Results from the NA50 experiment on J/ψ suppression and charged particle pseudorapidity distributions in Pb-Pb collisions

NA50 Collaboration
M. Monteno – INFN, Torino (Italy)
The NA50 Collaboration

B. Alessandro11, C. Alexa1, R. Arnaldi11, M. Atayan3, C. Baglin2, A. Baldit9, M. Bedjidian12, S. Beolè11, V. Boldea4, P. Bordalo7,a, G. Borges7, A. Bussière2, L. Capelli12, C. Castanier3, J. Castor3, B. Chaurand10, I. Chevrot3, B. Cheynis12, E. Chiavassa11, C. Cicalò5, T. Claudino7, M.P. Comets9, N. Constant11, S. Constantin9, P. Cortese1, J. Cruz7, A. De Falco9, N. De Marco11, G. Dellacasa1, A. Devaux3, S. Dita4, O. Drapier10, L. Ducroux12, B. Espagnon3, J. Fargeix4, P. Force9, M. Gallio11, Y.K. Gavrilov6, C. Gerschel9, P. Giubellino11,b, M.B. Golubeva8, M. Goni10, A.A. Grigorian13, S. Grigorian13, J.Y. Grossiord12, F.F. Guber8, A. Guichard12, H. Gulkanyan13, R. Hakobyan12, R. Haroutunian12, M. Idzik11,c, D. Jouan3, T.L. Karavitcheva8, L. Kluberg10, A.B. Kurepin8, Y. Le Borne6, C. Lourenço6, P. Macciotta5, M. Mac Cormick3, A. Marzari-Chiesa11, M. Masera11,b, A. Masoni1, M. Monteno11, A. Musso11, P. Petian10, A. Piccotti13, J.R. Pizzi12, W.L. Prado da Silva11,d, F. Prino11, G. Puddu5, C. Quintans7, L. Ramello11, S. Ramos7,a, P. Rato Mendes7, L. Riccati11, A. Romana10, H. Santos7, P. Saturnini5, E. Scalas11, E. Scomparin11, S. Serri5, R. Shahoyan7,c, F. Sigaudo11, M. Sitta1, P. Sonderegger6,a, X. Tarrago9, N.S. Topilskaya8, G.L. Usai5,b, E. Vercelllin11, L. Villatte9, N. Willis9.

1) Alessandria, Italy 2) Annecy-le-Vieux, France 3) Aubière, France 4) Bucharest, Romania 5) Cagliari, Italy 6) CERN, Geneva, Switzerland 7) Lisbon, Portugal 8) Moscow, Russia 9) Orsay, France 10) Palaiseau, France 11) Torino, Italy 12) Venerbanne, France 13) Yerevan, Armenia

a) also at IST, Universidade Técnica de Lisboa, Lisboa, Portugal
b) also at CERN, Geneva, Switzerland
c) also at Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy, Cracow, Poland
d) now at UERJ, Rio de Janeiro, Brasil
e) on leave of absence from YerPhI, Yerevan, Armenia
Outline of the presentation

- **Introduction**
 - Goals and tools of the year 2000 Pb-Pb run
 - Determination of normal nuclear absorption from new p-A data
 - The standard analysis method: $\frac{\sigma(J/\psi)}{\sigma(\text{Drell-Yan})}$
 - Published NA50 results on J/ψ suppression

- **Results on J/ψ suppression from the year 2000 Pb-Pb run**
 - PRELIMINARY $\frac{\sigma(J/\psi)}{\sigma(\text{DY})}[2.9-4.5 \text{ GeV/c}^2]$ vs. transverse energy E_T
 - PRELIMINARY $\frac{\sigma(J/\psi)}{\sigma(\text{DY})}[2.9-4.5 \text{ GeV/c}^2]$ vs. forward energy E_{ZDC}
 - PRELIMINARY $\frac{\sigma(J/\psi)}{\sigma(\text{DY})}[4.2-7.0 \text{ GeV/c}^2]$ vs. transverse energy E_T
 - Comparison with published results

- **Results on $dN_{ch}/d\eta$ distributions**
 - Measurements at two different Pb beam energies: 40 GeV/c and 158 GeV/c
 - Analysis in bins of centrality
 - Study of scaling behaviour versus N_{part} and versus energy

- **Summary**
NA50: the experimental setup

Pb beam
- 1999: 40 GeV/nucleon

p beam
- 450 GeV/nucleon

Muon spectrometer (2.7<\eta<3.9)
- Magnet+MWPC+hodoscopes

Triggers
- **DIMUON**: 2 muon tracks
- **MIN.BIAS**: Non-zero energy deposit in the ZDC

Centrality detectors
- E.M. Calorimeter (1.1<\eta<2.3)
- Zero Degree Calorimeter (\eta>6.3)
- Multiplicity Detector (1.9<\eta<4.2)
NA50: the Multiplicity Detector and the target region

Silicon microstrip detector measuring the number and the angular distribution of charged particles produced in the collision.

