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Two-Point Boundary Value Problems (BVP)
• When ODE are required to satisfy boundary conditions at more than one value of the 

independent variable, the resulting problem is called a two point boundary value 
problem. 

• The most common case is when boundary conditions are supposed to be satisfied at 
two points — usually the starting and ending values of the integration. 

• Unlike IVP, in BVP the boundary conditions at the starting point do not determine a 
unique solution to start with, and only certain (unknown) values will satisfy the 
boundary conditions at the other specified point. 

• An iterative procedure is required and, for this reason, two point BVP require 
considerably more effort to solve than do IVP.

• You have to integrate your differential equations over the interval of interest, or 
perform an analogous “relaxation” procedure, at least several, and sometimes very 
many, times. 

• Only in the special case of linear differential equations you can say in advance just 
how many such iterations will be required. 



Boundary Value Problems: Definition
• The standard two point BVP has the following form: we seek for the solution to a set 

of N coupled first-order ODE, satisfying n1 boundary conditions at the starting point a, 
and a remaining set of n2 = N − n1 boundary conditions at the final point b. (Recall 
that all differential equations of order higher than first can be written as coupled sets 
of first-order equations).

• The ODE are

which are required to satisfy 

• Here’s an example 
with N=3:
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Single Shooting Method for BVP

• Consider the simple BVP 

• A general strategy for  solving a BVP is an  iterative one: we guess a 
trial value for the derivative s=dy/dx at the starting point a and 
generate a solution by integrating the ODE as an IVP.

• If the resulting solution does
not satisfy the b.c., we change 
the trial value s and iterate 
again, repeating the process 
until the b.c. are satisfied 
within a given tolerance.

• This is the shooting method.

a b

y(x)

y(b,s(1))

y(b,s(2))
y(b,s(3))



Single Shooting Method for BVP
• Since for each trial value s of the derivative we generate, at the end of integration, a 

different function y(b, s).
• Requiring that y(b,s) = β turns the BVP into a root-finder problem:

• If the BVP has a solution, then F(s) has a root.

• Note that Newton-Raphson is inappropriate since we cannot differentiate explicitly 
the resulting function with respect to k. 

• Bisection, False Position or secant may be more appropriate.



BVP: Eigenvalue Problem
• A different variant of the BVP is given by an equation linear equation of the form

where λ is a free (unknown) parameter. The problem is overdetermined and there is   
no general solution for arbitrary values of λ.

• However, for certain special values of λ, the ODE does have a solution: this is the eigenvalue 
problem for differential equation.

• A typical example is that of a standing wave 
(a whirling string or rope) fixed at both ends. 
Here  the the function is governed by the BVP

where φ has conditions specified at the boundaries of 
the independent variable.

• Solutions are possible  only for discrete values of k (the eigenvalue):  



BVP: Eigenvalue Problem
• Eigenvalue problems can also be solved by means of the shooting method. 

• Many physical problems can cast as linear homogenous second-order ODE  depending 
on an unknown parameter. 

• The stationary Schrodinger equation is an example:

Solutions are possible only for certain value of E (the eigenvalue): the eigenfunction
(ψ) will oscillate in the classically allowed region where E > V(x) and behave 
exponentially in the classical forbidden region (E < V(x)).

• Other well-known eigenvalue problems are the stationary vibration of a circular 
membrane,  dispersion relations in fluid dynamics, wave propagation, etc…



BVP: Eigenvalue Problem
• Note that for linear homogenous equations (as it is the case for several problems)

the solution can always be rescaled by an arbitrary multiplicative constant and the  
normalization of the solution is not specified.

• In these cases, the value of the derivative (s=dy/dx|a) is arbitrary and cannot be used 
to generate different solutions. 

• Instead, we take the eigenvalue k as our free parameter and obtain trial solutions for 
different values of k until the b.c. are satisfied.

• Where y(b,k) means “the solution generate by integrating the ODE from a to b using 
a trial value k”



Practice Session #1
• poisson.cpp: we first consider a simple BVP problem given by the 1D spherically 

symmetric Poisson equation: we wish to find the electrostatic potential Φ generated 
by a localized charge distribution ρ(r):

• In order to avoid dealing with the singularity at the origin we use the standard 
substitution 

• Boundary conditions are imposed by 
requiring regularity of the solution:
– At small r, the potential should vanish  

à φ = 0 at r=0

– At large r, the potential should behave 
as 1/rà φ = 1 at r=b  
(use b = 20 or more)

• The value of the derivative s = dφ/dr
at r = 0 should be used as our free parameter.



