
Numerical Methods for Partial 
Differential Equations

Lecture 1: Introduction & Basic Concepts



Course Outline

� Basic Concepts

� Classification: characteristic curves, Elliptic PDE, parabolic PDE, Hyperbolic PDE;

� Examples of Analytical solutions (wave eq., diffusion eq.,);

� Introduction to Finite Difference Methods;

� Elliptic PDEs: Laplace & Poisson Eq. , Gauss-Seidel, Jacobi,  SOR;

� Parabolic PDEs: heat equation, explicit methods, Implicit Methods, ADI;

� Hyperbolic PDEs: 

� simple advection, systems and nonlinear equations

� Shock, rarefactions 

� Godunov Methods Equazioni nonlineari (fluidodinamica) , metodi di Godunov



Partial Differential Equations

� Why Partial Differential Equations ? à Physics phenomena modelled through PDE:

� Electromagnetism à Maxwell Equations

� Quantum Mechanics à Schrodinger Equation

� Gravitation à Einstein Equations

� Fluid Dynamics à Navier-Stokes Equations

� Plasma à Vlasov Equation

� Why Numerical Methods à

� In most cases the only mean of calculating and understanding their solutions is through the design of 
sophisticated numerical approximation schemes. However the analytical and numerical approaches to 
the subject are  intertwined. One cannot make progresses on the numerical solution without 
understanding  the analytical properties.



What is a PDE ? 

� We have an unknown function u(x1, x2, x3,….) of several independent variables x1, x2, x3,….

� A PDE is an identity that relates the independent variables, the unknown function u and its partial 
derivatives:

� x1, x2, x3, … are  often space variables and a solution may be required in some domain  W of space. In 
this case there will be some conditions to be satisfied at the boundary of the domain  à boundary 
conditions;

� One of the independent variables may be time, in this case we have to specify the unknown function u 
at t=0  everywhere in W  à initial  conditions;

� We will see that the type of boundary conditions to be prescribed depend on the type of equation. 

� We may also have to consider systems of PDE involving more than  one unknown functions:
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What is a PDE ? 

� Boundary Conditions:
� Dirichlet conditions                à u specified on the boundary    

� Neumann conditions             à normal derivative !"!# specified on the boundary 

� Robin conditions                    à !"
!# + "# specified on the boundary

� Cauchy conditions                 à specify both u and !"!$ at the boundary
� If the domain is unbounded B.C. at infinity

� Well Posed Problems: PDE in a domain with a set of initial and/or boundary conditions such that:
� A solution exists and it is solution is unique
� The solution depends in a continuous way on the initial/boundary conditions
� The initial/boundary conditions may not be enough the determine a unique solution, the problem is 

underdetermined.
� The initial/boundary conditions may  be too many, a solution cannot exist, the problem is overdetermined.
� Example: for the Laplace equation we cannot specify both the function and its normal derivative on the boundary (in 

this case the problem is overdetermined).



PDE Examples:

Advection equation in 2D Wave equation in 2D Diffusion equation



Linear PDE

� A linear PDE is one in which  the equations and any boundary or initial conditions do not include any 
product of the unknown functions or their derivatives.

� PRINCIPLE OF SUPERPOSITION: a linear equation has the useful property that if u1 and u2 both satisfy 
the equation then so does any linear combination of u1 and u2.

� This is often used in constructing solutions to linear equations (for example for  satisfying boundary or 
initial conditions).

� Examples: )&
)* + ,

)&
)" = 0

)"&
)*" − .

" )
"&
)"" = 0

Advection equation

Wave equation

)&
)* − /

)"&
)"" = 0 Diffusion or heat conduction equation

)"&
)"" +

)"&
)0" = 0

)"&
)*" − .

"1"& = 0

)"&
)*" − /1

"& = 0

1"& = 0 1"& = 2Laplace equation Poisson equation



Linear PDE: Maxwell Eq.

