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1. Problem Sheet 1

1.1.  Problem 1

In the lectures the quark mass threshold has been approximated by a step-function. What actually happens at
the threshold?

Solution

The production cross-section for the process e™(g2)e™(q1) — hadrons({p;}) can be derived from first principle
starting with the matrix element to produce n hadrons in the final state:
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with ¢ = ¢1 + g2 and T is a guess (parametrization) of the the unknow matrix element of an of-shell photon to
decay to n hadrons.
This matrix element gives the total cross-section:
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Defining the hadronic tensor as:
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Lorentz covariance implies that H,,, (¢) is a rank two symmetric tensor,being the only two symmetric tensor that
can be be built from ¢*:

H,u(0) = A(4*) 9w + B(6*) 4o
with A(q?) and B(q?) functions of the only Lorentz scalar available ¢?. Gauge invariance implies:
¢"H,(9) = ¢"Hp(q) = 0= A(¢*)gy + B(¢*)¢’q, = 0
So that: A(g?) = —¢*>B(q?). The cross-section is therefore:

= L1 g, B (G — )]
o= 264 s q1,492 9 )\9uv — 49 Guv
e? e?
= %B(qz) = |o(eTe” — hadrons) = %B(s)

This implies that, since B(s) is required from dimensional reasoning to be adimensional:
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To predict the exact value of R +.-(s), one can use a space-time argument. Since the photon exchanged in the
process is highly virtual, it is produced and decays to quark in a small space-time volume, tpqrq >~ 1/4/s. On the
other hand, the wave function of a hadron with mass mp.q has a spatial extent ~ 1/mjqq; hence confinement of a
quark into the hadron takes tnqq >~ 1/Mpaq. Thus since: tharqg > thea We can expect:

o(eTe” — hadrons) = ZU(eJre* — qq) X <1 +0 <m\;§d> )
a

the cross-section o(ete™ — ¢q) is simple to calculate and this gives us the clue to obtain R+ .- (s)
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This simple results has been obtained at LO neglecting all QCD corrections. It is a step function of s, since in
the sum one should consider only the quarks with mass lower the than the s of the process.

Re+e‘ (S) = Z €3NC
q,mq<+/s/2

The width of the quark would model the threshold behaviour more smoothly. More importantly, one has the
formation of hadronic resonances. This cannot be modeled in perturbative QCD. The following plot shows some
resonances explicitely.
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Fig. 1. Data on R + .- (s) as a function of centre-of-mass energy

1.2. Problem 2
Since R(eTe™) is the only quantity for which we have NNNLO results, it is our only chance to calibrate how

good different schemes for fixing y are. Looking at the figure for u scale dependence, K (™) vs p, discuss the relative
merits of the three schemes defined there.

Solution

Altough a physical quantity do not depend on p the renormalization scale, a calculation truncated at a finite
order of perturbation theory does. To illustrate this, let’s write the perturbative expansion of the adimensional
R(e*e™) quantity. Since it is an adimensional quantity it should depend on y via the dimensionful variables s and
©? only through their ratio t = s/u>

Rls/p?, as(p?)] = Ro[l + s Ry (t) + s Ra(t) 4+ ...] = Ro Z alR,(t) Ro= ZeﬁNC
n=0 q

We can use the fact that R, as a physical quantity, must be independent of the value of i, and the chain rule for
partial derivatives, to write:
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a physical solution of this renormalization group equation is given by:
R =R(1,as5(s)) = Ro(1 + Rias(s) + Rea%(s) + ...

i.e. by setting the renormalization scale equal to the physical scale in the problem (in our case the centre-of-mass
energy of the annihilation).
Let’s now suppose to know R at leading order in QCD.

R = R(l, 045(8)) = Ro(l + Rlag(s) + )

now the renormalization scale dependence becomes evident trough:

- s (/~L2)
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where the running of ag in known at one loop too. We have:

R = R(l,as(s)) = Ro(l + Rlas(s) + )

=TRo (1 + Ryas(p?) [1 - ﬂoas(/f)ln% + ﬂga%(ug)an% + })

The leading-order result in renormalized perturbation theory is the first term of this series, i.e., Ro(1+ Ria(p?)).
It is therefore clear that although p? is completely arbitrary, choosing it far from s guarantees a large truncation
error (note that the converse is not true). One should therefore choose p? “close” to s , but how close is close?

There are three popular choices:

e Put the physical scale y = /s in our case. This has the merit to be simplest educated guess to be used.

e Principal of Minimal Sensitivity: where do/dp = 0. This method has the merit to take the renormalization
scale to with one is the least sensible to it, i.e. by varying p of a small quantity the cross-section does not
change much.

e F.C.A. (Fastest Apparent Convergence): where NLO = LO, i.e. where the effects of truncating at some order
the perturbative series has the smallest consequence.

1.3.  Problem 3
Convince yourself that the thrust of a three-parton configuration is given by max (1, z2, r3) where x1 = 2F;/+/s,
with F; being the parton energy and /s the collider energy.

Solution
We know that the thrust for a three-parton configuration is defined as:
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now in the centre-of-mass rest frame Z?:l pi = 0 and the decay is therefore planar. Projecting along pq:

T3(pi) =

3
(Zpi>-ﬂ=pq-ﬂ+pqﬂ+pgﬂ
=1

= |pg| cos Oyq + |Pq| cos 045 + |Pg| cos by
2F 2F; E
= 4 T cos 045 + = cos GqQ)

:Eq—I—choseqq—|—Egcos¢9qg:\/§<\/g 7 s
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= %(Iq + zgcosbyg + x4c0864,) =0

in the case of a leading quark (z, > x4, xg):

g = —5C08 045 — T4 c080,, = xg|cos O4g| — x4]cos 04|

since in both cases: cosfl45; cosyy < 0. It is clear that this configuaration maximizes all the projections and:



N |§(xq—|—m§cos9qa+xg cos by, B %|(xq+x§cos9qg+xg cosbyg)]
Ts3(xq > x4, 2q) = 7 = ;
5 (zq + 23 + 7) 32T
1 1
D) Tq + Tqlcos Ogg| + z4]cosO4g| | = 5 (Tq +24) = 24
Tq

The result can be generalized to:

Ts3(x1 > x9,23) = 1 = ’Tg(ﬂ?l > X9, 23) = maw{xl,xg,xg}‘




2. Problem Sheet 2

2.1.  Problem 1
Solve the differential equation:

das(p?
w20 — blas(u) = ~ha?(u?) + O
(also called g evolution equation) through first order: i.e. ignore the higher order terms O(a?). Recall that in
QCD:
ﬂ _ 11NC — 21’Lf - 33 — QTLf
T 12r T 12n

Determine the integration constant by setting s (u? = M%) = as(M%) = 0.12 and calculate the value of a at p
= 10 GeV. (Use the fact that there are ny five active flavours and Mz = 91.1 GeV)

Solution
Let’s start by usign the fact that the logarithmic derivative can be written as:
d__ 0 op _fome)T o [1170 0 50
dinu? — Op2 dlnp? | Op? o2 2] oz a2

so we end up with:

dos(p?) Do (p?)
2 s s 2 3
= = — s) = O
H dMQ 8[”//62 ﬂ(a ) ﬂoas + (as)
hence ignoring higher order in the perturbation series O(a3) we get a simple first order separable differential
equation:
dog

Bas(u2) _ 2/, 2 _ 2
8[’[7,/12 - ﬂoas(u ):> Qs - /Boln/i

so integrating between the integral bounds a(1?) and a(p) we have:
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so we have solving the algebra:
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— = Gy (Inp® — Inp2) = = + Boln <)
as(p?)  as(pd) ~ ( o) 12~ ag(ud) T\
and so finally:
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The equation is solved so we can now put p3 = M% and use the mesaured value for as(M2) = 0.12 and use the
evolution equation to determine the value of the strong coupling constant at the u = 10 GeV scale.

Oés(M2
OéS(QQ) - 2 llNc—ZQ)nf Q2
_ 0.12 B 0.12
U012 (D520 1n (i) 1+ 02 () 0012
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1—0.12(0.34)4.42  0.81

the final result is a5(Q?) = 0.148 which is higher than the value at Q> = M% as expected from the structure of
the RGE solution for ag as can be seen in Fig. 2.1. .
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Fig. 2. Plot of as vs. Q2 compared with experimental data

2.2.  Problem 2
In the lecture it has been said that Fy and Fy, depend only on x and Q?, and that the DIS cross-section (in the

one photon exchange approximation) is given by the linear combination:

d’c®?  2ma?
— 1 1— 2 F 2\ _ 2F 2 3
dzdQ? ~ 2Q? {1+ (1 = y)]Fa(2, Q%) — y*Fr(z, Q) } (3)

How would you measure F; and F, separately?

Solution
Looking to Eq. 3 it is convenient to define a function of the scattering inelestaticity y defined as follows:

Yi(y) =141 -y

using this definition one can rewrite Eq. 3 as:

d?oep 2ra? 2ra?Y. y?
— Y F 2y 2F 2 — + F VAN F 2
d{EdQ2 xQ2 [ + 2(I7Q ) Yy L(xaQ )] xQ2 [ 2(x7Q ) Y+ L(I7Q )]
and one can define a reduced cross-section as:
dQO.ep QQZ‘ y2
. 2 = . _ F 2\ _ F 2
g ($7Q 7y) deQ 27TO[2Y+ Q(xaQ ) Y+ L<x7Q )

This implies that the two structure functions Fy(z,Q?) and Fr,(x,Q?) can be written as:

9o (z,Q%,y)
F xaQ2 = Oy vagayZO FL x7Q2 ==
since o,.(z, Q%,y) is expected to be a linear function of y?/Y, one can take the finite difference instead of the
derivative: A
Oy
FL (.’L’, QQ) = —7
A(#)

So in order to measure the structure function Fr,(x, Q%) we need to measure the “reduced cross-section” at different
values of the variable y?/Y, which depends only on y but keeping the same values of Q2 and z. Since Q?,x,y are
related to the center of mass energy of the system via the relation: Q% = sxy, one can experimentally determine
the value of F(r,Q?) measuring the reduced cross-section at different center-of-mass energies /s = 1/Q?/xy.

Fu(2,Q?) = — 02(81) - Ur(282) _ [UT(S;); Jr(SZ)]zy;,leJr@

Fy(x,Q?) can be easily extracted from the the formula Fy(x, Q%) = o,.(z,Q?,y = 0) by looking for the intercept
of the reduced cross-section as a function of y, with the y = 0 axis.



2.3.  Problem 3
The most general form of the DIS cross-section has three non-zero structure functions, Fy,F5 and F3 while the

ete™ cross-section has only one (called B). Why the difference?

