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Lecture	I	-	Outline	
1.  Scale	separation	in	plasma	astrophysics:																																										

from	kinetic	to	fluid	description;	

2.  Basic	discretization	methods	for	hyperbolic	PDEs;	

3.  Linear	scalar	hyperbolic	PDEs;	

4.  Systems	of	linear	hyperbolic	PDEs	

5.  Nonlinear	scalar	PDE:	Burger’s	equation;	

6.  Nonlinear	systems	-	the	Euler	equations.	



1.	SCALE	SEPARATION:	
APPROACHING	PLASMA	ASTROPHYSICS	AT	DIFFERENT	SCALES	



Astrophysical	Challenges:	Scale	Separation	
•  Astrophysical	environments	involve	physical	processes	operating	at	

extremely	different	spatial	and	temporal	scales,	and	complex	interactions	
between	plasmas	and	radiation.	

•  Current	computational	modeling	is	still	largely	fragmented	under	the	
limited	range	of	applicability	of	different	models.		

•  A	large	gap	stretches	from	theory	to	a	clear	interpretation	of	the	
observations	of	high-energy	astrophysical	sources.	

Fluid	Kinetic	



The	Scale	Connection	
•  Kinetic	Description:	PIC	codes	are	applicable	

to	study	small-scale	kinetic	effects:		
						L		≈	104	Km,	t	≈	101-102	sec.		
						For	typical	astrophysical	applications,	these			
						scales	are	several	orders	of	magnitude				
						smaller	than	the	system	size.	

•  Hybrid	Kinetic	Models		(kinetic	ions	/	
electron	fluid):		must	resolve	the	ion	inertial	length:	

							L		≤	1	AU,	t	≈	1	hr.		

	
•  Fluid	models:	best	approach	to	deal	with	large	

scale	à	with	Magnetohydrodynamics	(MHD)	only	
magnetic	/	light	waves	must	be	resolved	à	

								L	≈	Kpc,		t	≈	105	yrs.		
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Classical	Description	
•  Classical	description:	

Individual	particle	motion	

Maxwells’	Equations	

à Not	feasible	!	
	(too	many	degress	of	freedom)	

Charge	and	currents	

Micro	

Macro	



Kinetic	Description	
•  Kinetic	Description:	

	
•  Particle	In	Cell:	(PIC)	methods	based	on	a	finite	element	approach,	

but	with	moving	and	overlapping	elements.	Distribution	function	given	
by	the	superposition	of	several	elements		(“superparticles”):		

	
	
•  Each	element	represents	a	large	number		of		physical	particles	that	are	

near	each	other	in	phase	space.		
	

Vlasov	Equation:	f(x,v,t)	is	the	distribution	function	(for	a	given	species)	
giving	the	number	density	per	unit	element	of	phase	space	

Most	consistent	approach,	but	must	resolve	the	plasma		
(electron)	skin	depth:	
	

Micro	

Macro	



The	Fluid	Approach	

•  In	many	astrophysical	environments,	the	distribution	function	
f(x,v,t)	is	not	a	measurable	quantity.	

•  The	numerical	solution	of	Vlasov-like	equations	presents	huge	
difficulties	since	it	involves	six	degrees	of	freedom;	

•  If	we	focus	on	the	behavior	of	the	system	in	ordinary	space	and	
not	in	the	whole	phase	space,	we	may	give	up	the	information	
concerning	the	distribution	of	the	velocities.	

•  This	is	achieved	by	averaging	over	the	velocities	themselves:	



The	Fluid	Approach	
•  The	fluid	approach	treats	the	system	as	a	continuous	medium	and	

considering	the	dynamics	of	a	small	volume	of	the	fluid.		

•  Meaningful	to	model	length	scales	much	greater	than	mean	free	path	or	
individual	particle	trajectories.			

•  “Fluid	element”:	small	enough	that	any	macroscopic	quantity	has	a	
negligible	variation	across	its	dimension	but	large	enough	to	contain	
many	particles	and	so	to	be	insensitive	to	particle	fluctuations.		

•  Fluid	equations	involve	only	moments	of	the	distribution	function	
relating	mean	quantities.	Knowledge	of	f(x,v,t)	is	not	needed*.		

