Finite Volume Numerical Methods for Hydrodynamics.

I- Discretization techniques for linear hyperbolic PDE

A. Mignone

Physics Department, Turin University

Lecture I-Outline

1. Scale separation in plasma astrophysics: from kinetic to fluid description;
2. Basic discretization methods for hyperbolic PDEs;
3. Linear scalar hyperbolic PDEs;
4. Systems of linear hyperbolic PDEs
5. Nonlinear scalar PDE: Burger's equation;
6. Nonlinear systems - the Euler equations.

1. SCALE SEPARATION:

APPROACHING PLASMA ASTROPHYSICS AT DIFFERENT SCALES

Astrophysical Challenges: Scale Separation

- Astrophysical environments involve physical processes operating at extremely different spatial and temporal scales, and complex interactions between plasmas and radiation.
- Current computational modeling is still largely fragmented under the limited range of applicability of different models.

- A large gap stretches from theory to a clear interpretation of the observations of high-energy astrophysical sources.

The Scale Connection

- Kinetic Description: PIC codes are applicable to study small-scale kinetic effects:
$\mathrm{L} \approx 10^{4} \mathrm{Km}, \mathrm{t} \approx 10^{1}-10^{2} \mathrm{sec}$.
For typical astrophysical applications, these scales are several orders of magnitude smaller than the system size.
- Hybrid Kinetic Models (kinetic ions / electron fluid): must resolve the ion inertial length: $\mathrm{L} \leq 1 \mathrm{AU}, \mathrm{t} \approx 1 \mathrm{hr}$.
- Fluid models: best approach to deal with large scale \rightarrow with Magnetohydrodynamics (MHD) only magnetic / light waves must be resolved \rightarrow $\mathrm{L} \approx \mathrm{Kpc}, \mathrm{t} \approx 10^{5} \mathrm{yrs}$.

Classical Description

- Classical description:

$$
m_{i} \ddot{\boldsymbol{r}}_{i}=e_{i}\left(\boldsymbol{E}+\frac{1}{c} \dot{\boldsymbol{r}}_{i} \times \boldsymbol{B}\right) \text { Individual particle motion }
$$

$$
\begin{aligned}
& q(\boldsymbol{r}, t)=\sum_{i=1}^{N} e_{i} \delta\left[\boldsymbol{r}-\boldsymbol{r}_{i}(t)\right] \\
& \boldsymbol{J}(\boldsymbol{r}, t)=\sum_{i=1}^{N} e_{i} \boldsymbol{v} \delta\left[\boldsymbol{r}-\boldsymbol{r}_{i}(t)\right] \delta\left[\boldsymbol{v}-\boldsymbol{v}_{i}(t)\right]
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{E} & =-\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} \\
\boldsymbol{\nabla} \times \boldsymbol{B} & =\frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t}+\frac{4 \pi}{c} \boldsymbol{J} \\
\boldsymbol{\nabla} \cdot \boldsymbol{E} & =4 \pi q \\
\boldsymbol{\nabla} \cdot \boldsymbol{B} & =0
\end{aligned}
$$

Maxwells' Equations
\rightarrow Not feasible!
(too many degress of freedom)

Kinetic Description

- Kinetic Description:

$$
\frac{\partial f}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} f+\frac{e_{0}}{m}\left(\boldsymbol{E}+\frac{1}{c} \boldsymbol{v} \times \boldsymbol{B}\right) \cdot \nabla_{\boldsymbol{v}} f=0
$$

- Particle In Cell: (PIC) methods based on a finite element approach, but with moving and overlapping elements. Distribution function given by the superposition of several elements ("superparticles"):

$$
f_{s}(x, v, t)=\sum_{p} f_{p}(x, v, t)
$$

- Each element represents a large number of physical particles that are

Most consistent approach, but must resolve the plasma (electron) skin depth: $c / \omega_{\mathrm{pe}} \sim 5.4 \times 10^{5} \mathrm{~cm}\left(\mathrm{n} / \mathrm{cm}^{-3}\right)^{-1 / 2}$

The Fluid Approach

- In many astrophysical environments, the distribution function $f(x, v, t)$ is not a measurable quantity.
- The numerical solution of Vlasov-like equations presents huge difficulties since it involves six degrees of freedom;
- If we focus on the behavior of the system in ordinary space and not in the whole phase space, we may give up the information concerning the distribution of the velocities.
- This is achieved by averaging over the velocities themselves:

$$
\begin{array}{lll}
n(x, t)=\int f(x, v, t) d^{3} v & \rightarrow & \text { number density } \\
u(x, t)=\frac{1}{n} \int v f(x, v, t) d^{3} v & \rightarrow & \text { fluid velocity } \\
E(x, t)=\int \frac{1}{2} m v^{2} f(x, v, t) d^{3} v & \rightarrow & \text { energy density }
\end{array}
$$

The Fluid Approach

- The fluid approach treats the system as a continuous medium and considering the dynamics of a small volume of the fluid.
- Meaningful to model length scales much greater than mean free path or individual particle trajectories.
- "Fluid element": small enough that any macroscopic quantity has a negligible variation across its dimension but large enough to contain many particles and so to be insensitive to particle fluctuations.
- Fluid equations involve only moments of the distribution function relating mean quantities. Knowledge of $f(x, v, t)$ is not needed*.
- Still: taking moments of the Vlasov equation lead to the appearance of a next higher order moment \rightarrow "loose end" \rightarrow Closure.

Two Fluid Description

- Fluid description: obtained by averaging distribution function over momentum space. Valid for $L » \lambda_{\text {mfp }}$ requiring the solution of highly nonlinear hyperbolic / parabolic P.D.E.

One-Fluid Model

- One Fluid description: based on averaging ions and electron equations.
- Set of 15 equations in 21 unknowns $\rho, P, q, \vec{U}, \vec{J}, \vec{E}, \vec{B}, \Pi, \overrightarrow{\tilde{q}}$

$$
\begin{array}{ll}
\partial_{t} \rho+\partial_{k}\left(\rho U_{k}\right)=0 & \text { (Continuity) } \\
\partial_{t} q+\partial_{k} J_{k}=0 & \text { (Charge) } \\
\partial_{t}\left(\rho U_{i}\right)+\partial_{k}\left(\rho U_{i} U_{k}+P_{i k}\right)=q E_{i}+\frac{1}{c}(\vec{J} \times \vec{B})_{i} & \text { (Momentum) } \\
\partial_{t}\left(\frac{1}{2} \rho U^{2}+\frac{3}{2} P\right)+\partial_{k}\left[\left(\frac{1}{2} \rho U^{2}+\frac{5}{2} P\right) U_{k}+\Pi_{i k} U_{i}+\tilde{q}_{k}+S_{k}\right]=0 & \text { (Energy) } \\
E_{i}+\frac{1}{c}(\vec{U} \times \vec{B})_{i}-\frac{J_{i}}{\sigma}=\frac{m_{e}}{e^{2} n_{e}}\left[\partial_{t} J_{i}+\partial_{j}\left(J_{i} U_{k}+J_{k} U_{i}\right)\right]-\frac{1}{n_{e}} \partial_{k} P_{i k}^{(e)}+\frac{1}{e n_{e} c}(\vec{J} \times \vec{B}) & \text { (Ohm) } \\
\frac{1}{c} \partial_{t} \vec{B}=-\nabla \times \vec{E} & \text { (Faraday) } \\
\frac{1}{c} \partial_{t} \vec{E}=\nabla \times \vec{B}-\frac{4 \pi}{c} \vec{J} & \text { (Maxwell - Ampere) } \\
\hline
\end{array}
$$

