experiment	Limit $[10^{-32} \text{ cm}^2]$	C.L.	Year
Reactor $\bar{\nu}_e e^-$	Krasnoyarsk	$ \langle r_{\nu_e}^2 \rangle < 7.3$	90%	1992
	TEXONO	$-4.2 < \langle r^2_{ u_e} angle < 6.6^{a}$	90%	2009
Accelerator $\nu_e e^-$	LAMPF	$-7.12 < \langle r^2_{ u_e} angle < 10.88$ a	90%	1992
	LSND	$-5.94 < \langle r^2_{ u_e} angle < 8.28^{a}$	90%	2001
Accelerator $ u_{\mu} e^{-}$	BNL-E734	$-5.7 < \langle r^2_{ u_{\mu}} angle < 1.1^{ extsf{a,b}}$	90%	1990
	CHARM-II	$ \langle r^2_{ u_{\mu}} angle < 1.2^{a}$	90%	1994
CEvNS [arXiv:2205.09484]	COHERENT	$-7.1 < \langle r^2_{ u_e} angle < 11.2$	90%	2022
	+ Dresden-II	$-8.1 < \langle r^2_{ u_\mu} angle < 4.3$		

a Corrected by a factor of two due to a different convention.

b Corrected in Hirsch, Nardi, Restrepo, hep-ph/0210137.

[Previous CEvNS results: Papoulias et al, arXiv:1711.09773, arXiv:1907.11644, arXiv:2003.12050; Khan and Rodejohann, arXiv:1907.12444; Cadeddu et al, arXiv:1810.05606, arXiv:1908.06045, arXiv:2005.01645]

General CEvNS Constraints on Neutrino Charge Radii

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 14/29

Neutrino Magnetic and Electric Moments

Effective dimension-5 Lagrangian:

$$\mathcal{L}_{\text{mag}} = \frac{1}{2} \sum_{k,j=1}^{\mathcal{N}} \overline{\nu_{Lk}} \, \sigma^{\alpha\beta} \left(\mu_{kj} + \varepsilon_{kj} \, \gamma_5 \right) N_{Rj} \, F_{\alpha\beta} + \text{H.c.}$$

► N = 3, $N_{Rj} = \nu_{Rj}$, and $\Delta L = 0 \implies$ Dirac neutrinos with diagonal and off-diagonal (transition) magnetic and electric moments. Simplest SM extension:

 $\mu_{kk}^{\mathsf{D}} \simeq 3.2 \times 10^{-19} \mu_{\mathsf{B}} \left(\frac{m_k}{\mathsf{eV}}\right)$ Strongly suppressed by small $m_k!$

► N = 3 and $N_{Rj} = \nu_{Lj}^c \implies$ Majorana neutrinos with transition magnetic and electric moments only

• $N > 3 \implies$ active + sterile Dirac ($\Delta L = 0$) or Majorana neutrinos "neutrino dipole portal" or "neutrino magnetic moment portal" Neutrino magnetic (and electric) moment contributions to CEνNS:

$$\begin{aligned} \frac{d\sigma_{\nu_{\alpha}-\mathcal{N}}}{dT}(E_{\nu},T) &= \frac{G_{\mathsf{F}}^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2}\right) \left[g_V^n N F_N(|\vec{q}|) + g_V^p Z F_Z(|\vec{q}|)\right]^2 \\ &+ \frac{\pi \alpha^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_{\nu}}\right) Z^2 F_Z^2(|\vec{q}|) \frac{\mu_{\nu_{\alpha}}^2}{\mu_{\mathsf{B}}^2} \end{aligned}$$

- The magnetic moment interaction adds incoherently to the weak interaction because it flips helicity.
- Effective magnetic moment of flavor neutrinos:

$$u_{\nu_{\alpha}}^{2} = \sum_{j} \left| \sum_{k} U_{\alpha k}^{*} \left(\mu_{jk} - i\varepsilon_{jk} \right) \right|^{2}$$

[Grimus, Stockinger, hep-ph/9708279; Beacom, Vogel, hep-ph/9907383; CG, Studenikin, arXiv:1403.6344]

Neglecting the electric moments:

$$\mu_{
u_lpha}^2 = \sum_{i,j} \, U_{lpha i} \, (\mu^2)_{ij} \, U^*_{lpha j} \quad ext{with} \quad (\mu^2)_{ij} = \sum_k \mu_{ik} \mu_{kj}$$

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 16/29

Neutrino-electron elastic scattering (ES) contribution in the COHERENT CsI and Dresden-II Ge detectors. [Coloma et al, arXiv:2202.10829]