	
•  Still:	taking	moments	of	the	Vlasov	equation	lead	to	the	appearance	of	a	

next	higher	order	moment	à	“loose	end”	à	Closure.	



Two	Fluid	Description	

•  Fluid	description:	obtained	by	averaging	distribution	
function	over	momentum	space.	Valid	for	L	»	λmfp	requiring	
the	solution	of	highly	nonlinear	hyperbolic	/	parabolic	P.D.E.	
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One-Fluid	Model	

•  One	Fluid	description:	based	on	averaging	ions	and	electron	
equations.		

•  Set	of	15	equations	in	21	unknowns		

•  Closure	must	be	found	to	express														in	terms	of	
macroscopic	quantities.		v	

Summary&of&single&fluid&equa:ons&

•  Summarizing,#the#two#fluid#equa7ons#are#15:#

•  The#number#of#unknowns#is#21:##
•  Closure#must#be#found#to#express##############in#terms#of#macroscopic#

quan77es.## Macro	



MHD	at	Last	!	
•  MagnetoHydroDynamics	(MHD)	treats	the	plasma	like	a	conducting	

fluid	and	assigning	macroscopic	parameters	to	describe	its	particle-like	
interactions.		

•  Ideal	MHD	describes	an	electrically	conducting	single	fluid,	assuming:	

–  low	frequency																																															,		

–  large	scales			

–  Ignores	electron	mass	and	finite	Larmor	radius	effects;	

–  Assume	plasma	is	strongly	collisional	à	L.T.E.,	isotropy;	

–  Fields	and	fluid	fluctuate	on	the	same	time	and	length	scales;	

–  Neglect	charge	separation,	electric	force		
					and	displacement	current.	
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Ideal	MHD	at	Last	

•  MHD	suitable	for	describing	plasma	at	large	scales;	

•  Good	first	approximation	to	much	of	the	physics,	even	when	some	of	
the	conditions	are	not	met.	

•  Draw	some	intuitive	conclusions	concerning	plasma	behavior	without	
solving	the	equations	in	detaiL		

•  Fluid	equations	(except	closure)	are	exact	conservation	laws;	
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Classification	of	PDEs	
•  Hyperbolic:		

–  model	the	transport	of	some	physical	quantities;	typically	associated	
with	wave	propagation	at	finite	speed.	

	
•  Parabolic:		

–  model	diffusion	processes	(infinite	propagation	speed):	viscosity,	
thermal	conduction,	resistivity,	radiation	hydrodynamics,	etc….	

•  Euler	or	MHD	equations	including	viscous	drag,	thermal	
conduction	or	resistivity	are	of	mixed	type	(hyperbolic/parabolic).	

•  Stable	numerical	discretization	must	be	consistent	with	the	nature	
of	the	underlying	equations.	



2.	BASIC	DISCRETIZATION	METHODS	
FOR	HYPERBOLIC	PDE	



Numerical	Discretizations	

•  We	consider	our	prototype	first-order	partial	differential	equation	
(PDE):	

		
					also	known	as	a	“Conservation	Law”.	
•  Two	popular	methods	for	performing	discretization:	

–  Finite	Differences	(FD);	
–  Finite	Volumes	(FV);	

•  For	some	problems,	the	resulting	discretizations	look	identical,	but	
they	are	distinct	approaches;	

@U

@t
+

@F (U)

@x
= 0

Un
i ⌘ U(xi, t

n)

Z tn+1

tn


�x

d

dt
hUi+

⇣
Fi+ 1

2
� Fi� 1

2

⌘�

i

dt = 0

hUin+1
i = hUini � �t

�x

⇣
F̃

n+ 1
2

i+ 1
2

� F̃
n+ 1

2

i� 1
2

⌘

1



Finite	Difference	Methods		

•  A	finite-difference	method	stores	the	solution	at	specific	points	in	
space	and	time;	

•  Associated	with	each	grid	point	is	a	function	value,	

														

•  We	replace	the	derivatives	in	our	PDE	with	differences	between	
neighbour	points.	

i+1 i i-1 

i+½ i-½ @U

@t
+

@F (U)

@x
= 0

Un
i ⌘ U(xi, t

n)

Z tn+1

tn


�x

d

dt
hUi+

⇣
Fi+ 1

2
� Fi� 1

2

⌘�

i

dt = 0

hUin+1
i = hUini � �t

�x

⇣
F̃

n+ 1
2

i+ 1
2

� F̃
n+ 1

2

i� 1
2

⌘

1



Finite	Difference	Methods	

•  From	Taylor	expansion	of	the	function	around	(xi,tn)	we	obtain,	e.g.	