- Closure must be found to express $\Pi, \overrightarrow{\tilde{q}}$ in terms of macroscopic quantities. v

MHD at Last!

- MagnetoHydroDynamics (MHD) treats the plasma like a conducting fluid and assigning macroscopic parameters to describe its particle-like interactions.
- Ideal MHD describes an electrically conducting single fluid, assuming:
- low frequency $\omega \ll \omega_{p}, \quad \omega \ll \omega_{c}, \quad \omega \ll \nu_{p e}, \quad \omega \ll \nu_{e p}$
- large scales $L \gg \frac{c}{\omega_{p}}, \quad L \gg R_{c}, \quad L \gg \lambda_{m f p}$,
- Ignores electron mass and finite Larmor radius effects;
- Assume plasma is strongly collisional \rightarrow L.T.E., isotropy;
- Fields and fluid fluctuate on the same time and length scales;
- Neglect charge separation, electric force and displacement current.

Ideal MHD at Last

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\mathbb{\nabla} \cdot \cdot((\rho \mathrm{m} i \mathrm{l})) \quad=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\partial \boldsymbol{B}}{\overline{\partial t}} \# \nabla \cdot \Varangle \boldsymbol{W} \boldsymbol{B}-\boldsymbol{B u}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Famadaytag. flux cons.) }
\end{aligned}
$$

- MHD suitable for describing plasma at large scales;

$$
\mathbf{J} \quad=\frac{c}{4 \pi} \nabla \times \mathbf{B} \quad(\text { Ampere })
$$

- Good first approximation to murch of the physics, even when some of the conditions are not met.

$$
\nabla \cdot \mathbf{B} \quad=0 \quad \text { (Divergence }- \text { free })
$$

- Draw some intuitive conclusfons concerfifigeplasmámefrevior without solving the equations in detail
- Fluid equations (except closure) are exact conservation laws;

Classification of PDEs

- Hyperbolic:
- model the transport of some physical quantities; typically associated with wave propagation at finite speed.
- Parabolic:
- model diffusion processes (infinite propagation speed): viscosity, thermal conduction, resistivity, radiation hydrodynamics, etc....
- Euler or MHD equations including viscous drag, thermal conduction or resistivity are of mixed type (hyperbolic/parabolic).
- Stable numerical discretization must be consistent with the nature of the underlying equations.

2. BASIC DISCRETIZATION METHODS FOR HYPERBOLIC PDE

Numerical Discretizations

- We consider our prototype first-order partial differential equation (PDE):

$$
\frac{\partial U}{\partial t}+\frac{\partial F(U)}{\partial x}=0
$$

also known as a "Conservation Law".

- Two popular methods for performing discretization:
- Finite Differences (FD);
- Finite Volumes (FV);
- For some problems, the resulting discretizations look identical, but they are distinct approaches;

Finite Difference Methods

- A finite-difference method stores the solution at specific points in space and time;

- Associated with each grid point is a function value,

$$
U_{i}^{n} \equiv U\left(x_{i}, t^{n}\right)
$$

- We replace the derivatives in our PDE with differences between neighbour points.

Finite Difference Methods

- From Taylor expansion of the function around $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{t}^{\mathrm{n}}\right)$ we obtain, e.g.
- Forward derivative (in time):

$$
\frac{\partial U(x, t)}{\partial t}=\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}-\frac{\Delta t}{2}\left(\frac{\partial^{2} U}{\partial t^{2}}\right)^{n}+\text { H.O.T. }
$$

or simply

$$
\frac{\partial U(x, t)}{\partial t} \approx \frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}+O(\Delta t)
$$

- Central derivative (in space):

$$
\begin{aligned}
& \frac{\partial U(x, t)}{\partial x}=\frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x}-\frac{\Delta x^{2}}{6}\left(\frac{\partial^{3} U}{\partial x^{3}}\right)_{i}+\text { H.O.T. } \\
& \text { or simply } \frac{\partial U(x, t)}{\partial x} \approx \frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x}+O\left(\Delta x^{2}\right)
\end{aligned}
$$

Finite Volume Methods

- In a finite volume discretization, the unknowns are the spatial averages of the function itself:

$$
\langle U\rangle_{i}^{n}=\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U\left(x, t^{n}\right) d x
$$

where $x_{i-1 / 2}$ and $x_{i+1 / 2}$ denote the location of the cell interfaces.

- The solution to the conservation law involves computing fluxes through the boundary of the control volumes

Finite Volume Formulation

- The conservative form of the equations provides the link between the differential form of the equation,

$$
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}=0
$$

and the integral form, obtained by integrating the equations over a time interval $\Delta t=t^{n+1}-t^{n}$ and cell size $\Delta x=x_{i+1 / 2}-x_{i-1 / 2}$:

$$
\int_{t^{n}}^{t^{n+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}\left(\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}\right) d t d x=0
$$

Finite Volume Formulation

- Spatial integration yields

$$
\int_{t^{n}}^{t^{n+1}}\left[\Delta x \frac{d}{d t}\langle U\rangle_{i}+\left(F_{i+\frac{1}{2}}-F_{i-\frac{1}{2}}\right)\right] d t=0
$$

with $\langle U\rangle_{i}=\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U(x, t) d x$ being a spatial average.

- Integration in time gives

$$
\Delta x\left(\langle U\rangle_{i}^{n+1}-\langle U\rangle_{i}^{n}\right)+\Delta t\left(\tilde{F}_{i+\frac{1}{2}}^{n+\frac{1}{2}}-\tilde{F}_{i-\frac{1}{2}}^{n+\frac{1}{2}}\right)=0
$$

where $\tilde{F}_{i \pm \frac{1}{2}}^{n+\frac{1}{2}}=\frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} F\left(U\left(x_{i \pm \frac{1}{2}}\right)\right) d t$ is a temporal average.

