Finite Volume Numerical Methods
for Hydrodynamics.

| - Discretization techniques for linear hyperbolic PDE

Lecture | - Outline

Scale separation in plasma astrophysics:
from kinetic to fluid description;

Basic discretization methods for hyperbolic PDEs;

Linear scalar hyperbolic PDEs;

Systems of linear hyperbolic PDEs

Nonlinear scalar PDE: Burger’s equation;

Nonlinear systems - the Euler equations.

1. SCALE SEPARATION:
APPROACHING PLASMA ASTROPHYSICS AT DIFFERENT SCALES

Astrophysical Challenges: Scale Separation

» Astrophysical environments involve physical processes operating at
extremely different spatial and temporal scales, and complex interactions
between plasmas and radiation.

* Current computational modeling is still largely fragmented under the
limited range of applicability of different models.

Kinetic Temporal scales (s) FIU ,d
107 10% 10° 10*% 103 10? 1071 100 10t 102 103 104 10° 106
| | | | | | | | | | | I | J

PIC : mip

[| | |] | | | | | | l L
103 | 10* 105 106 107 108 10° 10 101 102 10%® 10% 10% 10%
Electron Jon RP

scales scales gyroradius.

Spatial scales (cm)

* Alarge gap stretches from theory to a clear interpretation of the
observations of high-energy astrophysical sources.

The Scale Connection

Small scales,
high frequency

PIC

_) Electron

scale

* Kinetic Description: PIC codes are applicable MICRO
to study small-scale kinetic effects: (Kinetic)

L =10%Km, t = 101-102 sec.

For typical astrophysical applications, these
scales are several orders of magnitude
smaller than the system size.

Hybrid-Kinetic

l——) lon scale

* Hybrid Kinetic Models (kinetic ions /

electron fluid): must resolve the ion inertial length:
L <1AU,t=1hr.

Two-fluid
One-fluid

E System scale

MHD

Large scales,
low frequency

* Fluid models: best approach to deal with large
scale =2 with Magnetohydrodynamics (MHD) only
magnetic / light waves must be resolved 2

L = Kpc, t=10°yrs.

Classical Description

Classical description:

1
C

) Individual particle motion

N
g(r,t) =) e d[r —7i(t)]
1=1

Charge and currents

dv — v (t)]

Maxwells’ Equations

N
J(r,t) :Z e;vor —ri(t)]
i=1
VxE:—la—B
c Ot
V x B = l8—E+4—7TJ
c Ot c
V.- FE =4nq
V-B=0

- Not feasible !
(too many degress of freedom)

—

Micro

Macro

Kinetic Description

af 1 Micro
Kinetic Description: | -, tv-V/f+ m(E +-v X B)-V,f=0.

Vlasov Equation: f(x,v,t) is the distribution function (for a given species)
giving the number density per unit element of phase space

=

Particle In Cell: (PIC) methods based on a finite element approach,

but with moving and overlapping elements. Distribution function given
by the superposition of several elements (“superparticles”):

fs(wa v, t) — Z fp(xa v, t)
b

Y-Axis (x10"3)

-2.0 -1.0 0.0 1.0 2.0
X-Axis (x1073)

Each element represents a large number of physical particles that are

Most consistent approach, but must resolve the plasma
(electron) skin depth: c/w,. ~ 5.4 x 10% cm (n/cm~3)"172
Macro

The Fluid Approach

In many astrophysical environments, the distribution function
f(x,v,t) is not a measurable quantity.

The numerical solution of Vlasov-like equations presents huge
difficulties since it involves six degrees of freedom;

If we focus on the behavior of the system in ordinary space and
not in the whole phase space, we may give up the information
concerning the distribution of the velocities.

This is achieved by averaging over the velocities themselves:

n(x,t) = / flz,v,t) d*v — number density
1

u(x,t) = — / vf(x,v,t) d*v — fluid velocity

n.

1 9 . ‘ .
E(x,t) = / ™ v f(x,v,t)d’v — energy density

The Fluid Approach

The fluid approach treats the system as a continuous medium and
considering the dynamics of a small volume of the fluid.

Meaningful to model length scales much greater than mean free path or
individual particle trajectories.

“Fluid element”: small enough that any macroscopic quantity has a
negligible variation across its dimension but large enough to contain
many particles and so to be insensitive to particle fluctuations.

Fluid equations involve only moments of the distribution function
relating mean quantities. Knowledge of f(x,v,t) is not needed”.

Still: taking moments of the Vlasov equation lead to the appearance of a
next higher order moment = “loose end” - Closure.