–  Forward	derivative	(in	time):	

					or	simply		

–  Central	derivative	(in	space):		

						
						or	simply	
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Finite	Volume	Methods	

•  In	a	finite	volume	discretization,	the	unknowns	are	the	spatial	
averages	of	the	function	itself:	

					
	
					where	xi-½  and	xi+½  denote	the	location	of	the	cell	interfaces.	
	
	
	

•  The	solution	to	the	conservation	law	involves	computing	fluxes	
through	the	boundary	of	the	control	volumes	

i+1 i i-1 

i+½ i-½ 



Finite	Volume	Formulation	

•  The	conservative	form	of	the	equations	provides	the	link	between	
the	differential	form	of	the	equation,	

						
					and	the	integral	form,	obtained	by	integrating	the	equations	over		
					a	time	interval Δt	=	tn+1	–	tn	and	cell	size	Δx	=	xi+1/2	–	xi-1/2:	



Finite	Volume	Formulation	

•  Spatial	integration	yields	

					with																																																					being	a	spatial	average.	

•  Integration	in	time	gives	

			where																																																							is	a	temporal	average.					
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Finite	Volume	Formulation	
•  Rearranging	terms:	
	
						
					where		
	
	
	
	

•  The	conservation	form	is	an	exact	relation,	no	approximation	
introduced;	

•  It	provides	an	integral	representation	of	the	original	differential	
equation.	

•  The	integral	form	does	not	make	use	of	partial	derivatives!	

Integral or Conservation form 
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Importance	of	Conservation	Form	
	
							
•  The	conservation	form	ensure	correct	description	of	discontinuous	

waves	in	terms	of	speed	and	jumps;	

•  It	guarantees	global	conservation	properties	(no	mass	/	energy	/	
momentum	is	created	or	destroyed	unless	a	net	flux	exists);	

•  To	second-order	accuracy,	a	finite	difference	method	and	a	finite	
volume	method	look	essentially	the	same;	

•  Approximation	introduced	in	the	computation	of	the	flux.	
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Flux	computation:	the	Riemann	Problem	
•  Since	the	solution	is	known	only	at	tn,		
				some	kind	of	approximation	is	required		
				in	order	to	evaluate	the	flux	through		
				the	boundary:	
	

•  This	achieved	by	solving	the	so-called	“Riemann	Problem”,	i.e.,	
the	evolution	of	an	inital	discontinuity	separating	two	constant	
states.	The	Riemann	problem	is	defined	by	the	initial	condition:	
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The	Riemann	Problem	
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The	Riemann	Problem	
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3.	THE	LINEAR	ADVECTION	EQUATION:				
CONCEPTS	AND	DISCRETIZATIONS	



The	Advection	Equation:	Theory	

•  First	order	partial	differential	equation	(PDE)	in	(x,t):	

	

•  Hyperbolic	PDE:	information	propagates	across	domain	at	finite	speed	
à	method	of	characteristics	

•  Characteristic	curves	satisfy:	

•  Along	each	characteristics:	
	
		
	
	à	The	solution	is	constant	along	characteristic	curves.	

U(x-at,0)	

U(x,t)	



The	Advection	Equation:	Theory		

•  for	constant	a:	the	characteristics	are	straight	parallel	lines	and	the	
solution	to	the	PDE	is	a	uniform	shift	of	the	initial	profile:	

•  The	solution	shifts	to	the	right	(for	a	>	0)	or	to	the	left	(a	<	0):	



Discretization:	the	FTCS	Scheme	
•  Consider	our	model	PDE	

	
•  Forward	derivative	in	time:	

•  Centered	derivative	in	space:	

•  Putting	all	together	and	solving	with	respect	to	Un+1		gives		

				where		C	=	a	Δt/Δx	is	the	Courant-Friedrichs-Lewy	(CFL)	number.	