Finite Volume Formulation

- Rearranging terms:

$$
\langle U\rangle_{i}^{n+1}=\langle U\rangle_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+\frac{1}{2}}^{n+\frac{1}{2}}-\tilde{F}_{i-\frac{1}{2}}^{n+\frac{1}{2}}\right)
$$

Integral or Conservation form
where

$$
\begin{aligned}
& \langle U\rangle_{i}^{n}=\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U\left(x, t^{n}\right) d x \\
& \tilde{F}_{i \pm \frac{1}{2}}^{n+\frac{1}{2}}=\frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} F\left(U\left(x_{i \pm \frac{1}{2}}, t\right)\right) d t
\end{aligned}
$$

- The conservation form is an exact relation, no approximation introduced;
- It provides an integral representation of the original differential equation.
- The integral form does not make use of partial derivatives!

Importance of Conservation Form

$$
\langle U\rangle_{i}^{n+1}=\langle U\rangle_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+\frac{1}{2}}^{n+\frac{1}{2}}-\tilde{F}_{i-\frac{1}{2}}^{n+\frac{1}{2}}\right)
$$

- The conservation form ensure correct description of discontinuous waves in terms of speed and jumps;
- It guarantees global conservation properties (no mass / energy / momentum is created or destroyed unless a net flux exists);
- To second-order accuracy, a finite difference method and a finite volume method look essentially the same;
- Approximation introduced in the computation of the flux.

Flux computation: the Riemann Problem

- Since the solution is known only at t^{n}, some kind of approximation is required in order to evaluate the flux through the boundary:

$$
\tilde{F}_{i+\frac{1}{2}}^{n+\frac{1}{2}}=\frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} F\left(U\left(x_{i+\frac{1}{2}}, t\right)\right) d t
$$

- This achieved by solving the so-called "Riemann Problem", i.e., the evolution of an inital discontinuity separating two constant states. The Riemann problem is defined by the initial condition:

$$
U(x, 0)=\left\{\begin{array}{lll}
U_{L} & \text { for } & x<x_{i+\frac{1}{2}} \\
U_{R} & \text { for } & x>x_{i+\frac{1}{2}}
\end{array} \quad \Longrightarrow \quad U\left(x_{i+\frac{1}{2}}, t>0\right)=?\right.
$$

The Riemann Problem

The Riemann Problem

3. THE LINEAR ADVECTION EQUATION: CONCEPTS AND DISCRETIZATIONS

The Advection Equation: Theory

- First order partial differential equation (PDE) in (x, t):

$$
\frac{\partial U(x, t)}{\partial t}+a \frac{\partial U(x, t)}{\partial x}=0
$$

- Hyperbolic PDE: information propagates across domain at finite speed \rightarrow method of characteristics
- Characteristic curves satisfy: $\frac{d x}{d t}=a$
- Along each characteristics:

$$
\frac{d U}{d t}=\frac{\partial U}{\partial t}+\frac{d x}{d t} \frac{\partial U}{\partial x}=0
$$

\rightarrow The solution is constant along characteristic curves.

The Advection Equation: Theory

- for constant a : the characteristics are straight parallel lines and the solution to the PDE is a uniform shift of the initial profile:

$$
U(x, t)=U(x-a t, 0)
$$

- The solution shifts to the right (for $a>0$) or to the left ($a<0$):

Discretization: the FTCS Scheme

- Consider our model PDE $\frac{\partial U(x, t)}{\partial t}+a \frac{\partial U(x, t)}{\partial x}=0$
$\left.\begin{array}{l}\text { - Forward derivative in time: } \frac{\partial U}{\partial t} \approx \frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}+O(\Delta t) \\ \text { - Centered derivative in space: } \frac{\partial U}{\partial x} \approx \frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x}+O\left(\Delta x^{2}\right)\end{array}\right\}$
- Putting all together and solving with respect to U^{n+1} gives

$$
U_{i}^{n+1}=U_{i}^{n}-\frac{C}{2}\left(U_{i+1}^{n}-U_{i-1}^{n}\right)
$$

where $C=a \Delta t / \Delta x$ is the Courant-Friedrichs-Lewy (CFL) number.

- We call this method FTCS for Forward in Time, Centered in Space.
- It is an explicit method.

The FTCS Scheme

- At $\mathrm{t}=0$, the initial condition is a square pulse with periodic boundary conditions:

$$
\begin{aligned}
& \frac{\partial U}{\partial t} \approx \frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}+O(\Delta t) \\
& \frac{\partial U}{\partial x} \approx \frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x}+O\left(\Delta x^{2}\right)
\end{aligned}
$$

Something isn't right... why ?

FTCS: von Neumann Stability Analysis

- Let's perform an analysis of FTCS by expressing the solution as a Fourier series.
- Since the equation is linear, we only examine the behavior of a single mode. Consider a trial solution of the form:

$$
U_{i}^{n}=A^{n} e^{I i \theta}, \quad \theta=k \Delta x
$$

- Plugging in the difference formula: $\frac{A^{n+1}}{A^{n}}=1-\frac{C}{2}\left(e^{I \theta}-e^{-I \theta}\right)$

$$
\Longrightarrow \quad\left|\frac{A^{n+1}}{A^{n}}\right|^{2}=1+C^{2} \sin ^{2} \theta \geq 1
$$

- Indipendently of the CFL number, all Fourier modes increase in magnitude as time advances.
- This method is unconditionally unstable!

Forward in Time, Backward in Space

- Let's try a difference approach. Consider the backward formula for the spatial derivative:

$$
\begin{aligned}
& \qquad \frac{\partial U}{\partial x} \approx \frac{U_{i}^{n}-U_{i-1}^{n}}{\Delta x}+O(\Delta x) \Longrightarrow U_{i}^{n+1}=U_{i}^{n}-C\left(U_{i}^{n}-U_{i-1}^{n}\right) \\
& \text { - The resulting scheme is called FTBS: }
\end{aligned}
$$

- Apply von Neumann stability analysis on the resulting discretized equation:

$$
\left|\frac{A^{n+1}}{A^{n}}\right|^{2}=1-2 C(1-C)(1-\cos \theta)
$$

Forward in Time, Forward in Space

- Repeating the same argument for the forward derivative

$$
\frac{\partial U}{\partial x} \approx \frac{U_{i+1}^{n}-U_{i}^{n}}{\Delta x}+O(\Delta x) \Longrightarrow \quad U_{i}^{n+1}=U_{i}^{n}-C\left(U_{i+1}^{n}-U_{i}^{n}\right)
$$

- The resulting scheme is called FTFS:

- Apply stability analysis yields $\left|\frac{A^{n+1}}{A^{n}}\right|^{2}=1+2 C(1-C)(1-\cos \theta)$
- If $a>0$ the method will always be unstable
- However, if $a<0$ and $-1 \leq C=a \Delta t / \Delta x \leq 0$ then this method is stable;

Stable Discretizations: FTBS, FTFS

Stability: the CFL Condition

- Since the advection speed a is a parameter of the equation, Δx is fixed from the grid, the previous inequalities on $C=a \Delta t / \Delta x$ are stability constraints on the time step for explicit methods

- Δt cannot be arbitrarily large but, rather, less than the time taken to travel one grid cell (\rightarrow CFL condition).
- In the case of nonlinear equations, the speed can vary in the domain and the maximum of a should be considered instead.