Solution
The most general cross-section for a deep inelastic scattering can be written as:
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the phase space factor can be written as the product of two contributions, one coming from the outcoming lepton
and the other from the recoiling hadronic mass:
1 d3kK 1 d|K'|?dk'd
dd = ddx = do
@rp2E X (2r)p3 2FE

X

Concentrating first on the electromagnetic scattering process:

Fig. 3. Lowest order QED diagram for e(k’) + P(P) — e(k') + X(px)

e(k')+ P(P) — e(K)+ X({pi}) q=k—F

Let’s define some convenient kinematic variables. For an electron of momentum k to scatter to one of momentum
k' by exchanging a photon of momentum ¢ with a proton of momentum p we have for fixed centre-of-mass energy

s that:
2
T = @
2P - q

where z is the inelasticity of the process. In terms of those wariables we can define another two commonly used
variables:

s=(k+p? t=¢"=-

Q*  Ll-=
CRRATE @

_Pa_ Q? NQiz (5)
y P-k 22P-k  zs

W2=(P+q?=P+¢+2P q~-Q° +

The lowest order QED amplitude for the process is:

M =u(k)(iey")u(k)

Yuv . ”
qQH (Ze)<X|Jp,EM|P7 P>

where (X|J} gy P, P) is the electromagnetic current associated to the proton inelastic scattering
The amplitude can be re-written:

1
M= (ie)Qﬂ(k')v“U(k)qj<X|J5’EM|P, P)
squaring the amplitude we get:
4 * *
* e _ — v
MP? = MM® = Sk )y alh) (3K 7" u(k) ) (XLTEPM P, P (X122 P, P) )

and using the v matrices properties we get to:

4
e n _ v *
M|* = EUWW u(k)a(k)y u(k') (P, P|I;7EM | X) (X|JEEM | P, P)



the total cross-section can be written as:

1 dgk/ 4 2
do = FWZ (2m) /d@x(s (k+P—k —px)- SPZ”;J.A/”

where we have assumed that the sum of all momenta of the recoiling hadron mass is px = ), p; and the phase
space associated to that subsystem is:

s dSPi
dPx = —_—
* 1;[1 (2m)32pj,

now the squared and averaged (summed) on initial (final) states matrix element is:

1 Z IM* =7 Z *u (k)a(k)y" (k') (P, PlI;PEM | X) (X T B P, P)
9p1n9 spzns

we can isolate a contribution due to the electron current and a contribution of the hadronic current:

LK) = 5 S o ulk) = 3T (3 a0y ulm(n (k)
_ %TT( 3 u(k’)ﬂ(k’)w”u(k)ﬂ(k)v”) - %TT(Z w(k!, s Ya(k, ') 4+ zsju(k,s)a(k,s) 7u>

spins s’

H/ +me k“"mc

where we have used the completeness relations for dirac spinors.
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LM (k, k') = §[Tr (//7"}67”) +m Tr( # ”)} = §[k'ak:5 Tr(w“v“vﬁ'y”) +mg Tr( # ”)]
~—_——— ———
4(gorgPrgar gPr—gaPgry) 4t
This gives:
1
LM (k, k') = 3 {4(k’“k” + kY E* — (k- k')g‘“’) +4mgg‘“’} = Z(k’”k” + Kk — (kK — m?)g““)
neglecting electron mass in the high energy limit we have:
L (s k) = 2(RR + KR = (k- K)g™ )
This implies that the squared and averaged matrix element is:
1 et 1 ‘
i > IMP = qjm (k. k') 5 > AP, P s| PP X si) (X, 5| TR EM| PP, s)
spins 5,8

We parametrize now the matrix element for a proton of momentum P to absorb a photon of momentum ¢ and
Lorentz index u to produce an arbitrary set of hadrons X with fixed momenta {p;} as:

T.(P,g; {pi}) = (X|J5EM|P, P)
This implies for the total matrix element:
1 AA v *
1 Z M? = |M|* = L" (kK ZT (P.q: {pi DT (P, q: {pi})
spins 5,84

now it is convenient to evaluate the quantity:

Z/dfbx27r Yok + P — kK —px)|M? = Z/dfbx27r Yok +P—k —px)- Z|M|2

spzns

e v
= quM (k,k/)H;w(Pv Q)

or equivalently:



Ho(Poa) = 5 30 3 [ dx(2m)'s (P~ K = ) Tu(Pas (p DT (P i) (6)

splns X

Since we have summed and integrated out all the dependence on X, H,,, (P, ¢) can only depend on the vectors
P* and ¢* The most general expression for a generic tensor of rank two containing P* and ¢* is:

PP, i - Quqv 4+ q. P
H/J,V = ng/u/ + Hy Q @HSE;LV)\O'PAq + Hy 62 + Hs M Q2 £
where the Hs are scalar functions of the only two Lorentz scalars available ¢-q¢ = —Q? and p-q = Q?/2x, i.e. of

z and @2 only (not s). We have neglected p - p = M% since we work in the limit |¢-q|,p-¢>p-p

We can now simplify the hadronic tensor H,, making some considerations. The term proportional to Hs is
antisimmetric in the exchange of the two Lorenzt indexes p and v, while the leptonic tensor has a symmetric
structure, thus terms proportional to H3 in the contraction of the two tensors do not contribute to the physical

cross-section. ) ) ) )
Let’s consider now a process in which a photon of momentum ¢* couples with the electromagnatic’ “proton- to- X

final state” current. The matrix element for such a process is:
Mo = e (N q)(X|TEEM P, P) = e(X, )T (P, a; {pi})
charge conservation requires:
8“J5M(P — X)=0"T,(P,q;{p:}) =0:

or in an equivalent way:

o'T, = % / Tod*z = / ITod*x =

/V-Td3x:/ T-dX =0
S—o0

in momentum space this means: ¢"7),, =0
another way of saying it is that the theory is invariant under a gauge transformation: (X, q) — e(\, q) + ¢*
This means the matrix element is invariant:

Mo — Mg = ("X, q) + ¢")T, = e (N, )T, = Mo

This translates into a requirement on H,,, (P, q):
T =0 ¢ Hu(Po) = Y [dext, 1= Y [dvxe T,z —0
X X

and in a equivalent way ¢”H,, = 0. So we have:

Q? Q?

PLP,/ WY PJ, u+ LPl/
¢"Hy, = q" [—H19W+H2 o +H4q*q + Hy e }

2

—qvHy + H2 Q2

TP AL P T

Q2 4,
HSPV

Q2 pV Q2 qV

P- P-
QVHI +H2 Q2 pz/ H4QV +H5 Q2 qu

P.
(o (s

the two terms in parenthesis should be zero. So we have:

P.
Hs = H» QQq
P- P-q\?
H1+H4:H5Q;Z:>H4:H2(Q?q> ~H,

and the hadronic tensor can be written:



P,P, P-q\? q.q y P.qP,q + q.P,
HILV:_QMVHI +H2 - +H2( q) v —qu/‘q +H2 9ud +qu

Q? Q? Q? Q? Q? Q?
quqy PP, P-q\*quqv , P-qPugy+q.P,
(g“” . >H1+ o +<Q2) R R
Gy P q)? P-q H,
( L >H1+|:PP +( Q4) qMQV‘i'Qi(Pp,qy‘i‘qM ):l Q2
quqv Ho P-q P-q
=Hi{ =g — >+[P+qHP+ —5
( g Q? QL " Q?
now since Q2 = —g¢? we have finally:

H,,(z,¢*) = Hi(z,¢%) ( Guv + q’;q”) — H2(;2’ ) [PM - (Pq;l) qu} [Py + (qu) qu]

which have 2 structure functions H;(z,q?)! If we want to evaluate the DIS cross-section we have to contract the
H,,(z,q?) tensor with the leptonic tensor L*”(k, k') Gauge invariance again implies:

Quj" (k K') = 0= ¢"L" (k, k') =

so terms proportional to ¢* or ¢ in the hadronic cross-section do not contribute to the physical cross-section:

PP,

L (k, K )y (,6°) = 2(KEY + KR = (k- k’)g*‘”)[ Hy(2,Q)gu + Ha(w, Q) =5

(K -P)(k-P)

= —2H,(k-k') +2H, g Hi(K k)
+ QHQW +8(k - KV Hy — 2Hy (k- K )gz
and so neglecting terms proportional to Mrp < ¢
k- P)(k - P)

L (kK" Hy (2, ¢%) = 4Hy (k- k) +4H2( 02

therefore:

o e2 . 2
Z/d‘i’xé(k‘—FP—k/—pxﬂM‘Q = @L‘u (k‘,/{i/)Huy(P,q) Q4(4H1(k k?)+4H2
X

2 (4H1(k k)HHz(k,P)(k/,P))

<k~P><k/-P>>
Q2

T Q?
Now it is convenient to go to a set of intrinsically lorentz invariant variables:
2 2 / Q2 ( )2 ( )
Q =—q¢*~2k-k x= s=(p+k)*~2(P-k
2(P-q)

and so: ¢q =k — k' — k' = k — g this implies P- k' = P -k — p- q. Using this variables:
(k-P)k-P—q-P)

Q2
2 _ . 2 .
: 259 2 -+ b LP ‘82((12213)

we are now ready to proceed and calculate the electromagnetic DIS cross-section at LO:

:4H1(k5'k‘,)—|—H24(k'P)2 _igg.P)Q(k.P)

2
|-G -]

LM (k, k') Hu (P, q) = 4Hy (k- k') + 4H,

=2H,Q° + H>
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1 B 1
do= —— " om) [ Ao ot (k+ P — kK — Z 2
4 23(27r)32E'2X:( 7T)/ x0(k+ pX)4S§S|M|
1 Bk e?
— L™ (k, k" YH ., (P,
28 (27T)32E/ Q4 ( ) 12 ( q)

now it can be proved that rhat the electron phase space d® can be rewritten as a function of Q2 and x (this is
done in detail in Problem 4.1).
d3k/ 1 Q2
dd = = ——dzdQ*
(2m)32E" 1672 sx? @

and we have the following differential cross-section:

L1 Qa2 L (kK ) Ho (Pq) = o & L (k) Hp (P q) drdQ?
= 25 16m2 522 49" i w4 = 302,242 2 (5 4)C

the differential cross-section is:

do 1 1 2 s
= < k, k') Hy (P, 2H\Q° + H. — =
dzdQ?  32m2z2s? Q2 (k, k) Hi (P, 0) = 32122252 Q2 [ 1@ <Q2 x)]
1 167202 9 2 s a2 9 2 s
T 32m222s2 Q2 {2H1Q + i (Q2 a 33)} 52 Q2 {2H1Q I (Q $>}

now redefining (just a matter of convention) Hy; = 47 F; and Hs = 87aFy we have:

2

do « 1 52 s 8ra? 1 sz
—_— FQ? FHl—=—-—|| = — | FQ*+F [ == —
dedQ? ~ 22252 (2 {877 1Q7 + 87z 2(@2 x)} 9252 Qz{ 1Q7 + [ (Qz S)]
477@2 1 9 dma® 1 2
= ;I;232 Q2 |:F1Q +F2 <Q2 S):| = £C282 Q2 |:F1Q +F2 (y — S):l
4o Q? 1 S 4o Q2 1 1
= ||+ —I|-— F — L (—-=1]|=
[Pt e (5 )| = o [Pt 2
dra? z Q* 1 Q2 drra 9 1
= :L»QQ |:F1622:L‘252 +@7F2 (y 1):| = $Q4 |:F113y +F2y (y1>:|

and finally we have the cross-section:

do 4dra?

s = o | PR @)+ (- Pt @) )

The F's are called the structure functions of the proton. It is common to see other linear combinations of the
structure functions:

Fr(z,Q?) = 2zF (z, Q%)
FL(:L'7 Qz) = FQ(‘T; Qz) - 2£CF1(ZL'7 Qz)

which correspond to scattering of transverse and longitudinally polarized photons respectively. We therefore
have:

Fi(e, Q%) = - Fr(5,@?)
Falir, Q%) = Fu(0, Q%) + 201 (2, Q%) = Fi (e, @) + Fr(2,Q?)

the cross-section becomes:



12 ——

dde2 _ ‘;m {xy 5o Fr(e, Q%) + (1= y)(Fi (e, Q%) +FT(x,Q2))}
_ A;TQ {[ }FT(x Q%) + (1 —y)FL(x,QQ)}
ZZ;{ oY +2 2%( Q2)+2(1—y)FL(x,Q2)}
= B - e @) 420 - R 0D )

now if we re-express Fr = Fo — F:

s = T (=R ) + 20— -1 - (-l @)
2;34 {[1 +(1-y)F(@,Q) +2-2y—1-1—y° +2y)]FL(x,Q2)}
we have finally the DIS cross-section as it is written nowadays:

which has 2 structure functions! )
Let’s consider now the charged current neutrino DIS process:

Fig. 4. Lowest order SM diagram for v, (k')P(P) — p~ (k)X ({px})

The matrix element can be written, in the same notation of the electromagnetic scattering:

M = (k) =92, (1 v)(k)q‘ig’” —I9W (X |JWP|P, P)

2\/7 Tn 2 _ M2 2\/*
zg iy .
N W%“(k V(L = 5)ulk) (X[ Sy, p| P, P)

squaring the matrix element we get:

M = MM = a1 = 35 )T (1 = 35)uk) (XL | PP P

using now the definition of Fermi constant:
Gr _ gh __oh _GRMY
V2 o 8ME, 64 2

this gives that the matrix element can be written:

S, p|X)

2 2 2
mp = Gr <MW) (K Yy (1 — YR30 (1 — A (k') (X | P, PY(P, PTG pl X)

2 \Q*+ Mg,
G2 ( M2

2\ > (K (1= s YRk 3 (1 = 5)u (k) Ty ({px DT ({px )
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now the cross section is given by:

1 &K 4 4 , 1 9
dO’—FWZ@W) /d‘I’X5 (k+P—k —px)§ Z|M|

X spins

summing on final state and averaging on initial states (neutrinos have only one state of polarizations if we assume
them massless) we get:

spins spins spins

5 30 M = S (G ) S (1 = (0 1 = 25)ulh)] S T (o DR (G

et IO SNCRIL CRUMER B) SHORLCR IR

2 2 2
- (cff%) (1 = s)fw (1= 75) Z T ({ox DT ({px })
2 2
=Cr (%) Ly (ks ) > Ty ({px DT ({px})

spins

Let’s now define:

2 2
Z(%)‘*/d@xa‘l(k +P—k — px)% Z IM* = G% (%) Ly (k, KYH" (Q*, )

X spins
where the hadronic tensor is defined as:
QP a) = Y (2m)* [ a8+ Pk = px) 3 T (ox DT ({px )
X spins

Going ahead in the same way as for the electromagnetic scattering we have:

L,uy(k; k/) = Tr[lz{/ﬂ}/,u(l - 75)%’)@(1 - 75)] = wa(ka k/) + 2i€,uupakpka

while the hadronic tensor has the same form as before, but for the coefficient Hs which is allowed since weak
interactions violating parity allow for an additional Lorentz structure:

HM™(QP0) = —Hig" + Hy oo — L cmvnoy o g1
(Q 73;) = —1119"" + My QQ - QQE Ppqoti3
The contraction of the two tensor gives:
Lo (e, Y HPY (Q2, 1) = 202H, + Q22— Y 1, + “ (1 y)
v\l y L) = Y
. ! 222 2y 2

the cross-section is therefore, using the results for the electron phase space derived explicitely in the Problem
Sheet, 4:

do = iQiQdQde G2 Mi‘%‘/ 2L (k k/)HW(QQ )
25 1672522 Q2+ M2, pEAT ’
Q@ . ( Mg, ) , 2 )10
= L u(ka k )H#V(Q 7$)dQ dx
32m2s222 F\ Q2 + M3, "

performing the algebra to get the cross-section we get:



do Q? 2 Mgy ? 2 21 Q2 y
= 20%H iy + = m(1-2
dzdQ@?  32m2s2a? Gr Q? + M3, @Hi+Q z2y2 2 + Y ( )
1Y
yHQ + ( 2)1{3‘|
xry

Q' oMy
= G
39725242 F (Qz =+ M%/) z2y?

2
()
3272 Q? + M3,

Now we can re-define the structure functions as:

1—
2H; +

1_y
2H1+ - 2H2+( wa)sz]

H, =4nF, Hy;=8nxFy; Hs=8nxkljs

so that the cross-section is:

do v M, 2 —y (1-1%)
= G 8mF1 + 8 Fy 4+ 87 F
dl’dQ2 327T2 F Q2 + M‘%V vt + 7T y 2 + y 3

2
1 My, 9 1—y y?
) GF(Q2+M2) {yF1+ Fy + y*‘2 F3

G% My, ’ 2 92
= iz (QQ n M{?V) [xy Fi+ (1 -y + (y — 2) xE;}

Let’s now define an alternative set of structure functions:

FT :21'F1 —>F1 :FT/Q.’E
Fr =Fy, —2xF), — Fy, = Fr + Fr

and finally the cross-section becomes:

d G2 2
dCL'dJQQ :47r§:)c <Q2+M2 ) [ 1y)FL+(1y)FL+(yy2> I’F3:|
¢ ;
:47_[_21, <Q2+M2 ) |: y _2—2y)FT+(1— )FL+(y—2>xF3}
G? 2

- 4532;3 <Q2]\"{VX45V> [(1 +(1—y*)Pr+2(1—y)FPr+(1—(1- y2))a:F3]

and finally returning to the structure function Fb:

) {(1 (= )P, Q) — P Fu(e. Q%) + (1 — (1 — y)aFi(a, q2>}

do G2 < M2,

dzdQ? — 4r2x \ Q2 + MZ,

This cross-section contains 3 structure functions!
Let’s finally consider the simple case of the electron-positron annihilation to hadrons. The cross-section for this

process can be written:
Z/d(l)x 2m)*64 (k + K — px)~ Z Mete—x[?

spzns
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E T Ei x
hadrons)
e g

Fig. 5. Lowest order QED diagram for et (k') + e~ (k) — v*(¢ =k + k') — X({px})

The lowest order QED diagram for the process is:

The matrix element is the following:

e?
72

My = e(X|T}|0) ’qg“ D) (iey™yu(k) = S (X|T10)B(K )y, u(k)

Q

squaring the matrix element we get:
4

IMx[? = My My = Zﬂk’)mu(km(kwyv(k’)<0|Jz*|X><X|Jmo>

and the averaged matrix element is:
N 1 _ v
MxP =7 Y Mo xP =7 3 > o u(kya(k) o (K){01J3 | X)(X|JE [0)
spins spins Xspzns

we now postulate that the matrix element for the sum of all diagrams in which a virtual photon with Lorentz
index v and momentum ¢ produces a particular set of n hadrons with momenta {p1,...,p,} = {px} is known, and
we parametrize it by a function:

<X‘Jl»’«‘0> (n q, {pla' »Pn})

returning now to the cross-section expression:

—— / 0T Y 3 @S o) ST P TR (T 0., T, ()

spins X spins
and it is convenient to rewrite this expression as:
11e* o
G > Rk S S @m)'8h g~ px) [T (0. (ox DT (0. o)

T 254
q spins X Xspins

Ly (k,k)
11e*

= %qu ,ul/(kv kl)H#V(Q)

where we have defined the hadronic tensor H*"(q) as:

H@) =30 Y [ dclem s+ K = )T (g, (px DT 0 o)
X Xspins

this tensor after the integration over all of possible final states and summation over all possible spin configurations,
can only be a function of the four-vector available at the photon vertex, i.e. ¢g*. Now the only two possible Lorentz
covariant two-index tensor functions of one four vector are g"” and ¢*¢”. We therefore parametrize H,,, as a linear

combination of these, with coefficients that are functions of the only available Lorentz scalar g2,
HH*Y — A(q2)g;w 4 B(qQ)q;Lqu

finally since the theory is gauge invariant, charge conservation implies that the matrix element for the absorbtion
process of a photon by the hadronic current is invariant under a gauge transformation, i.e.:

Mo =e,(g; )T"(n,q,{px}) — (eu(a, A) + @u)T"(n,q, {px}) = Mo

= q#Tu(n7 q, {pX}) =0
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this implies ¢, H" (q) = ¢, H""(q) = 0:

G H" (@)=Y > [ dex(2m)*s*(k+k —px)T™ (n,q,{px})|aT"(n,q, {px})| =0
X Xspins
therefore:

@ H" (q) = qu[A(¢®) 9" + B(¢*)q"q"] = A(¢*)d” + B(a*)d*q” = [A(¢°) + ¢*B(¢*)]q" =0

= A(¢*) = -¢*B(¢%)
the hadronic tensor is therefore written:
H" = —¢°B(¢*)9" + B(¢*)¢"¢" = B(¢*)[¢"q" — ¢*¢"]

on the other hand the leptonic tensor is:

L (k. k) = Z (k") yuu(k)u(k)yv(k') = Tr Z v(k', "\ o(kK', s )y, Z u(k, s)u(k, s)v,

=Tr [(h{, - mE)'V/L(% + me)'yu] = E"PE7Tr ['Yp'V/L’Yrr'YV] - szT[’Y//YV]
= K"k 4gpugov + Gpv9ou — GpoGu) — 4mgg;w = A(kyk;, + kuk;; — (k- K+ mi)g;w)

in the high energy limit the electron mass is negligible and the leptonic tensor is given by:
Ly (kK" = 4(k,k, + kyk; — (k- K)guw)

this gives:

Z 4¢d / I YiE 1et
d(I)X<27T) 1) (k+l€ —px)*|./\/l| :**4
X 4 4q

L, (kK YH"

1e?
- 1(744(/@% + koky, — (k- K)gu)B(¢)d"q" — ¢°g""]
4
e v
= —q2B(q2)q—4(k#k:, + kuk,& — (k- k") gyuw)g"

64 e
= —B(QQ)?[(/ﬂ )+ (kK — 4k )] = B(Cf)g 2(k - k') = ¢*B(q*)

where we have used: ¢%> = (k +k')? ~ 2k - k'
In the calculation we have neglected terms proportional to ¢*L,,, (k,k’) since this are vanishing because of gauge

invariance, since the electron current is conserved. Let’s derive this directly:

¢" Ly (k, k') = ¢"d(kyk;, + ko k), — (k- k) guw) = 4((k - )k, + ko (k- q) — (k- K')q,)

=4((k - k)k, +(k - kK"k, + ky (k- k) +k, (k- k') — (k- k)q,)

ocm?2~0

= Ak K) (K, + kv —q) =0

2
m2~0

the cross-section is:

11et e*B(¢?) (47a)?’B(¢?) 8rm2a?
= ———L,(kK)H" = = = B
77 254 g ( ) 2s 2s S (5)
The final step is to realize that B(s) has to be dimensionless because of the physical dimensions of [o] = [E2].

Since it is a function of only one dimensionful parameter, it must therefore be constant.
It is convenient now to rewrite the cross-section as:
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8m2a? dra? 6
Tem 5 X) = B(s) = —-B
oleTe” — X) S Bls) = — .~ —B(s)
R(s)
this gives us finally:
dra?

o(ete™ — X (hadrons)) =

R(s)

3s

We therefore have the fundamental prediction that (for energies above all hadron masses) the cross-section to
produce any number of hadrons is proportional to that to produce a muon-antimuon pair:

o(ete™ — hadrons)

R(s) = = constant

o(ere — ptpo)
So summarizing:

e The process o(eTe™ — hadrons) has only one structure function since after requirements on Lorentz and
gauge invariance there is only one out of two structure functions which are non-zero, (this is due to the fact
that there is only one Lorentz vector available at the vertex of annihilation)

e The process o(e” P — e~ X) has two structure functions since with two Lorentz vectors available at the
scattering vertex is possible to construct six independent symmetric rank two Lorentz tensor. Requiring
gauge invariance and Lorentz invariance only 2 are independent.

e The process o(v, P — p~ X) has three structure functions, one more w.r.t the electromagnetic process. This
happens since weak interactions violate parity allowing for an extra Lorentz structure which is anti-symmetric
in the Lorentz indices.

2.4. Problem J
Given the +-distribution defined by:

b fa) B f(l’)*f(l)x
/0(1—$)+dm/ - a

and:
1 1
= 0< 1
=2, 1-=z for 0<z <1,
show that:
1
0 _
/0 Pq(q)(x)da: =0
where:
1+ 22 3
(0) _ L _
P,/ (z) =Cr [(1 ) + 2(5(1 x)}

What is the significance of this result?

Solution
The calculation is straigthforward:

! ! 1+22 3 3 bl 4o
(0) - T 251 — - 2 e
/0 Py (x)dx /0 Cr {(1 ) + 25(1 x)] de = Cp [2 —|—/0 = x)+dx}

_c, [; +/01 (1+x2)(|;:g+a:2)|1] iz = Ch B +/01 1+x(21—_(i)+ 12)d$]

=Cp [§+/01(f”12_961)d4 :CFBJF/:WM} =Cr B—i—/ol—(l—i-x)dx}
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and finally:

2 1
3{x+x] dx
0

1
(0) -
/Oqu (x)dx = Cp 5 5

orfi- ()]

When studying the P.D.F. evolution, at first order in ag one has to apply the following correction:

Vdz x
[0(@) — [ (2,Q%) = / 1 (2)Pa (5, Q%)

x
with the kernel splitting function:
Q2
A2

ag

Peq(6,Q%) =6(1—¢) + ?qu(f) In

.:'___,...--'

Xp =z (x/z)p
A z(1 x/z)p

Pyq(€, Q%) can be regarded as the probability for a quark to split into a quark carrying a fraction £ of momentum
and a gluon with a fraction 1 —¢ (in other words, the probability for the quark to “contain” a quark with a fraction
of momentum ¢ and a gluon with a fraction 1 — &).

Being a probability, its norm must be 1:

1 1 2 1
2y _ as ., Q _
[ depuie.at = [ o0 -0ae+m T [ R =1
| S —

=1

Therefore:
1
/ P qq(f)df =0
0

Moreover, if fol Py (€)d€ # 0 the norm of Py, (&, Q%) would be a function of Q2.
The physical meaning of this constraing is that the total number of quarks-antiquarks is conserved.
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3. Problem Sheet 3
3.1.  Problem 1
On proving gauge invariance show that in the so-called Landau gauge:

ZE;A(]C )\)el/*(k )\) _ —g””—i— kM kY
)\ ’ ’ k2 + ie

the term o k*k" added to the photon spin sum —g#” of the Feynman gauge does not contribute to QED Compton
scattering e~y — e~ 7. Neglect the electron mass.