� Another important example are Maxwell’s equations, assuming a linear relation for Ohm’s law:
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� Nonlinear PDE arise when at least terms of order 2 (or higher) are present:

� Incompressible hydrodynamic or magnetohydrodynamics:

� Burger’s eq.
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Characteristic Curves



� Let’s start from the linear advection equation, 

� The previous equation is defined on     −∞ < $ < ∞

� For constant speed a, the solution to the previous equation is:    % $, ' = %! $ − )' , where %! $ −

)') is the initial condition. 

� à Initial conditions propagates at constant velocity a

� On the lines x-at = const we have the condition: 

Characteristic Curves
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Characteristic Curves

� More generally, 

divide by b(u,x,t) à

� The equation becomes nonlinear if a depends on u (we can still call it ’quasi-linear’).

� In the (x,t) plane, it represents the derivative in the direction (1,a): the solution u(x,t) is constant in the 
(x,t) plane along the curves tangent to this direction !

� These curves are identified by 

� And the PDE has been reduced to a system of ODE 
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An Example

� Consider the PDE 

� With IC and BC defined by 

� Rewrite in characteristic form:

� The value of u on each characteristic should be determined from the initial or boundary conditions: 

� Consider a generic point (x1,t1): the CC passing through this point is:      ' − '" = $# − $"# /2
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An Example

� This curve will intersect the positive x-axis or t-axis depending on the previous conditions;

� In the 1st case, the value of u on the CC will be set by the IC, in the 2nd case it will be fixed by the B.C.

� Intersections will be given by:

� And therefore we will have 

$! = $"
# 	− 2'" or    '! = '" − $"#/2	

%($", '") = @ $! = @ $"# 	− 2'" 	 1'(	0)6F

%($", '") = / '! = A '"	 −	$"#/2 	 (2)*	0)6F)



PDE: Classification



Classification of 2° order PDE

� We start from the general 2° order PDE:

� Three classes of PDE depending on the sign of 

� Other PDE can be reduced to canonical form by variable transformation. The new variables are 
coordinates along the characteristic curves.

� Important: the nature of a PDE is local !

� Example: given the PDE (Tricomi Eq.)                                           it is:

4244 + 5245 + 6255 = Φ 3, 9, 2, 24, 25
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Hyperbolic if     x<0
Parabolic    if     x=0
Elliptic         if     x>0



Classification of 2° order PDE

� From the physical point of view, these PDEs respectively represents the wave propagation, the time-
dependent diffusion processes, and the steady state or equilibrium processes. 

� Hyperbolic equations model the transport of some physical quantity, such as fluids or waves. 

� Parabolic problems describe evolutionary phenomena that lead to a steady state described by an 
elliptic equation. 

� Elliptic equations are associated to a special state of a system, in principle corresponding to the 
minimum of the energy.



Reduction to Canonical Form: Change of Variables

� In 2D, introduce the transformation        ξ = ξ $, J , η = η $, J

� The transformation must be invertible, 

� Now define  

� So that the original PDE becomes

where 

� One can show that the sign of S is invariant under a variable transformation. The equation maintains its 
nature:  /# − 4)0 = T# (K# − 4LM).
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Change of Variables: Notable cases

� Consider 

Coordinate transformation may be chosen to satisfy:

1. , = . = 0 à Hyperbolic Eq (Δ > 0) :  9+, = : ;, <, 9, 9- , 9. /> [1st canonical form];

2. > = 0, . = −, à Hyperbolic Eq (Δ > 0):   9++ − 9,, = : ;, <, 9, 9- , 9. /, [2nd canonical form]

3. > = 0 ,AB , = 0 CD c = 0 à Parabolic Eq (Δ = 0):  9++ = : ;, <, 9, 9- , 9. /.

4. > = 0 ,AB . = , à Elliptic Eq (Δ < 0): 9++ + 9,, = : ;, <, 9, 9- , 9. /,

� We will now examine the kind of transformation required to reduce the PDE to its canonical form. 

