Numerical Methods for Partial Differential Equations

Lecture 2: Analytical Solutions

Lecture Outline

- O Linear Equations & simple geometries;
- O Three kind of equations: Hyperbolic, Parabolic & Elliptic
- **O** Wave equation, diffusion equation, Laplace & Poisson Equations
- O Differences between the solutions for the three kinds, in particular Wave equation and diffusion equation
- O Methods of solutions: separation of variables, Fourier series, Green functions

Analytical solutions: Hyperbolic PDE

Wave Equation

O Consider the wave PDE $u_{tt} = c^2 u_{xx}$ in $-\infty < x < \infty$

O Split it as
$$u_{tt} - c^2 u_{xx} = \left(\frac{\partial}{\partial t} - c\frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + c\frac{\partial}{\partial x}\right) u = 0$$

O Characteristic coordinates: $\xi = x - \text{ct}, \ \eta = x + ct, u_{\xi\eta} = 0$

O Characteristic curves: u(x,t) = f(x+ct) + g(x-ct) Characteristic curves

O Initial conditions: $u(x, 0) = \phi(x)$, $u_t(x, 0) = \psi(x)$

• Since we expect a unique solution, we need to specify f and g in accordance with the I.C.

Wave Equation

O Doing the math:

O Integrating

$$\begin{aligned} \varphi(x) &= f(x) + g(x) \\ \varphi' &= f' + g' \\ f' &= \frac{1}{2} \left(\varphi' + \frac{\psi}{c} \right) \\ f(s) &= \frac{1}{2} \varphi(s) + \frac{1}{2c} \int_{0}^{s} \psi + A \end{aligned} \qquad \begin{aligned} g(s) &= \frac{1}{2} \varphi(s) - \frac{1}{2c} \int_{0}^{s} \psi + B \\ A + B &= 0 \end{aligned}$$
(A & B constants)

$$f(s) \to f(x+ct)$$
$$u(x,t) = \frac{1}{2} [\phi(x+ct) + \phi(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds$$

Example #1

O Two triangular functions one moving to the right and the other to the left

• Find the analytical solution of the wave equation, given the initial condition

$$u(x,0) = \frac{1}{1+x^2}$$
$$u_t(x,0) = 0$$

Causality

- The effect of an initial pulse is a pair of waves traveling in either direction at speed c and at half the original amplitude.
- The effect of an initial velocity is a wave spreading out at speed $\leq c$.
- O Part of the wave may lag behind (if there is an initial velocity) but no part goes faster than *c*.

An initial condition at the point $(x_0, 0)$ can affect the solution for t > 0 only in the shaded sector, which is called the *domain of influence*

Domain of Dependence

• Fix a point (x, t) for t > 0.

• The value u(x,t) depends on u(x - ct, 0) and u(x + c, 0) and u_t in interval [x - ct, x + ct] at t = 0

[x - ct, x + ct] is the interval of dependence

The entire shaded area is called the domain of dependence or the past history of the point (x, t)

Conservation of Energy

Conservation of energy is one of the most basic facts of the wave equation

Analytical solutions: Parabolic PDE

Diffusion Equation: the Maximum Principle

 $u_t = k u_{xx}$

- Properties of the solutions very different with respect to the wave equation;
- O Maximum principle: if u(x, t) satisfies the diffusion equation in a rectangle $0 \le x \le l$, $0 \le t \le T$ in space-time, then the maximum value of u(x, t) is assumed either initially (t = 0) or on the lateral sides $(x = 0 \quad or \quad x = l)$.
- O The minimum value has the same property.
- Rod with non internal heat sources, the hottest spot and the coldest spot can occur only initially or at one of the two ends.

O The differential equation tend to smooth the solution.

Diffusion on the whole line

$$u_t = k u_{xx} - \infty < x < \infty \qquad 0 < t < \infty$$
$$u(x, 0) = \varphi(x)$$

- O Our method is to solve it for a particular $\varphi(x)$ and then build the general solution from this particular one.
- The particular solution we will look for is the one, denoted Q(x, t), which satisfies the special initial condition

Q(x,0) = 1 for x > 0Q(x,0) = 0 for x < 0

• The reason for this choice is that this initial condition does not change under dilation.