3.2.  Solution
Two diagrams contribute at LO to the QED Compton scattering matrix element:

b X yy k'

pt+k

k o k o

In the Feynman gauge we have the following expressions for the two diagrams :

My =a(p)(iey”)es,, (N) (ier")er,u(Nu(p) (9)

prE—m

My =a(p')(ier”)er(N) (iev*)es, (N )u(p) (10)

i
p—H—m
swapping the Lorentz indexes in order to isolate the photon contributions we get:

M= Myt Mo =T0/) )25, ) Ger ) s Olp) 7)) ) (0025, (X )

and after some algebra:

M = —ie*u(p') S

y 1
7 P+ F—m
This means that the amplitude can be factorized:
M =T"e (Vs (N) (11)

now neglecting electron masses m, = m = 0 we can write:

M = —ie?u(p)

VVyVi4%7M+'7M;5;%k”VU1 u(p)eu(N)25, (V)

now we can use the following fact:

P =pp ="y 0 = {07} = V) pupe = 29" — VYY) pupy = 20> — P = | p* =p°

so we get:

1 1 p p

popyp r
and the amplitude for Compton scattering can be written as:
. 22— v + k B ]j’// v *
M = —ie*u(p') | &WW“ + 7”61,M(ZWW u(p)erun(Nes , (N)

we can then make use of Mandelstamm invariants for a 2 — 2 reaction: s = (p+ k)%, t = (p— k)%, u = (p — k')?
to further simplify the expression for the invarian amplitude:
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M = —ie*u(p)) [7”%5_%7" + 7”’);]{7”] u(P)eru(Nes,, (V)

We are now ready to square the invariant amplitude in order to get the matrix element for the considered reaction:

IM|? = MM =TT, ,(Nes , (Ve ,(Me,s (V)

now summing on final states and averaging on initial states we get:

M = 3 3 T (zsl,ﬂ<x>s;p<») (Z ez,uwmw)
A A

s,s’

and this imply that to calculate the matrix element squared we nee to evaluate the spin sum of the photon.
As seen in the text of the problem this spin sum in the Landau Gauge contain terms proportional to the photon
momenta.
This terms does not yield any physical content to the matrix element since they are canceled because of gauge

invariance. This can be easily proved: Let’s consider the Euler-Lagrange equations of motion for the photon field
(Maxwell Equations) in absence of external currents:

o, F* =0A" — 0" (0"A,) =0
These motion equations are left unchanged if we perform a gauge transformation on the photon field:
A/J. — A//J, _ A/L _ a,u.X

We can use this freedom to choose the A* field to satisfy the condition:

m

which is colled Lorentz Condition. The condition in Eq. 12 is very useful since it decouples the different
components of the photon field and leaves us with a very simple equation of motion:

dA* =0
This equation has plane wave solutions of the form:
AP = Nekeihe
provided that k% = 0, i.e. k?= k2 since:
OA* =0 [Na“e_ik'ﬂ = —k2Nete e =
this implies that (from Eq. 12):
OMA, = 'Ne,e 7 = _NEte,e ™ = (13)
However this has not exhausted our gauge freedom, we are still free to make another shift in the potential:
AP A= AP — 9Py

provided that the y field obeys the massless Klein-Gordon equation [y = 0, and the resulting potential still
satisfies the Lorentz condition in Eq.12. This y field has plane wave solutions of the type:

¥ = AeitT Oy = —k2 e~k
this means that the photon field in the new gauge has the form:
AR AP = AP — 9P = Nete R Lkt AeR® = N (et + kM) e e
This means that producing a gauge transformation implies a shift of the polarization vector:
et — 't = el + pEH (14)

this field still satisfy the transversity condition in Eq.13 (k- = 0), since k? = 0 for free field solutions of
the equation of motion. Let’s now consider a process with one external photon leg, with momentum k*, whose
polarization state is described by the polarization vector e*(k, A):

the amplitude associated to this process is in general separable between a contribution due to the external photon
and one associated to the current to which the photon is coupled:

M,y = et (k, A)%

With the Lorentz choice of trasversality (k-e) we have that the amplitude must be gauge invariant, as should be
any physical quantity, under a tranformation of the type of Eq. 14, which means:

My — M} = (#(k,\) + BF) T, = My = KT, = 0
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w

This important and general result, stated in Eq. 15 is known as Ward Identity. Let’s check in detail that this
identity holds for the Compton scattering amplitude. The amplitude can be written separating the contribution
from the external photons as in Eq. 11. Making the substitution €1 ,(k, \) — k* we get:

k,TH = —ie*u(p’) v Zﬁ li “+7”p_uy7y u(p)kues,, (N)

let’s work separately now on each term coming from one of the two diagrams contributing to the process at LO.
we have:

kDY = =i =) (p+ Bku(p)ss , (X) (16)

kuDy = —ZZU( POk — K )y ulp)es, (V) (17)

working on Eq. 16 one can notice that:

Fu(p) = (' + 3 — plulp) = (k+p — m)u(p) = (k +p)u(p)

having used 4-momentum conservation (k +p = k&’ + p) and Dirac Equation (p)u(p) = mu(p)), and neglecting
electron mass in the last step. Eq. 16 becomes:

2 62

.7 _ *
kDY = —i—a(@ )" (p + K)*u(p)es, (V) = —i—a(p)y" (p + k)*u(p)es,, (N) = —ie’u(p)¢,(k, X)u(p)
which is manifestly non-vanishing. working on Eq. 17 one can notice that:

ap )k =a@) @ + ¥ —p) =a@)(m+ ¥ —p) = —a@)(p— ¥
having used again momentum conservation and the Dirac Equation. Eq. 17 becomes:

62

kuDy = Z*U( N —H) A up)es, (N) = i—a(p' )" (p — K)?ulp)es,, (X) = ie*u(p') ¢, (k, X )ulp)

w
which is again manifestly non-vanishing. Combining the two results instead we obtain:
kuTH = k(DY + DY) = —ie*u(p') ¢y (k, N )ulp) — ie*u(p’)¢,(k, X )u(p) = 0

This result is expected because of gauge invariance of QED. On the other hand this implies that the terms o k* kY
in the Landau gauge form of the foton spin sum yield no physics content, since they are “gauged away”.
As a side point this line of reasoning allows to derive in the Feynman gauge the photon spin sum in a covariant
way. In effect considering the general "’one photon” process with amplitude A, = &*(k,A\7,). The photon
polarizations physically allowed are e#(k,1) = (0,1,0,0) and *(k,2) = (0,0,1,0) and the physical 4-momentum
is k* = (k,0,0, k). Then the required polarization sum would be:

M= 37 ek N (kN = [T + T
A=1,2
However, we have also the Ward Identity in Eq. 15 k#7,, = 0. This tells us:
KT + KT = k(T - Ta)
hence the squared amplitude is:
M2 = 37 ek Ne™ (b VLT = [T + B + |5 = T = —g" T,T;
A=1,2

and we get the identity for the photon spin sum:

> ek, e (kyA) = —g*

A=1,2
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4. Problem Sheet 4
4.1.  Problem 1
Consider the process (photon exchange only)
¢ +Qp) — € (K) +Qp+9)

where Q represents a generic massless quark of EM charge e, and e~ a massless electron. Schematically:

P \\

p' = XP +q
Fig. 6. Elastic scattering process e~ + Q(&p) — el(k’) +Q(p+q)

show that the double-differential cross-section may be written:

A’z dra? o 1 o
One may use the expression:
22 | =9
T2 o245 TU
|IM|* = 2¢ege =

for the matrix element squared summed/averaged over final/initial colours and spins.(Hint: express 3, t, @ in
terms od the standard DIS variables)

Y

Q@=—¢ =" and y = -

~

Solution
The matrix element for the elementary electron-parton scattering in the single photon approximation is:

M =T e, (o) G e

where the incoming(outgoing) electron has momentum k(k’) while the incoming(outgoing) parton has momentum
p=EP(p'). Momentum conservation implies: k — k' = ¢ = p’ — p. So the amplitude can be written:
2

M = =it (' u(p)) (K (k)

Averaging on initial and summing over final spins (assuming the scattering happens on a charged parton of spin
1/2) we get:

e2et

T IME = 30 MM = 3 S Ne e (1) )k u(h)) (a6 ) )

spins spins spins

*

using the fact that:

() v up)]* = u (p)(v") () u(®@) = ul (p)(v*) (O u(p') = ul (p)y v u(p’) = u(p)(v*)u(p)

the squared and averaged ME can be written:

1 1 02ed
4 Z|M|2:1 ZNC i

spins spins q

(@ upyatk (k) ) (@ uk @)y u(p) )

or re-shuffling the elements (wy*u):
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LS e = 5 S N (oo (e ) (a0l ak (k)
4 4 q

spins spins

so arranging the spin sums for each term:
2 4

P = Ve (Sl ulp ) ) (3 ksl (k)

rr/ ss’

One can take trace since the terms in parenthesis are scalars and then use the cyclic property of traces:

1 IM? = ZNC %TT (Z u(p’, " yap’, r')y* ET: u(p,r)u(p, r)'y”)Tr ('Vu Z u(k, s)u(k, s)y, Z u(k', s u(k', s’))

r’ s s’

then one can use the identity:

Z u(k, s)u(k,s) =p+m

S

to get:
1 1 6264
1P = INGETr (0 + may* (pt ma)y” ) Tr (ko me 4+ me))

Now we can identify the same tensorial structure in the two traces and introduce the so called leptonic tensor
L*(k, k") and the partonic one M* (p,p’) as:

Lk, K) = 5 Tr (08 +momuk+men ) M = ST (6 +my)y(p -+ m)”)

Let’s concentrate on the leptonic tensor:

1

Ly (k. K') = %TT((%’erem(%ere)%) = % [Tr(h”w%%) +mZTr (%m)} =5 [k’”k"TT(mwa%) + 4migw}

where one has used T'r (odd # of 'y/s) =0, and that Tr ('ylﬁl,) = 4g,,,. Now using the trace theorem with 4
matrices:

Tr (%%%%) =4 (gp,ugau + 9pv9ov — gpag,uu)
we have:
1 o
Ly (k, k') = 5 [k/pk 4(9ppgov + Govgov — GpoGuv) + 4m§9uu] =2 [k;kv + kyk;, — (k k- mg) guV]

and so we get:

Lo (b &) =2 [k;k:u + k!, — g (k- K — mg)} (18)

in the same way we get for the partonic tensor the expression:
MM (p,p') =2 [p’”p” +ptp" =g (p-p' - mi)}
contracting the two tensors we have:

2.4 2,4
1 q

e e e-e
1 SO IMP = NquTLuu(k7 E')M™ (p,p') = 4N¢ o [k;kﬁkuk’y—gw (kK — mﬁ)} [p”‘p”+p"p’”—g“” (p-p' - mﬁ)}

spins

In the high energy regime we can neglect the incoming electron and parton masses (m. = my = 0):

1 eZet
1 S OIMPP = 4chT4 [k;ku + Kk, — g (- k’)} [p’”p” + k" — g™ (p- p’)}

spins

dotting the two expressions:
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- Z IM|* =4N¢ i |(F Pk p) + (K- p) (k- ) = (k- K (p- )+
- K) = (0 p) k- )+ 4k - K)(p - )|

(k-p")(E -p)+ (k-p)(K -p) = (k-E)p" -p)—(p-p
simplifying:
e2et o204
- Z IM|* = 4N¢ ;4 20k p")(k - p) +2(k" - p)(k-p')| = 8Nc2—4[(k’ p') (k- p) + (K 'p)(k'p/)}
St

spzns
Now is convenient to introduce the Mandelstam variables in the partonic scattering reference fram

/

(PJFk) *pz+k2+2k~p:mz+m§+2k~p22k~p:Qk’
=(k—K)Y? =k +Kk?-2k-K =m2+m? -2k K ~2k-K =-2p-p/
P =k p? =2k -p =m24md -2k p = 2k-p =2k p

t=q
(k —

2)
I

were we have neglected the particle’s masses and used momentum conservation (k +p =k’ + p’) in the last steps

So:
(k’-p)Z(k’-p’)Zg, (k“p):(k’-p’):—g, ¢~ =2k-K)=-20p-p)=t

so we have the invariant squared amplitude defined in terms of Mandelstam variables

2,4 2 2
,Z|M|2 u}

6 e [ S
spins

4+4

and finally we obtain the expression for the invariant squared matrix element

~2
72|M|2—2Nee{5 =] (19)
spins
We are now ready to calculate the cross-section:
= —/ > IM|*dPs (20)
spins

an element of n-body space phase is given by:

dPs = ﬁ( d'p; (2m)6(p? — )) (2m)*6 (ptot - sz>

(2’

n d3 .
- 11z ) (ne - S0

and in our case:

a3k’ d*p’
dP 2 2 454 :ZC o k/
~ 2 4N / Z [M[PdPs; = 2% 4N / Zsl'/\/” )32k, (2 )32p'0( m) 6" (p+ D )

spins spin
Now it’s convenient to re-express the two body phase-space in terms of variables used in the DIS phenomenology

(i.e. isolating the electron contribution):
a3k d3p’ 3k’ d|k'||k’|2d
dPsy = - 2m)tst k—p —K)= ———dPsx = ——————dP
2= Gy @nyag, o) O PR Y k) = g AP = g ymry 0ex
where the dPsx contribution denotes the phase space due to the hadronic mass recoiling off the scattered
electron (in this case just a on-shell parton). Now assuming high energy particles (therefore neglecting the masses):

m? 0=k — K> — [K|> = k@
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dkbkl2d cos Odyp dk{kyd cos
dPso — —070 = 2 7 — 20T TR P
*2 (2m)32K, X 82 X

where we have integrated out the ¢ variable, since does not contribute to relevent physics. Now switching for
simplicity from k{, to E’ (energy of the outgoing electron) we can go from the variables (E’, cosf) to the Lorentz-

invariant set (z, Q?).
-1

o(x, Q%)

O(E’, cosb)
O(E', cosb)

Iz, Q%)
now one has to calculate the determinant of the Jacobian matrix for the change of variables:
) 2Q?
(z,Q) i ek
oz 2Q?

