
Numerical Methods for Partial 
Differential Equations

Lecture 2: Analytical Solutions



Lecture Outline

� Linear Equations & simple geometries;

� Three kind of equations: Hyperbolic, Parabolic & Elliptic

� Wave equation, diffusion equation, Laplace & Poisson Equations

� Differences between the solutions for the three  kinds, in particular Wave equation and diffusion 

equation

� Methods of solutions:     separation of variables, Fourier series, Green functions



Analytical solutions: Hyperbolic PDE



Wave Equation

� Consider the wave PDE                                           in 

� Split it as 

� Characteristic coordinates:       

� Characteristic curves:

� Initial conditions:

� Since we expect a unique solution, we need to specify       and         in accordance with the I.C.
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Wave Equation

� Doing the math:

� Integrating
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Example #1

� Two triangular functions one moving to the right and the other to the left
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!! *, 0 = 0

→ 	! *, ) = 	…	 (Try	yourself	!)



Example #2

� Find the analytical solution of the wave equation, given the initial condition

! *, 0 =
1
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!! *, 0 = 0



Causality

� The effect of an initial pulse is a pair of waves traveling in either direction at speed c and at half the 

original amplitude. 

� The effect of an initial velocity is a wave spreading out at speed ≤ -.

� Part of the wave may lag behind (if there is an initial velocity) but no part goes faster than -.

x

t

°
'#, 0

' −
89
=
' #' +

89 =
'#

An initial condition at the point '#, 0 can affect the 

solution for  9 > 0 only in the shaded sector,

which is called the domain of influence
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' − 89, ' + 89 is the interval of dependence

The entire shaded area  is called the domain of dependence 
or the past history of the point ', 9

Domain of Dependence

� Fix a point ", 7 for 7 > 0.

� The value ! ", 7 	depends on ! " − -7, 0 and ! " + -, 0 and !! in interval " − -7, " + -7 at  7 = 0



Conservation of Energy
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Conservation of energy is one of the most basic facts of the wave equation



Analytical solutions: Parabolic PDE
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Diffusion Equation: the Maximum Principle

� Properties of the solutions very different with respect to the wave 

equation;

� Maximum principle:  if   ! ", 7 satisfies the diffusion equation in a 

rectangle  0 ≤ " ≤ B, 0 ≤ 7 ≤ C in space-time, then the maximum  

value of ! ", 7 is assumed either initially 7 = 0 or on the lateral sides  

" = 0 DE " = B .

� The minimum value has the same property.

� Rod with non internal heat sources, the hottest spot and the coldest 

spot can occur only initially or at one of the two ends.

� The differential equation tend to smooth the solution.



� Our method is to solve it for a particular φ(x) and then build the general solution from this 

particular one.

� The particular solution we will look for is  the one, denoted Q(x, t), which satisfies the special 

initial condition

� The reason for this choice is that this initial condition does not change under dilation.
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Diffusion on the whole line



� If ! ", 7 is a solution, so is the dilated function ! F", F7

� We’ll look for Q(x, t) of the special form

� This combination makes Q invariant under dilation, self-similar solution

� We can then convert our PDE into an ODE:
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Solution behavior under dilation



� The constants -+ and  -) are determined by the initial conditions

� This solution is valid only for 7 > 0.

� Define R =
/0
/% . Then R is also a solution, but it does not satisfy our initial condition;

� What is the initial condition for R ?  à A δ function

� Given any function φ, we also define

� Where u is another solution that satisfies the initial condition    ! ", 0 = T "
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Solution behavior under dilation



� R is called Green function or source  function

� The area under the curves are constant in time

� S(x − y, t) represents the result of a “hot spot” at y at time t = 0.

� The value of the solution u(x,	t) is a kind of weighted average of the initial 

values  around the point x.

� Consider diffusion. S(x − y, t) represents the result of a unit mass (say, 1 gr) of 

substance located at time zero exactly at the position y which is diffusing 

(spreading out)  as time advances. 

