Ch. 08
 Ordinary Differential Equations (ODE)

[Boundary Value Problems]

Andrea Mignone
Physics Department, University of Torino
AA 2022-2023

Two-Point Boundary Value Problems (BVP)

- When ODE are required to satisfy boundary conditions at more than one value of the independent variable, the resulting problem is called a two point boundary value problem.
- The most common case is when boundary conditions are supposed to be satisfied at two points - usually the starting and ending values of the integration.
- Unlike IVP, in BVP the boundary conditions at the starting point do not determine a unique solution to start with, and only certain (unknown) values will satisfy the boundary conditions at the other specified point.
- An iterative procedure is required and, for this reason, two point BVP require considerably more effort to solve than do IVP.
- You have to integrate your differential equations over the interval of interest, or perform an analogous "relaxation" procedure, at least several, and sometimes very many, times.
- Only in the special case of linear differential equations you can say in advance just how many such iterations will be required.

Boundary Value Problems: Definition

- The standard two point BVP has the following form: we seek for the solution to a set of N coupled first-order ODE, satisfying n_{1} boundary conditions at the starting point a, and a remaining set of $n_{2}=N-n_{1}$ boundary conditions at the final point b. (Recall that all differential equations of order higher than first can be written as coupled sets of first-order equations).
- The ODE are $\frac{d Y_{i}}{d x}=R_{i}(x, \vec{Y}), \quad i=1, . ., N$
which are required to satisfy

$$
\begin{array}{ll}
Y_{j}=Y_{j}(a)=\alpha_{j}, & j=1 \ldots n_{1} \\
Y_{k}=Y_{k}(b)=\beta_{k}, & k=n_{1}+1 \ldots N
\end{array}
$$

- Here's an example with $\mathrm{N}=3$:

Single Shooting Method for BVP

- Consider the simple BVP $\frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)$, with $y(a)=\alpha, y(b)=\beta$
- A general strategy for solving a BVP is an iterative one: we guess a trial value for the derivative s=dy/dx at the starting point a and generate a solution by integrating the ODE as an IVP.
- If the resulting solution does not satisfy the b.c., we change the trial value s and iterate again, repeating the process until the b.c. are satisfied within a given tolerance.

- This is the shooting method.

Single Shooting Method for BVP

- Since for each trial value s of the derivative we generate, at the end of integration, a different function $y(b, s)$.
- Requiring that $\mathrm{y}(\mathrm{b}, \mathrm{s})=\beta$ turns the BVP into a root-finder problem:

$$
F(s)=y(b, s)-\beta
$$

- If the BVP has a solution, then $\mathrm{F}(\mathrm{s})$ has a root.
- Note that Newton-Raphson is inappropriate since we cannot differentiate explicitly the resulting function with respect to k.
- Bisection, False Position or secant may be more appropriate.

BVP: Eigenvalue Problem

- A different variant of the BVP is given by an equation linear equation of the form

$$
\frac{d^{2} y}{d x^{2}}=f(y, \lambda), \quad \text { with } \quad y(a)=\alpha, y(b)=\beta
$$

where λ is a free (unknown) parameter. The problem is overdetermined and there is no general solution for arbitrary values of λ.

- However, for certain special values of λ, the ODE does have a solution: this is the eigenvalue problem for differential equation.
- A typical example is that of a standing wave (a whirling string or rope) fixed at both ends. Here the the function is governed by the BVP $\frac{d^{2} \varphi}{d x^{2}}=-k^{2} \varphi \quad$ with $\quad \varphi(0)=0, \varphi(1)=0$ where φ has conditions specified at the boundaries of
 the independent variable.
- Solutions are possible only for discrete values of k (the eigenvalue):

$$
y(x)=\sin (k x), \quad k=n \pi
$$

BVP: Eigenvalue Problem

- Eigenvalue problems can also be solved by means of the shooting method.
- Many physical problems can cast as linear homogenous second-order ODE depending on an unknown parameter.
- The stationary Schrodinger equation is an example:

$$
\frac{d^{2} \psi}{d x^{2}}+k^{2}(x) \psi=0 \quad \text { where } \quad\left\{\begin{array}{l}
k^{2}(x)=\frac{2 m}{\hbar^{2}}[E-V(x)] \\
\psi(a)=0, \psi(b)=0
\end{array}\right.
$$

Solutions are possible only for certain value of E (the eigenvalue): the eigenfunction (Ψ) will oscillate in the classically allowed region where $\mathrm{E}>\mathrm{V}(\mathrm{x})$ and behave exponentially in the classical forbidden region ($\mathrm{E}<\mathrm{V}(\mathrm{x})$).

- Other well-known eigenvalue problems are the stationary vibration of a circular membrane, dispersion relations in fluid dynamics, wave propagation, etc...

