
 Introduction to Parallel
Programming with MPI

Lecture #6: Solution of 2D Laplace Equation

Andrea Mignone1

1Dipartimento	di	Fisica-	Turin	University,	Torino	(TO),	Italy	

Laplace Equation

§ We now wish to solve the Laplace equation on a 2D Cartesian domain Ω:

 where f(x,y) is a prescribed function on the boundary of Ω.

§  The Laplace equation is found in many area of physics, such as fluid
dynamics and electrostatic.

§  The Laplace equation is an elliptic partial differential equation and its
solution depends solely on the boundary values.

Elliptic PDE: Discretization

§ We define a 2D lattice of Nx points in the x-direction and Ny points in the y-
direction:

§  Uniform and equal spacing in both direction is assumed: h=Δx=Δy.

§  Red points should be specified as boundary conditions while black points are
the solution values (unknowns).

0 1 2 ... i ... Nx-2 Nx-1

Nx

Ny

0

1

2

.
.
.

j

.
.
N
y
-
2

N
y
-
1

Elliptic PDE: Discretization

§  To begin with, we discretize the Laplacian operator using 2nd-order
approximations to the second derivatives:

§  Interior points:

•  i=1…Nx-2, j=1…Ny-2. This is where the solution must be found.

§  Boundary points:

•  Bottom:			i=0...Nx-1				j=0	
•  Top:						i=0...Nx-1				j=Ny	-1	
•  Left:					i=0										j=0...Ny-1	
•  Right:				i=Nx-1							j=0...Ny-1	

Jacobi’s Iterative Method

§  Suppose we have found a solution of the discretized equation, then at each
grid point:

§  This is only formal since the r.h.s. is not known. To find the solution, the
equations must be solved simultaneously à solving Poisson's equation is
essentially a problem in linear algebra.

§  Jacobi's iterative method starts with a guess φ(0) for the solution at the
interior lattice points. Plugging this guess into the r.h.s. yields φ(1) at all
lattice points. Iterating:

§  The computation of φ(k+1) requires neighbor elements at the previous stage:
cannot overwrite φ(k) with φ(k+1) since that value will be needed by the rest
of the computation. Jacobi’s method requires two arrays of size nxn.

Boundary conditions & Convergence Checking

§  For simplicity we will only use Dirichlet boundary conditions which require
the value of the solution to be known on the four boundary sides:

§  Convergence is reached when the relative difference between two successsive
iterations falls below some prescribed tolerance

 where summation should be extended to interior points only.

Algorithm Implementation: serial code

§  Here’s a sketch on how your code should be correctly written:

-  define	grid	arrays	x[i]	and	y[j];	

-  allocate	memory	for	2D	solution	array;	

-  initialize	solution	array	(e.g.	φ0[i][j]	=	0)	in	the	interior	points;	
	
-  Start	iterating	(unitil	res	<	tol)	

-  Assign	boundary	conditions	
-  Update	2D	solution;	
-  Compute	residual;	

-  Write	solution	to	disk;	

Nx

Ny

Note: interior points are in black, and looping over
them can be done using the indices

		ibeg			=	NGHOST;	
		iend			=	ibeg	+	nx	-	1;	
	
and similarly for jbeg,	jend.
Boundary points are in red and corresponds to

-  φ[0][j],	φ[NX-1][j]	at	left,	right	bound.;	
-  φ[*][0],	φ[*][NY-1]		at	bottom,	top	bound.;	

Problem Details

§  Find the steady-state temperature distribution of
a rectangular plate 0 ≤x ≤ 1, 0 ≤ y ≤ 1, subject to
the following Dirichlet boundary conditions:

§  Use 128 x 128 grid nodes and compute the
residual through

§  Quit iteration loop when ε< 10-5.

§  The solution is shown in the right panel and
convergence should be achieved in ≈ 7316
iterations.

§  If you’re using Gnuplot, the script
laplace2D.gp can be used to produce this
figure.

Parallel Implementation

Parallel Domain Decomposition

§  In parallel, the computational domain is divided into (equally sized) sub-domains
using a Cartesian decomposition with MPI_Cart_create().	

proc	#1	
(0,1)	

proc	#0	
(0,0)	 proc	#2	

(1,0)	

proc	#3	
(1,1)	

Parallel Domain Decomposition

§  Domain decomposition should be done through the MPI_Cart_create() function.

§  For efficiency purpose, it is best to define a simple C structure holding all the relevant
information:

§  This structure can be passed through functions, e.g.

typedef	struct	MPI_Decomp_{	
		int	nprocs[NDIM];					/*		Number	of	processes	in	each	dimension	*/	
		int	periods[NDIM];				/*		Periodicity	flag	in	each	dimension					*/	
		int	coords[NDIM];					/*		Cartesian	coordinate	in	the	MPI	topology	*/	
		int	gsize[NDIM];						/*		Global	domain	size	(no	ghosts)		*/	
		int	lsize[NDIM];						/*		Local	domain	size	(no	ghosts)			*/	
		int	start[NDIM];						/*		Local	start	index	in	each	dimension											*/	
		int	procL[NDIM];						/*		Rank	of	left-lying		process	in	each	direction	*/		
		int	procR[NDIM];						/*		Rank	of	right-lying	process	in	each	direction	*/		
		int	rank;													/*		Local	process	rank	*/	
		int	size;													/*		Communicator	size		*/	
}	MPI_Decomp;	

int	main()	
{	
		MPI_Decomp	mpi_decomp;	
		...	
		DomainDecomposition	(&mpi_decomp);	
		...	
		BoundaryConditions	(&mpi_decomp);	
		...	
}	

Parallel Domain Decomposition

§  The DomainDecomposition() function should fill the structure:

void	DomainDecomposition(MPI_Decomp	*mpi_decomp)	
{	
		//	1.	Get	rank	&	size	
	
		//	2.	Determine	the	number	of	processes	in	each	dimension		
		//			(use	maximally	squared	decomp),	disable	periodicity	
	
		//	3.	Use	MPI_Cart_create()	and	MPI_Cart_get()	to	obtain		
		//				the	Cartesian	coordinates	for	the	current	process.	
	