- Two planes (MD1, MD2)
- 36 azim.sectors ($\Delta\Phi=10^\circ$)
- 192 radial strips ($\Delta\eta=0.02$)
 > 6912 strips in each plane
NA50 published results on J/ψ suppression

- **Two different analysis methods:**
 - **Standard analysis:** 1) Drell-Yan used as a reference 2) fit of dimuon invariant mass spectra
 - **Minimum bias analysis:** Min.Bias events used as a reference

- **Results:**
 - **Threshold effect** at $E_T \lesssim 40$ GeV
 - **No saturation** observed for most central collisions

- **Limitations:**
 - Analysis of **peripheral Pb-Pb collisions** possibly limited by **Pb-air contamination** (are they really compatible with collisions observed in lighter systems?)
 - Comparison with **ordinary nuclear absorption** also limited by the **low statistics of NA38** p-A and S-U data
Goals and tools of the 2000 run

- **GOALS:**
 - Investigate *peripheral interactions* in improved experimental conditions
 - Check behaviour of the anomalous J/Ψ suppression against “normal” *nuclear absorption*, as determined by more accurate (high statistics) p-A data, collected by NA50 with the same set-up

- **TOOLS:**
 - Target region put under vacuum, up to the pre-absorber
 - Improved beam cleaning cuts
 - New vertex reconstruction method based on the Multiplicity Detector
Rejection of pile-up and upstream interactions

- **Beam cleaning cuts:**
 - Rejected parasitic interactions of incident ion in Beam Hodoscope (33 m upstream from the target)
 - Rejected double interactions by means of temporal analysis of signal in E.M. calorimeter

- **Residual pile-up and upstream interactions:**
 - Rejection based on a diagonal band cut in the $E_T - E_{ZDC}$ correlation plot
Primary vertex reconstruction with the Multiplicity Detector

- In the past, primary interaction vertex reconstruction was based on a system of quartz blades, located downstream of each sub-target. The efficiency of this method was low for peripheral collisions.

- A new method has been developed, based on the data recorded by the MD.

 - Hits from MD1 and MD2 are combined, under different hypotheses on vertex position.

 - Tracklets are counted to calculate the likelihood of different vertex positions, measured by a statistical estimator.

- The “largest” estimator determines the best estimate for vertex position (if above a given threshold).

- The method works for $E_T > 3$ GeV.

 It has full efficiency for $E_T > 15$ GeV
Effect of the target cuts (1)

After the vertex reconstruction:
- Selected candidate “in-target” events
- Event by event, a “global cut” rejects the muon tracks not pointing to the estimated primary vertex position

The effect of the above defined cuts are visible in the following plots 🔴

For each selected dimuon, Z_{vertex} is the Z of the closest approach between the two muons. **Background tracks** (produced far from the target, in the absorber, and visible also in dedicated “empty target” runs) are **strongly suppressed by this cuts**.
Here the effect of the same cuts is visible in the plot of dimuon invariant-mass spectrum.

In the low E_T region, the contamination of out-of-target tracks (as the ones produced in dedicated empty target runs), for dimuons with $M < M_{J/\psi}$, is completely removed by these cuts.

For $E_T > 20$ GeV, this kind of contamination is already low.
The “standard” J/ψ DY analysis

$$\frac{dN^{+\mu}}{dM} = n_{DY}^{DY} \frac{dN}{dM} + n_{J/\psi}^{J/\psi} \frac{dN}{dM} + n_{\psi'}^{\psi'} \frac{dN}{dM} + n_{D\bar{D}}^{D\bar{D}} \frac{dN}{dM} + R_{BCK}^{BCK} \frac{dN}{dM}$$

Fit to $\mu^+\mu^-$ mass spectra with four contributions (J/ψ, ψ', Drell-Yan and Open Charm) + combinatorial background determined by fit of $\mu^+\mu^+$ and $\mu^-\mu^-$ mass spectra.

n^i are free parameters in the fit

Extracted J/ψ and Drell-Yan yields, and their ratio.