•  We	call	this	method	FTCS	for	Forward	in	Time,	Centered	in	Space.	

•  It	is	an	explicit	method.	
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The	FTCS	Scheme	

•  At	t=0,	the	initial	condition	is	a	square	pulse	with	periodic	
boundary	conditions:	

Something	isn’t	right…	why	?	

Advection equation:
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FTCS:	von	Neumann	Stability	Analysis	

•  Let’s	perform	an	analysis	of	FTCS	by	expressing	the	solution	as	a	
Fourier	series.		

•  Since	the	equation	is	linear,	we	only	examine	the	behavior	of	a	
single	mode.	Consider	a	trial	solution	of	the	form:	

•  Plugging	in	the	difference	formula:	

•  Indipendently	of	the	CFL	number,	all	Fourier	modes	increase	in	
magnitude	as	time	advances.	

•  This	method	is	unconditionally	unstable!	



Forward	in	Time,	Backward	in	Space	

•  Let’s	try	a	difference	approach.	Consider	the	backward	formula	for	
the	spatial	derivative:	

•  The	resulting	scheme	is	called	FTBS:	

•  Apply	von	Neumann	stability	analysis	on	the	resulting	discretized	
equation:	

•  Stability	demands																																		

•  for	a	<	0	the	method	is	unstable,	but	
•  for	a	>	0	the	method	is	stable		when			0	≤	C	=	a	Δt/Δx	≤	1.	
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Forward	in	Time,	Forward	in	Space	

•  Repeating	the	same	argument	for	the	forward	derivative	

•  The	resulting	scheme	is	called	FTFS:	

•  Apply	stability	analysis	yields	

•  If	a	>	0	the	method	will	always	be	unstable	

•  However,	if	a	<	0	and		-1	≤	C	=	a	Δt/Δx	≤	0		then	this	method	is	
stable;	
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Stable	Discretizations:	FTBS,	FTFS	

Forward	in	Time,		
Backward	in	Space	

Forward	in	Time,		
Forward	in	Space	



Stability:	the	CFL	Condition	

•  Since	the	advection	speed	a	is	a	parameter	of	the	equation,	Δx	is	
fixed	from	the	grid,	the	previous	inequalities	on	C=aΔt/Δx	are	
stability	constraints	on	the	time	step	for	explicit	methods	

•  Δt	cannot	be	arbitrarily	large	but,	rather,	less	than	the	time	taken	
to	travel	one	grid	cell	(à	CFL	condition).	

•  In	the	case	of	nonlinear	equations,	the	speed	can	vary	in	the	
domain	and	the	maximum	of	a	should	be	considered	instead.	



The	1st	Order	Godunov	Method	

•  Summarizing:	the	stable	discretization	makes	use	of	the	grid	point	
where	information	is	coming	from:	

•  è	‘Upwind’:	

•  This	is	also	called	the	first-order	Godunov	method;	

a>0	 a<0	



Conservative	Form	

•  Define	the	“flux”	function	
				so	that	Godunov	method	can	be	cast	in	conservative	form	

			

•  The	conservative	form	ensures	a	correct	description	of	
discontinuities	in	nonlinear	systems,	ensures	global	conservation	
properties	and	is	the	main	building	block	in	the	development	of	
high-order	finite	volume	schemes.	

a	>	0	 a	<	0	



The	Riemann	Problem	

UL	

UR	

Left	State	

Right	State	

x	

Cell	Interface	

i i+1 i+½ 

Initial	Discontinuity	

t	=	0,	a	>	0	 t	



The	Riemann	Problem	

UL	

UR	

Left	State	

Right	State	

x	

Cell	Interface	

i i+1 i+½ 

Discontinuity	Breakup	

t	>	0,	a	>	0	

Flux	=	Solution	on	the	axis	

t	



Code	Example	
•  File	name:	advection.c1 

•  Purpose:	solve	the	linear	advection		
																					equation	using	the	1st-order		
																					Godunov	method.	
•  Usage:			

 

•  Output:	two-column	ascii	data	files.	