2,E/ = ==  ~|=
J(z,Q% £, cos 0) ‘a(E’,cos@‘ dcosf Dcosd

dFE'dcos = dzdQ? = dzdQ?

to solve the determinant one should express # and Q2 in terms of the variables E’ and cos We have:

Q*=—-¢=—(k—K) =—(K*+k? -2k -k')=—2m? + 2(EF' — k- k') ~ 2EF'(1 — cos )
. - —q¢? _ EE'(1—cosf
T 2P-q 2(M,0)-(E-FE.k-K) M(E-FE)

were we have used m? ~ 0 = E’2 — [K’|2. In the last step we have evaluated the invariant P-q in the rest reference
frame of the proton (from which comes the parton in the elementary hard scattering). So one has:

(EE’(I—COS@ 8(2EE’(1 0))
2 M(E—E’) —COoS
‘ d(z,Q%) _ OE OE’
- EE’'(1—cos6
O(E', cos b)) O(E=")  pER (1—cos0))
O cos 6 0 cos 6

taking the derivatives:

P EE’'(1—cos 6
Ox M(E-E) ) E(l—cos@)M(E—E')+ MEE'(1—cos)  E?*(1—cosf)

oF OF' B M2(E — E')? T M(E-E')?

0Q* O(2EE'(1 —cosb))

A EYol =2F(1 — cos#®)

EE’'(1—cos 6

Ox 73( M((E—E’) ) _ —EF
dcosl 0cos b - M(E-FE')

0Q*  O(2EE'(1—cosf)) ,
dcosl 0cosf = 2EE

Then Jacobian is:

Iz, Q%) _ % 2E(1 —cos)\| —2E'E*(1— cosb) N 2E'E?(1 — cos )
(B, cos0) MZEL_E;E/) —9FE' M(E — E')? M(E - E")

doing all the algebra:

_ —2F'E3(1 —cosf) + (E — E')2E'E*(1 — cost)  —2E'E3(1 — cosf) + (E — E')2E'E*(1 — cosf)

M(E — E')2 B M(E — E')2
—2FE'E*(1 — cosf) + 2E'E*(1 — cos§) —2E?E?*(1 —cost))  —2E"?E?*(1 —cosf)) —2E'2E(1—cost)) E'E
M(E - E)? ME-EY  ME-E) (E-E)
and so finally:
A(x,Q?) B E'E O(E',cos0)| 1 E- £’
(E,cost)| (B E) 9(z,Q%) | 2z EE

now returning to the two body space phase dPss

O(E’, cosb) 5 E''1 E-F 5 11 E' )
AL 1dQ?dPsx = —— — dzdQ?dPsyx = — — (1 — =) dzdQ?dP
Az, Q?) ’ 2dQdPsx = w55 g wdQ dPsx = o550 7 ) dwdQ dPsx

dE’E’dcost E'

Won=""gm x=ga
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now it is convenient to introduce the inelestacity y variable evaluated in the “proton at rest” frame:

P-q_(M,o)-(E—E’,k—k')_M(E—E’)_E—E’_l_g’
Pk (M,0) - (E,k)  ME B E

y:

on the other hand the variables s = (P + k)?, 2 and y are not independent, since:

s=(P+k)?=P +k+2P - k=ml+Mp+2-k~2P -k

so that:
s Q2 QQ 2 QZ
2 a 2x Y 2x s ST
i.e. the inelasticiy is:
El/ QZ
1= _ % 21
y T = o2 (21)
and finally:
11 Q2 ) 1 Q? 2
dPsy = —dzdQ°dPsx = —— ——5drdQ°dPsx
872 2z sx = 1672 sx2

since X consists just of one massless parton, we have:

d3p/

dPsx = ————
(2m)32py,

?25;6@%()5(513 +q—px) = (2m)6 ((€P +)?)

where we have used momentum conservation: k +&P = k' +px = px =P +k—kK =€&P +¢
SO Now:
(EP+q)*=(EP)* + ¢ +26P q=m2 +¢* +26P g~ ¢* + 2P - q

and so the Dirac delta becomes:

5(q2+2€P-q)=5<(2§2.q+§)2p-q> =5((5—$)_$qg> =5((€—w‘)22) Z%é(é—x)

where we have used d(azx) = 1/ad(x).
the phase space of the parton is:

@r)*st(p+k—K —p) =

(2mx)
dPsx = oz 0(& —x)
we are now ready to put together the pieces and get the full cross-section:

1 1

Po= ——
77 954N,

11 1 Q?
> IM[PdPsy = I ) :\M|216ﬂ2$dde2dPsX
¢ spins

spins

and therefore:

11 Q 2 11 1 1
Po=—— sV ded? 2= — (¢ — a)dzdQ*~ ?
IN, 55 16n2s22 Q2 0 (& —@)ded@ S;JM' N, 25 8rsp (&~ 2)drdQ 4S;S|M|
now since: (q+£&P)?2 =0=26P-q+¢*> = =
d?c 1 1 1 ) 5
dzdQ? M%Swsx SWZM'Ml N, 167rs :1:2 SWZMM/”

but from Eq. 21 Q2 = zys — 1/s%z? = y?/Q* so that:

d*o 1 y? 1 5
dxd0® ~ N.16:07° & "V > IM|

spins

the last step is to evaluate the matrix element squared in Eq. 19 in the DIS variables:

fZ|M|2—2Nee [s +u}

2

spins

Now one can use the Mandelstam invariants properties:
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so that:

s s ? 5213 o 2 4
1 Z |M|? :2]\[06264{%} :2N082@4|:52+52 +12+25 } _ 2Noege
a q —

(257 + 1 + 25t)

12
P
AN

1+ <1+§2 +2§>

52 7\
=2Ngele' < |1+ [1+=
12 g

now using: ¢t = —Q? §=¢s=xs Q2 = zys we have:
2
1 222 02\ 2 (1+(1—y) )
= M|? = 2NgeZe? 14+ (1—- =] | =2Nce2e >—u—~
4 splZnJ | cator 1T s ©%a® y?

now since e = 4ma in terms of the fine structure constant (electromagnetic coupling strength):

(1 +(1- y)z)

2

1
i > IM[? = 2Ncel (4ma)?

spins Y
finally putting everything together:
2
2o 1 g2 (1 +(1—-y) ) 397202
=— 5(¢ — 7)2Nee? (dma)? = 2(1+0-p)7)o -
dmdQ2 ]\7C 167TQ4 (5 I’) Ceq( ﬂ'Oé) yg 167TQ4 eq + ( y) (E 'I)
and the final expression is:
d23 4’/7'0[2 2 1
27 =T - }f 25(¢ — 22
dwdQ?|, .-, Q' [+ (1= y)*] gefate o) (22)

Let’s now suppose that the proton consists of a bundle of comoving partons, which carry a range of the proton’s
momentum. We posit probability distribution functions (called parton distribution functions, pdfs), such that the
partons od the type q carry a fraction of the proton’s momemtum between 7 and 1+ dn a fraction f,(n)dn of the
time. Provided that these partons are pointlike r? < 1/Q? and dilute f,(n) < Q*R?, the photons will scatter
incoherently off individual partons. Now we can calculate what we expect for the e™ P — e~ X cross-section given
this naive parton model: the cross section can be factorized as the convolution of the pdfs with the cross-section
for parton scattering:

d*o
dzdQ?

1 (e + gloP
efpﬁew:zq: /0 dnfq/p(n)w (23)

If we assume that the scattering is elastic, then the outgoing parton must be on mass-shell, and assuming also
that partons are massless, then on can obtain the relation:

(@+nP)=2p-q—Q*=0-—n=za
Combining now Eq. 22 and 23 we have:

d ! 4o’ 1
WZ)Q P x - Eq:/o dnfq/P(n)% [1 +(1— y)Q] 5635(77 — )
2ra? 1
- gﬁf {1 +1- yﬂ Eq:/o dnfy p(n)eld(n — x)
2o’

o [1 . yﬂ S 2ty p(x)

the cross section of DIS in the lowest order of QED in the naive parton model frame can be wirtten:
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Ao B 2o

m e‘P—»e—Xi 7624 |:1 i (1 B y)Q] Z egqu/p(il?) (24)

q

structure function

from direct comparison of Eq. 24 with Eq. 8 one gets:

Fy(x) = Zegqu/p(x)
FL(.’I}) =0

Note that Fy(z) is Q?-independent showing Bjorken scaling. Simply from helicity conservation, one can show
that, if we assume that the struck partons are the quark of the quark model (which are fermions), Fy(z) = 0.
This is known as Callan-Gross relation. (If the partons were instead scalars we would have Fp = 0 and hence a
completely different y-dependence of the cross-section).
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4.2.  Problem 2
In the calculation of the Z° lineshape in the lectures the interference between the v and Z contributions has

been neglected (i.e. the correct result should have been obtained by computing M. + Mzo|? instead of |M.,|?
and | M zo|? separately. Estimate the interference contribution. What is its value on the peak (y/s = M2)?)