Two Fluid Description

. ., . . S . Micro
* Fluid description: obtained by averaging distribution
function over momentum space. Valid for L » A ¢, requiring
the solution of highly nonlinear hyperbolic / parabolic P.D.E.
'\
[an, —V =0
7 > | Continuity
c On. 1V G0
@) or e’ W,
= N VW] = —Vp+me(E+v, xB)+ Ry
B nimi{a (V)ViJ = Di nie(Vi X) eis
g_ > | Momentum
m UPAUP |:aa‘;e + (e v)] - _vpe - nee(E + Ve X B) - Rei,
e 1 [or :
.5 L [+ (Vi - V)T] = —pV -V
— Energy
W 1 [or. ~
] |:_+ (V V)E] = _pev * Ve,
o 1 ot D
'\
g 0B U x F Challenge: must resolve
I~ I very separate scales
oE o > | Maxwell [y
\605=V><B/MO+L'+J€- o/ Me Macro

One-Fluid Model

* One Fluid description: based on averaging ions and electron
equations.

* Set of 15 equations in 21 unknowns p, P,q,U,J,E, B,11,§

AP+ (pUx) =0 (

g+ Jr =0 (Charge)
(
(

l

3(pU:) + 3 (pUUk + P) = qEi+ & (T B)

o (%pUz—f— %P) + i [(%pUz—i- %P) Uk+H,-kU,-+c"jk+Sk} =0

B (U x B) == e (34 0,k + Ui)] — —aP) + (J X B) (Ohm)

¢ i o éen, ne enec
19B=-VxE (Faraday)
-E=VxB——J (Maxwell — Ampere)
c c

=

* Closure must be found to express II, g in terms of
macroscopic quantities. v Macro

MHD at Last !

MagnetoHydroDynamics (MHD) treats the plasma like a conducting Micro

fluid and assigning macroscopic parameters to describe its particle-like
interactions.

Ideal MHD describes an electrically conducting single fluid, assuming:
— low frequency W K Wp, W We, W Vpe, WKV
 large scales L> w—cp L>Re, LAy,

— Ignores electron mass and finite Larmor radius effects;
— Assume plasma is strongly collisional = L.T.E., isotropy;

— Fields and fluid fluctuate on the same time and length scales;

— Neglect charge separation, electric force
and displacement current. —>

Macro

Ideal MHD at Last

% V- (i 0

e)®

=£Cdhtirdtasp cons.)

4—@%—%4}] B =Eq) of(Metionfjum cons.

\/

@ .
% #V XdB — Bu)= 0 LFagadq¥]ag. flux cons.)
 MHD suitable for describing plasma at large scales;

J = —V x B (Ampere)

* Good first approximation tod*nuchlgf th% phy5|cs(&\rl£n when some of

the conditions are not met.
VB -

0
* Draw some intuitive conclu¢fons concerffif
solving the equations in detail

(Divergence —

free)

&blastifs/ GEREior without

Fluid equations (except closure) are exact conservation laws;

Classification of PDEs

Hyperbolic:

— model the transport of some physical quantities; typically associated
with wave propagation at finite speed.

Parabolic:

— model diffusion processes (infinite propagation speed): viscosity,
thermal conduction, resistivity, radiation hydrodynamics, etc....

Euler or MHD equations including viscous drag, thermal
conduction or resistivity are of mixed type (hyperbolic/parabolic).

Stable numerical discretization must be consistent with the nature
of the underlying equations.

2. BASIC DISCRETIZATION METHODS
FOR HYPERBOLIC PDE

Numerical Discretizations

 We consider our prototype first-order partial differential equation
(PDE):

oU dF(U)

ot Ox =0

also known as a “Conservation Law”.

* Two popular methods for performing discretization:
— Finite Differences (FD);
— Finite Volumes (FV);

* For some problems, the resulting discretizations look identical, but
they are distinct approaches;

Finite Difference Methods

A finite-difference method stores the solution at specific points in
space and time;

| - M | |
——t——t—— —0— —o—"—0o—
i-1 i i+1
Associated with each grid point is a function value,

U' = U(CBi,tn)

(/

We replace the derivatives in our PDE with differences between
neighbour points.

Finite Difference Methods

From Taylor expansion of the function around (x,t") we obtain, e.g.

— Forward derivative (in time):

oU (x,t) UM UM At (0°U
B ot2

ot At 2
, oU(x,t) UM —UPr
or simply 5 A N +)

— Central derivative (in space):

) +mor

Truncation

oU(z,t) UM, —UM, Az? (U errors
= — H.O.T.
ox QAT 6 ox3 p +HO

or simply 6U(§x,t) ~ Ui*;;fi_l @A:ﬂ)
T

Finite Volume Methods

* In a finite volume discretization, the unknowns are the spatial
averages of the function itself:

n 1 xl_}_% n
(UY! = — Ulz, t") do
Az |,
xX. 1
)
where x,,, and x;,,, denote the location of the cell interfaces.