BVP: Eigenvalue Problem

- Note that for linear homogenous equations (as it is the case for several problems)

$$
\frac{d^{2} y}{d x^{2}}+k^{2}(x) y=0 \quad \text { with } \quad y(a)=\alpha, y(b)=\beta
$$

the solution can always be rescaled by an arbitrary multiplicative constant and the normalization of the solution is not specified.

- In these cases, the value of the derivative ($s=d y /\left.d x\right|_{a}$) is arbitrary and cannot be used to generate different solutions.
- Instead, we take the eigenvalue k as our free parameter and obtain trial solutions for different values of k until the b.c. are satisfied.

$$
F(k)=y(b, k)-\beta
$$

- Where $\mathrm{y}(\mathrm{b}, \mathrm{k})$ means "the solution generate by integrating the ODE from a to b using a trial value k "

Practice Session \#1

- poisson. cpp: we first consider a simple BVP problem given by the 1D spherically symmetric Poisson equation: we wish to find the electrostatic potential Φ generated by a localized charge distribution $\rho(\mathrm{r})$:

$$
\nabla^{2} \Phi=-4 \pi \rho \quad \rightarrow \quad \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \Phi}{d r}\right)=-4 \pi \rho \quad\left(\text { with } \quad \rho(r)=\frac{1}{8 \pi} e^{-r}\right)
$$

- In order to avoid dealing with the singularity at the origin we use the standard substitution

$$
\Phi=\frac{\varphi}{r} \quad \rightarrow \quad \frac{d^{2} \varphi}{d r^{2}}=-4 \pi r \rho
$$

- Boundary conditions are imposed by requiring regularity of the solution:
- At small r, the potential should vanish $\rightarrow \varphi=0$ at $r=0$
- At large r, the potential should behave

$$
\begin{aligned}
& \text { as } 1 / r \rightarrow \varphi=1 \text { at } r=b \\
& \text { (use } \mathrm{b}=20 \text { or more) }
\end{aligned}
$$

- The value of the derivative $s=d \varphi / d r$
 at $r=0$ should be used as our free parameter.

Practice Session \#1 (cont)

We proceed step by step:

1. Generate solutions for different values of $s=0,0.2,0.4$, 0.6, o.8, 1.0 (the first derivative) by integrating the regularized ODE from $r=0$ to $r=b=20$ using RK4 (or similar) using 1000 points. Plot the solutions $\varphi(r, s)$ that you have obtained.

2. Implement the residual function, Residual $(s)=\varphi(b, s)-1$ [suggested prototype: double Residual (double)] and produce a plot of the residual as a function of s in [0,5 . Can you approximately identify the root ?
3. Now use bisection or false position to refine the root s
 for which the residual vanishes. Make sure to supply a range in which the residual changes sign.
4. Compare your results against the analytical solution:

$$
\varphi(r)=1-\frac{1}{2}(r+2) e^{-r}
$$

Practice Session \#2

- wave.cpp: solve the eigenvalue problem

$$
\frac{d^{2} \varphi}{d x^{2}}=-k^{2} \varphi \quad \text { with } \quad \varphi(0)=0, \varphi(1)=0
$$

1. start with a single forward integration from $x=0$ to $x=1$ using 100 points, $\mathrm{k}=1$ and $\mathrm{s}=\mathrm{dy} /\left.\mathrm{dx}\right|_{0}=1$ (this is completely arbitrary). The code should contain, at this stage, only one single loop. The solution will largely overshoot the final value.
2. modify the code to loop over $\mathrm{k}=1,2,3,4,5$ and generate 5 corresponding blocks to be plotted. Use gnuplot to verify that the actual solution lies between $k=3$ and $k=4$
3. Move the integration to a function of the type double Residual (double) that we will later use for Bisection. Now use Bisection to find the first zero (π).
4. Add a preliminary search using Bracket() and then find all of the zeros between 1 and 20.

Integrating to a Matching Point

- In some cases, the two solutions of the $2^{\text {nd }}$ order ODE may be very different. A typical circumstance occurs when the solution, owing to inevitable numerical approximations, contain small admixtures of exponential growing and decaying functions.
- In such cases, it is more convenient to integrate from both ends up to a common point. Two numerical solutions must be generated: a forward integration starting at x_{L} and a backward integration starting x_{R}. Both integration stops at the "matching point" x_{m} which is conveniently chosen by the user.