� For any initial distribution of concentration, the amount of substance initially 

in the interval Yy spreads out in time and contributes approximately the term    

S(x − y , t)φ(y  ) YV .
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Solution behavior under dilation



Diffusion tends to smooth 

out singularities

Short wavelengths disappear 

faster

Diffusion Eq: Solutions



� The wave equation has no maximum principle  (it transfer information along the characteristic curves)

� Singularities:   

Ø wave equation:        transported along characteristics

Ø diffusion equation: lost immediately (the solution is differentiable at all orders even if the initial data are not) 

for 9 > 0 < is a Gaussian.

� The value of u(x, t) depends on the values of the initial datum φ(y) for all y, where −∞ < y < ∞. 

� Conversely, the value of φ at a point "# has an immediate effect everywhere (for t > 0), even though 

most of its effect is only for a short time** near "#.

� The energy decays to zero (if φ integrable) 

� Infinite speed of propagation of information 

� Irreversibility, information is lost

Comparison Between Wave and Diffusion equations



� We now consider solutions for the wave equation on a finite interval 0 < " < B.

� Homogeneous Dirichlet conditions for the wave equation

� The method we shall use consists of building up the general solution as a linear combination of special 

ones that are easy to find.

� We look for solutions of the form	 ! ", 7 = ] " C 7

� Plugging into the wave equation, we get ] " C"" 7 = -)C 7 ]′′ " , dividing by −-)]C we get:

!!! = -)!%% for 0 < " < B

Initial conditions:          ! ", 0 = T " !! ", 0 = ψ "
Boundary Conditions: ! 0, 7 = 0 ! B, 7 = 0
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Wave Eq: Boundary Problems**



� We will see that λ > 0 then we let λ = _). Then the equations above are a pair of separate  ordinary 

differential equations for X(x) and T(t):

� These ODEs are easy to solve. The solutions have the form

where A, B, C, and D are constants.

� The second step is to impose the boundary conditions on the separated solution. They simply require 

that ] 0 = ] B = 0"". Thus
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eigenvalues

Eigenfunctions, normal modes

Wave Eq: Boundary Problems**



� Putting together with the time dependence

� The sum of solutions  is again a solution   (superposition principle)

� We can now impose the initial conditions
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Wave Eq: Boundary Problems**



� Why are all the eigenvalues of this problem positive?

λ = 0 ]"" = 0 ] = g + h" cannot satisfy the BC

λ < 0 ]"" − i)] = 0 ] = g cosh i" + h sinh i"
cannot again satisfy the BC

Wave Eq: Boundary Problems**



� Consider

� Using variable separation

� This is precisely the same problem for X(x) as before and so has the same solutions. 

� For T(t) we have instead an exponential solution

Diffusion Eq: Boundary Problems
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� For the initial conditions we have

� Each normal mode has an exponential decay

� The decay rate depends on the square of the wavenumber.

� For example, consider the diffusion of a  substance in a tube of length l. each end of the tube opens up 

into a very large empty vessel. So the concentration u(x, t) at each end is essentially zero. Given an 

initial concentration φ(x) in the tube, the concentration at all later times is given by formula above.

� Notice that as t → ∞, each term in the sumgoes to zero. Thus the substance gradually empties out into 

the two vessels and less and less remains in the tube
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Diffusion Eq: Boundary Problems



t

Initial triangular temperature distribution

T fixed at the two boundaries

**



� Zero derivatives at both boundaries

� Eigenfunctions are cosines, the eigenvalue  λ = 0 is allowed

� Eigenvalue λ = 0

� What is the behavior of u(x, t) as t → +∞ ?  à Since all but the first term  contains an exponentially 

decaying factor, the solution decays quite fast to the first constant term.

� Since these boundary conditions correspond to insulation at both ends, this agrees perfectly with our 

intuition.
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� For instance, if u(x, t) represents the temperature of a rod, then φ(x) is the initial temperature 

distribution and f (x, t) is a source (or sink) of heat provided to the rod at later times

� Solution to the homogeneous equation

� We have to add a term that takes into account the source term
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Diffusion with a source



� Proof:
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Diffusion with a source



Wave Equation in 2 Spatial Dimensions



� Wave equation in two spatial dimension

� Using Separation of variables:

� Each term must be a constant:

� Solutions  are    sines and cosines
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Wave Equation in 2D



� Imposing the BC:

� The functions u;<(t,x,y) are the normal modes of vibration of the 

rectangular membrane, and ω;< are the membrane's natural 

frequencies .