Nz i+72

i-1 i i+1

* The solution to the conservation law involves computing fluxes
through the boundary of the control volumes

Finite Volume Formulation

 The conservative form of the equations provides the link between
the differential form of the equation,

8U OF

ot 8:1: =0

and the integral form, obtained by integrating the equations over
a time interval At = t"* — " and cell size Ax = x,,,,, — X, ;

I / / (8U (’3F) I dr —

tn+1

t'n—l—l

tn

Finite Volume Formulation

e Spatial integration yields
tn—l—l d

/tn [Ax£ (U); + (FH% — Fi_%>] dt = 0

1 Tit
with (U), = E/ “U(x,t)dz being a spatial average.

T, 1
T2

* |ntegration in time gives

1

Az (U —(U)) + At (ﬁj"*% _ F.’”*é) — 0

o1 1 tnt+1 .
where "2 = Eﬁ/ F (U(wii%)) dt is a temporal average.
tn

Zi§

Finite Volume Formulation

Rearranging terms: Uy = () - % (F"':rl% _ Fﬁt%)
T 1 5 ’L—g

Inteqgral or Conservation form

where L S— ‘.
o .
1 [Ti+d F. |,) OO
(U); = — Uz, t") dx i3 R
Ar), = (U),; =
|
At 1 o n : l
Fied = a1), F(UGriy0) de — 1 1
2 L1y

 The conservation form is an exact relation, no approximation

introduced;

It provides an integral representation of the original differential
equation.

 The integral form does not make use of partial derivatives!

Importance of Conservation Form

At [~ptl ~pyl
Oyt = Uy - (B - B

' b A \its —3

The conservation form ensure correct description of discontinuous
waves in terms of speed and jumps;

It guarantees global conservation properties (no mass / energy /
momentum is created or destroyed unless a net flux exists);

To second-order accuracy, a finite difference method and a finite
volume method look essentially the same;

Approximation introduced in the computation of the flux.

Flux computation: the Riemann Problem

* Since the solution is known only at t”, £ | ,
some kind of approximation is required Fi—lt% Firs
in order to evaluate the flux through ql:> <U>7J i::>
the boundary: $n l :

~1 i+ 3

~n+% B 1
B _Kt/tn P (Ules,y.1)) di

e This achieved by solving the so-called “Riemann Problem”, i.e.,
the evolution of an inital discontinuity separating two constant
states. The Riemann problem is defined by the initial condition:

U, for xz<ux,1
U(x,0) = i — Ulzy1,t>0) =7

Up for x>

The Riemann Problem

0 t A

/> Cell Interface

Left State

U,

Right State

Initial Discontinuity

| I+7%2 I+1

The Riemann Problem

t>0

Left State

U,

tA

I’ Cell Interface

//) Flux = Solution on the axis

Discontinuity Breakup

D

A
J/
l—’ !

/" Right State

1+15 i+ 1

3. THE LINEAR ADVECTION EQUATION:
CONCEPTS AND DISCRETIZATIONS

The Advection Equation: Theory

First order partial differential equation (PDE) in (x,t):
oU (x,1) a oU (z,1)
ot Ox

Hyperbolic PDE: information propagates across domain at finite speed
- method of characteristics

=0

Physical domain of dependence
. A
. . dx t :) Uit
Characteristic curves satisfy: E = a ! ’
o At
Along each characteristics: :
dU 6U dx OU _ 0 * U(x-at,0) ‘
i ot dtox ST x

— The solution is constant along characteristic curves.

The Advection Equation: Theory

» for constant a: the characteristics are straight parallel lines and the
solution to the PDE is a uniform shift of the initial profile:

U(x,t) =U(x — at,0)

* The solution shifts to the right (for a > 0) or to the left (a < 0):

Discretization: the FTCS Scheme

oU (x,1) a@U(x,t)

Consider our model PDE 4 —0
ot Ox

Forward derivative in time: 90U _ Ut =uy L O(A) A g
ot At < l

Centered derivative in space: ou ~ Uia — Uit A2 4
ox 2Ax +0(az7)

Putting all together and solving with respect to U"*! gives
C

n+1 n n n
Uz’ o Uz o 5 (+1 i—l)

where C=a At/Ax is the Courant-Friedrichs-Lewy (CFL) number.
We call this method FTCS for Forward in Time, Centered in Space.

It is an explicit method.

The FTCS Scheme

oU
ot
oU
ox

At t=0, the initial condition is a square pulse with periodic

boundary conditions:

Time = 0.000; CFL = 0,10

2 ==
FTCS
| ===z~ Exoct
151
Uﬂ‘|‘1 - Un . L
~ 1 7 A
AL + O(At)
U'Tfl-l - Un—l 2 “ I
~ A A - 1’ e
=)
! 875)

0.0 [—

0.2

0.4

X

0.6

0.8

Something isn’t right... why ?

FTCS: von Neumann Stability Analysis

Let’s perform an analysis of FTCS by expressing the solution as a
Fourier series.

Since the equation is linear, we only examine the behavior of a
single mode. Consider a trial solution of the form:

U= A", 0 =FkAx

S : Artt C o _ro
Plugging in the difference formula: =1—— (e’ —e")
An 2
An—}—l 2
— ' — 1+ C%sin?0 > 1
An

Indipendently of the CFL number, all Fourier modes increase in
magnitude as time advances.

This method is unconditionally unstable!