•  Visualization:	gnuplot	(à	advection.gp).	

>	gcc	advection.c	–lm	–o	advection	
>	./advection	

1http://personalpages.to.infn.it/~mignone/Astrosim2019/	



4.	LINEAR	SYSTEMS	OF	HYPERBOLIC	
CONSERVATION	LAWS	



System	of	Equations:	Theory	

•  We	turn	our	attention	to	the	system	of	equations	(PDE)	

					where																																											is	the	vector	of	unknowns.	A	is	a	m × 
m	constant	matrix.	

•  For	example,	for	m=3,	one	has	



System	of	Equations:	Theory	

•  The	system	is	hyperbolic	if	A	has	real	eigenvalues,		λ1	≤	…	≤	λm	and	
a	complete	set	of	linearly	independent	right	and	left	eigenvectors			
rk		and	lk		(rj ⋅lk =δjk)	such	that	

•  For	convenience	we	define	the	matrices	Λ		=	diag(λk),	and	

	

•  So	that		A⋅R	=	R⋅Λ,	L⋅A	=	Λ⋅L	,	L⋅R	=	R⋅L	=	I,	L⋅A⋅R	=	Λ.		



System	of	Equations:	Theory	

•  The	linear	system	can	be	reduced	to	a	set	of	decoupled	linear	
advection	equations.	

•  Multiply	the	original	system	of	PDE’s	by	L	on	the	left:	

•  Define	the	characteristic	variables			w=L⋅	q		so	that		

•  Since		Λ		is	diagonal,	these	equations	are	not	coupled	anymore.	



System	of	Equations:	Theory	

•  In	this	form,	the	system	decouples	into	m	independent	advection	
equations	for	the	characteristic	variables:	

			
					where																													(k=1,2,…,m)		is	a	characteristic	variable.	

•  When	m=3	one	has,	for	instance:		

	



System	of	Equations:	Theory	

•  The	m	advection	equations	can	be	solved	independently	by	applying	the	
standard	solution	techniques	developed	for	the	scalar	equation.	

•  In	particular,	one	can	write	the	exact	analytical	solution	for	the	k-th	
characteristic	field	as	

			
					i.e.,	the	initial	profile	of	wk	shifts	with	uniform	velocity	λk	,	and	
	
					
					is	the	initial	profile.	
•  The	characteristics	are	thus	constant	along	the	curves	dx/dt	=	λk		



System	of	Equations:	Exact	Solution	

•  Once	the	solution	in	characteristic	space	is	known,	we	can	solve	the	
original	system	via	the	inverse	transformation	

•  The	characteristic	variables	are	thus	the	coefficients	of	the	right	
eigenvector	expansion	of	q.	

•  The	solution	to	the	linear	system	reduces	to	a	linear	combination	of	m	
linear	waves	traveling	with	velocities		λk	.	

•  Expressing	everything	in	terms	of	the	original	variables	q,		



Piecewise	Discontinuous	Data	

•  If	q	is	initially	discontinuous,	one	or	more	characteristic	variables	
will	also	have	a	discontinuity.	Indeed,	at	t	=	0,	

•  In	other	words,	the	initial	jump	qR	-	qL	is	decomposed	in	several	
waves	each	propagating	at	the	constant	speed	λk		and	
corresponding	to	the	eigenvectors	of	the	Jacobian	A:	

					where																																												are	the	wave	strengths		



Riemann	Problem	for	Discontinuous	Data	

•  For	the	linear	case,	the	exact	solution	for	each	wave	at	the	cell	
interface	is:	

•  The	complete	solution	is	found	by	adding	all	wave	contributions:	

•  and	the	flux	is	finally	computed	as		



The	Riemann	Problem	

qL qR 

q*L 
q*R 

x=λ1t x=λ2t 
x=λ3t 

x 

t 

xi+½-λ2t 

(xi+½,t) 

xi+½-λ3t xi+½-λ1t 

Point (xi+1/2,t) traces back to the right of the λ1 characteristic emanating from  
the initial jump, but to the left of the other 2, so the solution is: 

λ1 < 0 
λ2 > 0 
λ3 > 0 
 



Numerical	Implementation	

•  We	suppose	the	solution	at	time	level	n	is	known	as	qn	and	we	
wish	to	compute	the	solution	qn+1	at	the	next	time	level	n+1.	