The $1^{\text {st }}$ Order Godunov Method

- Summarizing: the stable discretization makes use of the grid point where information is coming from:

\rightarrow 'Upwind': $\begin{cases}U_{i}^{n+1}=U_{i}^{n}-\frac{a \Delta t}{\Delta x}\left(U_{i}^{n}-U_{i-1}^{n}\right) & \text { for } \quad a>0 \\ U_{i}^{n+1}=U_{i}^{n}-\frac{a \Delta t}{\Delta x}\left(U_{i+1}^{n}-U_{i}^{n}\right) & \text { for } \quad a<0\end{cases}$
- This is also called the first-order Godunov method;

Conservative Form

- Define the "flux" function $F_{i+\frac{1}{2}}^{n}=\frac{a}{2}\left(U_{i+1}^{n}+U_{i}^{n}\right)-\frac{|a|}{2}\left(U_{i+1}^{n}-U_{i}^{n}\right)$ so that Godunov method can be cast in conservative form

- The conservative form ensures a correct description of discontinuities in nonlinear systems, ensures global conservation properties and is the main building block in the development of high-order finite volume schemes.

The Riemann Problem

$$
\begin{aligned}
& t=0, a>0 \\
& \begin{array}{l}
U_{L} \text { Left State } \\
\text { Initial Discontinuity }
\end{array}
\end{aligned}
$$

The Riemann Problem

$$
t>0, a>0
$$

> Cell Interface

Flux $=$ Solution on the axis

Discontinuity Breakup

Code Example

- File name: advection.c ${ }^{1}$
- Purpose: solve the linear advection equation using the $1^{\text {st }}$-order Godunov method.
- Usage:

```
> gcc advection.c -lm -o advection
> ./advection
```

- Output: two-column ascii data files.
- Visualization: gnuplot (\rightarrow advection.gp).

4. LINEAR SYSTEMS OF HYPERBOLIC CONSERVATION LAWS

System of Equations: Theory

- We turn our attention to the system of equations (PDE)

$$
\frac{\partial \mathbf{q}}{\partial t}+A \cdot \frac{\partial \mathbf{q}}{\partial x}=0
$$

where $\mathbf{q}=\left\{q_{1}, q_{2}, \ldots q_{m}\right\}$ is the vector of unknowns. A is a $m \times$ m constant matrix.

- For example, for $m=3$, one has

$$
\begin{aligned}
& \frac{\partial q_{1}}{\partial t}+A_{11} \frac{\partial q_{1}}{\partial x}+A_{12} \frac{\partial q_{2}}{\partial x}+A_{13} \frac{\partial q_{3}}{\partial x}=0 \\
& \frac{\partial q_{2}}{\partial t}+A_{21} \frac{\partial q_{1}}{\partial x}+A_{22} \frac{\partial q_{2}}{\partial x}+A_{23} \frac{\partial q_{3}}{\partial x}=0 \\
& \frac{\partial q_{3}}{\partial t}+A_{31} \frac{\partial q_{1}}{\partial x}+A_{32} \frac{\partial q_{2}}{\partial x}+A_{33} \frac{\partial q_{3}}{\partial x}=0
\end{aligned}
$$

System of Equations: Theory

- The system is hyperbolic if A has real eigenvalues, $\lambda^{1} \leq \ldots \leq \lambda^{m}$ and a complete set of linearly independent right and left eigenvectors r^{k} and $I^{k}\left(r^{j} \cdot \|^{k}=\delta_{j k}\right)$ such that

$$
\left\{\begin{array}{l}
A \cdot \boldsymbol{r}^{k}=\lambda^{k} \boldsymbol{r}^{k} \\
\boldsymbol{l}^{k} \cdot A=\boldsymbol{l}^{k} \lambda^{k}
\end{array} \quad \text { for } \quad k=1, \ldots, m\right.
$$

- For convenience we define the matrices $\Lambda=\operatorname{diag}\left(\lambda^{k}\right)$, and

$$
R=\left(\mathbf{r}^{\mathbf{1}}\left|\mathbf{r}^{\mathbf{2}}\right| \ldots \mid \mathbf{r}^{\mathbf{m}}\right), \quad L=R^{-1}=\binom{\frac{\mathbf{l}^{1}}{\mathbf{l}^{2}}}{\frac{\vdots}{\mathbf{1}^{m}}}
$$

- So that $A \cdot R=R \cdot \Lambda, L \cdot A=\Lambda \cdot L, L \cdot R=R \cdot L=I, L \cdot A \cdot R=\Lambda$.

System of Equations: Theory

- The linear system can be reduced to a set of decoupled linear advection equations.
- Multiply the original system of PDE's by L on the left:

$$
L \cdot\left(\frac{\partial \boldsymbol{q}}{\partial t}+A \cdot \frac{\partial \boldsymbol{q}}{\partial x}\right)=L \cdot \frac{\partial \boldsymbol{q}}{\partial t}+L \cdot A \cdot R \cdot L \cdot \frac{\partial \boldsymbol{q}}{\partial x}=0
$$

- Define the characteristic variables $w=L \cdot q$ so that

$$
\frac{\partial \boldsymbol{w}}{\partial t}+\Lambda \cdot \frac{\partial \boldsymbol{w}}{\partial x}=0
$$

- Since Λ is diagonal, these equations are not coupled anymore.