Forward in Time, Backward in Space

Let’s try a difference approach. Consider the backward formula for
the spatial derivative:

oU U UL,
or Az

The resulting scheme is called FTBS: ‘

+0(Az) = |UM'=U"'-C(U'-U",)

n+1

n

Apply von Neumann stability analysis on the resulting discretized
equation:

An—}—l 2
‘ I =1—-2C(1—C)(1 —cos¥b)
n+1
Stability demands 'AAn <1 = 20(1-C)>0

for a < 0 the method is unstable, but
for a > 0 the method is stable when 0<C=a At/Ax < 1.

Forward in Time, Forward in Space

Repeating the same argument for the forward derivative

(91/ Uﬁr}l—l - Ln
~ L ! A gttt =uyr —C(Ur, —U"
9 v + O0(Azr) =] ur—cC(up, -ur)

?

n+1
The resulting scheme is called FTFS: ‘ p

2

=1+2C(1—C)(1 —cosb)

n+1

Apply stability analysis yields ‘ T

If a > 0 the method will always be unstable

However, ifa <0Oand -1 <C=a At/Ax <0 then this method is
stable;

Stable Discretizations: FTBS, FTFS

Time = 0.410; CFL = 0,50

2 ' | o
FTES
: ------ Exoct
1.5F
- Time = 0.297; CFL = 0,50
2.0[
~ s
5 1.0 I
D -
0.5 3
—
0.0F , 3
Forward in Time, 0.3 0.5r
Backward in Space I
0.0 T
Forward in Time, g - 0.4 0.6 G
Forward in Space %

Stability: the CFL Condition

* Since the advection speed a is a parameter of the equation, Ax is
fixed from the grid, the previous inequalities on C=aAt/Ax are
stability constraints on the time step for explicit methods

Af<ﬂ

~ la

* At cannot be arbitrarily large but, rather, less than the time taken
to travel one grid cell (= CFL condition).

* In the case of nonlinear equations, the speed can vary in the
domain and the maximum of a should be considered instead.

"he 15t Order Godunov Method

—

 Summarizing: the stable discretization makes use of the grid point
where information is coming from:

e = ‘Upwind’:

a>0 - a<0
n-+1 n CLAt n n
\
a/t
Uin_l_l = Uzn_A—(,Ln_|_1 Uln) for a<0
X

* This is also called the first-order Godunov method;

Conservative Form

a a
* Define the “flux” function F}\, = 5 (Ur, + U — ’2—’ (Ur, = U7

so that Godunov method can be cast in conservative form

At
n+1 n n _m
Vi =0T A (Fi+% FZ’—%)

ra>0 ‘ a<0—l
a\t a At

Ut = U = (U7 = UL Uyt = U = —— (UL = U7)

* The conservative form ensures a correct description of
discontinuities in nonlinear systems, ensures global conservation

properties and is the main building block in the development of
high-order finite volume schemes.

The Riemann Problem

= t
Ol A/> Cell Interface
Left State
U,
Right State
R
Initial Discontinuity
X
>

| I+7%2 I+1

The Riemann Problem

t
t>0,a>0 Af Cell Interface
Left State
U / - > Flux = Solution on the axis
L //)

Right State

R
Discontinuity Breakup
X
>

i i+1/5 1+

Code Example

e File name: advection.c’

[J C:\cygwin\home\Andrea\Presentations\Copenhagen.2013\Codes\Advection\advection.c - Notepad++ ‘ = |[@] PXY ‘
File Edit Search View Encoding Language Settings Macro Run Plugins Window ? X
cHHEBRLHAI4DRie iy 23 BRIETERISENENB|lIEAv Gy

* Purpose: solve the linear advection 3 o] A

1 #include <stdio.h>

t 2 #include <stdarg.h>
t' 1 th 1S - d 3 #include <string.h>
equa Ion USIng e Or er 4 #include <math.h> 3
5 #include <stdlib.h>
God thod
O u nov me O * 7 double Initial_Condition (double x);
8 void Integrate (double *u@, double *ul, double dtdx, int ibeg, int iend);
° U . 9
M- 10 #define PI 3.14159265358979
11 #define NGHOST 2
12 #define NX 100
. . 13 #define a 1.0
> gcc advect 1on . C —lm —O advectlon 14 #define FTCS 1 /* -- forward in time, centered in space -- */
. 15 #define UPWIND 2 /* -- choose depending on the sign of a -- */
> ./advection 16
17
18
19 #define METHOD UPWIND /* -- either UPWIND or FTCS -- */
20
e Output: two-column ascii data files. i ———
22 int main()
23 /*
24 *
25 * Solve the linear advection equation with a first-order
. . . . 26 * method.
* Visualization: gnuplot (= advection.gp). |+ - - »
28 * Last Modified 14 Nov 2011 by A. Mignone (mignone@ph.unito.it)
29 * i
C source file length: 3380 lines: 161 Ln:1 Col:1 Sel:0 UNIX ANSI INS

thttp://personalpages.to.infn.it/~mignone/Astrosim2019/

4. LINEAR SYSTEMS OF HYPERBOLIC
CONSERVATION LAWS

System of Equations: 1

"heory

We turn our attention

Jq

to the system of equations (PDE)

ot

oq
- A -
ox

— 0

where q = {q1, g2, ...q., } is the vector of unknowns. Aisa m x

m constant matrix.

