Numerical Methods for Partial Differential Equations

Lecture 2: Analytical Solutions

Lecture Outline

O Linear Equations \& simple geometries;
O Three kind of equations: Hyperbolic, Parabolic \& Elliptic
O Wave equation, diffusion equation, Laplace \& Poisson Equations
O Differences between the solutions for the three kinds, in particular Wave equation and diffusion equation

O Methods of solutions: separation of variables, Fourier series, Green functions

Analytical solutions: Hyperbolic PDE

Wave Equation

○ Consider the wave PDE $\quad u_{t t}=c^{2} u_{x x} \quad$ in $\quad-\infty<x<\infty$

O Split it as

$$
u_{t t}-c^{2} u_{x x}=\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0
$$

O Characteristic coordinates: $\quad \xi=x-c t, \eta=x+c t, u_{\xi \eta}=0$

O Characteristic curves:

$$
u(x, t)=f(x+c t)+g(x-c t)
$$

O Initial conditions: $u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)$

O Since we expect a unique solution, we need to specify f and g in accordance with the I.C.

Wave Equation

O Doing the math:

O Integrating

$$
\begin{aligned}
& \phi(x)=f(x)+g(x) \quad \frac{1}{c} \psi(x)=f^{\prime}(x)-g^{\prime}(x) \\
& f^{\prime}=\frac{1}{2}\left(\phi^{\prime}+\frac{\Psi}{c}\right) \quad g^{\prime}=\frac{1}{2}\left(\phi^{\prime}-\frac{\psi}{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(s) \rightarrow f(x+c t) \\
& u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
\end{aligned}
$$

Example \#1

O Two triangular functions one moving to the right and the other to the left

$$
u(x, 0)=\left\{\begin{array}{lll}
b-\frac{b|x|}{a} & \text { for }|x|<a \\
0 & \text { for } & |x|>a
\end{array}\right.
$$

$$
u_{t}(x, 0)=0
$$

$\rightarrow u(x, t)=\ldots \quad$ (Try yourself $!)$

Example \#\#

O Find the analytical solution of the wave equation, given the initial condition

$$
\begin{gathered}
u(x, 0)=\frac{1}{1+x^{2}} \\
u_{t}(x, 0)=0
\end{gathered}
$$

Causality

O The effect of an initial pulse is a pair of waves traveling in either direction at speed c and at half the original amplitude.

O The effect of an initial velocity is a wave spreading out at speed $\leq c$.
O Part of the wave may lag behind (if there is an initial velocity) but no part goes faster than c.

An initial condition at the point $\left(x_{0}, 0\right)$ can affect the solution for $t>0$ only in the shaded sector, which is called the domain of influence

Domain of Dependence

\bigcirc Fix a point (x, t) for $t>0$.
O The value $u(x, t)$ depends on $u(x-c t, 0)$ and $u(x+c, 0)$ and u_{t} in interval $[x-c t, x+c t]$ at $t=0$

$[x-c t, x+c t]$ is the interval of dependence

The entire shaded area is called the domain of dependence or the past history of the point (x, t)

Conservation of Energy

$$
\left.\begin{array}{rlrl}
K E & =\frac{1}{2} \int u_{t}^{2} d x & \longrightarrow & \frac{d K E}{d t}
\end{array}=\int u_{t} u_{t t} d x\right] \text { 胃 } \begin{array}{rlrl}
d t & =c^{2} \int u_{t} u_{x x} d x \\
u_{t t} & =c^{2} u_{x x} & \longrightarrow
\end{array}
$$

$$
\begin{aligned}
& \frac{d K E}{d t}=c^{2} \int u_{t} u_{x x} d x \xrightarrow{\text { integrate by parts } \frac{d K E}{d t}=c^{2} u_{t} u_{x}-c^{2} \int u_{t x} u_{x} d x} \\
& \text { Vanishes because } u \rightarrow 0 \text { as }|x| \rightarrow \infty \\
& \frac{d K E}{d t}=-c^{2} \int u_{t x} u_{x} d x=-c^{2} \frac{d}{d t} \int \frac{1}{2} u_{x}^{2} d x \\
& E=\frac{1}{2} \int_{-\infty}^{+\infty}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right)
\end{aligned}
$$

Conservation of energy is one of the most basic facts of the wave equation

Analytical solutions: Parabolic PDE

Diffusion Equation: the Maximum Principle

$$
u_{t}=k u_{x x}
$$

O Properties of the solutions very different with respect to the wave equation;

O Maximum principle: if $u(x, t)$ satisfies the diffusion equation in a rectangle $0 \leq x \leq l, \quad 0 \leq t \leq T$ in space-time, then the maximum value of $u(x, t)$ is assumed either initially $(t=0)$ or on the lateral sides ($x=0$ or $x=l$).