- Efficiencies cancel out in the ratio
- Absolute normalization (straightforward comparison to normal absorption) **but (price to pay)**
- Low statistics for high-mass Drell-Yan
The Drell-Yan reference

The Drell-Yan yield is proportional to the number of nucleon-nucleon collisions from p-p to Pb-Pb

It is a good normalization for the \(\frac{\sigma_{J/\psi}}{\sigma_{DY}} \) yield

The centrality dependence of the cross section ratio \(\frac{\sigma_{J/\psi}}{\sigma_{DY}} \) (2.9-4.5) in Pb-Pb must be compared with precise measurement of the same ratio in lighter systems (p-A)
The “normal” absorption of J/ψ

Fit to p-A and S-U data with an absorption model “à la Glauber” are compatible simultaneous fit with a common absorption cross section is allowed

From new NA50 p-A data + previous data: \(\sigma_{abs} = 4.4 \pm 0.5 \text{ mb} \)
Both analyses confirm the J/ψ suppression pattern:
- Peripheral interaction agree with normal absorption
- There is a “threshold” followed by a steady decrease (no saturation) for the most central Pb-Pb collisions
The analysis is affected by a systematic uncertainty coming from the set of p.d.f. used for calculation of DY cross section in the mass range 2.9-4.5 GeV/c²

In order to estimate this effect, the analysis of the 2000 data vs E_T has been done also with the set MRS43.

The same pattern vs. E_T is observed, as in the analysis with GRV LO, but slightly different absolute values of the cross-section ratio.
The 2000 results: $J/\psi / DY(4.2 - 7.0)$

- $\sigma_{DY}(2.9-4.5)$ depends on the extrapolation of dN_{DY}/dM from a mass region where Drell-Yan is directly measured (without background)
 - Different p.d.f. lead to different results
- If directly measured $DY(4.2-7.0)$ used as a reference \bigstar unique result!!
Centrality intervals defined in terms of fraction of inelastic cross section, as determined from bands in $dN/d\eta_T$ or $dN/d\eta_{ZDC}$ (Min. Bias) distributions.

- Distributions fitted with Gaussians, to extract:
 - $dN_{ch}/d\eta$ at the peak
 - Gaussian width
Scaling of $dN/d\eta \bigg|_{\text{max}}$ and σ_{Gauss} vs centrality at 158 GeV/c

$dN/d\eta$ at the peak scales linearly both with E_T and E_{ZDC}

Gaussian width decreases with centrality (stopping power effect)

M. Monteno / Alushta (Crimea) September, 9 2002
\(dN/d\eta \) distributions vs centrality at 40 GeV/c

\(N_{\text{ch}} \) density \times 2 times smaller than at 158 GeV/c

Width smaller than at 158 GeV/c
Charged particle scaling vs N_{part}

Fit with a power-law:
\[
\frac{dN}{d\eta}_{\text{max}} \propto N_{\text{part}}^\alpha
\]

(with N_{part} estimated in the framework of the Glauber model)

Results of the fits:
\[
\alpha = 1.00 \pm 0.01 \text{ (stat)} \pm 0.04 \text{ (syst)} \quad (158 \text{ GeV/c})
\]
\[
\alpha = 1.02 \pm 0.02 \text{ (stat)} \pm 0.06 \text{ (syst)} \quad (40 \text{ GeV/c})
\]

Within errors, same N_{part} dependence observed at 158 and 40 GeV/c.

Nearly linear scaling with N_{part} (as in WNM) indicates dominance of soft processes in particle production at the SPS energies.
Charged particle scaling vs energy

Pseudorapidity density of N_{ch} at midrapidity, per participant pair, as a function of c.m.s. energy

Two points from NA50 at:
- $\sqrt{s} = 8.77$ GeV (40 GeV/nucleon)
- $\sqrt{s} = 17.2$ GeV (158 GeV/nucleon)

Results:
- The charged particle yield at 40 GeV/nucleon is compatible with the fit to data of inelastic pp interactions.
- The yield at 158 GeV/nucleon is more than 50% higher than any fit to pp data.
- A steep increase is observed that cannot be described by a simple energy scaling.
Summary

Preliminary results from the most recent NA50 data:
- confirm the J/ψ suppression pattern: a threshold effect followed by a steady decrease for the most central Pb-Pb collisions;
- confirm the departure from a normal nuclear absorption (newly determined from p-A and S-U data);
- indicate that the most peripheral Pb-Pb interactions ($b>8.5$ fm) indeed follow the normal nuclear absorption pattern.

Dedicated measurements of $dN/d\eta$ distributions versus centrality showed that:
- at the SPS energies, charged particles scale linearly with N_{part}, in agreement with the Wounded Nucleon Model;
- the steep increase of charged particle production at midrapidity between 40 and 158 GeV/nucleon can not be described by the simple energy scaling observed in nucleon-nucleon collisions.