For example, for m=3, one has

dq dq dqo dq3
— b+ Ay ——=F+ Ajp—= 4+ Ay3—— =
P + A1l 5 + A2 P + Aj3 py

dq2 dq dqo dq3
—— 4+ Ao —— + Ay —— + Aps—— =
gr TN, TAng tAng =0
dgs3 dq1 g2 dqs

kAN Pt ST P: CINIY Pk R
ot + sl ox T A3 ox T Ass ox U

System of Equations: Theory

* The system is hyperbolic if A has real eigenvalues, A! =... =A™ and

a complete set of linearly independent right and left eigenvectors
r and [(¢ [*=§,) such that

A) ,r:l\? _ /\k,r,k
ll{) A _ l/-c,AI;,

* For convenience we define the matrices A = diag(A¥), and

()

12

i)

* Sothat AR=RA,LA=AL,L-R=R-L=1,L-AR = A.

for k=1,....m

R = (rl\rz\...\rm> , L=R1'=

System of Equations: Theory

The linear system can be reduced to a set of decoupled linear
advection equations.

Multiply the original system of PDE’s by [on the left:

,
L-(ﬂJrA dq) 0.9 o4 p.r %9

ot ox ot oz
Define the characteristic variables w=L-qg so that
ow ow
— 4+ A — =0
ot ox

Since A is diagonal, these equations are not coupled anymore.

System of Equations: Theory

In this form, the system decouples into m independent advection
equations for the characteristic variables:

(“)w+ (‘)w_o . (7u,vk+>\k 811,’1"_0
ot or ot or

where w? = 17 . q (k=1,2,...,m) is a characteristic variable.

8w1 | 1 3101
)\ X

ot or
When m=3 one has, for instance: ow? | \2 ow? __ 0
ot oxr

Ow> | \30w° __
ot A Ox =0

System of Equations: Theory

The m advection equations can be solved independently by applying the
standard solution techniques developed for the scalar equation.

In particular, one can write the exact analytical solution for the k-th
characteristic field as

wh(z,t) = w®(x — *t, 0)
i.e., the initial profile of w* shifts with uniform velocity A*, and
wh(z — A¥t,0) =17 - q(z — \¥t,0)

is the initial profile.

* The characteristics are thus constant along the curves dx/dt = A

System of Equations: Exact Solution

Once the solution in characteristic space is known, we can solve the
original system via the inverse transformation

k=m k=m

q(z,t) = R - W(:ct)—Zw(xt)r Zw(:c—)\ktO)r

The characteristic varlables are thus the coeff|C|ents of the right
eigenvector expansion of g.

The solution to the linear system reduces to a linear combination of m
linear waves traveling with velocities A" .

Expressing everything in terms of the original variables g,

k=m

q(z,t) = » 1°-q(z — A", 0)r"

Piecewise Discontinuous Data

If g is initially discontinuous, one or more characteristic variables
will also have a discontinuity. Indeed, at t = 0,

kL 1k . i |
U/’k(fl;70> — ll“ . q(x/()) _ { UJL o l qL lf r << xl%—%

: 3 .
wh =1"-qp if T > T

In other words, the initial jump q, - q, is decomposed in several
waves each propagating at the constant speed A and

corresponding to the eigenvectors of the Jacobian A:
qR o qL — &1T1 + Oéz’r“z 4+ ..+ Oém’l"m

where o =1" - (qp — q;) are the wave strengths

Riemann Problem for Discontinuous Data

For the linear case, the exact solution for each wave at the cell
interface is:

K o N Jowi if A">0
/UJ l—+_ t — /LU QfH_‘l - t; O — k’ . k’
3 2 wh i M <0

The complete solution is found by adding all wave contributions:

(rap)= 3 s 3 ohet
k: A\ >0 k: A\ <0

~

and the flux is finally computed as FH% =A-q (x,i+%, t)

The Riemann Problem

Al <0
A2 >0 A

23>0 x=\"t t X=A%t
*
q.

(Xi+15 l‘),\

X=A3t

v
1 \
1

’
’,
’
’
4
’
v
,
’
v
’
.
’
’
v
,

3 1
XI"*'%-A’ t XH_%—Azt XH_yZ'A. t

> X

Point (x.,4,,,t) traces back to the right of the A" characteristic emanating from
the initial jump, but to the left of the other 2, so the solution is:

_ ol 2.2 3.3
q(mi+%,t>—w3r +wrrt +wpr

Numerical Implementation

 We suppose the solution at time level n is known as g” and we
wish to compute the solution g"*! at the next time level n+1.

* Our numerical scheme can be derived by working in the
characteristic space and then transforming back:

; Al
q;" Z“’A Vit =gl - (F +1 FT,I—%)

n q? L n
where |[F 1 =4 H ——Z’/\A‘lk Qi1 — q;)r"

2

is the Godunov flux for a linear system of advection equations.