•  Our	numerical	scheme	can	be	derived	by	working	in	the	
characteristic	space	and	then	transforming	back:	

					where	
	
					is	the	Godunov	flux	for	a	linear	system	of	advection	equations.	



Example:	The	Acoustic	Wave	Equations	

•  The	acoustic	wave	equations	can	be	derived	from	the	Euler	equations	assuming	
small	perturbations	around	a	background	constant	state.		

•  Linearizing	around	a	reference	state																																																				:		

	
						where																																				denotes	perturbed	quantities	and			
•  The	spectral	decomposition	of	this	system	is																														



Code	
•  File	name:	acoustic.c1 

•  Purpose:	solve	the	3x3	acoustic	wave	
																							equations	with	the	1st-order		
																							Godunov	method.	
•  Usage:			

 

•  Output:	four-column	ascii	data	files.	

•  Visualization:	gnuplot	(à	acoustic.gp).	

>	gcc	acoustic.c	–lm	–o	acoustic	
>	./acoustic	

1http://personalpages.to.infn.it/~mignone/Astrosim2019/	



5.	NONLINEAR	SCALAR	HYPERBOLIC	PDE	



Nonlinear	Advection	Equation	

•  We	turn	our	attention	to	the	scalar	conservation	law	

	

•  Where	f(u)	is,	in	general,	a	nonlinear	function	of	u.		

•  To	gain	some	insights	on	the	role	played	by	nonlinear	effects,	we	start	by	
considering	the	inviscid	Burger’s	equation:	

•  This	is	the	simplest	nonlinear	scalar	hyperbolic	PDE.	



Nonlinear	Advection	Equation	

•  We	can	write	Burger’s	equation	also	as	

•  In	this	form,	Burger’s	equation	resembles	the	linear	advection	
equation,	except	that	the	velocity	is	no	longer	constant	but	it	is	
equal	to	the	solution	itself.	

•  The	characteristic	curve	for	this	equation	is	

•  à	u	is	constant	along	the	curve	dx/dt=u(x,t)	à	characteristics		are	
again	straight	lines:	values	of	u	associated	with	some	fluid	element	
do	not	change	as	that	element	moves.	



Nonlinear	Advection	Equation	

•  From	

				one	can	predict	that,	higher	values	of	u	will	propagate	faster	than	
lower	values:	this	leads	to	a	wave	steepening,	since	upstream	
values	will		advances	faster	than	downstream	values.	



Nonlinear	Advection	Equation	

•  Indeed,	at	t=1	the	wave	profile	will	look	like:	

•  the	wave	steepens…	



Nonlinear	Advection	Equation	

•  If	we	wait	more,	we	should	get	something	like	this:	

•  A	multi-value	functions	?!	à	Clearly	NOT	physical	!	

?	?	?	



Burger	Equation:	Shock	Waves	

•  The	correct	physical	solution	is	to	place	a	discontinuity	there:		
					a	shock	wave.		

•  Since	the	solution	is	no	longer	smooth,	the	differential	form	is	not	
valid	anymore	and	we	need	to	consider	the	integral	form.	

Shock position 



Burger	Equation:	Shock	Waves	

•  This	is	how	the	solution	should	look	like:	

•  Such	solutions	to	the	PDE	are	called	weak	solutions.	



Burger	Equation:	Shock	Waves	

•  Let’s	try	to	understand	what	happens	by	looking	at	the	
characteristics.	