O The minimum value has the same property.
O Rod with non internal heat sources, the hottest spot and the coldest spot can occur only initially or at one of the two ends.

O The differential equation tend to smooth the solution.

Diffusion on the whole line

$$
\begin{aligned}
& u_{t}=k u_{x x} \quad-\infty<x<\infty \quad 0<t<\infty \\
& u(x, 0)=\varphi(x)
\end{aligned}
$$

O Our method is to solve it for a particular $\varphi(x)$ and then build the general solution from this particular one.

O The particular solution we will look for is the one, denoted $\mathrm{Q}(\mathrm{x}, \mathrm{t})$, which satisfies the special initial condition

$$
\begin{array}{lll}
Q(x, 0)=1 & \text { for } & x>0 \\
Q(x, 0)=0 & \text { for } & x<0
\end{array}
$$

O The reason for this choice is that this initial condition does not change under dilation.

Solution behavior under dilation

O If $u(x, t)$ is a solution, so is the dilated function $u(\sqrt{a} x, a t)$

$$
v(x, t)=u(\sqrt{a} x, a t) \longrightarrow \begin{aligned}
& v_{t}=a u_{t} \\
& v_{x x}=a u_{x x}
\end{aligned}
$$

O We'll look for $Q(x, t)$ of the special form

$$
Q(x, t)=g(p) \quad \text { with } \quad p=\frac{x}{\sqrt{4 k t}}
$$

O This combination makes Q invariant under dilation, self-similar solution

O We can then convert our PDE into an ODE:

$$
g^{\prime \prime}+2 p g^{\prime}=0 \quad Q(x, t)=c_{1} \int_{0}^{x / \sqrt{4 k t}} \exp \left(-p^{2}\right) d p+c_{2}
$$

Solution behavior under dilation

\bigcirc The constants c_{1} and c_{2} are determined by the initial conditions

$$
Q(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{x / \sqrt{4 k t}} \exp \left(-p^{2}\right) d p
$$

O This solution is valid only for $t>0$.
O Define $S=\frac{\partial Q}{\partial x}$. Then S is also a solution, but it does not satisfy our initial condition;
\bigcirc What is the initial condition for $S ? \rightarrow$ A δ function
\bigcirc Given any function φ, we also define

$$
u(x, t)=\int_{-\infty}^{+\infty} S(x-y, t) \varphi(y) d y \quad \text { for } \quad t>0
$$

O Where u is another solution that satisfies the initial condition $u(x, 0)=\varphi(x)$

Solution behavior under dilation

$$
S=\frac{\partial Q}{\partial x}=\frac{1}{2 \sqrt{\pi k t}} e^{-x^{2} / 4 k t} \text { for } t>0
$$

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} \varphi(y) d y
$$

O S is called Green function or source function
O The area under the curves are constant in time
O $S(x-y, t)$ represents the result of a "hot spot" at y at time $t=0$.
O The value of the solution $u(x, t)$ is a kind of weighted average of the initial values around the point x.

O Consider diffusion. $S(x-y, t)$ represents the result of a unit mass (say, 1 gr) of substance located at time zero exactly at the position y which is diffusing (spreading out) as time advances.
O For any initial distribution of concentration, the amount of substance initially in the interval δ y spreads out in time and contributes approximately the term $\mathrm{S}(\mathrm{x}-\mathrm{y}, \mathrm{t}) \varphi(\mathrm{y}) \delta y$.

Diffusion Eq: Solutions

Diffusion tends to smooth out singularities

Short wavelengths disappear faster

Comparison Between Wave and Diffusion equations

O The wave equation has no maximum principle (it transfer information along the characteristic curves)
O Singularities:
> wave equation: transported along characteristics
$>$ diffusion equation: lost immediately (the solution is differentiable at all orders even if the initial data are not) for $t>0 \quad S$ is a Gaussian.