		//	4.	Fill	structure	members.	
	
		//	5.	Determine	the	ranks	procL[]	and	procR[]	of	the	neigbour	processes		
		//				in	each	direction.	Use	MPI_PROC_NULL	for	physical	boundaries.	
	
		//	6.	Print	relevant	information	(optional	but	useful).		
}	

Boundary Conditions in Parallel

§  Red points = physical boundary conditions. Inter-processor b.c. are marked with a box.
The values here must be exchanged with neighbor processes.

proc	#1	
(0,1)	

proc	#0	
(0,0)	 proc	#2	

(1,0)	

proc	#3	
(1,1)	

Boundary Conditions in Parallel

§  Inter-processor b.c. must be exchanged using MPI_Send/Recv() functions
(we focus on proc	#1 only).

proc	#3	
(1,1)	

proc	#2	
(1,0)	

proc	#0	
(0,0)	

proc	#1	
(0,1)	

Boundary Conditions in Parallel

§  Inter-processor b.c. must be exchanged using MPI_Send/Recv() functions.

proc	#3	
(1,1)	

proc	#2	
(1,0)	

proc	#0	
(0,0)	

proc	#1	
(0,1)	

Parallel Algorithm:

§ We can now modify the serial algorithm in the following way:

-  [Parallel:	define	a	DomainDecomposition()	function	that	does	the	domain	to	
obtain	a	Cartesian	decomposition]	

-  define	grid	arrays	x[i]	and	y[j];	
			[Parallel:	each	process	owns	the	global	grid	(xg[]	and	yg[]),	but	local	grid									
			should	also	be	defined	à	use	mpi_decomp->start[]	for	providing	offsets]	

-  allocate	memory	for	2D	solution	array;	
			[Parallel:	memory	allocation	for	2D	array	should	be	done	on	local	domain		
			with	the	addition	of	guard	cells]	

-  initialize	solution	array	(e.g.	φ0[i][j]	=	0)	in	the	interior	points;	
	
-  Start	iterating	(unitil	res	<	tol)	

-  Assign	boundary	conditions	through	BoundaryConditions()	
			[Parallel:	distinguish	between	physical	and	inter-proc	b.c.]	
-  Update	2D	solution;	
-  Compute	residual;	
			[Parallel:	apply	reduce	operation]	

-  Write	solution	to	disk;	

Writing Files: defining the local array type

§  Local arrays are surrounded by a “halo” of ghost zones, but only
interior points must be written.

§  Need to create a subarray datatype to describe the
noncontiguous layout in memory (φ[][] shorn of ghost points)
with MPI_Type_create_subarray():

§  We will use this as arguments to MPI_File_write().

void	WriteSolution(...,	MPI_Decomp	*md)	
{	
...	
		//	1.	Define	the	local	datatype	
		MPI_Datatype	type_local;	
	
		gsize[0]	=	md->lsize[0]	+	2*NGHOST;	//	Local	array	size	including	
		gsize[1]	=	md->lsize[1]	+	2*NGHOST;	//	ghost	points		
		lsize[0]	=	md->lsize[0];		//	Size	of	subarray	is		
		lsize[1]	=	md->lsize[1];		//	local	domain	size	
		start[0]	=	NGHOST;	
		start[1]	=	NGHOST;	
	
		MPI_Type_create_subarray	(NDIM,	gsize,	lsize,	start,	
																												MPI_ORDER_FORTRAN,	MPI_DOUBLE,	&type_local);	
		MPI_Type_commit	(&type_local);	
...	
}	

Interior		
Points	

(type_local)	

ghost	zones	
(“halo”)	
	

Writing Files: defining the file view

§  The file view must be set by creating a second subarray datatype, defining the
process’ view on the file:

void	WriteSolution(...,	MPI_Decomp	*md)	
{	
...	
		//	2.	Define	the	domain	datatype	
		MPI_Datatype	type_domain;	
		gsize[0]	=	NX_GLOB;							//	Global	size	(entire	file)	
		gsize[1]	=	NY_GLOB;	
		lsize[0]	=	md->lsize[0];		//	Local	size	(amount	of	data	accessible	by	proc)	
		lsize[1]	=	md->lsize[1];	
	
		start[0]	=	lsize[0]*md->coords[0];		//	Starting	indices	(in	grid	points)	
		start[1]	=	lsize[1]*md->coords[1];		//	for	local	processor	
	
		MPI_Type_create_subarray	(NDIM,	gsize,	lsize,	start,	
																												MPI_ORDER_FORTRAN,	MPI_DOUBLE,	&type_domain);	
		MPI_Type_commit	(&type_domain);	
}	

file	

Global	domain	

Writing Files: putting all together

§  Now we can put all together and open file file for writing:

void	WriteSolution(...,	MPI_Decomp	*md)	
{	
...	
		//	3.	Open	file	for	writing	
	
		MPI_File_delete(fname,	MPI_INFO_NULL);	
	
		MPI_File_open(MPI_COMM_CART,	fname,	amode,	MPI_INFO_NULL,	&fh);	
		MPI_File_set_view(fh,	0,	MPI_DOUBLE,	type_domain,	"native",	MPI_INFO_NULL);	
		MPI_File_write_all(fh,	phi[0],	1,	type_local,	MPI_STATUS_IGNORE);	
		MPI_File_close(&fh);	
...	
}	

THE END