•  Consider	two	states	initially	separated	by	a	jump	at	an	interface:	

•  Here,	the	characteristic	velocities	on	the	left	are	greater	than	
those	on	the	right.	

uL 

uR 

u(x) 

x 



Burger	Equation:	Shock	Waves	

•  The	characteristic	will	intersect,	creating	a	shock	wave:	

•  The	shock	speed	is	such	that	λ(uL)	>	S	>	λ(uR).	This	is	called	the	
entropy	condition.		

t 

x 

t 

x 



Shock	Jump	Conditions	
•  Consider	a	generic	conservation	law:			
	
•  Integrate	it	across	a	segment	[a,b]	=	[xs(t)-ε,	xs(t)+ε]	

stretching	across	a	discontinuity	with	position	xs(t):	

•  Using	Leibniz	rule	for	the	first	term,	one	obtains	

•  Taking	the	limit	for	ε	à	0,		

•  These	are	valid	for	a	generic	conservation	laws	and	are	
also	known	as	the	Rankine-Hugoniot	jump	conditions.	

xs(t)	

xs(t)+ε	xs(t)-ε	



Nonlinear	Advection	Equation	

•  In	the	case	of	Burger’s	equation	we	can	immediately	apply	the	
Rankine-Hugoniot	jump	conditions,	yielding	

•  For	Burger’s	equation	f(u)	=	u2/2,	one	finds	the	shock	speed	as	

•  A	shock	wave	is	an	abrupt	discontinuous	transition	between	two	
states	(‘upstream’	and	‘downstream’)	and	it	is	best	described	by	
the	integral	representation.	



Burger	Equation:	Rarefaction	Waves	

•  Let’s	consider	the	opposite	situation:	

•  Here,	the	characteristic	velocities	on	the	left	are	smaller	than	
those	on	the	right.	

uL 

uR u(x) 

x 



Burger	Equation:	Rarefaction	Waves	

•  Now	the	characteristics	will	diverge:	

•  Putting	a	shock	wave	between	the	two	states	would	be	incorrect,	
since	it	would	violate	the	entropy	condition.	Instead,	the	proper	
solution	is	a	rarefaction	wave.		

t 

x 

t 

x 

tail 
head 



Burger	Equation:	Rarefaction	Waves	

•  The	head	of	the	rarefaction	moves	at	the	speed	λ(uR),	whereas	the	tail	
moves	at	the	speed	λ(uL).	

•  The	general	condition	for	a	rarefaction	wave	is	λ(uL)<λ(uR)	

•  Both	rarefactions	and	shocks	are	present	in	the	solutions	to	the	Euler	
equation.	Both	waves	are	nonlinear.	

•  A	rarefaction	wave	is	a	nonlinear	
wave	that	smoothly	connects	the	
left	and	the	right	state.	It	is	an	
expansion	wave.	

•  The	solution	can	only	be	self-
similar	and	takes	on	the	range	of	
values	between	uL	and	uR.	



Burger	Equation:	Riemann	Solver	

•  These	results	can	be	used	to	write	the	general	solution	to	the	
Riemann	problem	for		Burger’s	equation:	

–  If	uL	>	uR		the	solution	is	a	discontinuity	(shock	wave).	In	this	case	

–  If	uL	<	uR			the	solution	is	a	rarefaction	wave.	In	this	case	



Nonlinear	Advection	Equation	

•  Solutions	look	like	

•  		for	a	rarefaction	and	a	shock,	respectively.	



Code	Example	
•  File	name:	burger.c1 

•  Purpose:	solve	Burger’s	equation	with	
																							1st-	or	2nd-	order	Godunov			
																					method.	
•  Usage:			

•  Output:	two-column	ascii	data	files		
					“data.nnnn.out”	
	
•  Visualization:	gnuplot	(à	burger.gp).	
	

>	gcc	burger.c	–lm	–o	burger	
>	./burger	

1http://personalpages.to.infn.it/~mignone/Astrosim2019/	



6.	NONLINEAR	SYSTEMS	OF	
CONSERVATION	LAW	



Nonlinear	Systems	

•  Much	of	what	is	known	about	the	numerical	solution	of	hyperbolic	
systems	of	nonlinear	equations	comes	from	the	results	obtained	in	
the	linear	case	or	simple	nonlinear	scalar	equations.	

•  The	key	idea	is	to	exploit	the	conservative	form	and	assume	the	
system	can	be	locally	“frozen”	at	each	grid	interface.	