Negligible SM contribution:

$$\frac{d\sigma_{\nu_{\alpha}-\mathcal{A}}^{\text{ES}}}{dT_{\text{e}}}(E, T_{\text{e}}) = Z_{\text{eff}}^{\mathcal{A}}(T_{e}) \frac{G_{\text{F}}^{2}m_{e}}{2\pi} \left[\left(g_{V}^{\nu_{\alpha}} + g_{A}^{\nu_{\alpha}} \right)^{2} + \left(g_{V}^{\nu_{\alpha}} - g_{A}^{\nu_{\alpha}} \right)^{2} \left(1 - \frac{T_{e}}{E} \right)^{2} - \left((g_{V}^{\nu_{\alpha}})^{2} - (g_{A}^{\nu_{\alpha}})^{2} \right) \frac{m_{e}T_{e}}{E^{2}} \right]$$
$$- \left((g_{V}^{\nu_{\alpha}})^{2} - (g_{A}^{\nu_{\alpha}})^{2} \right) \frac{m_{e}T_{e}}{E^{2}} \right]$$
$$g_{V}^{\nu_{e}} = 2\sin^{2}\theta_{W} + \frac{1}{2}, \quad g_{A}^{\nu_{e}} = \frac{1}{2}, \quad g_{V}^{\nu_{\mu}} = 2\sin^{2}\theta_{W} - \frac{1}{2}, \quad g_{A}^{\nu_{\mu}} = -\frac{1}{2}$$

▶ Significant neutrino magnetic moment contribution for small *T_e*:

$$\frac{d\sigma_{\nu_{\alpha}-\mathcal{A}}^{\text{ES, MM}}}{dT_{\text{e}}}(E, T_{\text{e}}) = Z_{\text{eff}}^{\mathcal{A}}(T_{\text{e}}) \frac{\pi\alpha^{2}}{m_{e}^{2}} \left(\frac{1}{T_{e}} - \frac{1}{E}\right) \left|\frac{\mu_{\nu_{\alpha}}}{\mu_{\text{B}}}\right|^{2}$$

- SM ES are practically negligible, whereas magnetic moment ES are not negligible.
- ES predictions are flatter than CEvNS and depend more on the reactor flux model because

 $E_{\nu}^{\min}(\text{ES}) \simeq \sqrt{m_e T_e/2}$: e.g., $T_e \simeq 0.5 \text{ keV} \implies E_{\nu}^{\min}(\text{ES}) \simeq 10 \text{ keV}$ $E_{\nu}^{\min}(\text{CEvNS}) \simeq \sqrt{MT_{nr}/2}$: e.g., $T_{nr} \simeq 0.5 \text{ keV} \implies E_{\nu}^{\min}(\text{CEvNS}) \simeq 4 \text{ MeV}$

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 19/29

$$\frac{|\mu_{\nu_e}|}{10^{-10}\,\mu_{\rm B}} < \begin{cases} 3.7\,({\rm HMVE \ or \ HMK})\\ 3.8\,({\rm EFK})\\ 3.2\,({\rm HMVE \ or \ HMK})\\ 3.3\,({\rm EFK}) \end{cases} \begin{cases} {\sf CEvNS}\\ {\sf CEvNS+ES} \end{cases} \qquad {\sf YBe \ 90\% \ C.L.} \\ {\sf [Atzori\ Corona\ et\ al,\ arXiv:2205.09484]} \end{cases}$$

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 20/29

Bounds on $|\mu_{\nu_e}|$ and $|\mu_{\nu_{\mu}}|$

Method	Experiment	Limit $[\mu_{B}]$	CL	Year
Reactor ES $(\bar{\nu}_e e^-)$	Krasnoyarsk	$ \mu_{ u_e} < 2.4 imes 10^{-10}$	90%	1992
	Rovno	$ \mu_{ u_e} < 1.9 imes 10^{-10}$	95%	1993
	MUNU	$ \mu_{ u_e} < 9 imes 10^{-11}$	90%	2005
	TEXONO	$ \mu_{ u_e} < 7.4 imes 10^{-11}$	90%	2006
	GEMMA	$ \mu_{ u_e} < 2.9 imes 10^{-11}$	90%	2012
Reactor CEvNS+ES	Dresden-II [Coloma et al, arXiv:2202.10829] [Atzori Corona et al, arXiv:2205.09484]	$ \mu_{ u_e} < 3.3 imes 10^{-10}$	90%	2022
Accelerator ES $(\nu_{\mu} e^{-})$	BNL-E734	$ \mu_{ u_{\mu}} < 8.5 imes 10^{-10}$	90%	1990
	LAMPF	$ \mu_{ u_{\mu}} < 7.4 imes 10^{-10}$	90%	1992
	LSND	$ \mu_{ u_{\mu}} < 6.8 imes 10^{-10}$	90%	2001
Accelerator CEvNS+ES	COHERENT [Coloma et al, arXiv:2202.10829] [Atzori Corona et al, arXiv:2205.09484]	$ \mu_{ u_\mu} < 2 imes 10^{-9}$	90%	2022