Solution behavior under dilation

• If u(x,t) is a solution, so is the dilated function $u(\sqrt{ax}, at)$

$$v(x,t) = u(\sqrt{a}x, at) \longrightarrow v_t = au_t$$

$$v_{xx} = au_{xx}$$
O We'll look for Q(x, t) of the special form
$$Q(x,t) = g(p) \quad with \qquad p = \frac{x}{\sqrt{4kt}}$$

O This combination makes Q invariant under dilation, self-similar solution

• We can then convert our PDE into an ODE:

$$g'' + 2pg' = 0$$
 $Q(x,t) = c_1 \int_0^{x/\sqrt{4kt}} \exp(-p^2) dp + c_2$

Solution behavior under dilation

O The constants c_1 and c_2 are determined by the initial conditions

$$Q(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_0^{x/\sqrt{4kt}} \exp(-p^2) dp$$

• This solution is valid only for t > 0.

O Define $S = \frac{\partial Q}{\partial x}$. Then S is also a solution, but it does not satisfy our initial condition;

- **O** What is the initial condition for $S ? \rightarrow A \delta$ function
- **O** Given any function φ , we also define

$$u(x,t) = \int_{-\infty}^{+\infty} S(x-y,t) \,\varphi(y) dy \qquad for \qquad t > 0$$

• Where u is another solution that satisfies the initial condition $u(x, 0) = \varphi(x)$

Solution behavior under dilation

$$S = \frac{\partial Q}{\partial x} = \frac{1}{2\sqrt{\pi kt}} e^{-x^2/4kt} \text{ for } t > 0$$

$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4kt} \varphi(y) dy$$

- S is called Green function or source function
- O The area under the curves are constant in time
- **O** S(x y, t) represents the result of a "hot spot" at y at time t = 0.
- The value of the solution u(x, t) is a kind of weighted average of the initial values around the point x.
- O Consider diffusion. S(x y, t) represents the result of a unit mass (say, 1 gr) of substance located at time zero exactly at the position y which is diffusing (spreading out) as time advances.
- For any initial distribution of concentration, the amount of substance initially in the interval δy spreads out in time and contributes approximately the term $S(x y, t)\phi(y) \delta y$.

Diffusion Eq: Solutions

Diffusion tends to smooth out singularities

Short wavelengths disappear faster

Comparison Between Wave and Diffusion equations

- **O** The wave equation has no maximum principle (it transfer information along the characteristic curves)
- O Singularities:
 - wave equation: transported along characteristics
 - diffusion equation: lost immediately (the solution is differentiable at all orders even if the initial data are not) for t > 0 S is a Gaussian.
- The value of u(x, t) depends on the values of the initial datum $\varphi(y)$ for all y, where $-\infty < y < \infty$.
- O Conversely, the value of φ at a point x_0 has an immediate effect everywhere (for t > 0), even though most of its effect is only for a short time** near x_0 .
- **O** The energy decays to zero (if ϕ integrable)
- O → Infinite speed of propagation of information
- O Irreversibility, information is lost

• We now consider solutions for the wave equation on a finite interval 0 < x < l.

O Homogeneous Dirichlet conditions for the wave equation

$$u_{tt} = c^2 u_{xx} \quad \text{for} \qquad 0 < x < l$$

Initial conditions: $u(x,0) = \varphi(x)$ $u_t(x,0) = \psi(x)$ Boundary Conditions:u(0,t) = 0u(l,t) = 0

- The method we shall use consists of building up the general solution as a linear combination of special ones that are easy to find.
- **O** We look for solutions of the form u(x, t) = X(x)T(t)

O Plugging into the wave equation, we get $X(x)T''(t) = c^2T(t)X''(x)$, dividing by $-c^2XT$ we get:

$$-\frac{T''(t)}{c^2T(t)} = -\frac{X''(x)}{X(x)} = \lambda$$

here λ has to be a constant

• We will see that $\lambda > 0$ then we let $\lambda = \beta^2$. Then the equations above are a pair of separate ordinary differential equations for X(x) and T(t):

O These ODEs are easy to solve. The solutions have the form

Eigenfunctions, normal modes $X(x) = C\cos(\beta x) + D\sin(\beta x)$ $T(x) = A\cos(c\beta t) + B\sin(c\beta t)$

where A, B, C, and D are constants.