Practice Session #1 (cont) 
We proceed step by step:

1. Generate solutions for different values of s = 0, 0.2, 0.4, 
0.6, 0.8, 1.0 (the first derivative) by integrating the 
regularized ODE from r = 0 to r = b = 20 using RK4 (or 
similar) using 1000 points. Plot the solutions φ(r,s)
that you have obtained.

2. Implement the residual function,                                           
[suggested prototype: double Residual (double)] and produce 
a plot of the residual as a function of s in [0,5]. Can you  
approximately identify the root ?

3. Now use bisection or false position to refine the root s 
for which the residual vanishes.  Make sure to supply a 
range in which the residual changes sign.

4. Compare your results against the analytical solution: 



Practice Session #2
• wave.cpp: solve the eigenvalue problem

1. start with a single forward integration from  x=0 to x=1 
using 100 points, k=1 and s = dy/dx|0=1 (this is 
completely arbitrary). The code should contain, at this 
stage, only one single loop.  The solution will largely 
overshoot the final value. 

2. modify the code to loop over k=1,2,3,4,5 and  generate 5 
corresponding  blocks to be plotted.  Use gnuplot to verify 
that the actual solution lies between  k = 3 and k =4

3. Move the integration to a function of the type  double 
Residual(double) that we will later use for Bisection. 
Now use Bisection to find the first zero (p).

4. Add a preliminary search using Bracket() and then find all 
of the zeros between 1 and 20. 



Integrating to a Matching Point
• In some cases, the two solutions of the 2nd order ODE may be very different. A typical 

circumstance occurs when the solution, owing to inevitable numerical approximations, 
contain small admixtures of exponential growing and decaying functions. 

• In such cases, it is more convenient to integrate from both ends up to a common point. 
Two numerical solutions must be generated: a forward integration starting at xL and a 
backward integration starting xR. Both integration stops at the “matching point” xm which 
is conveniently chosen by the user.

• At the matching point, we could compute the residual function as the difference between 
these two solutions: Δ=yL(xm,k)–yR(xm,k)

xL xR

yL(x,k)

yR(x,k)

xm

Δ=yL(xm,k)–yR(xm,k)



Integrating to a Matching Point
• For linear problems, however, the two functions yL and yR may differ up to a 

multiplicative constant, so the residual is better constructed by matching the 
logarithmic derivative:

where D is a normalization factor (if you have no clue, use D = 1).

• Thus we have again root-finding problem in the residual.

• Note that results must be independent on the choice of the matching point xm.



Example: Quantum Eigenvalue Problem
• If a particle of energy E moving in one dimension experiences a potential V (x), its 

wave function is determined by an ODE (a PDE if greater than 1-D) known as the time-
independent Schrödinger equation: 

• Setting                                                    we obtain

• For a bounded particles, the wave function must decay exponentially as |x| à ∞.   
• Although it is straightforward to solve the previous ODE with the techniques we have 

learned so far, we must also require that the solution ψ(x) simultaneously satisfies the 
boundary conditions at infinity. 

• This extra condition turns the ODE problem into an eigenvalue problem that has 
solutions (eigenvalues) for only certain values of the energy E. 

• The ground-state energy corresponds to the most negative eigenvalue. The 
corresponding psi(x) is our eigenfunction.



Practice Session #3
• qho.cpp: find the eigenvalues of the quantum harmonic oscillator,

à Rewrite the equation in a more suitable dimensionless form:  

what is the natural scale for energy and length ?  

à In dimensionless form the exact analytical
eigenfunctions and the corresponding
eigenvalues are



Practice Session #3

1. Solve the equation in the domain [-10,10] using N = 800 points , as initial condition the 
eigenfunction for the ground state  exp(-x2/2),its derivative and the exact 
eigenvalue (E = ½). Solve the equation forward (from x=-10 to x=10) and backwards 
(from x=10  to x=-10). What happens ? 

2. Now construct the residual by matching forward and backward numerical solutions at 
the matching point. Use the logarithmic derivative. Produce a plot with  0 < E < 5. 
How many zero do you see ? 

3. Use bisection or false position to refine your search and converge to the eigenvalues.



Practice Session #3: Useful Tips
• Matching point: if xm=0 is chosen to be the interval midpoint, then the logarithmic 

derivative may become ill-behaved due to the fact that the eigenfunctions of odd 
order have a zero. Therefore, it is advisable to use a point close to 0. 

• Initial condition: to obtain a more accurate expression for the initial condition, one 
could use an asymptotic expansion of the original ODE. This can be rather 
complicated and outside this course objective; however we can obtain a simple 
expression by neglecting E:

where Iν() and Kν() are the modified Bessel functions. The physical admissible solution 
is Kν () and an asymptotic expansion for large x is

• Residual: a convenient way to normalize the residual is 
where  A=yL’yR, B=yR’yL. 