[See also: Liao et al, arXiv:2202.10622; Aristizabal Sierra et al, arXiv:2203.02414; Khan, arXiv:2203.08892]

[Previous CEvNS results: Papoulias et al, arXiv:1711.09773, arXiv:1905.03750, arXiv:1907.11644, arXiv:2003.12050; Khan and Rodejohann, arXiv:1907.12444; Cadeddu et al, arXiv:1908.06045, arXiv:2005.01645; CONUS, arXiv:2201.12257]

[Future prospects: Miranda et al, arXiv:1905.03750]

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 21/29

Vector-Mediated Non-Standard Interactions

General CEvNS cross section:

$$\frac{d\sigma_{\nu_{\alpha}}}{dT}(E,T) = \frac{G_{\mathsf{F}}^2 M}{\pi} \left(1 - \frac{MT}{2E^2}\right) Q_{\mathsf{W},\alpha}^2$$

Very heavy vector mediator: Effective neutral-current NSI Hamiltonian:

$$\mathcal{H}_{\mathsf{NSI}}^{\mathsf{CE}\nu\mathsf{NS}} = 2\sqrt{2}G_{\mathsf{F}}\sum_{\alpha,\beta=\mathbf{e},\mu,\tau} \left(\overline{\nu_{\alpha L}}\gamma^{\rho}\nu_{\beta L}\right)\sum_{f=u,d}\varepsilon_{\alpha\beta}^{fV}\left(\overline{f}\gamma_{\rho}f\right)$$

$$Q_{\mathsf{W},\alpha}^{2} = \left[\left(g_{V}^{p} + 2\varepsilon_{\alpha\alpha}^{uV} + \varepsilon_{\alpha\alpha}^{dV} \right) ZF_{Z}(|\vec{q}|^{2}) + \left(g_{V}^{n} + \varepsilon_{\alpha\alpha}^{uV} + 2\varepsilon_{\alpha\alpha}^{dV} \right) NF_{N}(|\vec{q}|^{2}) \right]^{2} \\ + \sum_{\beta \neq \alpha} \left| \left(2\varepsilon_{\alpha\beta}^{uV} + \varepsilon_{\alpha\beta}^{dV} \right) ZF_{Z}(|\vec{q}|^{2}) + \left(\varepsilon_{\alpha\beta}^{uV} + 2\varepsilon_{\alpha\beta}^{dV} \right) NF_{N}(|\vec{q}|^{2}) \right|^{2} \right]^{2}$$

- Many parameters with possible cancellation effects.
- Several phenomenological analyses: general or simplified by assumptions on the parameters.

[COHERENT, arXiv:1708.01294, arXiv:2003.10630, arXiv:2110.07730; Coloma et al, arXiv:1708.02899, arXiv:1911.09109, arXiv:2202.10829; Liao et al, arXiv:1708.04255, arXiv:1711.03521, arXiv:2002.03066; Papoulias et al, arXiv:1711.09773, arXiv:1907.11644, arXiv:2003.12050; Khan and Rodejohann, arXiv:1907.12444; CG, arXiv:1909.00466; Canas et al, arXiv:1911.09831; Denton and Gehrlein, arXiv:2008.06062; CONUS, arXiv:2110.02174; Chaves and Schwetz, arXiv:2102.11981]

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 22/29

Light Vector Mediator Models

- ▶ Non-standard interactions mediated by a vector boson Z' with mass $M_{Z'} \leq 100$ GeV, associated with a new U(1)' gauge symmetry.
- Generic lepton flavor conserving Lagrangian:

- Many models, that can be divided in
 - Anomaly-free models generated by appropriate combinations of

B, L_e , L_μ , L_τ

Anomalous models, assuming that the anomalies are canceled by the contributions of non-standard fermions an extended theory.