• The second step is to impose the boundary conditions on the separated solution. They simply require that X(0) = X(l) = 0''. Thus

$$C = 0 \qquad D \sin(\beta l) = 0 \qquad \longrightarrow \qquad \beta l = n\pi \qquad \lambda_n = \frac{n\pi}{l} \qquad \text{not all wavelengths are allowed}$$
We have an infinite number of solutions
$$X_n(x) = \sin\left(\frac{n\pi x}{l}\right)$$

O Putting together with the time dependence $u(x,t) = \left(A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l}\right) \sin \frac{n\pi x}{l}$

O The sum of solutions is again a solution (superposition principle)

$$u(x,t) = \sum_{n} \left(A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l} \right) \sin \frac{n\pi x}{l}$$

• We can now impose the initial conditions

• Why are all the eigenvalues of this problem positive?

 $\lambda = 0 \longrightarrow X'' = 0 \qquad X = C + Dx$ cannot satisfy the BC

 $\lambda < 0$ \longrightarrow $X'' - \gamma^2 X = 0$ $X = C \cosh \gamma x + D \sinh \gamma x$ cannot again satisfy the BC

Diffusion Eq: Boundary Problems

$$u_t = k u_{xx}$$
 for $0 < x < l$

O Consider

Initial Condition: $u(x, 0) = \varphi(x)$ Boundary Condition: u(0, t) = 0 u(l, t) = 0u(x, t) = X(x)T(t) \longrightarrow $X'' + \lambda X = 0$

 $T' = -\lambda kT$

O Using variable separation

 \circ This is precisely the same problem for X(x) as before and so has the same solutions.

• For T(t) we have instead an exponential solution

$$u(x,t) = \sum_{n} A_{n} exp(-(n\pi/l)^{2}kt) \sin \frac{n\pi x}{l}$$
wavenumber

Diffusion Eq: Boundary Problems

O For the initial conditions we have

$$\varphi(x) = u(x,0) = \sum_{n} A_n \sin \frac{n\pi x}{l}$$

- O Each normal mode has an exponential decay
- **O** The decay rate depends on the square of the wavenumber.
- For example, consider the diffusion of a substance in a tube of length I. each end of the tube opens up into a very large empty vessel. So the concentration u(x, t) at each end is essentially zero. Given an initial concentration $\phi(x)$ in the tube, the concentration at all later times is given by formula above.
- O Notice that as $t \to \infty$, each term in the sumgoes to zero. Thus the substance gradually empties out into the two vessels and less remains in the tube

Initial triangular temperature distribution T fixed at the two boundaries

Neumann b.c.

O Zero derivatives at both boundaries

O Eigenfunctions are cosines, the eigenvalue $\lambda = 0$ is allowed

$$u(x,t) = \frac{1}{2}A_0 + \sum_n A_n exp(-(n\pi/l)^2 kt) \cos \frac{n\pi x}{l}$$

$$\varphi(x) = u(x,0) = \frac{1}{2}A_0 + \sum_n A_n \cos \frac{n\pi x}{l}$$

O Eigenvalue $\lambda = 0$

- O What is the behavior of u(x, t) as t → +∞? → Since all but the first term contains an exponentially decaying factor, the solution decays quite fast to the first constant term.
- Since these boundary conditions correspond to insulation at both ends, this agrees perfectly with our intuition.

Diffusion with a source

$$u_t - ku_{xx} = f(x, t) \qquad -\infty < x < \infty \qquad 0 < t < \infty$$
$$u(x, 0) = \varphi(x)$$

- For instance, if u(x, t) represents the temperature of a rod, then $\phi(x)$ is the initial temperature distribution and f(x, t) is a source (or sink) of heat provided to the rod at later times
- O Solution to the homogeneous equation

$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} S(x-y,t) \,\varphi(y) dy \qquad S(x-y,t) = exp(-(x-y)^2/4kt)$$

• We have to add a term that takes into account the source term

$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} S(x-y,t) \,\varphi(y) dy + \int_{0}^{t} \int_{-\infty}^{\infty} S(x-y,t-s) \,f(y,s) dy ds$$

Diffusion with a source

O Proof:

$$\frac{\partial}{\partial t} \int_0^t \int_{-\infty}^\infty S(x - y, t - s) f(y, s) dy ds = \int_0^t \int_{-\infty}^\infty \frac{\partial}{\partial t} S(x - y, t - s) f(y, s) dy ds +$$
$$+ \lim_{s \to t} \int_{-\infty}^\infty S(x - y, t - s) f(y, s) dy = \int_0^t \int_{-\infty}^\infty k \frac{\partial^2}{\partial x^2} S(x - y, t - s) f(y, s) dy ds +$$
$$+ \lim_{\varepsilon \to 0} \int_{-\infty}^\infty S(x - y, \varepsilon) f(y, t) dy = k \frac{\partial^2 u}{\partial x^2} + f(x, t)$$