•  However,	this	still	requires	the	solution	of	the	Riemann	problem,	
which	becomes	increasingly	difficult	for	complicated	set	of	
hyperbolic	P.D.E.			



Euler	Equations	

•  System	of	conservation	laws	describing	conservation	of	mass,	
momentum	and	energy:	

•  Total	energy	density	E	is	the	sum	of		
					thermal	+	Kinetic	terms:	
	
•  Closure	requires	an	Equation	of	State	(EoS).		
				For	an	ideal	gas	one	has	



Euler	Equations:	Characteristic	Structure	

•  The	equations	of	gasdynamics	can	also	be	written	in	“quasi-linear”	
or	primitive	form.	In	1D:	

	
					where	V	=	[ρ,vx,p]	is	a	vector	of	primitive	variable,	cs	=	(γp/ρ)1/2		is	

the	adiabatic	speed	of	sound.	

•  It	is	called	“quasi-linear”	since,	differently	from	the	linear	case	
where	we	had	A=const	,	here	A	=	A(V).	



Euler	Equations:	Characteristic	Structure	
•  The	quasi-linear	form	can	be	used	to	find	the	eigenvector	decomposition	of	the	

matrix	A:	

•  Associated	to	the	eigenvalues:	

	
•  These	are	the	characteristic	speeds	of	the	system,	i.e.,	the	speeds	at	which	

information	propagates.		

•  Even	if	they’re	not	rigorously	constant,	they	tell	us	a	lot	about	the	structure	of	
the	solution.	



Euler	Equations:	Riemann	Problem	
•  By	looking	at	the	expressions	for	the	right	eigenvectors,	

						

						we	see	that	across	waves	1	and	3,	all	variables	jump.	These	are		
						nonlinear		waves,	either	shocks	or	rarefactions		waves.	

•  Across	wave	2,	only	density	jumps.	Velocity	and	pressure	are	constant.	This	
defines	the	contact	discontinuity.	

•  The	characteristic	curve	associated	with	this	linear	wave	is	dx/dt	=	u,	and	it	is	a	
straight	line.	Since	vx	is	constant	across	this	wave,	the	flow	is	neither	converging	
or	diverging.	



Euler	Equations:	Riemann	Problem	
•  The	solution	to	the	Riemann	problem		looks	like	

•  The	outer	waves	can	be	either	shocks	or	rarefactions.	
•  The	middle	wave	is	always	a	contact	discontinuity.	
•  In	total	one	has	4	unknowns:																									,	since	only	density	jumps	

across	the	contact	discontinuity.	

x 

t (contact) 
(shock or rarefaction) 

(shock or rarefaction) 



Possible	Wave	Patterns	

•  Depending	on	the	initial	discontinuity,	a	total	of	4	patterns	can	
emerge	from	the	solution:	

x 

t C S R 

x 

t C S R 

x 

t 
C R 

x 

t 
C S S R 



Exact	Solution	to	the	Riemann	Problem	
•  For	the	Euler	equations	of	gas-dynamics	an	exact	solution	to	the	Riemann	

problem	exists	(see	the	book	by	Toro,	sec.	4.2)	and	it	boils	down	to	the	following	
nonlinear	algebraic	equation	for	p*:	

				where	
	
	
	
	
	
	
	

•  The	functions	fL	and	fR	governs	relations	across	the	left	and	right	non–linear	
waves	and	serves	to	connect	the	unknown	particle	speed	u∗	to	the	known	
states	L/R	.	

	



Euler	Equations:	Shock	Tube	Problem	
•  The	decay	of	the	discontinuity	defines	what	is	usually	called	the	“shock	tube	

problem”,		



Code	Example	
•  File	name:	euler.f1 

•  Purpose:	solve	1D	Euler’s	equation		
																					using	a	1st-order	Lax-Friedrichs		
																					or	HLLC	method.	
•  Usage:			

 
 
•  Output:			
				4-column	ascii	data	files	“data.out”	

>	gfortran	–fdec-math	euler.f	–o	euler	
>	./euler	

1http://personalpages.to.infn.it/~mignone/Astrosim2019/	



Recommended	Books	
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