Light Vector Mediator: Universal Z'

• Cross section:
$$\frac{d\sigma_{\nu-\mathcal{N}}}{dT}(E_{\nu},T) = \frac{G_{\mathsf{F}}^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2}\right) Q_{\mathsf{W}}^2$$

• Weak charge:
$$Q_{W} = Q_{W}^{SM} + \frac{3g_{Z'}^{2}}{\sqrt{2}G_{F}} \left(\frac{ZF_{Z}(|\vec{q}|) + NF_{N}(|\vec{q}|)}{|\vec{q}|^{2} + M_{Z'}^{2}} \right)$$

► Since
$$Q_W^{SM} \simeq -N/2$$
, for $M_{Z'} \gg |\vec{q}| \approx 30 MeV$ there is a cancellation for
 $Q_W \approx -\frac{N}{2} + \frac{3g_{Z'}^2}{\sqrt{2}G_F} \left(\frac{Z+N}{M_{Z'}^2}\right) = 0 \quad \Leftrightarrow \quad g_{Z'} \approx 1.4 \times 10^{-6} \frac{M_{Z'}}{MeV}$

There is a degeneracy with the SM contribution for

$$Q_{\rm W} \approx -\frac{N}{2} + \frac{3g_{Z'}^2}{\sqrt{2}G_F} \left(\frac{Z+N}{M_{Z'}^2}\right) = \frac{N}{2} \quad \Leftrightarrow \quad g_{Z'} \approx 2 \times 10^{-6} \, \frac{M_{Z'}}{\rm MeV}$$

Light Vector Mediator: Universal Z'

[Previous CEvNS results: Liao and Marfatia, arXiv:1708.04255; Papoulias et al, arXiv:1711.09773, arXiv:1907.11644; Khan and Rodejohann, arXiv:1907.12444; CONNIE, arXiv:1910.04951; Cadeddu et al, arXiv:2008.05022; CONUS, arXiv:2110.02174]

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 25/29

[Previous CEvNS results: Miranda et al, arXiv:2003.12050; Cadeddu et al, arXiv:2008.05022]

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 26/29

Short Final Remarks

The ES effects in Dresden and Coherent CsI lead to dramatic improvements of the bounds on the electric charges of ν_e and ν_µ.

[Atzori Corona et al, arXiv:2205.09484]

CEvNS can probe neutrino interactions with BSM scalars.

[Cerdeno et al, arXiv:1604.01025; Farzan et al, arXiv:1802.05171; Aristizabal Sierra et al, arXiv:1806.07424; Khan and Rodejohann, arXiv:1907.12444; Aristizabal Sierra et al, arXiv:1910.12437; Miranda et al, arXiv:2003.12050; Suliga and Tamborra, arXiv:2010.14545; CONUS, arXiv:2110.02174; Li and Xia, arXiv:2201.05015; Atzori Corona et al, arXiv:2202.11002; Liao et al, arXiv:2202.10622; Coloma et al, arXiv:2202.10629]

- CEvNS can probe general BSM neutrino interactions. [Lindner et al, arXiv:1612.04150; Aristizabal Sierra et al, arXiv:1806.07424; Brdar and Rodejohann, arXiv:1810.03626; Chang and Liao, arXiv:2002.10275; Li et al, arXiv:2005.01543; CONUS, arXiv:2110.02174]
- CEvNS can determine the neutron distribution in the nucleus. [Cadeddu et al, arXiv:1710.02730, arXiv:2005.01645, arXiv:1908.06045; Aristizabal Sierra et al, arXiv:1902.07398; Huang and Chen, arXiv:1902.07625; Papoulias et al, arXiv:1903.03722, arXiv:1907.11644; Miranda et al, arXiv:2003.12050]
- CEvNS can determine the value of the electroweak mixing angle. [Papoulias et al, arXiv:1711.09773, arXiv:1907.11644; Cadeddu et al, arXiv:1808.10202, arXiv:2005.01645, arXiv:1908.06045, arXiv:2205.09484; Huang and Chen, arXiv:1902.07625; Miranda et al, arXiv:1902.09036, arXiv:2003.12050; Khan and Rodejohann, arXiv:1907.12444; COHERENT, arXiv:2110.07730]
- CEvNS can probe active neutrino disappearance into sterile states. [Papoulias and Kosmas, arXiv:1711.09773; Blanco et al, arXiv:1901.08094; Miranda et al, arXiv:1902.09036]
- In the future it may be possible to observe Coherent Elastic Neutrino-Atom Scattering (CEvAS) with a very low energy threshold of a few meV. [Sehgal and Wanninger, PLB 171 (1986) 107; Cadeddu et al, arXiv:1907.03302]

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 27/29

CEvNS magic, to be continued ...

[E. Lisi, Neutrino 2018]

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 28/29

Talk dedicated to the memory of Samoil Bilenky

Great Physicist, Mentor, Friend Neutrino Pioneer Regular participant in the Neutrino Conferences

23 May 1928, Zmerinka (Ukraine), USSR5 November 2020, Vancouver, Canada

C. Giunti – New Physics Searches with CEvNS (Theory) – Neutrino 2022 – 4 June 2022 – 29/29