System of Equations: Theory

- In this form, the system decouples into m independent advection equations for the characteristic variables:

$$
\frac{\partial \boldsymbol{w}}{\partial t}+\Lambda \cdot \frac{\partial \boldsymbol{w}}{\partial x}=0 \quad \Longrightarrow \quad \frac{\partial w^{k}}{\partial t}+\lambda^{k} \cdot \frac{\partial w^{k}}{\partial x}=0
$$

where $w^{k}=\mathbf{l}^{k} \cdot \mathbf{q}(\mathrm{k}=1,2, \ldots, \mathrm{~m})$ is a characteristic variable.

$$
\frac{\partial w^{1}}{\partial t}+\lambda^{1} \frac{\partial w^{1}}{\partial x}=0
$$

- When $\mathrm{m}=3$ one has, for instance:

$$
\begin{aligned}
& \frac{\partial w^{2}}{\partial t}+\lambda^{2} \frac{\partial w^{2}}{\partial x}=0 \\
& \frac{\partial w^{3}}{\partial t}+\lambda^{3} \frac{\partial w^{3}}{\partial x}=0
\end{aligned}
$$

System of Equations: Theory

- The m advection equations can be solved independently by applying the standard solution techniques developed for the scalar equation.
- In particular, one can write the exact analytical solution for the k-th characteristic field as

$$
w^{k}(x, t)=w^{k}\left(x-\lambda^{k} t, 0\right)
$$

i.e., the initial profile of w^{k} shifts with uniform velocity λ^{k}, and

$$
w^{k}\left(x-\lambda^{k} t, 0\right)=\mathbf{l}^{k} \cdot \mathbf{q}\left(x-\lambda^{k} t, 0\right)
$$

is the initial profile.

- The characteristics are thus constant along the curves $d x / d t=\lambda^{k}$

System of Equations: Exact Solution

- Once the solution in characteristic space is known, we can solve the original system via the inverse transformation

$$
\mathbf{q}(x, t)=R \cdot \mathbf{w}(x, t)=\sum_{k=1}^{k=m} w^{k}(x, t) \mathbf{r}^{k}=\sum_{k=1}^{k=m} w^{k}\left(x-\lambda^{k} t, 0\right) \mathbf{r}^{k}
$$

- The characteristic variables are thus the coefficients of the right eigenvector expansion of q.
- The solution to the linear system reduces to a linear combination of m linear waves traveling with velocities λ^{k}.
- Expressing everything in terms of the original variables q,

$$
\mathbf{q}(x, t)=\sum_{k=1}^{k=m} \mathbf{1}^{k} \cdot \mathbf{q}\left(x-\lambda^{k} t, 0\right) \mathbf{r}^{k}
$$

Piecewise Discontinuous Data

- If q is initially discontinuous, one or more characteristic variables will also have a discontinuity. Indeed, at $t=0$,

$$
w^{k}(x, 0)=\boldsymbol{l}^{k} \cdot \boldsymbol{q}(x, 0)=\left\{\begin{array}{lll}
w_{L}^{k}=\boldsymbol{l}^{k} \cdot \boldsymbol{q}_{L} & \text { if } & x<x_{i+\frac{1}{2}} \\
w_{R}^{k}=\boldsymbol{l}^{k} \cdot \boldsymbol{q}_{R} & \text { if } & x>x_{i+\frac{1}{2}}
\end{array}\right.
$$

- In other words, the initial jump $\boldsymbol{q}_{R}-\boldsymbol{q}_{L}$ is decomposed in several waves each propagating at the constant speed λ^{k} and corresponding to the eigenvectors of the Jacobian A :

$$
\boldsymbol{q}_{R}-\boldsymbol{q}_{L}=\alpha^{1} \boldsymbol{r}^{1}+\alpha^{2} \boldsymbol{r}^{2}+\cdots+\alpha^{m} \boldsymbol{r}^{m}
$$

where $\alpha^{k}=\boldsymbol{l}^{k} \cdot\left(\boldsymbol{q}_{R}-\boldsymbol{q}_{L}\right)$ are the wave strengths

Riemann Problem for Discontinuous Data

- For the linear case, the exact solution for each wave at the cell interface is:

$$
w^{k}\left(x_{i+\frac{1}{2}}, t\right)=w^{k}\left(x_{i+\frac{1}{2}}-\lambda^{k} t, 0\right)=\left\{\begin{array}{lll}
w_{L}^{k} & \text { if } & \lambda^{k}>0 \\
w_{R}^{k} & \text { if } & \lambda^{k}<0
\end{array}\right.
$$

- The complete solution is found by adding all wave contributions:

$$
\boldsymbol{q}\left(x_{i+\frac{1}{2}}, t\right)=\sum_{k: \lambda_{k}>0} w_{L}^{k} \boldsymbol{r}^{k}+\sum_{k: \lambda_{k}<0} w_{R}^{k} \boldsymbol{r}^{k}
$$

- and the flux is finally computed as $\tilde{\boldsymbol{F}}_{i+\frac{1}{2}}=A \cdot \boldsymbol{q}\left(x_{i+\frac{1}{2}}, t\right)$

The Riemann Problem

$$
\begin{aligned}
& \lambda^{1}<0 \\
& \lambda^{2}>0 \\
& \lambda^{3}>0
\end{aligned}
$$

Point ($\mathrm{x}_{\mathrm{i}+1 / 2}, \mathrm{t}$) traces back to the right of the λ^{1} characteristic emanating from the initial jump, but to the left of the other 2 , so the solution is:

$$
\boldsymbol{q}\left(x_{i+\frac{1}{2}}, t\right)=w_{R}^{1} \boldsymbol{r}^{1}+w_{L}^{2} \boldsymbol{r}^{2}+w_{L}^{3} \boldsymbol{r}^{3}
$$

Numerical Implementation

- We suppose the solution at time level n is known as q^{n} and we wish to compute the solution q^{n+1} at the next time level $n+1$.
- Our numerical scheme can be derived by working in the characteristic space and then transforming back:

$$
\boldsymbol{q}_{i}^{n+1}=\sum_{k} w_{i}^{k, n+1} \boldsymbol{r}^{k}=\boldsymbol{q}_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\boldsymbol{F}_{i+\frac{1}{2}}^{n}-\boldsymbol{F}_{i-\frac{1}{2}}^{n}\right)
$$

where $\boldsymbol{F}_{i+\frac{1}{2}}^{n}=A \cdot \frac{\boldsymbol{q}_{i+1}^{n}+\boldsymbol{q}_{i}^{n}}{2}-\frac{1}{2} \sum_{k}\left|\lambda^{k}\right| \boldsymbol{l}^{k} \cdot\left(\boldsymbol{q}_{i+1}^{n}-\boldsymbol{q}_{i}^{n}\right) \boldsymbol{r}^{k}$
is the Godunov flux for a linear system of advection equations.