O The value of $u(x, t)$ depends on the values of the initial datum $\varphi(y)$ for all y, where $-\infty<y<\infty$.
O Conversely, the value of φ at a point x_{0} has an immediate effect everywhere (for $t>0$), even though most of its effect is only for a short time** near x_{0}.
O The energy decays to zero (if φ integrable)
$\mathrm{O} \longrightarrow$ Infinite speed of propagation of information
O Irreversibility, information is lost

Wave Eq: Boundary Problems**

O We now consider solutions for the wave equation on a finite interval $0<x<l$.
O Homogeneous Dirichlet conditions for the wave equation

$$
\begin{array}{lll}
u_{t t}=c^{2} u_{x x} \text { for } & 0<x<l \\
\text { Initial conditions: } & u(x, 0)=\varphi(x) & u_{t}(x, 0)=\psi(x) \\
\text { Boundary Conditions: } u(0, t)=0 & u(l, t)=0
\end{array}
$$

O The method we shall use consists of building up the general solution as a linear combination of special ones that are easy to find.
O We look for solutions of the form $u(x, t)=X(x) T(t)$
O Plugging into the wave equation, we get $X(x) T^{\prime \prime}(t)=c^{2} T(t) X^{\prime \prime}(x)$, dividing by $-c^{2} X T$ we get:

$$
-\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=-\frac{X^{\prime \prime}(x)}{X(x)}=\lambda \quad \text { here } \lambda \text { has to be a constant }
$$

Wave Eq: Boundary Problems**

O We will see that $\lambda>0$ then we let $\lambda=\beta^{2}$. Then the equations above are a pair of separate ordinary differential equations for $X(x)$ and $T(t)$:

$$
\begin{aligned}
& X^{\prime \prime}+\widehat{\beta}^{2} \widehat{X=0} \text { eigenvalues } \\
& \qquad T^{\prime \prime}+c^{2} \beta^{2} T=0
\end{aligned}
$$

O These ODEs are easy to solve. The solutions have the form

$$
x(x)=c \cos (\beta x)+D \sin (\beta x) \longleftarrow \mathrm{T}(x)=A \cos (c \beta t)+B \sin (c \beta t)
$$

where A, B, C, and D are constants.
O The second step is to impose the boundary conditions on the separated solution. They simply require that $X(0)=X(l)=0^{\prime \prime}$. Thus

$$
\begin{array}{lll}
C=0 \quad D \sin (\beta l)=0 \longrightarrow & \beta l=n \pi
\end{array} \quad \lambda_{n}=\frac{n \pi}{l} \quad \begin{aligned}
& \text { not all } \\
& \text { wavelengths } \\
& \text { are allowed }
\end{aligned}
$$

Wave Eq: Boundary Problems**

O Putting together with the time dependence $u(x, t)=\left(A_{n} \cos \frac{n \pi c t}{l}+B_{n} \sin \frac{n \pi c t}{l}\right) \sin \frac{n \pi x}{l}$

O The sum of solutions is again a solution (superposition principle)

$$
u(x, t)=\sum_{n}\left(A_{n} \cos \frac{n \pi c t}{l}+B_{n} \sin \frac{n \pi c t}{l}\right) \sin \frac{n \pi x}{l}
$$

O We can now impose the initial conditions

$$
\varphi(x)=u(x, 0)=\sum_{n} A_{n} \sin \frac{n \pi x}{l} \quad \psi(x)=u_{t}(x, 0)=\sum_{n} \frac{n \pi c}{l} B_{n} \sin \frac{n \pi x}{l}
$$

Fourier series
$\frac{n \pi c t}{l}$ are the frequencies

Wave Eq: Boundary Problems**

O Why are all the eigenvalues of this problem positive?

$$
\begin{aligned}
& \lambda=0 \longrightarrow X^{\prime \prime}=0 \quad X=C+D x \text { cannot satisfy the } B C \\
& \lambda<0 \longrightarrow X^{\prime \prime}-\gamma^{2} X=0 \quad \begin{array}{l}
X=C \cosh \gamma x+D \sinh \gamma x \\
\text { cannot again satisfy the BC }
\end{array}
\end{aligned}
$$