Example: The Acoustic Wave Equations

The acoustic wave equations can be derived from the Euler equations assuming
small perturbations around a background constant state.

Linearizing around a reference state QQ(x,t) = Qo + Q1(x,1):

uy Po 0
)
Q1 4& —0, A=1| 0 wuy 1/pg
ot ot)
0 a“pp o
where (), = (py, uy, p;) denotes perturbed quantitiesand a = Lro
The spectral decomposition of this system is 7
A= (Uy — a, Ug, Uy + a)
R = ﬂﬁ;) /}}7 , L=11 0 —1/a?

0 1 0 apy/2 1/2

Code

File name: acoustic.c’

Purpose: solve the 3x3 acoustic wave
equations with the 1%t-order

Godunov method.
Usage:

> gcc acoustic.c -1m -0 acoustic

./acoustic

Output: four-column ascii data files.

Visualization: gnuplot (= acoustic.gp).

thttp://personalpages.to.infn.it/~mignone/Astrosim2019/

#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>

#include <stdlib.h>

void Initial_Condition (double, double *);

void Integrate (double **, double *, double, int, in
int Output (double *, double **, int, int);
double **Array2D (int, int);

#define NGHOST 1 /* Number of ghost zones

#define NVAR 3 /* Number of variables
#define NX 1024 /* Number of zones (excl
#define GAMMA_EOS (5.0/3.0) /* Specific heat ratio */
int main()
{

int i, nv, nstep;

int noutput = 100;
int ibeg = NGHOST;
int iend = ibeg + NX - 1;

double xbeg = 0.0;
double xend = 1.0;
double tstop = 1.0;
double cfl = 0.9;
double x[NX + 2*NGHOST], dx;

double **Q1;
double Q@[NVAR];
double t, dt, dtdx, a;

double rho@ = QO[0] = 1.0;
double u@ = QO[1] = 0.1;]
double p@ = QO[2] = 1.0/GAMMA_ EOS

Q1 = Array2D(NX + 2*NGHOST, NVAR);

dx = (xend - xbeg)/(double)NX;

for (i = @; i <= iend + NGHOST; i++){
- x[1] = xbeg + (0.5 + i - ibeg)*dx;
. Initial_Condition (x[1i], Q1[il);

}

0.9;
0.

nstep H
fabs(u@) + sqrt(GAMMA_EOS*p@/rho@);

wnn

t);

*/
*/
uding ghost zones) */

5. NONLINEAR SCALAR HYPERBOLIC PDE

Nonlinear Advection Equation

We turn our attention to the scalar conservation law

ou Of(u)
(975—'_ Ox

=0
Where f(u) is, in general, a nonlinear function of u.

To gain some insights on the role played by nonlinear effects, we start by
considering the inviscid Burger’s equation:

Ou 0 (W) _
ot ox\ 2)

This is the simplest nonlinear scalar hyperbolic PDE.

Nonlinear Advection Equation

. , . ou ou
We can write Burger’s equation also as Fm + U“@_ =0
T

In this form, Burger’s equation resembles the linear advection
equation, except that the velocity is no longer constant but it is
equal to the solution itself.

The characteristic curve for this equation is

dx (2.1) —> du ou N ou dx
dt ’ dt ot Ox dt

=0
— u is constant along the curve dx/dt=u(x,t) = characteristics are

again straight lines: values of u associated with some fluid element
do not change as that element moves.

Nonlinear Advection Equation

- ou N ou 0
* From — +u— =
ot ox
one can predict that, higher values of u will propagate faster than
lower values: this leads to a wave steepening, since upstream
values will advances faster than downstream values.

u(x)

Nonlinear Advection Equation

* Indeed, at t=1 the wave profile will look like:

-4 -2 0 2 4

* the wave steepens...

Nonlinear Advection Equation

* If we wait more, we should get something like this:

2?7

/

\/

e A multi-value functions ?! = Clearly NOT physical !

Burger Equation: Shock Waves

* The correct physical solution is to place a discontinuity there:
a shock wave.

Shock position

~

/

~ L

v

e Since the solution is no longer smooth, the differential form is not
valid anymore and we need to consider the integral form.

Burger Equation: Shock Waves

e This is how the solution should look like:

1.0
0.8
0.6

0.4

0.0 .

 Such solutions to the PDE are called weak solutions.

Burger Equation: Shock Waves

Let’s try to understand what happens by looking at the
characteristics.

Consider two states initially separated by a jump at an interface:

A

u(x)‘)

Here, the characteristic velocities on the left are greater than
those on the right.

Burger Equation: Shock Waves

* The characteristic will intersect, creating a shock wave:

X

* The shock speed is such that A(u,) > S > A(u,). This is called the
entropy condition.

Shock Jump Conditions

ou Of(u)
ot i Ox

* Integrate it across a segment [a,b] = [x(t)-¢, x,(t)+€] x(t)
stretching across a discontinuity with position x(t):

* Consider a generic conservation law:

b(t) b(t) :
/ Ou(x,t)dr + / O, f(u)dr =0

Ja(t) Ja(t) PO [

* Using Leibniz rule for the first term, one obtains

d b(t)

pr u(x,t)dr —u(b,t)zs + ula,t)zs + (f(b) — f(a)) =0
at Ja(t)

* Taking the limit fore 2 0, LI.TS(‘U.R — "U.L) — fR _ fL

* These are valid for a generic conservation laws and are
also known as the Rankine-Hugoniot jump conditions.