Example: The Acoustic Wave Equations

- The acoustic wave equations can be derived from the Euler equations assuming small perturbations around a background constant state.
- Linearizing around a reference state $Q(x, t)=Q_{0}+Q_{1}(x, t)$:

$$
\frac{\partial Q_{1}}{\partial t}+A \frac{\partial Q_{1}}{\partial t}=0, \quad A=\left(\begin{array}{ccc}
u_{0} & \rho_{0} & 0 \\
0 & u_{0} & 1 / \rho_{0} \\
0 & a^{2} \rho_{0} & u_{0}
\end{array}\right)
$$

where $Q_{1}=\left(\rho_{1}, u_{1}, p_{1}\right)$ denotes perturbed quantities and $a=\sqrt{\frac{\Gamma p_{0}}{\rho_{0}}}$

- The spectral decomposition of this system is

$$
\begin{gathered}
\lambda=\left(u_{0}-a, u_{0}, u_{0}+a\right) \\
R=\left(\begin{array}{ccc}
\frac{1}{a^{2}} & 1 & \frac{1}{a^{2}} \\
-\frac{1}{\rho_{0} a^{2}} & 0 & \frac{1}{\rho_{0} a} \\
1 & 0 & 1
\end{array}\right), \quad L=\left(\begin{array}{ccc}
0 & -a \rho_{0} / 2 & 1 / 2 \\
1 & 0 & -1 / a^{2} \\
0 & a \rho_{0} / 2 & 1 / 2
\end{array}\right)
\end{gathered}
$$

Code

- File name: acoustic. c^{1}

- Purpose: solve the 3×3 acoustic wave equations with the $1^{\text {st }}$-order Godunov method.
- Usage:

```
> gcc acoustic.c -lm -o acoustic
> ./acoustic
```

- Output: four-column ascii data files.
- Visualization: gnuplot (\rightarrow acoustic.gp).

```
#include <stdio.h>
include <stdarg.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
oid Initial_Condition (double, double *)
void Integrate (double **, double *, double, int, int);
int Output (double *, double **, int, int);
double **Array2D (int, int);
```

```
#define NGHOST 1 /* Number of ghost zones */
```

\#define NGHOST 1 /* Number of ghost zones */
1* Number of variables */
1* Number of variables */
/**Number of variables */
/**Number of variables */
define NX /* Number of zones (excluding ghost zones) */
define NX /* Number of zones (excluding ghost zones) */
\#define GAMMA_EOS (5.0/3.0) /* Specific heat ratio */
****)
nt main()
/*
**
int i, nv, nstep;
int noutput = 100; /* Save noutput (+1) files */
int ibeg = NGHOST
int iend = ibeg + NX - 1;
double xbeg = 0.0; /* start domain *
double xend = 1.0; /* end domain
=1.0, /* Final time
double cfl = 0.9; /* Courant number *
double x[NX + 2*NGHOST], dx;
double **Q1; 2NGHOST], dx;}/* Solution array */ I',
double QO[NVAR
double t, dt, dtdx, a;
double rho0 = Q0[0] = 1.0;
/ : /* Background density
double u0 = Q0[1] = 0.1; % /* Background velocity
double p0 = Q0[2] = 1.0/GAMMA_EOS; /* Background pressure */
Q1 = Array2D(NX + 2*NGHOST, NVAR);