Diffusion Eq: Boundary Problems

$$
u_{t}=k u_{x x} \quad \text { for } \quad 0<x<l
$$

O Consider

$$
\begin{array}{ll}
\text { Initial Condition: } & u(x, 0)=\varphi(x) \\
\text { Boundary Condition: } & u(0, t)=0 \quad u(l, t)=0
\end{array}
$$

$$
X^{\prime \prime}+\lambda X=0
$$

O Using variable separation

$$
u(x, t)=X(x) T(t) \quad \longrightarrow \quad T^{\prime}=-\lambda k T
$$

O This is precisely the same problem for $X(x)$ as before and so has the same solutions.
O For $T(t)$ we have instead an exponential solution

$$
u(x, t)=\sum_{n} A_{n} \exp \left(-(n \pi / l)^{2} k t\right) \sin \frac{n \pi x}{l}
$$

Diffusion Eq: Boundary Problems

O For the initial conditions we have

$$
\varphi(x)=u(x, 0)=\sum_{n} A_{n} \sin \frac{n \pi x}{l}
$$

O Each normal mode has an exponential decay
O The decay rate depends on the square of the wavenumber.

O For example, consider the diffusion of a substance in a tube of length l. each end of the tube opens up into a very large empty vessel. So the concentration $u(x, t)$ at each end is essentially zero. Given an initial concentration $\varphi(x)$ in the tube, the concentration at all later times is given by formula above.
O Notice that as $t \rightarrow \infty$, each term in the sumgoes to zero. Thus the substance gradually empties out into the two vessels and less and less remains in the tube

Initial triangular temperature distribution
T fixed at the two boundaries

Neumann b.c.

O Zero derivatives at both boundaries
O Eigenfunctions are cosines, the eigenvalue $\lambda=0$ is allowed

$$
\begin{aligned}
u(x, t) & =\frac{1}{2} A_{0}+\sum_{n} A_{n} \exp \left(-(n \pi / l)^{2} k t\right) \cos \frac{n \pi x}{l} \\
\varphi(x) & =u(x, 0)=\frac{1}{2} A_{0}+\sum_{n} A_{n} \cos \frac{n \pi x}{l}
\end{aligned}
$$

\bigcirc Eigenvalue $\lambda=0$
O What is the behavior of $u(x, t)$ as $t \rightarrow+\infty$? \rightarrow Since all but the first term contains an exponentially decaying factor, the solution decays quite fast to the first constant term.
O Since these boundary conditions correspond to insulation at both ends, this agrees perfectly with our intuition.

Diffusion with a source

$$
\begin{array}{ll}
u_{t}-k u_{x x}=f(x, t) & -\infty<x<\infty \quad 0<t<\infty \\
u(x, 0)=\varphi(x) &
\end{array}
$$

O For instance, if $u(x, t)$ represents the temperature of a rod, then $\varphi(x)$ is the initial temperature distribution and $f(x, t)$ is a source (or sink) of heat provided to the rod at later times

O Solution to the homogeneous equation

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} S(x-y, t) \varphi(y) d y \quad S(x-y, t)=\exp \left(-(x-y)^{2} / 4 k t\right)
$$

O We have to add a term that takes into account the source term

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} S(x-y, t) \varphi(y) d y+\int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t-s) f(y, s) d y d s
$$

Diffusion with a source

O Proof:

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t-s) f(y, s) d y d s=\int_{0}^{t} \int_{-\infty}^{\infty} \frac{\partial}{\partial t} S(x-y, t-s) f(y, s) d y d s+ \\
& +\lim _{s \rightarrow t} \int_{-\infty}^{\infty} S(x-y, t-s) f(y, s) d y=\int_{0}^{t} \int_{-\infty}^{\infty} k \frac{\partial^{2}}{\partial x^{2}} S(x-y, t-s) f(y, s) d y d s+
\end{aligned}
$$

$$
+\lim _{\varepsilon \rightarrow 0} \int_{-\infty}^{\infty} S(x-y, \varepsilon) f(y, t) d y=k \frac{\partial^{2} u}{\partial x^{2}}+f(x, t)
$$

This identity is exactly the PDE

Wave Equation in 2 Spatial Dimensions

Wave Equation in 2D

O Wave equation in two spatial dimension

$$
\begin{array}{rc}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right) & R=\{0<x<a, \\
u(t, x=0, y)=0 & u(t, x=a, y)=0 \\
u(t, x, y=0)=0 & u(t, x, y=b)=0
\end{array}
$$

O Using Separation of variables: $u(t, x, y)=X(x) Y(y) T(t)$

$$
0=-\frac{1}{c^{2} T} \frac{d^{2} T}{d t^{2}}+\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}
$$