This identity is exactly the PDE

Wave Equation in 2 Spatial Dimensions

Wave Equation in 2D

O Wave equation in two spatial dimension

 $u_{tt} = c^{2} (u_{xx} + u_{yy}) \qquad R = \{0 < x < a, \qquad 0 < y < b\}$ $u(t, x = 0, y) = 0 \qquad u(t, x = a, y) = 0$ $u(t, x, y = 0) = 0 \qquad u(t, x, y = b) = 0$

O Using Separation of variables: u(t, x, y) = X(x)Y(y)T(t) $0 = -\frac{1}{c^2T}\frac{d^2T}{dt^2} + \frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2}$

O Each term must be a constant:

$$\frac{1}{X}\frac{d^{2}X}{dx^{2}} = -k_{x}^{2} \qquad \frac{1}{Y}\frac{d^{2}Y}{dx^{2}} = -k_{y}^{2}$$
$$\frac{1}{T}\frac{d^{2}T}{dt^{2}} = -c^{2}(k_{x}^{2} + k_{y}^{2})$$

O Solutions are sines and cosines

Wave Equation in 2D

O Imposing the BC:

$$u_{n,m}(t, x, y) = \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b} \begin{cases} \sin \omega_{nm} t \\ \cos \omega_{nm} t \end{cases}$$

- O The functions $u_{nm}(t,x,y)$ are the normal modes of vibration of the rectangular membrane, and ω_{nm} are the membrane's natural frequencies .
- O Modes of vibration of a rectangular membrane with a=1 and b=2, plotted as functions of x and y.
- The modes are labelled with two positive Integers, n and m and they are evaluated at t=0.

General Solution

O General solution:

$$u(t, x, y) = \sum_{n} \sum_{m} \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b} (a_n \sin \omega_{nm} t + b_n \cos \omega_{nm} t)$$

The coefficients a_{nm} and b_{nm} are determined by the initial conditions.

$$u(0, x, y) = f(x, y) = \sum_{n} \sum_{m} b_{nm} \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b}$$
$$u_t(0, x, y) = g(x, y) = \sum_{n} \sum_{m} a_{nm} \omega_{nm} \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b}$$

$$b_{nm} = \frac{4}{ab} \int_0^a \int_0^b f(x, y) \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b} dx dy$$

$$a_{nm} = \frac{4}{ab\omega_{nm}} \int_0^a \int_0^b g(x, y) \sin\frac{n\pi x}{a} \sin\frac{m\pi y}{b} dx dy$$

Elliptic Equations in 2 Spatial Dimensions

 $u_{xx} + u_{yy} = 0$ or $u_{xx} + u_{yy} = f(x, y)$

- A real-valued solution u(x, y) to the Laplace equation is known as a <u>harmonic function</u>.
- O Besides their theoretical importance, the Laplace and Poisson equations arise as the basic equilibrium equations in a remarkable variety of physical systems.
- For example, we may interpret u(x, y) as the displacement of a membrane; the inhomogeneity f(x, y) in the Poisson equation represents an external forcing over the surface of the membrane.
- Another example is in the thermal equilibrium of flat plates; here u(x, y) represents the temperature and f(x, y) an external heat source.
- O In fluid mechanics, u(x, y) represents the potential function whose gradient $v = \nabla u$ is the velocity vector field of a steady planar fluid flow.
- O Similar considerations apply to two-dimensional electrostatic and gravitational potentials.
- Since both the Laplace and Poisson equations describe equilibrium configurations, they almost always appear the context of boundary value problems.

