PLUTO  4.4-patch2
Functions
hancock.c File Reference

MUSCL-Hancock predictor step. More...

#include "pluto.h"

Functions

void HancockStep (const Sweep *sweep, int beg, int end, Grid *grid)
 

Detailed Description

Use time-extrapolation to compute interface states and cell-centered value at the half-time step, $ V_{i,\pm}^{n+\HALF} = V_{i,\pm}^n + \partial_t V \Delta t^n/2 $

This is done using the one-dimensional primitive form ot the equations for the HD, RHD and MHD modules since we have at disposal $ \partial_t V = -A\partial V_x + S $.

Conversely, for relativistic MHD, we adopt the one-dimensional conservative form of the equations (conservative Hancock predictor) and compute the primitive values using $ \partial_t V \approx (V^{n+\HALF}_i-V^n_i)/(\Delta t/2) $. This requires taking the following steps:

Author
A. Mignone (migno.nosp@m.ne@t.nosp@m.o.inf.nosp@m.n.it)
Date
July 1, 2019

Function Documentation

◆ HancockStep()

void HancockStep ( const Sweep sweep,
int  beg,
int  end,
Grid grid 
)

Use Taylor expansion to compute time-centered states in primitive variables.

Parameters
[in,out]sweeppointer to a Sweep structure
[in]beginitial index of computation
[in]endfinal index of computation
[ingrid pointer to Grid structure

References

  • "Riemann Solvers and Numerical Methods for Fluid Dynamics"
    E.F. Toro