Nonlinear Advection Equation

* In the case of Burger’s equation we can immediately apply the
Rankine-Hugoniot jump conditions, yielding

flur) — f(ur) = S(ur —ur)

* For Burger’s equation f(u) = u’/2, one finds the shock speed as

ur, + UR
2

* Ashock wave is an abrupt discontinuous transition between two
states (‘upstream’ and ‘downstream’) and it is best described by
the integral representation.

g —

Burger Equation: Rarefaction Waves

* Let’s consider the opposite situation:

u(x) Up

u,

X

 Here, the characteristic velocities on the left are smaller than
those on the right.

Burger Equation: Rarefaction Waves

* Now the characteristics will diverge:

4

W

* Putting a shock wave between the two states would be incorrect,
since it would violate the entropy condition. Instead, the proper
solution is a rarefaction wave.

Burger Equation: Rarefaction Waves

A rarefaction wave is a nonlinear

1.0[

wave that smoothly connects the
left and the right state. It is an

0.6F 5

expansion wave. .
0.4 -
a2f]
The solution can only be self- ook . |
similar and takes on the range of o - , ’)

values between u, and u,.

The head of the rarefaction moves at the speed A(u,), whereas the tail
moves at the speed A(u,).

The general condition for a rarefaction wave is A(u,)<A(ug)

Both rarefactions and shocks are present in the solutions to the Euler
equation. Both waves are nonlinear.

Burger Equation: Riemann Solver

* These results can be used to write the general solution to the
Riemann problem for Burger’s equation:

— If u, > u, the solution is a discontinuity (shock wave). In this case

ur if x—St<0 S_UL—|—UR

u(x’t): urp it z—-—St>0 2

— If u < u, the solutionis a rarefaction wave. In this case

(wup if z/t <up
w(z,t) = ¢ z/t if up <z/t<ugp

urp if x/t>ug

\

Nonlinear Advection Equation

e Solutions look like

uxy
(116:9]

 for ararefaction and a shock, respectively.

Code Example

File name: burger.c’

Purpose: solve Burger’s equation with
15t- or 2"- order Godunov
method.

* Usage:

> gcc burger.c -1m -o burger
> ./burger

* Qutput: two-column ascii data files
“data.nnnn.out”

Visualization: gnuplot (= burger.gp).

thttp://personalpages.to.infn.it/~mignone/Astrosim2019/

#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>

double Initial_Condition (double);
void Integrate (double *, double, int, int);
int Output (double *, double *, int, int);

#define NGHOST 2
#define ORDER 2

#define NX 1600
int main()
{
int i, nstep, out_freq;

int ibeg = NGHOST;
int iend = ibeg + NX - 1;
int noutput = 10;

double xbeg = -5.0;
double xend = 5.0;
double tstop = 8.0;
double cfl = 0.9;

double x[NX + 2*NGHOST], dx;
double u[NX + 2*NGHOST];
double t, dt, dtdx;

double umax;

dx = (xend - xbeg)/(double)NX;

for (1 = @; i <= iend + NGHOST; i++){
x[i] = xbeg + (0.5 + i - ibeg)*dx;
u[i] = Initial_Condition (x[i]);

t = 0.0; nstep = 0;
while (t <= tstop){

umax = 0.0;
for (i = ibeg; i <= iend; i++){
i if (fabs(Cu[i]) > umax) umax = fabsCu[i]);

}
dt = cfl*dx/umax;

6. NONLINEAR SYSTEMS OF
CONSERVATION LAW

Nonlinear Systems

 Much of what is known about the numerical solution of hyperbolic
systems of nonlinear equations comes from the results obtained in
the linear case or simple nonlinear scalar equations.

* The key idea is to exploit the conservative form and assume the
system can be locally “frozen” at each grid interface.

 However, this still requires the solution of the Riemann problem,
which becomes increasingly difficult for complicated set of
hyperbolic P.D.E.

Euler Equations

* System of conservation laws describing conservation of mass,
momentum and energy:

dp B

En +V-(pv) =0 (mass)

0 (;fv) +V-|pvv+1Ip] =0 (momentum)
OF

57 TV (E+p)v]=0 (encrgy)

. o V2
Total energy density E is the sum of E = pe+ p—

thermal + Kinetic terms: 2

* Closure requires an Equation of State (EoS).

For an ideal gas one has pe = %

Euler Equations: Characteristic Structure

* The equations of gasdynamics can also be written in “quasi-linear”
or primitive form. In 1D:
/ Up P 0 \

\ 0 pcz v,)

where V = [p,v,,p] is a vector of primitive variable, c. = (yp/p)"? is
the adiabatic speed of sound.