- O We seek a solution u(x, y) to the partial differential equation defined at points (x, y) belonging to a bounded, open domain. The solution is required to satisfy suitable conditions on the boundary of the domain, denoted by $\partial \Omega$.
- O Our approach will be based on the method of separation of variables u(x, t) = v(x)w(y)

$f''(x) = +\lambda n(x)$	λ	v(x)	w(y)	u(x,y) = v(x) w(y)
$u'(x) = -\lambda u(x),$	$\lambda = -\omega^2 < 0$	$\cos \omega x, \ \sin \omega x$	$e^{-\omega y}, e^{\omega y},$	$e^{\omega y} \cos \omega x, e^{\omega y} \sin \omega x, \\ e^{-\omega y} \cos \omega x, e^{-\omega y} \sin \omega x$
$(y) = -\lambda w(y)$	$\lambda = 0$	1, x	1, y	$1,\ x,\ y,\ xy$
	$\lambda=\omega^2>0$	$e^{-\omega x}, e^{\omega x}$	$\cos \omega y, \ \sin \omega y$	$e^{\omega x} \cos \omega y, e^{\omega x} \sin \omega y, \\ e^{-\omega x} \cos \omega y, e^{-\omega x} \sin \omega y$

O Linear combinations of solutions are still solutions

Superposition principle.

• We use this property to satisfy boundary conditions.

• Not so easy. The only bounded domains on which we can explicitly solve boundary value problems using the preceding separable solutions are rectangles

$$\Delta u = 0$$
 on a rectangle $R = \{0 < x < a, 0 < y < b\}$

• We use Dirichlet boundary conditions:

$$u(x,0) = f(x)$$
 $u(x,b) = 0$ $u(0,y) = 0$ $u(a,y) = 0$
 $v(0) = 0$ $v(a) = 0$ $w(b) = 0$

 $v(x) = \begin{cases} \sin \omega x, & \lambda = -\omega^2 < 0, \\ x, & \lambda = 0, \\ \sinh \omega x, & \lambda = \omega^2 > 0, \end{cases}$

So that:

O The 2nd and 3rd cases cannot satisfy the second boundary condition O 1st case: $v(a) = \sin \omega a = 0$ $\omega a = n\pi$ $w(y) = c_1 exp(\omega y) + c_2 exp(-\omega y)$ $\lambda_n = -\omega^2 = -\frac{n^2 \pi^2}{a^2}$ O 3rd boundary condition: $w(b) = 0 \rightarrow w_n = \sinh \frac{n\pi(b-y)}{a}$

O The complete solution is: $u_n(x, y) = \sin \frac{n\pi x}{a} \sinh \frac{n\pi (b-y)}{a}$

O In order to satisfy the inhomogeneous BC we consider the infinite series

$$u(x,y) = \sum_{n} c_n \sin \frac{n\pi x}{a} \sinh \frac{n\pi (b-y)}{a}$$
$$u(x,0) = f(x) = \sum_{n} c_n \sin \frac{n\pi x}{a} \sinh \frac{n\pi b}{a}$$
Fourier sine series

• At the bottom edge

Example of Solutions

O Maximum principle: the highest and lowest points are necessarily on the boundary of the domain

• This reconfirms our physical intuition: if we think of an elastic membrane, the restoring force exerted by the stretched membrane will serve to flatten any bump, and hence a membrane with a local maximum or minimum cannot be in equilibrium.

Properties of Harmonic Functions

- Mean value theorem: the value of a harmonic function at a point is equal to its average value over circles or spheres centered at that point.
- O Minimization of energy: An harmonic function minimizes the quantity $E = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dV$ between all function in Ω that satisfies the same BC on $\partial \Omega$.

O Laplace equation typically describes equilibrium problems, at equilibrium energy is minimized.

Green function for the 3D Poisson Equation

- **O** Consider $\nabla^2 V = -f$
- **O** Green function satisfies $\nabla^2 G(\mathbf{r}, \mathbf{r}') = -\delta(\mathbf{r} \mathbf{r}')$
- Formal solution: $V(\mathbf{r}) = \int G(\mathbf{r}, \mathbf{r}') f(\mathbf{r}') dV'$

• Take the vector field $v = -\nabla r^{-1} = \frac{\hat{r}}{r^2}$

• This has zero divergence everywhere except at r=0. Therefore $\Delta \frac{1}{r} = 0$ everywhere except r = 0

Green function for the 3D Poisson Equation

$$abla^2 rac{1}{|m{r}-m{r}'|} = -4\pi \delta(m{r}-m{r}'), \qquad \quad G(m{r},m{r}') = rac{1}{4\pi} rac{1}{|m{r}-m{r}'|}$$

$$V(m{r}) = rac{1}{4\pi} \int rac{f(m{r}')}{|m{r}-m{r}'|} \, dV',$$

O These results take a familiar turn, and they can be given a compelling physical interpretation

• Green's equation is identical to Poisson's equation for a point charge of unit strength

• To obtain the potential V of a distribution of charge density f, we invoke the superposition principle