O Each term must be a constant: $\quad \frac{1}{X} \frac{d^{2} X}{d x^{2}}=-k_{x}{ }^{2} \quad \frac{1}{Y} \frac{d^{2} Y}{d x^{2}}=-k_{y}{ }^{2}$

$$
\frac{1}{T} \frac{d^{2} T}{d t^{2}}=-c^{2}\left(k_{x}^{2}+k_{y}^{2}\right)
$$

O Solutions are sines and cosines

Wave Equation in 2D

O Imposing the BC :

$$
u_{n, m}(t, x, y)=\sin \frac{n \pi x}{a} \sin \frac{m \pi y}{b}\left\{\begin{array}{l}
\sin \omega_{n m} t \\
\cos \omega_{n m} t
\end{array}\right\} \quad \omega_{n m}=\pi c \sqrt{\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}}
$$

O The functions $u_{n m}(t, x, y)$ are the normal modes of vibration of the rectangular membrane, and ω_{nm} are the membrane's natural frequencies.

O Modes of vibration of a rectangular membrane with $\mathrm{a}=1$ and $\mathrm{b}=2$, plotted as functions of x and y.
O The modes are labelled with two positive Integers, n and m and they are evaluated at $t=0$.

General Solution

O General solution: $u(t, x, y)=\sum_{n} \sum_{m} \sin \frac{n \pi x}{a} \sin \frac{m \pi y}{b}\left(a_{n} \sin \omega_{n m} t+b_{n} \cos \omega_{n m} t\right)$

The coefficients $a_{n m}$ and $b_{n m}$ are determined by the initial conditions.

$$
\begin{aligned}
& u(0, x, y)=f(x, y)=\sum_{n} \sum_{n m} b_{n m} \sin \frac{n \pi x}{a} \sin \frac{m \pi y}{b} \\
& u_{t}(0, x, y)=g(x, y)=\sum_{n}^{m} \sum_{m} a_{n m} \omega_{n m} \sin \frac{n \pi x}{a} \sin \frac{m \pi y}{b} \\
& b_{n m}=\frac{4}{a b} \int_{0}^{a} \int_{0}^{b} f(x, y) \sin \frac{n \pi x}{a} \sin \frac{m \pi y}{b} d x d y \\
& a_{n m}=\frac{4}{a b \omega_{n m}} \int_{0}^{a} \int_{0}^{b} g(x, y) \sin \frac{n \pi x}{a} \sin \frac{m \pi y}{b} d x d y
\end{aligned}
$$

Elliptic Equations in 2 Spatial Dimensions

Laplace \& Poisson Equation in 2D

$$
u_{x x}+u_{y y}=0 \quad \text { or } \quad u_{x x}+u_{y y}=f(x, y)
$$

O A real-valued solution $u(x, y)$ to the Laplace equation is known as a harmonic function.
O Besides their theoretical importance, the Laplace and Poisson equations arise as the basic equilibrium equations in a remarkable variety of physical systems.

O For example, we may interpret $u(x, y)$ as the displacement of a membrane; the inhomogeneity $f(x, y)$ in the Poisson equation represents an external forcing over the surface of the membrane.

O Another example is in the thermal equilibrium of flat plates; here $u(x, y)$ represents the temperature and $f(x, y)$ an external heat source.

O In fluid mechanics, $\mathrm{u}(\mathrm{x}, \mathrm{y})$ represents the potential function whose gradient $v=\nabla u$ is the velocity vector field of a steady planar fluid flow.

O Similar considerations apply to two-dimensional electrostatic and gravitational potentials.
O Since both the Laplace and Poisson equations describe equilibrium configurations, theyalmost always appear the context of boundary value problems.

Laplace \& Poisson Equation in 2D

O We seek a solution $u(x, y)$ to the partial differential equation defined at points (x, y) belonging to a bounded, open domain. The solution is required to satisfy suitable conditions on the boundary of the domain, denoted by $\partial \Omega$.