� Modes of vibration of a rectangular membrane with a=1 and b=2 , 

plotted as functions of x and y.

� The modes are labelled with two positive Integers, n and m and 

they are evaluated at t=0.
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Wave Equation in 2D





� General solution: ! 7, ", V =`
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General Solution



Elliptic Equations in 2 Spatial Dimensions



� A real-valued solution u(x,	y) to the Laplace equation is known as a harmonic function.

� Besides their theoretical importance, the Laplace and Poisson equations arise as the basic equilibrium 

equations in a remarkable variety of physical systems. 

� For example, we may interpret u(x, y) as the displacement of a membrane; the inhomogeneity f (x, y)

in the Poisson equation represents an external forcing over the surface of the membrane.

� Another example is in the thermal equilibrium of flat plates; here u(x, y) represents the temperature 

and f (x, y) an external heat source.

� In fluid mechanics, u(x, y) represents the potential function whose gradient v = ∇! is the velocity 

vector field of a steady planar fluid flow.

� Similar considerations apply to two-dimensional electrostatic and gravitational potentials.

� Since both the Laplace and Poisson equations describe equilibrium configurations, theyalmost always 

appear the context of boundary value problems.

!## + !MM = 0	 or	 !## + !MM = 2(*, L)

Laplace & Poisson Equation in 2D



� We seek a solution u(x,	y) to the partial differential equation defined at points (x,	y) belonging to a 

bounded, open domain . The solution is required to satisfy suitable conditions on the boundary of the 

domain, denoted by ∂Ω.

� Our approach will be based on the method of separation of variables ! ", 7 = G " J V

� Linear combinations of solutions are still solutions                        Superposition principle.

� We use this property to satisfy boundary conditions.

MNN * = +λM(*), 

ONN L = −λO(L)

Laplace & Poisson Equation in 2D



� Not so easy. The only bounded domains on which we can explicitly solve boundary value problems 

using the preceding separable solutions are rectangles

� We use Dirichlet boundary conditions:

So that: 

∆! = 0 on a rectangle o = 0 < " < F, 0 < V < p

! ", 0 = ) " ! ", p = 0 ! 0, V = 0 ! F, V = 0

G 0 = 0 G F = 0 J p = 0

Laplace & Poisson Equation in 2D



� The 2nd and 3rd cases cannot satisfy the second boundary condition

� 1st case:    G F = sintF = 0 tF = dU

� 3rd boundary condition:   J p = 0 à J2 = sinh
23 @&1

?

� The complete solution is:              !2 ", V = sin
23%
? sinh

23 @&1
?

� In order to satisfy the inhomogeneous BC we consider the infinite series

� At the bottom edge
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Laplace & Poisson Equation in 2D



� Maximum principle: the highest and lowest 

points are necessarily on the boundary of the 

domain

� This reconfirms our physical intuition: if we think 

of an elastic membrane, the restoring force 

exerted by the stretched membrane will serve to 

flatten any bump, and hence a membrane with a 

local maximum or minimum cannot be in 

equilibrium.

Example of Solutions



� Mean value theorem:   the value of a harmonic function at a point is equal to its average value over 

circles or spheres centered at that point. 

� Minimization of energy: An harmonic function minimizes the quantity  > =
+
)∫A z! )9{ between all 

function in Ω that satisfies the same BC on ZΩ.

� Laplace equation typically describes equilibrium problems, at equilibrium energy is minimized.

Properties of Harmonic Functions



� Consider      ∇){ = −)

� Green function satisfies        ∇)} ~, ~" = −Y(~ − ~")

� Formal solution:     { ~ = 	∫} ~, ~" ) ~" 9{′

� Take the vector field          G = −∇E&+ = BC
D!	

� This has zero divergence everywhere except at r=0. Therefore   ∆
+
D = 0 everywhere except r = 0

Green function for the 3D Poisson Equation



� These results take a familiar turn, and they can be given a compelling physical interpretation 

� Green's equation is identical to Poisson's equation for a point charge of unit strength 

� To obtain the potential V of a distribution of charge density f, we invoke the superposition principle 

Green function for the 3D Poisson Equation