- At the matching point, we could compute the residual function as the difference between these two solutions: $\Delta=y_{\mathrm{L}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{k}\right)-\mathrm{y}_{\mathrm{R}}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{k}\right)$

Integrating to a Matching Point

- For linear problems, however, the two functions y_{L} and y_{R} may differ up to a multiplicative constant, so the residual is better constructed by matching the logarithmic derivative:

$$
\left.\frac{y_{L}^{\prime}}{y_{L}}\right|_{x_{m}}=\left.\frac{y_{R}^{\prime}}{y_{R}}\right|_{x_{m}} \quad \rightarrow \quad \operatorname{Res}(k)=\frac{y_{L}^{\prime}\left(x_{m}, k\right) y_{R}\left(x_{m}, k\right)-y_{R}^{\prime}\left(x_{m}, k\right) y_{L}\left(x_{m}, k\right)}{D}
$$

where D is a normalization factor (if you have no clue, use $D=1$).

- Thus we have again root-finding problem in the residual.
- Note that results must be independent on the choice of the matching point x_{m}.

Example: Quantum Eigenvalue Problem

- If a particle of energy E moving in one dimension experiences a potential $\mathrm{V}(\mathrm{x})$, its wave function is determined by an ODE (a PDE if greater than 1-D) known as the timeindependent Schrödinger equation:

$$
\frac{-\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)
$$

- Setting $\kappa^{2}=-\frac{2 m}{\hbar^{2}} E=\frac{2 m}{\hbar^{2}}|E|$. we obtain $\frac{d^{2} \psi(x)}{d x^{2}}-\frac{2 m}{\hbar^{2}} V(x) \psi(x)=\kappa^{2} \psi(x)$.
- For a bounded particles, the wave function must decay exponentially as $|x| \rightarrow \infty$.
- Although it is straightforward to solve the previous ODE with the techniques we have learned so far, we must also require that the solution $\psi(x)$ simultaneously satisfies the boundary conditions at infinity.
- This extra condition turns the ODE problem into an eigenvalue problem that has solutions (eigenvalues) for only certain values of the energy E.
- The ground-state energy corresponds to the most negative eigenvalue. The corresponding $\mathrm{psi}(\mathrm{x})$ is our eigenfunction.

Practice Session \#3

- qho.cpp: find the eigenvalues of the quantum harmonic oscillator,

$$
-\frac{\hbar}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi, \quad \text { with } \quad V(x)=\frac{1}{2} k x^{2}
$$

\rightarrow Rewrite the equation in a more suitable dimensionless form:

$$
-\frac{1}{2} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi, \quad \text { with } \quad V(x)=\frac{1}{2} x^{2}
$$

what is the natural scale for energy and length ?
\rightarrow In dimensionless form the exact analytical eigenfunctions and the corresponding eigenvalues are
$\psi_{n}(x)=\langle x \mid n\rangle=\frac{1}{\sqrt{2^{n} n!}} \pi^{-1 / 4} \exp \left(-x^{2} / 2\right) H_{n}(x)$, $E_{n}=n+\frac{1}{2}$,

Practice Session \#3

$$
-\frac{1}{2} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi, \quad \text { with } \quad V(x)=\frac{1}{2} x^{2}
$$

1. Solve the equation in the domain $[-10,10]$ using $N=800$ points , as initial condition the eigenfunction for the ground state $\exp \left(-x^{2} / 2\right)$, its derivative and the exact eigenvalue ($E=1 / 2$). Solve the equation forward (f from $x=-10$ to $x=10$) and backwards (from $x=10$ to $x=-10$). What happens ?
2. Now construct the residual by matching forward and backward numerical solutions at the matching point. Use the logarithmic derivative. Produce a plot with $0<\mathrm{E}<5$. How many zero do you see ?
3. Use bisection or false position to refine your search and converge to the eigenvalues.

Practice Session \#3: Useful Tips

- Matching point: if $\mathrm{x}_{\mathrm{m}}=0$ is chosen to be the interval midpoint, then the logarithmic derivative may become ill-behaved due to the fact that the eigenfunctions of odd order have a zero. Therefore, it is advisable to use a point close to 0 .
- Initial condition: to obtain a more accurate expression for the initial condition, one could use an asymptotic expansion of the original ODE. This can be rather complicated and outside this course objective; however we can obtain a simple expression by neglecting E :
$\frac{d^{2} y}{d x^{2}}=x^{2} y \quad \rightarrow \quad y(x)=\sqrt{x}\left[c_{1} I_{\frac{1}{4}}\left(\frac{x^{2}}{2}\right)+c_{2} K_{\frac{1}{4}}\left(\frac{x^{2}}{2}\right)\right]$
where $I_{v}()$ and $K_{v}()$ are the modified Bessel functions. The physical admissible solution is $K_{v}()$ and an asymptotic expansion for large x is

$$
y(x) \sim \sqrt{\pi} e^{-\frac{x^{2}}{2}} \frac{1}{\sqrt{|x|}}
$$

- Residual: a convenient way to normalize the residual is $\operatorname{Res}(E)=\frac{A-B}{\sqrt{A^{2}+B^{2}}}$ where $A=y_{L}{ }^{\prime} y_{R}, B=y_{R}{ }^{\prime} y_{L}$.