O Our approach will be based on the method of separation of variables $u(x, t)=v(x) w(y)$

$$
\begin{gathered}
v^{\prime \prime}(x)=+\lambda v(x) \\
w^{\prime \prime}(y)=-\lambda w(y)
\end{gathered}
$$

λ	$v(x)$	$w(y)$	$u(x, y)=v(x) w(y)$
$\lambda=-\omega^{2}<0$	$\cos \omega x, \sin \omega x$	$e^{-\omega y}, e^{\omega y}$,	$e^{\omega y} \cos \omega x, e^{\omega y} \sin \omega x$,
$\lambda=0$	$1, x$	$1, y$	$-\omega y$ $\cos \omega x, e^{-\omega y} \sin \omega x$
$\lambda=\omega^{2}>0$	$e^{-\omega x}, e^{\omega x}$	$\cos \omega y, \sin \omega y$	$e^{\omega x} \cos \omega y, e^{\omega x} \sin \omega y$, $e^{-\omega x} \cos \omega y, e^{-\omega x} \sin \omega y$

O Linear combinations of solutions are still solutions
Superposition principle.
O We use this property to satisfy boundary conditions.

Laplace \& Poisson Equation in 2D

O Not so easy. The only bounded domains on which we can explicitly solve boundary value problems using the preceding separable solutions are rectangles

$$
\Delta u=0 \text { on a rectangle } R=\{0<x<a, 0<y<b\}
$$

O We use Dirichlet boundary conditions:

$$
\begin{gathered}
u(x, 0)=f(x) \quad u(x, b)=0 \quad u(0, y)=0 \quad u(a, y)=0 \\
v(0)=0 \quad v(a)=0 \quad w(b)=0
\end{gathered}
$$

So that:

$$
v(x)= \begin{cases}\sin \omega x, & \lambda=-\omega^{2}<0 \\ x, & \lambda=0 \\ \sinh \omega x, & \lambda=\omega^{2}>0\end{cases}
$$

Laplace \& Poisson Equation in 2D

O The $2^{\text {nd }}$ and $3^{\text {rd }}$ cases cannot satisfy the second boundary condition
O $1^{\text {st }}$ case: $\quad v(a)=\sin \omega a=0 \quad \omega a=n \pi$

$$
w(y)=c_{1} \exp (\omega y)+c_{2} \exp (-\omega y) \quad \lambda_{n}=-\omega^{2}=-\frac{n^{2} \pi^{2}}{a^{2}}
$$

○ $3^{\text {rd }}$ boundary condition: $w(b)=0 \rightarrow w_{n}=\sinh \frac{n \pi(b-y)}{a}$
O The complete solution is: $\quad u_{n}(x, y)=\sin \frac{n \pi x}{a} \sinh \frac{n \pi(b-y)}{a}$

O In order to satisfy the inhomogeneous $B C$ we consider the infinite series

O At the bottom edge

$$
\begin{aligned}
& u(x, y)=\sum_{n} c_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi(b-y)}{a} \\
& u(x, 0)=f(x)=\sum_{n} c_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi b}{a} \\
& l
\end{aligned}
$$

Example of Solutions

O Maximum principle: the highest and lowest points are necessarily on the boundary of the domain

O This reconfirms our physical intuition: if we think of an elastic membrane, the restoring force exerted by the stretched membrane will serve to flatten any bump, and hence a membrane with a local maximum or minimum cannot be in equilibrium.

Properties of Harmonic Functions

O Mean value theorem: the value of a harmonic function at a point is equal to its average value over circles or spheres centered at that point.

O Minimization of energy: An harmonic function minimizes the quantity $E=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d V$ between all function in Ω that satisfies the same BC on $\partial \Omega$.

O Laplace equation typically describes equilibrium problems, at equilibrium energy is minimized.

Green function for the 3D Poisson Equation

O Consider $\quad \nabla^{2} V=-f$

O Green function satisfies $\quad \nabla^{2} G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=-\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$

O Formal solution: $V(\boldsymbol{r})=\int G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) f\left(\boldsymbol{r}^{\prime}\right) d V^{\prime}$

O Take the vector field $\quad v=-\nabla r^{-1}=\frac{\hat{r}}{r^{2}}$
O This has zero divergence everywhere except at $\mathrm{r}=\mathrm{o}$. Therefore $\Delta \frac{1}{r}=0$ everywhere except $\mathrm{r}=0$

Green function for the 3D Poisson Equation

$$
\begin{gathered}
\nabla^{2} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}=-4 \pi \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right), \quad G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\frac{1}{4 \pi} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \\
V(\boldsymbol{r})=\frac{1}{4 \pi} \int \frac{f\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d V^{\prime},
\end{gathered}
$$

O These results take a familiar turn, and they can be given a compelling physical interpretation

O Green's equation is identical to Poisson's equation for a point charge of unit strength

O To obtain the potential V of a distribution of charge density f, we invoke the superposition principle