* -- 1. Make grid -- */
dx = (xend - xbeg)/(double)NX;
for (i = 0; i <= iend + NGHOST; i++){
x[i] = xbeg + (0.5 + i - ibeg)*dx;
Initial_Condition (x[i], Q1[i]);
}
** -- 2. Start computation -- */
t = 0.0;
nstep = 0;
a $=$ fabs $(\mathbf{u} 0)+\operatorname{sart}\left(G A M M A_{-} E O S * p 0 / r h o 0\right) ; \quad / *$ Maximum speed */

```

\section*{5. NONLINEAR SCALAR HYPERBOLIC PDE}

\section*{Nonlinear Advection Equation}
- We turn our attention to the scalar conservation law
\[
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0
\]
- Where \(f(u)\) is, in general, a nonlinear function of \(u\).
- To gain some insights on the role played by nonlinear effects, we start by considering the inviscid Burger's equation:
\[
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{2}\right)=0
\]
- This is the simplest nonlinear scalar hyperbolic PDE.

\section*{Nonlinear Advection Equation}
- We can write Burger's equation also as \(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0\)
- In this form, Burger's equation resembles the linear advection equation, except that the velocity is no longer constant but it is equal to the solution itself.
- The characteristic curve for this equation is
\[
\frac{d x}{d t}=u(x, t) \quad \Longrightarrow \quad \frac{d u}{d t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} \frac{d x}{d t}=0
\]
- \(\rightarrow u\) is constant along the curve \(d x / d t=u(x, t) \rightarrow\) characteristics are again straight lines: values of \(u\) associated with some fluid element do not change as that element moves.

\section*{Nonlinear Advection Equation}
- From \(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0\)
one can predict that, higher values of \(u\) will propagate faster than lower values: this leads to a wave steepening, since upstream values will advances faster than downstream values.


\section*{Nonlinear Advection Equation}
- Indeed, at t=1 the wave profile will look like:

- the wave steepens...

\section*{Nonlinear Advection Equation}
- If we wait more, we should get something like this:

- A multi-value functions ?! \(\rightarrow\) Clearly NOT physical!

\section*{Burger Equation: Shock Waves}
- The correct physical solution is to place a discontinuity there: a shock wave.

- Since the solution is no longer smooth, the differential form is not valid anymore and we need to consider the integral form.

\section*{Burger Equation: Shock Waves}
- This is how the solution should look like:

- Such solutions to the PDE are called weak solutions.

\section*{Burger Equation: Shock Waves}
- Let's try to understand what happens by looking at the characteristics.
- Consider two states initially separated by a jump at an interface:

- Here, the characteristic velocities on the left are greater than those on the right.

\section*{Burger Equation: Shock Waves}
- The characteristic will intersect, creating a shock wave:


- The shock speed is such that \(\lambda\left(u_{L}\right)>S>\lambda\left(u_{R}\right)\). This is called the entropy condition.

\section*{Shock Jump Conditions}
- Consider a generic conservation law: \(\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0\)
- Integrate it across a segment \([a, b]=\left[x_{s}(t)-\varepsilon, x_{s}(t)+\varepsilon\right]\) stretching across a discontinuity with position \(x_{s}(t)\) :
\[
\int_{a(t)}^{b(t)} \partial_{t} u(x, t) d x+\int_{a(t)}^{b(t)} \partial_{x} f(u) d x=0
\]
- Using Leibniz rule for the first term, one obtains

\[
\frac{d}{d t} \int_{a(t)}^{b(t)} u(x, t) d x-u(b, t) \dot{x}_{s}+u(a, t) \dot{x}_{s}+(f(b)-f(a))=0
\]
- Taking the limit for \(\varepsilon \rightarrow 0, \quad \dot{x}_{s}\left(u_{R}-u_{L}\right)=f_{R}-f_{L}\)
- These are valid for a generic conservation laws and are also known as the Rankine-Hugoniot jump conditions.

\section*{Nonlinear Advection Equation}
- In the case of Burger's equation we can immediately apply the Rankine-Hugoniot jump conditions, yielding
\[
f\left(u_{R}\right)-f\left(u_{L}\right)=S\left(u_{R}-u_{L}\right)
\]
- For Burger's equation \(f(u)=u^{2} / 2\), one finds the shock speed as
\[
S=\frac{u_{L}+u_{R}}{2}
\]
- A shock wave is an abrupt discontinuous transition between two states ('upstream' and 'downstream') and it is best described by the integral representation.

\section*{Burger Equation: Rarefaction Waves}
- Let's consider the opposite situation:

- Here, the characteristic velocities on the left are smaller than those on the right.

\section*{Burger Equation: Rarefaction Waves}
- Now the characteristics will diverge:


- Putting a shock wave between the two states would be incorrect, since it would violate the entropy condition. Instead, the proper solution is a rarefaction wave.

\section*{Burger Equation: Rarefaction Waves}
- A rarefaction wave is a nonlinear wave that smoothly connects the left and the right state. It is an expansion wave.
- The solution can only be selfsimilar and takes on the range of
 values between \(u_{L}\) and \(u_{R}\).
- The head of the rarefaction moves at the speed \(\lambda\left(u_{R}\right)\), whereas the tail moves at the speed \(\lambda\left(u_{L}\right)\).
- The general condition for a rarefaction wave is \(\lambda\left(u_{L}\right)<\lambda\left(u_{R}\right)\)
- Both rarefactions and shocks are present in the solutions to the Euler equation. Both waves are nonlinear.

\section*{Burger Equation: Riemann Solver}
- These results can be used to write the general solution to the Riemann problem for Burger's equation:
- If \(u_{L}>u_{R}\) the solution is a discontinuity (shock wave). In this case
\[
u(x, t)=\left\{\begin{array}{lll}
u_{L} & \text { if } & x-S t<0 \\
u_{R} & \text { if } & x-S t>0
\end{array}, \quad S=\frac{u_{L}+u_{R}}{2}\right.
\]
- If \(u_{L}<u_{R}\) the solution is a rarefaction wave. In this case
\[
u(x, t)= \begin{cases}u_{L} & \text { if } \quad x / t \leq u_{L} \\ x / t & \text { if } \quad u_{L}<x / t<u_{R} \\ u_{R} & \text { if } \quad x / t>u_{R}\end{cases}
\]

\section*{Nonlinear Advection Equation}
- Solutions look like

- for a rarefaction and a shock, respectively.

\section*{Code Example}
- File name: burger.c \({ }^{1}\)
- Purpose: solve Burger's equation with \(1^{\text {st }}-\) or \(2^{\text {nd }}-\) order Godunov method.
- Usage:
> gcc burger.c -lm -o burger
>./burger
- Output: two-column ascii data files "data.nnnn.out"
- Visualization: gnuplot ( \(\rightarrow\) burger.gp).
```

```
#nclude <stdio.h>
```

```
#nclude <stdio.h>
#include <stdarg.h>
#include <stdarg.h>
include <string.h>
include <string.h>
#include <math.h>
#include <math.h>
#include <stdlib.h>
#include <stdlib.h>
double Initial_Condition (double);
double Initial_Condition (double);
void Integrate (double *, double, int, int);
void Integrate (double *, double, int, int);
int Output (double *, double*, int, int);
int Output (double *, double*, int, int);
#define NGHOST
#define NGHOST
#define ORDER 2
#define ORDER 2
#define NX 1600
#define NX 1600
nt main()
nt main()
/*
/*
**
**
    int i, nstep, out_frea;
    int i, nstep, out_frea;
    int i, nstep, out_frea;
    int i, nstep, out_frea;
int iend = ibeg + NX - 1; /* Last active zone
int iend = ibeg + NX - 1; /* Last active zone
int noutput = 10; /* Number of desired output files (+1) */
int noutput = 10; /* Number of desired output files (+1) */
double xbeg = -5.0; /* Start domain */
double xbeg = -5.0; /* Start domain */
50. ** End domain
```

```
50. ** End domain
```

```


```

```
louble tstop = 8.0; /* Final time */
```

```
louble tstop = 8.0; /* Final time */
double x[NX + 2*NGHOST], dx;
double x[NX + 2*NGHOST], dx;
double X[NX + 2*NGHOST], dx
double X[NX + 2*NGHOST], dx
ouble u[NX + 2*NGHOST
ouble u[NX + 2*NGHOST
double t, dt, dtdx;
double t, dt, dtdx;
double umax;
double umax;
* -- 1. Generate grid
* -- 1. Generate grid
    dx = (xend - xbeg)/(double)NX;
    dx = (xend - xbeg)/(double)NX;
    for (i = 0; i <= iend + NGHOST; i++){
    for (i = 0; i <= iend + NGHOST; i++){
        x[i] = xbeg + (0.5 + i - ibeg)*dx;
        x[i] = xbeg + (0.5 + i - ibeg)*dx;
        u[i] = Initial_Condition (x[i]);
        u[i] = Initial_Condition (x[i]);
}
}
2. start computation -- */
2. start computation -- */
    t = 0.0; nstep = 0;
    t = 0.0; nstep = 0;
    while (t <= tstop){
    while (t <= tstop){
        * _- 2a. Set time step dt = Ca*dx/|ul -- */
        * _- 2a. Set time step dt = Ca*dx/|ul -- */
        umax = 0.0;
        umax = 0.0;
        for (i = ibeg; i <= iend; i++){
        for (i = ibeg; i <= iend; i++){
        if (fabs(u[i]) > umax) umax = fabs(u[i]);
        if (fabs(u[i]) > umax) umax = fabs(u[i]);
        }
        }
        dt = cfl*dx/umax
```

 dt = cfl*dx/umax
    ```
```

{

```
```

{

```

1http://personalpages.to.infn.it/~mignone/Astrosim2019/

\section*{6. NONLINEAR SYSTEMS OF CONSERVATION LAW}

\section*{Nonlinear Systems}
- Much of what is known about the numerical solution of hyperbolic systems of nonlinear equations comes from the results obtained in the linear case or simple nonlinear scalar equations.
- The key idea is to exploit the conservative form and assume the system can be locally "frozen" at each grid interface.
- However, this still requires the solution of the Riemann problem, which becomes increasingly difficult for complicated set of hyperbolic P.D.E.