4244 + 5245 + 6255 = Φ 3, 9, 2, 24, 25 	 ;<=>=?@A	BCD

@EHH + FEHI + GEII = H I, J, E,EJ , EK 	 K<@?LMN<OPQ	BCD 	



Change of Variables: Hyperbolic Eq. (Characteristics)

� When a	=	c	=	0	(case	1), characteristics may  
be found from

� The two equations have identical distinct 
roots:

� Along the coordinate line, 

� Solving for dy/dx yields the characteristic 
equations:
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Change of Variables: Hyperbolic Eq. (Characteristics)

� If the coefficients A, B, and C are constants, it is easy to integrate the previous equations

� The two families of characteristic curves associated with PDE reduces to two distinct families of parallel 
straight lines. Since the families of curves ξ = constant and η = constant are the characteristic curves, the 
change of variables are given by the following equations: 

9 = λS3 +	GS and     9 = λ33 +	G3

I = 9	 − 	λS3 and     η = 9	 − 	λ33



Change of Variables: Parabolic Eq. (Characteristics)

� When b=0	and	a	=	0	(case	3)

� One finds  A +&
+%

#
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� à Only one family of real characteristic curves.

� To determine the second transformation variable (η), remember that 

which after some manipulation becomes K# − 4LM η& = 0, meaning that   η& $, J is arbitrary.

� For constant coefficients, 
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Classification of 1st-Order Systems of PDE

� Consider the system of 1st-order PDE in matrix notations,

� Where L2 is a 5 e 5 matrix of coefficients, f = %", %#, … , %3 0 is a column vector containing the 
dependent variables, while $", $#, … , $4 are the m independent coordinates.

� For simplicity, let m = 2:  we have $", $# = $, J and 

� If A is not singular we may rewrite the system in more convenient form: 

� Just as in the case of a single partial differential equation, the important properties of solutions of the 
system (48) depend only on its principal part (left hand side).
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Canonical Form and Classification

� Let’s consider the trasformation l = m."f. Where P is an arbitrary, non singular nxn matrix.

� Then:

� Our PDE becomes: 

� If we take P to be matrix of right eigenvectors if D, then we have exactly:

� Where o2 are the eigenvalues of j.

where



Canonical Form and Classification

� In this form, the system of PDE is finally diagonal and thus all Equations uncouple:

� The classification of the system of first-order PDEs is done based on the nature of the eigenvalues of the 
matrix j = L."K:
� If all the n eigenvalues of D are real and distinct the system is called hyperbolic type;

� If all the n eigenvalues of D are complex the system is called elliptic type;

� If some of the n eigenvalues are real and other complex the system is considered as hybrid of elliptic-
hyperbolic type.

� If the rank of matrix D is less than n, i.e., there are less than n real eigenvalues (some of the eigenvalues are 
repeated) then the system is said to be parabolic type.



Example #1



Example #2



Example #2



Example #2



Example #2



Example #3



Example #3



Example #3



Boundary Conditions



Boundary Conditions: Hyperbolic case

� As discussed, in the hyperbolic case, initial & boundary values propagates along characteristics.

� Any point is influenced by neighbours 

� The problem will be well posed if we specify the conditions described in the following diagram:

Solution uniquely 
determined from initial 
& boundary conditions. 
Not possible to specify 
additional conditions.Boundary conditions

t

x



Boundary Conditions: Hyperbolic case

� Consider the 2nd order wave equation: you’ll need to specify two initial conditions (function and its 
derivative) + one b.c. for each side.

� Since information is brought by characteristic, it is important (for a well-posed problem) that each 
characteristic passes through either a initial condition or a boundary one. 

� Otherwise, the problem would be over-specified or under-specified. 

� The parabolic case, from this point of view is similar to the hyperbolic case.

� If the nature of the equation changes à matching conditions at the interface.



Boundary Conditions: Hyperbolic case

What happens if two CC intersects ? 

� We end up in a situation like the one depicted: the 
problem is solved by the birth of a discontinuous wave 
governed by appropriate jump-conditions. 

� These discontinuous waves (e.g. shocks) may form also 
when the solution is initially continuous.



Boundary Conditions: Elliptic Case

� Need to specify on the whole boundary. Global coupling

Boundary Conditions