* Itis called “quasi-linear” since, differently from the linear case
where we had A=const , here A = A(V).

Euler Equations: Characteristic Structure

The quasi-linear form can be used to find the eigenvector decomposition of the
matrix A:

1 1 1
r'=| —¢c/p |, = 0], r=| c/p
c? 0 c?

Associated to the eigenvalues:

1 2 3
A :vx_CS’ A :vx’ A :vw_|_CS

These are the characteristic speeds of the system, i.e., the speeds at which
information propagates.

Even if they’re not rigorously constant, they tell us a lot about the structure of
the solution.

Euler Equations: Riemann Problem

* By looking at the expressions for the right eigenvectors,

1 1 1
r'=| —c/p |, = 0|, r=| c/p
c? 0 c?

S S

we see that across waves 1 and 3, all variables jump. These are
nonlinear waves, either shocks or rarefactions waves.

* Across wave 2, only density jumps. Velocity and pressure are constant. This
defines the contact discontinuity.

* The characteristic curve associated with this linear wave is dx/dt = u, and it is a
straight line. Since v, is constant across this wave, the flow is neither converging
or diverging.

Euler Equations: Riemann Problem

The solution to the Riemann problem looks like

T =ut
i dx = (v, + c;)dt
t (gﬁjo?k (gf ra—rgfsa)cc;i]ifon) (coptact) (shock or rarefaction)

(pL, vz, ")

(pLavmlan) (pR,U:URapR)

The outer waves can be either shocks or rarefactions.
The middle wave is always a contact discontinuity.

In total one has 4 unknowns: £7, Pr» Vs P, since only density jumps

across the contact discontinuity.

Possible Wave Patterns

Depending on the initial discontinuity, a total of 4 patterns can
emerge from the solution:

’[A C S tA S C

pX pX
A C A C
t tf S S

Exact Solution to the Riemann Problem

* Forthe Euler equations of gas-dynamics an exact solution to the Riemann
problem exists (see the book by Toro, sec. 4.2) and it boils down to the following
nonlinear algebraic equation for p™:

fr(p",Wr)+ fr(p”,Wg) +ur —ur =0

where 1
((p—pL) [pfgL} : if p > pr (shock)
fL(p, W) =« .
\ % [(;D%)W - 1] if p < pL (rarefaction) ,
((p —pr) [ﬁ;} : if p> pr (shock) |,
fr(p, WR) = <

2a p\ % - . .
\ =y [(pR> 1] if p < pr (rarefaction)

* The functions f_ and f; governs relations across the left and right non—linear
waves and serves to connect the unknown particle speed u* to the known
states L/R.

Euler Equations: Shock Tube Problem

* The decay of the discontinuity defines what is usually called the “shock tube
problem”,

Density p
: 1 20f
1.2F 1 1sf
1.1 i €[
3 1.4 -
1.af i
: 1.2
0.9f 1 1af
0.2 0,4 0.6 0.8 0.2 0,4 0.6 0.8
0.25F =
0.20F =
5 OE —
£ 5 =
T 040 =
0.05 =
0.00E : : . . s
0,2 0,4 0.6 0.8
X

Code Example

e File name: euler.f"

* Purpose: solve 1D Euler’s equation
using a 1st-order Lax-Friedrichs
or HLLC method.

* Usage:

> gfortran -fdec-math euler.f -o euler
> ./euler

* Qutput:
4-column ascii data files “data.out”

thttp://personalpages.to.infn.it/~mignone/Astrosim2019/

[;{ C\cygwin\home\Andrea\Presentations\Copenhagen.2013\Codes\Euler\euler.f - Notepad++ ‘ = B X |

File Edit Search View Encoding Language Settings Macro Run Plugins Window ? X
HOBHBRGAI4DRoC |ty a3 REIE ER|ICDENBB|EsvEEY
B advection.c]E burgerc H euler.fl

1 8 program euler 4

2

3 include 'common.h’ =

4

5 integer i, nt, nv

6 integer ibeg, iend

7 real*s u(nvar, nx),v(nvar, nx), flux(nvar, nx)

8 real*s x(nx)

9 real*s t, dt, cmax, cfl, tstop

10 real* tfreg, df, dx

11

12 | c ** generate grid **

13

14 call grid (x, dx)

15 ibeg = nghost + 1

16 iend = nx - nghost

17

18 call init (v, x)

19 call primtocon (v, u, ibeg, iend)

20

21 dt =1.d-4

22 cfl =0.8d0

23 tstop = 0.2

24 t

25

26 | c ** begin computation **

27

28 O dont =1,

29 T i
Fortran source file length: 6022 lines: 271 Ln:1 Col:1 Sel:0 UNIX ANSI INS

Recommended Books

Eleuterio F. Toro CAMBRIDCE TE6S Comp utathnal

IN APPLIED

MATHEMATICS Gasdynamics

Finite-Volume
Methods for

Riemann Solvers Hyperbolic Problems
and Numerical

Methods for
Fluid Dynamic

A Practical Introduction

@ Springer
RANDALL J. LEVEQUE

THE END