\section*{Euler Equations}
- System of conservation laws describing conservation of mass, momentum and energy:
\[
\begin{array}{|ll|}
\hline \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 & (\text { mass }) \\
\frac{\partial(\rho \mathbf{v})}{\partial t}+\nabla \cdot[\rho \mathbf{v} \mathbf{v}+\mathbf{I} p]=0 & (\text { momentum }) \\
\frac{\partial E}{\partial t}+\nabla \cdot[(E+p) \mathbf{v}]=0 & (\text { energy }) \\
\hline
\end{array}
\]
- Total energy density \(E\) is the sum of thermal + Kinetic terms:
\[
E=\rho \epsilon+\rho \frac{\mathbf{v}^{2}}{2}
\]
- Closure requires an Equation of State (EoS).

For an ideal gas one has \(\rho \epsilon=\frac{p}{\Gamma-1}\)

\section*{Euler Equations: Characteristic Structure}
- The equations of gasdynamics can also be written in "quasi-linear" or primitive form. In 1D:
\[
\frac{\partial \boldsymbol{V}}{\partial t}+A \cdot \frac{\partial \boldsymbol{V}}{\partial x}=0, \quad A=\left(\begin{array}{ccc}
v_{x} & \rho & 0 \\
0 & v_{x} & 1 / \rho \\
0 & \rho c_{s}^{2} & v_{x}
\end{array}\right)
\]
where \(V=\left[\rho, v_{x} p\right]\) is a vector of primitive variable, \(c_{s}=(\gamma p / \rho)^{1 / 2}\) is the adiabatic speed of sound.
- It is called "quasi-linear" since, differently from the linear case where we had \(A=\) const , here \(A=A(V)\).

\section*{Euler Equations: Characteristic Structure}
- The quasi-linear form can be used to find the eigenvector decomposition of the matrix A:
\[
\mathbf{r}^{1}=\left(\begin{array}{c}
1 \\
-c_{s} / \rho \\
c_{s}^{2}
\end{array}\right), \quad \mathbf{r}^{2}=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{r}^{3}=\left(\begin{array}{c}
1 \\
c_{s} / \rho \\
c_{s}^{2}
\end{array}\right)
\]
- Associated to the eigenvalues:
\[
\lambda^{1}=v_{x}-c_{s}, \quad \lambda^{2}=v_{x}, \quad \lambda^{3}=v_{x}+c_{s}
\]
- These are the characteristic speeds of the system, i.e., the speeds at which information propagates.
- Even if they're not rigorously constant, they tell us a lot about the structure of the solution.

\section*{Euler Equations: Riemann Problem}
- By looking at the expressions for the right eigenvectors,
\[
\mathbf{r}^{1}=\left(\begin{array}{c}
1 \\
-c_{s} / \rho \\
c_{s}^{2}
\end{array}\right), \quad \mathbf{r}^{2}=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{r}^{3}=\left(\begin{array}{c}
1 \\
c_{s} / \rho \\
c_{s}^{2}
\end{array}\right)
\]
we see that across waves 1 and 3 , all variables jump. These are nonlinear waves, either shocks or rarefactions waves.
- Across wave 2, only density jumps. Velocity and pressure are constant. This defines the contact discontinuity.
- The characteristic curve associated with this linear wave is \(d x / d t=u\), and it is a straight line. Since \(v_{x}\) is constant across this wave, the flow is neither converging or diverging.

\section*{Euler Equations: Riemann Problem}
- The solution to the Riemann problem looks like

- The outer waves can be either shocks or rarefactions.
- The middle wave is always a contact discontinuity.
- In total one has 4 unknowns: \(\rho_{L}^{*}, \rho_{R}^{*}, v_{x}^{*}, p^{*}\), since only density jumps across the contact discontinuity.

\section*{Possible Wave Patterns}
- Depending on the initial discontinuity, a total of 4 patterns can emerge from the solution:


\section*{Exact Solution to the Riemann Problem}
- For the Euler equations of gas-dynamics an exact solution to the Riemann problem exists (see the book by Toro, sec. 4.2) and it boils down to the following nonlinear algebraic equation for \(p^{*}\) :
\[
f_{L}\left(p^{*}, \mathbf{W}_{L}\right)+f_{R}\left(p^{*}, \mathbf{W}_{R}\right)+u_{R}-u_{L}=0
\]
where
\[
\begin{aligned}
& f_{\mathrm{L}}\left(p, \mathbf{W}_{\mathrm{L}}\right)= \begin{cases}\left(p-p_{\mathrm{L}}\right)\left[\frac{A_{\mathrm{L}}}{p+\beta_{\mathrm{L}}}\right]^{\frac{1}{2}} & \text { if } p>p_{\mathrm{L}} \text { (shock) }, \\
\frac{2 a a^{2}}{(\gamma-1)}\left[\left(\frac{p}{p p_{\mathrm{L}}}\right)^{\frac{\gamma-1}{2 \gamma}}-1\right] & \text { if } p \leq p_{\mathrm{L}} \text { (rarefaction), }\end{cases} \\
& f_{\mathrm{R}}\left(p, \mathbf{W}_{\mathrm{R}}\right)= \begin{cases}\left(p-p_{\mathrm{R}}\right)\left[\frac{A_{\mathrm{R}}}{p+B_{\mathrm{R}}}\right]^{\frac{1}{2}} & \text { if } p>p_{\mathrm{R}} \text { (shock), } \\
\frac{2 a_{\mathrm{R}}}{(\gamma-1)}\left[\left(\frac{p}{p{ }_{\mathrm{R}}}\right)^{\frac{\gamma-1}{2 \gamma}}-1\right] & \text { if } p \leq p_{\mathrm{R}} \text { (rarefaction), }\end{cases}
\end{aligned}
\]
- The functions \(f_{L}\) and \(f_{R}\) governs relations across the left and right non-linear waves and serves to connect the unknown particle speed \(u *\) to the known states L/R .

\section*{Euler Equations: Shock Tube Problem}
- The decay of the discontinuity defines what is usually called the "shock tube problem",


\section*{Code Example}
- File name: euler. \(\mathrm{f}^{1}\)
- Purpose: solve 1D Euler's equation using a \(1^{\text {st }}\)-order Lax-Friedrichs or HLLC method.
- Usage:
> gfortran -fdec-math euler.f -o euler > ./euler
- Output:

4-column ascii data files "data.out"
```

C:\Cygwin\home\Andrea\Presentations\Copenhagen.2013\Codes\Euler\euler.f - Notepad++

```

\section*{Recommended Books}

Eleuterio F. Toro

Riemann Solvers and Numerical Methods for Fluid Dynamic

A Practical Introduction

CAMBRIDGE TEXTS IN APPLIED MATHEMATICS

Finite-Volume Methods for Hyperbolic Problems


RANDALL J. LEVEQUE

\section*{Computational Gasdynamics}


\section*{THE END}```