Solution
At LO two diagrams are contributing to the cross-section of electron positron annihilation in to fermion-
antifermion (other than electron!) pairs:

e f g f

Fig. 7. Electron positron annihilation e~ (p1)et (p2) — f(k1)f(k2)

In the lectures it was stated that the Z lineshape at tree level can be written:

4ra? o Ama® . 52

Outo—zyf(s) = 04(5) +02(s) = 2 QFNY + P N CESTALESYE CCr |1+Ay (25)
~ . Z VA
7 contribution Z contribution ~—Z interference

let’s derive this expression in detail to check how the interference term comes out. The cross section is proportional
to the square of the matrix element:

7 o My + Moo = (Mo + Mo ) (My + Mao ) = M P + (Mo + (Mo M + MM o)

inter ference
and so we can express the interference term as:
MWM*ZO + M;MZO = M%Z + M:,Z = SReM%Z + iJmM%Z + %QM%Z — ijm/\/l%Z = 29‘{6./\/1%2

The cross-section is then:

1
doror = 5 (JM4 2 + [Mzo|? + 2ReM., z) dPs> (26)

The matrix element for the v exchange contribution is a simple QED matrix element:

— . 71‘9/”’ — . v
M., =0(p2)(iey")u(pr) ——=u(k1)(—ieQ v(ka 27
o ()(7)()(p1+p2)2()( £ )v(k2) (27)
where the incoming electron (positron) has momentum p;(p2) while the outgoing fermion (antifermion) has
momentum k; (k2). Momentum conservation implies: p1 + ps = ¢ = k1 + k2. So the amplitude can be written:
7’L‘62Qf

My = == () ulp)) (330 (2))

squaring and averaging(summing) on initial(final) degrees of freedom, whe have:

64 2 N
Tl = 1 3 M7 = § 3 2 (i uton e ) (o u(on ik o 42))

spins spins

using the fact:

@k o(k)]™ = of (k2) (V)T (7°) (k) = 0F (k2) (1) (1) ulpr) = 0T (k2)7 7" ulke) = T(ks) (4 Yu(ks)

the squared amplitude can be written:

64 2
LM = 1 3 S (o T o (k) (P i o)1)

spins spins
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or:

4 2
PP =1 3 S (s ute (o o) (7 e )

spins spins

arranging the spin sums for each particle:

1Mo = Q L3 0o )y upr, vya(pr, 1)y vpe, 1) ) (3 ks, )0k, 8 Yok, )yl 5))

spins rr! s,s’

i.e. taking the trace and using the cyclic property of the traces:

102
EZ\M7|2:ieq4fTT(ZE(P2a v(pa, 7 “Z u(py,r)u(pr, )y V)TT<ZU(7€1, u(ky, s %LZ (kg 8")v(ka, s")y )

spins r s

now using the identities:
> ulk, sk, s) = K +my Z (ka, s)v(k2,s) = Ko —

we have:

1 IM = QfT?"((gé M) g+ me)y” ) Tr (R + mg )b = mp) v )

spins

we can now identify the same tensorial structure in the two traces and introduce the so called leptonic tensor:
L* (py, p2):

v 1 5 1
L (prp2) = 5T (0 = moy" (g +me)y”) L (ks ko) = STr (K + )3 (b = mg) )
Let’s consider the first trace. Now since the trace of an odd number of v matrices yields zero, we have:
v 1 17 ag_ Vv v
Ly (p1,p2) = §Tr<(gé —me)Y" (gh + me)y ) = p2,pD1,e TT(YP Yy 7Y") = mZTr(y/y")
so using the usual 7 traces theorems:
Tr(y""y7") = 4(g™9"" + 9" 9"" — 9" g"")
Tr(v"y") = 49"

and we have therefore:

1
LE (pr.p2) = 5 | 4p2op10 (97 9% + 9" 97 = 9" 9"") — 49“”’”4 - Q(PQLPT +pi'ps — (p1 - p2)gt” — mgg“”>

and finally the leptonic tensor has the form:
LY (p1,p2) = 2[19’2‘19? + iP5 — (p1-p2 + mi)g‘”}
in the same way the tensor for the outogoing pair of fermions:
Lf, (ks ka) = 2[Ry akz s + s = (1 -+ m3) g

the squared matrix element is obtained contracting the two tensors. Neglecting electron and fermion mass, since
we want to consider the high energy limit:

42 42

1 Qs
1 > IM, P = qTfLéL (p1, p2) L, (K1, ko) =

spins

<P2P1 +p1p2 (Pl pz) ) <k1 ;sz v+ k2 ;Jﬁ v (kl : k2)gw>

64Q2
=4 q4f 2<P2'k1)(101'k2)+2(p2-k2)(p1-k1)]
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now using the definition of Mandelstamm invariants:
2 2 .2 2 2 2 ~ _
s=¢q" = (p1+p2)” =pi+pi+2p1-p2=mg+mg+2p1-p2™>2p1-p2 =2k -k

t=(p1—k1)? =pi+ ki —2p1 ko =mZ+m}—2p1 k1~ —2p1 ki =—2ps-ky

u=(p1—ka)> =p} +k3 —2p1 ke =ml+m}—2p1-ky~—2p1 ko= —2ps- ki

were we have neglected the particle’s masses and used momentum conservation (p; +ps = k1 + k) in the last steps.
So:

¢* = 2(p1 - p2) = 2(k1 ko) =5, (pl'kl):(pQ'kQ):_%’ (Pl'kz):(pz'kl):_g
and the matrix element becomes:
4 Z My [? = 4Qf -(pQ k1) (p1 - k2) + (p2 - k2)(p1 - kl)] - 8643622? {i + f]
spms L
and finally:
4Z|M |2—24Qf[t+u} (28)
spins

to complete the calculation of the cross section we need to evaluate the expression:

/ 3 IM, [2dPsy = —/ 4Qf[t2+u}dP52

spins
The two body phase space is:
d?k, d?ko

dPsy =
27 (2n)32E, (21)32E,

(27T)45(P1 +p2 — k1 — ka)

so going in the center of mass reference frame and integrating on the momenutm ks:

o o
dPsy = iEl)E2 dk1d®ka6(V/s — k1 — k2)0% (k1 — ko) = ELE)E [k1|2d|kq|d cos Odpd(\/s — ky — ko)

in the high energy limit: lvertks| = k1 ~ E; so:
(2m)~2
4k ko

but the integration on the 3-momenutum yields: ky; — ko =0 = k; = ks and so:

dPSQ = kzdlﬁd COS 9d¢5([ kll kg)

_ (2’”)72 *2 * *\ 1 N\ 1 \/g "
dPsy = T k*“dk*d cos 0dpd (/s — 2k*) = 6.2 (Vs — 2k*) = dcos@dcp25 5 k

with £* momentum of the outgoing fermions in the Centre-of-mass reference frame. Integrating out the uninter-

esting azimuthal angle:
dcosh276 é — k* dCOSQ dk*5 \[ ) = dcost
2 16m 167

dPSQ =

3272

and the outgoing momentum is k* = \/s/2. Now 6 is the scattering angle in the centre-of-mass frame can be
re-expressed as:

t~ —2py -k = —2k*2(1 — cos ) = —%(1 —cosf) = dt = ;dcosﬁ

where we have used the fact that neglecting all the masses all momenta (incoming and outgoing) are equal to k*,
and so s = k*2. The very last RHS of equation implies:

dt = ;dcoseﬁdcosﬁz gdt
s

and finally we have:
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dcos@i 2 dtfﬂ
16w 16mws  8ws

the integration bounds are obtained from: cos@ =1 —t=0 cosf = —1 — ¢t = —s. So the total cross-section
is obtained from:

1
2s
==

fluz factor

U,\/:

\M |*dPsy = 7/ — M, ?
8ms

so now using the expression derived here:

10 A 2+ u? 10 at t2+u
07_275 871'5 Qf[ }_25/_88775( )Qf

now using the property of Mandelstamm invariants:

stttu=Y mi=0=u’=(—s—1t)° =5+ +2st

i

we can write:

0 32m2a*QF dt {tQ + (2412 + 2st)] _ 4ma?Q} /0 dt [2:&2 + 5%+ 2st]

= 9 8 s 52 2s s 52
and we get:
210202 [0 gt /2 " 9ma02 0 222 223\ "
07:%/ —|1+2— +2- :Qf/ dm(l+2m2+2x):7Qf o+t +
s s S 52 s s _ s 3 )
- _27ra2Q?c B AN 47ra2Q?c
=14 =
s 3 3s

Taking into account the number of colours of the fermion Nf, the gamma exchange cross-section is:

dra?
3s

N Q} (29)

O~ =

Let’s now concentrate on the pure Z-exchange diagram. The invariant amplitude is (p1 + p2 = gz = k1 + k2):

- —ig 7 —ig"” _ —ig -
My = {5021, oo v = 1)) | T { T g (01 = a0 ()

and the matrix element is:

i 2
: Sy T v as o)} (k) s i) (60

Mz = 4cos? Ow (q% —

we have introduced the axial and vector coefficients ay and vy defined in the following way:

— 2sinf3,Q ¥

where T? is the third component of the weak isospin, Q¢ the fermion electromagnetic charge and sinf,, the weak
mixing angle.
The Z° propagator should be written:

—1 qudv
D, = ; —Yuv
v (9) q%—M%—HMZFZ( o M§>

in the expression in Eq. 30 we have neglected terms proportional to g,q, since those cancel, due to gauge
invariance of the theory:
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Quqy {u(k)y" (vp — apys)v(ke)} = quaw {T(k)y" (- )v(ka)} = qu {u(k1)g (. v(ka)}
= qu{u(k)(By + #2) (. )v(k2) } = qud (k1)1</1 (- Jv(kz) —a(ki)(...) Ho(ks) }
———

u(k1)7nf~0 mygv(ka)~0
So, squaring the matrix element we get:

ik ! (B (0
16 cos* Oy (¢% — M2)? + M2I'% ’

{o(k2)v (vf — apys)ulki)u(p1)y” (ve — acys)v(p2)}

Mz|* = — aeys)u(pr)u(k)vu(vp — apys)v(ka)} *

now using the Fermi constant G, and the relation between the vector boson masses (M,, = M cos Oy ) we get:

9 9°

Gr _
V2 8MZ, 8M2 cos? Oy

and squaring this expression we have:
% N g4 N g4 _ 4G2 M4
2 64M 7 cos* Oy 16 cos? Oy 2

=2G2 My

Rearranging the elements in the amplitude expression we have:

2G2 M3,

( % MQ) T M2F2 {U( ) (Ue - aeq/5)u(p1)ﬂ(p1)'yy(ve - ae’Y5)U(p2)} *
2)7

IMz|* =
{o(k2)y (vy — apys)u(kr)a(kr)vu(vy — apys)v(ka)}

Averaging on initial spins and summing on final states:

. 1 1 2G2. M} _ _ y
Mz|* = 1 > IMy* = iy M§§2 fM%FQZ {Z U(pa, 8 )V (Ve — acys)u(pr, s)a(pr, s)7” (ve — aevs)v(pz,S’)} *

spins ss’

{Z’U(kz, v (v — apys)ulks, r)u(ks, r)v, (v — apys)v(ka, r’)}

rr!

Now taking the trace of the expressions in brackets we get:

- 2G2 M} / / - v
Mz|? = z Tr {Z v(p2,8")0(p2, 8" )7 (ve — aes) Zu(ph s)u(p1, s)7" (ve — ae%)} *

1
4 (¢% — M2)? + M2T%,

s’ s

Tr {Zv(kg, rYo(ka, ")y (v — afys) Z u(ky, r)a(ks, m)vu(vy — af%)}

[ r

now using the well-known completeness relations: ), v(p2,s")0(p2,s") = pp — me and > u(p1, s)u(p1,s) =
171 + me to get:

1 M
Mz|” =+ 2 2\2 212
4(q7 — Mz)? + MZI%

Tr{(gp — me)y" (ve — acs) (Ph + me)y” (ve — aeys) } *
Tr{(Ka —myp)v(vp —apys) (K +mp)yu(vy —apys)}

neglecting fermion and electron masses m. ~ my ~ 0:

2GZ M3 5
M2) T M2F2 Ir {957 - aeVS)P/l’V (ve — ae%)} *T'r {k/z%(vf - af%)k/l%(vf - (lf’Ys)}

1
2 —
IMz|? = e
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Let’s now consider the first trace:

Tr {H/Z'Yu (ve — ae'%)m’)/y(ve - ae'75)} = TT(”?HM“HW") - TT(Ueaem7“y17”75)
— Tr(veacte " vsp17") + Tr(a2pey" vsmhy” vs)

now using the anticommutation relations {vs,v*} = 0 we get:

Tr {H@’Y”(Ue — aes)phy” (ve — aes)} = (v? + ag)Tr(glz'y“gw”) = 2veacTr (g Phy" vs)
= (02 + a2)Po2Ppa T (V7 1"1"Y") = 20eaePe,20p 1 T (77777 5)

now using the traces of gamma matrices:

Tr(y'y"9P") = 497" g™ + 97" g™ — g7 g"")
Tr(y' 49y ys) = 4ie??”

we get for the electron trace:

Tr {ppr" (ve — acys)phy” (ve — aeys)} = (V2 + a2)Po.2ppad(g7 g™ + 97" g™ — g7Pg"") — 20eepo,2pp,1 (4177
= 4(vZ + a) [PspY + 5Pt — (p1 - p2)g™"] — Biacveps2ppae™”

we get the same result for the outcoming fermion tensor:

Tr {lov, (vy — agys)Hivu(vy — apys)t = 4w} + a3) [kuakva + kv akuz — (k- k2)gu] — Siagvpk ks eausy,

this implies that the squared and averaged matrix element is:

1 2G% M},
4 (g% — M32)? + MZT%

{4(1})% + a?«) [k‘%ﬂﬂy,g + k,,71k“72 — (kl . k'Q)Q;w] — 8iaf1}fk?k‘26€auﬁu}

M = { (02 + a2) [Pt + pYpt — (1 - p2)g™] — 8pp}

now defining the tensor L*” = [php¥ + psp! — (p1 - p2)gH”] this is a clearly symmetric structure in the Lorents
indexes p and v:

1 2G% M3
4 (g% — M2)? + M2ZT?,

{4(1}? + afc)LW(k;l, ko) — Siafvfk‘f‘kgswgu}

|IMz|? = {4(1}5 +a?) LM (py, p2) — Siaevepgwgpp’lsp“””}*

so cross-products of the symmetric tensor with the completely antisymmetric Ricci tensor of the type L* (p1, p2)eausy =
0 are vanishing. What is left is:

2G3% M

S 1
Mz|> ==
4 (g3 — M3)? + M3T%

{16(05 + a2) (v} + a7) L (p1, p2) Ly (K1, k2)

- 64aeveafvfpg,gpp’lkf‘kgsp“m’sm,m}

now the contraction of the L*” tensors gives:

LM (p1, p2) Ly (K1, k2) = [Php7 + P5pY — (p1 - p2)g"" ] (kb2 + bk — (k1 - k2)gpu]
= (p2 - k1)(p1 - k2) + (p2 - k2)(p1 - k1) — (k1 - k2)(p2 - p1) + (p1 - k2) (2 - K1)+
(p2 - k1)(p1 - ko) — (k1 - k2)(p1 - p2) — (p1 - p2) (k1 - k2) — (p1 - p2) (k1 - k2) + 4(p1 - p2) (ki - k2)
=2(p2 - k1)(p1 - k2) + 2(p2 - k2)(p1 - K1)



and using the property of the Ricci antisymmetric tensor:
e eavp = €M7 Eguar = —2(6507 — 0067)

We have, using the results obtained:

32G3% M}

1
Mz|> ==
4 (g3 — Mz)* + MZT%

+ 8acvearvspa2pp 1 kRS (0565 — 55;5;)}

this gives:
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{(vi +a2)(vF + a3)[2(p2 - k1) (p1 - k2) + 2(p2 - k2) (p1 - k1))

BG My {( D)2+ a)2(pa - k1) (pr - k) + 2pa - k)1 - k)]

My[? =
Mzl” = e —ayr i

+ 8a€v@afvfp072ppyl(k§ki‘ - kgk{))} = (qg _ M%)g +M%F2Z

Z

8G2. M2
5= {(Ug +a2)(vF +a})[2(p2 - k1) (p1 - k2)

+2(p2 - k2)(p1 - k1)] + Bacveasvy[(pe - k1) (p1 - k2) — (p2 - k2)(p1 - kl)}}

using the Mandelstam invariants introduced before:

az ~ 2(p1 - p2) = 2(k1 - ko) = s,

we have:

8G2 M

Myl =
Mzl = e Ay

+ 8a€v€afvf[(
8G2 M3

Els

2
v,
(s~ MZ)2 + M2TY, {( ‘

and finally we get for the matrix element:

{(vz +a?)(w} +ad)2 (-5

)-(-5) (-2}

N2, 2 Uj ﬁ
+ ag)(vy +af) 2+2

(p1-k1) = (p2 - k2) = —%,

(p1-k2) = (p2 - 1) = —%

2

[ 2
] + 8acveasvy [4 — 4} }

AG2 M

My[? =
Mzl” = T3+ g

{(vf + ag)(v}% + a?-)[u2 + t2] + 4dacveapvy [u2 - t2]}

it is convenient now to re-express the Mandelstamm invariants using the property:

s+tttu=0=u?=(-s

this implies:

u2+t2252+t2+25t+t2:52+2t+t2232(

— 1) = 5% + 12 + 2st

S 52
14+2-+25
#2242

u27t2:7t2+52+t2+25t:752725t:52(1+2§)

this way the matrix element can be written:

AG2 M

P = {vg
Ma"= gy

now using the expression for the cross-section derived before:

we can write:

1
oy = —
77 9

0 1 0
IMz|*dPsy = 7/
—S 28 —S

dr

8ms

2

Faeh o)t (1422 425 ) +aagegs? (1422) )

Mz?

(31)



36 —

1[0 at 4G2 M} 2 o, 9 9y 9 s s 2 s
07 =5 Sm(S_M%)2+M%FQZ{(veJrae)(varaf)s <1+2t+2t2> +4dacvearvys (1+2t>}
this gives:
1 4G’2FM§52 O dt 9 N, 9 9 s 52 s
oz ~Toms M2+ O [5; (vZ +ae)(vf+af) 1—|—2¥—|—2t—2 + 4dacveayvy (1—|—2¥)

G2 M}s P s s O dt 5
= P l142% 4127 ) tda0. @ (1 27)
dr((s — M2)? + MZT%] (ve +ac)(vy + af)/ 5 + t + 2 + 2.y afvf/, s + t

_s s
defining now = = t/s we have:

oo Gy Mys (y2+a2)(v2+a2)/0 dz (1+ 2z + 22%) + dacveagv /O dz (1 + 2z)
Z= 4m((s — M3)? 4+ MZT%] S e 1

Performing the integrals we have:

GQFMés 2 2v/, 2 2 2 25" 2,0
72 = s = 22y + 23T | Ve T ap) (9«“ +a’ + 23>1 +dacveapvg (2 +a%)
G%Mgs 2 2y, 2 2 2 (_1)3 2
= “1) =1+ (=12 + 22— ) + dacveasvp(—1) (=1 + (—1
An[(s — M2)? + M2TZ] (v + ag)(vy +af)(-1) +(=1)"+ 5 ) Tdaev apvp(—1) (=1 + (=1)%)
2 G%M%s

- 34r[(s — MZ)? + M2T2] {(Uf Jraz)(vff +a§-)}

now using the definition of G in terms of precision electroweak variables:

\/5(47704) B \/5(4%04)

T 8sin’ Oy M2, 8sin? Oy cos? Oy M3

Gr

which means, squaring G g

5 2(4ma)?
CF = Gasin by cost by M)
sin” Oy cos* Oy M,

The Z-exchange cross-section can be written:

21 2(4ma)? Ms S e
92 = 34 vy +al)(vs +a
Z 7 34m64sin’ Ow cost Oy M3 [(s — M2)2 + M2T%] {( e o) (vf f)}
167a? s ) e ,
- v; +az)(vy +a
3 - 64sin? Oy cos? Oy [(s — MZ)? + M2T%] {( )(vF f)}
a2 a)0f )

3s [(s —M2)? + M2T'%] 16 sin” Oy cos? Oy
now it is convenient to define the coefficients:

v} + a} (ts.f — 2Qp sin® 0,) + 13

Cr

4sin? Oy cos? Oy 4sin? Oy cos? Oy

to finally get the expression, taking into account the number of colours of the final state fermions Nfcz

S2

(s — MZ)? + MZT%,

Ara’
= N¢
9z 3s f

C.Cy (32)

Let’s now turn to te interference term:
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. 2
2ReM., 7 = 2Re(MIM ) = m(“q?f (W(ka)yulky)a(pi)y"v(p2)) *

. ig? 1
4cos? Ow (> — MZ) +iMzTy

(B (ve — acrs)ulpr)} (k) ya(vs — af%)v(kQ)})

so that the interference term is:

ie?Qr  ig? 1
@ 4dcos? Oy (@2 — M2)+iMzTy

e 2 = 20t (B ) pr )77 (o)) #
« (Bp2)7" (v — acys)ulps)} (k) 1oy — aﬂs)v(kz)})

i.e. we have rearranging the terms:

—e%Qrg? 1
4q? cos? Oy (q2 — M%) +iMzl'y

2ReM, 7 = m( (o2 wukn )@k v (07 = apys)olha) )

* (H(p1)’¥”v(p2)5(132)7“(”e - ‘1675)“(1”1)))

now since:

Gr s s _ 2GpM3

= = =
V2 8M2Z cos? Oy 4 cos? Oy V2

we have for the matrix element summed on final states and averaged on the initial:

< _ 1 —€2QfQGFM% 1 _ _
29%M%z—29%(4 Y S I T anT, (T2 )voulkn )l (g = ags)o(ka) )+

« (3l lpa)ot* (v — auruto)

which gives:

1 762QfGFM%
V2 (q* = M3) +iMzlz

(Z ke, " )u(ky, r)a(ky, r)yu(vy — apys)v(ke, 7”)) *

rr/

2Re M, 7z = Re (

(S ol (2,70~ acre)ulin. ) )

ss’

Taking the trace and using the cyclic property of traces:

Ko—my Kid+my

1 —QGpM2 Tr (32 vlka,)oka, ") 0 3 ks, )k, ) vy — ags) )+
V2 (@ = M) +iMzT, \ee % 27 W 1)k, 1) (v — ags

(Sl o)1 5) 2" 3 oo 000 ) (0~ )

S S

2Re M., 7z = Re (

T

Drtme phtme

where we have used the completeness relations of spinors to get:

1 —62QfGFM%
V2 (¢* = M7) +iMzTz

(g + e + m o~ 0020)) )

PR = me( Tr (o — mg)o s+ mp)(og — ag5) )
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Ignoring fermion masses:

1 —e2Q;GrM%
V2 (¢ — M2) +iMzly Tr [”f(%%"/l%) - af(k/é%kilﬂp%)} *

2Re M., 7 = Re (

« Tr [ve(m’y”gyy”) — ae(p/l’YVI%WM’Ys)})

1 —e2Q,;GpM2
KEkST { o) — . }
e<q2x/§(q? myyoy s e A S A D A e B

*P1ap2,sTT {ve(v“v”vﬁ ) = ae(y* A" W’“’YS)} >
now using the properties of the v matrices, we have:
Tr(%y,ﬂpﬁy,,) = 4(90#91)1/ + JovYpu — go’pg,uu)

Tr ('7,0'71/'707/175) = 4icpop

which means:

1 —€2QfGFM%
3 kﬁko’ |:4U o v+ Gou — 05 ) — 4arie Vo j|*
V2 (¢ — M%) +iMgTy, 2 1(9ongpov + 9ov9on = 9opGuv) F€pvop

2Re M., 7z = Re (

*PraP2.p [4% (99" + g™ g™ — g g™) — 4iaeaavﬁuD

1 —eQQfGFM% PO
- im(q“’\/i (¢ = MZ) +iMzT [4”f (kz’“kll”  Rawki = (k- kz)g"”) —dagikahy Ef’”"“} *

[[4% (pTPZ +pivh — (m -pz)g””) — dayipy,ap2,e™” “D

The contraction of tensors that follow is essentially the same as already calculated for the pure Z exchange
amplitude:

1 —e?Q;GpM;,
1 e 2 -k -k 2 -k kL
qQﬂ(q2 —M%)-l-iMZFZ{ 6vsv ( (p2 - k1)(p1 - k2) + 2(p2 - k2)(p1 1))

2ReM., 7z = Re (

— 16aca sk kT p1.ap2,s(—2)(6565 — 5553)})

- 1 762QfGFM%
= me(qg\@ (@ — M2) 1 iMsTy {161’)% (2(732 k) (py - k2) + 2(p2 - k2)(pr - k1)>

+ 32acapkb k] (p1.pp2.c — P1,0P2.p)

o 8 —CQQfGFM%
- E’%(qm @ 02) & idor (200 (2 k) ) £ 202 k)1 )

- 4aeaf((172 “k1)(pr - k2) = (p1 - Fa) (p2 - kQ))D

where we have used ¢,,,,c*"P* = (—2) (62‘5? - 555?). Now using the Mandelstam invariants defined before, we
get:

2Re M, 7 = Re <5\8/§ T —?\ifg;iil\j\jil"z [vae (t2 + u2) + acaf <u2 - t2>}>

so that finally the matrix element can be written:

Sﬁ[(jejcj;;Fﬁizrzo [vae (t2 + u2) + acay (u2 — tQ)} (33)

29%6./\/1%2 = —SRe (
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so that the v — Z interference cross-section is:

1 [0 at -
0~.Z /—29{2/\/1%2

T 2s s 8ms

hence:

1[0 dt 8¢2Q G M2 )
= —— —SRe Z vivg (82 + u?) 4 acar(u? — t?
77T T / 8s (s\/i[(s_Mg)ﬂMZrZ] { ! 2( ) f( )]

1 8e2QGrpM3% O dt 5 o 5 o
__167rsme(sx/§[(s—M%)+iMze] / ;[vag(t +u)+aeaf(u —t )]

—S

the integral has already been evaluted before and gives:

o0y = i)‘{e( 8e?Q,GrMj )2521) v __eQQfGFJW%Uque< S )
"7 167s 5v/2[(s — MZ) +iMzT z) 12 3v/27s e*s (s —M2Z)+iMzTy

3
now using again:

V2(dma) V2(4ma)

G — —
P 8sin® Oy M2, 8sin® Oy cos? Oy M2
we get:
4 M? 2(4
Ov,2 = _Ura)Q, Mz ) v2(dro) 5 9%( 5 G- >vevf
3v2ms  8sin® Oy cos? Oy M2 (s = MZ)+iMzI'y
2ma’Q VeUf " ( s )
= — ¢ -
35 sin® Oy cos2 Oy (s = MZ)+iMzTy
defining:
Ve — vf _ t?c fQQfsin2 0W
= 9%in Oy cos Oy 2 sin Oy cos Oy

and taking into account the number of colours of the final state fermion Nfc we get the following expression for
the cross-section:

4ralQf o S
= —— I NFom 34
oz 3s e((s — M2)+ z’MZFZ)Ver (34)

now defining the function:
S
s— MZ)+iMzly
the real part of this function at /s = My is clearly vanishing, so that o, z(y/s = Mz) = 0 i.e. the interference

term does not yield any contribution (at tree level) to the cross-section. The total cross-section as a function of
the center-of-mass energy (lineshape) is:

X(s) = (

4o’
Toreg7(s) = - NF (ch — 2QRex(s)V.Vy + |x<s>|zcecf>

We can also write the differential cross-section for the process ete™ — ff.
The complete matrix element for the process is:

— 1 2 +u?
MP =] e —2eteh (S5 )+

52

spins

~yexchange
L AGiMy
(s = Mz)? + T, M}

{(ag + vg)(af‘- + v?)(u2 + t2) + 4aeveafvf(u2 - t2)}

ZO%exchange
8e2Q G rpM?2
QsGrMy ) {vevf(u2+t2)+aeaf(u2t2)}

e (sx/i[(s " M2) 1 T My]

Z9 —~interference
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now using the definition of G we have:

2
M =1 3 IMP = 20t} (S5

spins
8m2a? M2
4 z 2 02 (62 4 02) (02 + 12) + 4 2 _ g2
16sin’ By cos Gy M (s — M7)? + TZ M2 {(“6 +vg)(ay + vp)(u” +17) + dacveasvp(u® — t°)
8(4 2 2 M2
. L TAC—, i {2+ st - )}
8 cos? By sin” Oy M2 svV2[(s — M2) +il'zMz]

Simplifying a bit the expression we get:

2+ u?
i LS M =32r 2a2Qf( )

spins
s (a2 +v2)(a7 +v7) (2 +u? N dacveasvy [(u® — ¢
(s — Mz)? +T% M2 165, ¢y 52 164, ¢y 52

S Vel 2 4+ u? Ael u? — 2
— 64 2 2 R eVf elf
TR <(S—M%) —|—ZTZMZ> {43%‘,0%,(, 52 i 453, c3y 52

this gives using the definitions given before:

+ 327202

v t3 —2Qys?, a t*
Vp=—1 = il Ay ==
QSwCU) QSwa QSwa 23u)cw
; vf—i—af (ts.f —2Qfs5)* +13 (s) = 5
T aske, sy sty X (s = MZ) +iMzTy

we get the folling squared matrix element:
t2 t2 2 t2
13 e =t @ (C50) e ey (B55) +aaam, (255

spzns
2 2 42
— 2Q%Rex(s) [v 17 <t o )+A6Af <“ = )]}

now using the Mandelstamm invariants expressed in terms of the polar angle in the centre-of-mass frame, we
have:

s = (p1+p2)° = 2p1 - py = 4B By = 4k
t=(pr —k1)*~ —2p; - ky = —2E?(1 — cosf) = —2k**(1 — cosh) = —g(l — cos )

w=(py —k2)> >~ —2p1 ko = —2E1 E>(1 — cos(§ — 7)) = —2k*?(1 + cos f) = —%(1 + cos 0)

so that:

52

2 4 u? 5(1—cos® 1 6
(t —i—u) 4( cos )" + ( + cos9)” (1+cos 0 —2cosf + 1 + cos? 0+2cos€) 2(1+00529)

52

,4;\»— %\»—‘

<u2t2> gI(l—l—cos@) gI(l—cos@)

= (1+cos 0+ 2cosf — 1 — cos? 9+2c089)—0050

52

and so the squared matrix element is:

1 1 1
1 Z\MF :3271'2042{62?2(1 + cos? ) + [x*(s)|? [Cesz(l + cos? 0) + 4A. AV Vs cos 9}

—2Q fMRex(s) {Vevf;(l + cos? 0) + A.Ay cos 9} }



— 41

Simplyfying:

1
1 Z\MP :16772042{62?(1 + cos® 0) + |x*(s)|* [CeCr(1 + cos® 0) + 8A.Af V.V cos 6]

—2Q fRex(s) [VeVy (1 + cos®0) + 24, Ap cos 0] }

Now we can finally evaluate the differential cross-section:

1, 11
dogsp 5= 2—3|Ml2dP52 =51 > IMPdPs,

The phase space has already been evaluated before:

dp Ph k2o yisi o by — o — k) = —— PR (5B - )
= ’7T _ _— - _ —
27 (2n)32E, (21)32E, Probe =) = 92 4, B, Lo
1 EidE, 1 1. \/s
= B, — By) = —dE [
1672 B\ dcosddcosp §(y/s 1 2) 87rd 1dcos¢925( 5 1)
dcos
= dPsy =
52 16m
SO one gets:
1 — ,dcosf do 1 1
do = —|M|? = - 2
7 25|M| 167 — dcos®  327s (4ZM| >

and the differential cross-section for the scattering of electron positron at high energies becomes (taking into
account the number of colours for each fermion):

do & - LT s 2
dcosé)(e e” — ff)= ZSNC{Qf(1+C05 0) (v exchange)
—2Q fRex(s) |:Ver(1 + cos? 0) + 2A.A cos 9} (v — Z interference)

+ Ix2(s)? [CeCf(l + cos? 0) + 8A.A V. Vy cos 9} } (Z exchange)
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4.3.  Problem 3
Given that neutrinos cannot be detected, how is I',,, the partial decay width of a Z° into neutrinos, measured?

Solution

First let’s calculate the decay width of a Z° boson into a pair of fermions. The lowest order contribuion in the
Standard Model to the Z decay to fermions is given by the diagram:

Fig. 8. Feynman diagram for a Z vector boson decaying into a pair of fermions (Z°(q) — f(p1)f(p2))

the matrix element is given by:
— ) () (g - A 35
M =u(p:) <2Sm9W oS 9w> V(v — apys)v(p2)en(q, A) (35)

the decay rate for the process Z° — ff is given by the expression:
1

1 — d*p1 d*ps
r +=—— [ dPsy|M|* = M*2746% (g7 —
2017 2MZ/ 2| M =53 3Z| F2r%% (a7 —pr - P2) G520 (275258

To obtain the decay rate in two fermions we need to evaluate the square of the matrix element:

+ie
2sin 6,, cos 0,

IMP = MM = €50 0! () o~ aon” )swuton)s

() (‘) 4 (os — agys)o(p2)en(a. )

2 sin Oy cos O,

so that:

62 v — *
IMP = (T ) o000y = el a0y — aprs)e(pa)et (1 Moy )

- <4S§CQ> vl (p2)(vy = apys) 07 ulpr)u(p )V (v — apys)v(p2)es (4 Neu(g, A)

= ( 452 2 ) vT(p2)70 (v + apys)y u(p)u(p )y (vF — agys)v(p2)es (g, Nep(g, A)

ww

where we have used 7077170 = ¥ — 4¥T40 = 494¥ and the anticommutation properties of the v matrices

{77} =0
and finally we have:

2
e _ v _ *
IM* = <452 = ) U(p2)y” (v — agys)u(pr)u(pL)y" (vy — apys)o(p2)es(a, Neu(q, A)
w W
averaging (summing) on initial (final) states we have:
[M* = Z Z:IMI2 (432 — ) > B(p2, 8 )y (vp—apys)u(pr, s)a(py, )7 (vp—apys)v(p2, 8') > eh(q, Neu(a, A)
s,s’ s,s’ A
now taking the trace of the first term and using the invariance property of traces under cyclic permutations:

M[* = . (4;02> Tr[Y  v(pa, 8)0(p2, ') 7 (vF — apys) > ulpr, $)u(p1, ) v (v — agys)] Y en(a, Neula, N)

s’/ s A

pe—my pitmy
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where we have used the completeness relationships. So the squared matrix element is:

62
M = % (4> Trl(g —mp)y” (v — apys) (g + mp)y™ (vp — ags)] Y el (@, Mew(d, A)
A
- ; (452 2 ) Tripey” (vs — apys)phy" (vy — apys)] Zai(q,)\)aﬂ(q,/\)

A

where we have neglected fermion masses in the approximation m; < p1, p2, qz , Mz. Expanding the products
we get:

AA 1 € v v v v *
IM|? = 3 ( 1 > Triphy" vipy" — gy apysphy s — mey” crmin asys + " a sy sl Y en (g Neu(a, A)
A

() Trlobmr i) = craslpn ™) = eqar (" i1 + )] 3 50 V)
wTw by
- <4SZ 2 ) {(U? +af)Tr [y "] — 2cpas T (o7 iy s ] } Zei(q, Nen(g, )
ww by

where in the last step we have used the anticommutation of v5 with the other v matrices. We get finally:

62 v_o v _ o *
= ZIMI2 ( e > {(vfc + )2, 1o Tr [V Y7 V] = 2¢5a5p2 pp1 o T V77 7“75]} > en(a Nenla, )
A

pol

the sum over polarizations for a massive vector boson gives:

* quqv
Z €y (Qa )‘)5#(‘17 >\) = —YGuv + ]1\22
A Z

and taking the traces:

2
& .
= z:IMI2 (432 2 ) pz,ppl,a{(vf« +a})A(g" g7 + g7 — g7 g") — 8ZCfaf5qu’YV} > en(@ Neu(a )
pol A

1 e? .
=\ 3= | P2pp10 (U]% + a?)4 (gpugcr,u + gP#gou _ gpaglw) —SZCfaprVU#’YV G + QHQ;
3 \ 4s3,cz) Mz,

symmetric pe—v antisymmetric p<—v
symmetric p<v

contracting the two tensors only the symmetric part contributes to the decay rate, since the contraction of a
symmetric with an antisymmetric tensor yields zero.

1 vV O oV loa v q ql/
Z‘MF g <4 73 )p27pp170{(1)]2c + a?c)4 (gp g+ gt gor — gP7 gt )} (g;w + ]I\}Q >
pol Z
_ 1 62 4 2 2 [N N7 iz Q/LQV
EEAVER:) (v} +af)[pspt +pips — (1 p2)g"] | 9w + M2
L[ e 5 | o (p1-)p2-q@) . (p1-)p2-9)  (p1-p2)d?
= —(ps - — (po - Apo - _
3 <312UC%U> (vi +af) [ (p2-p1) — (P2 -p1) +4(p2 - p1) + M2 + M2 M2
1L/ e 2 2 (p1-p)@® . (p1-0)(p2-q)
~3 <S?UC?U> (Uf +@f) {2(192 “p1) — M2 +2 M2

but now since g2 = M2 we have:
€ P1-49)(P2 -4
2ME =1 () 03 4 [ ) 4220020
pol wcw Z

In the reference frame where the Z boson is at rest:



Mz =FE, + Ey
0 = p1 +p2 = |[p1| = |p2|

This implies:
Ey = (|P1|2 + m%)1/2 = (\p1\2 + m?)1/2 =FE,

so since By = Ey and Eq + Ey = My we have Ey = Ey = Mz /2 Therefore if my < Mz |p1| = |p2| = E1 = E; =

My /2 the scalar products are:

M. My My My . MZ MZ M2
(pr-p2) = (7 5me) g e =2+ 7 =
My My M2
(p1-q) = (77 79)(MZ,0) =
My M M2
(p2-q) = (727—729)(1\/—’270) = TZ

and the matrix element becomes:

o2 L 2 _1( € 2 2y | M7 Jg% i N?
IM"= 3 El\/\/ﬂ =3 <S12uc’12u> (vf +af) 7+2T§
po
1/ e o o [MZ M2
=5 () i ad |+
and finally the matrix element is:
— 1 e?
MP =< 5= ) 0F +a}) M7
WP =g (s ) 03+ sz

To get to the decay width we evaluate the phase space factor:
I'y=—+- 2dPsg = —— [ = 22m)46* (¢ — p1 —
z oM, /|M‘ S2 oM, / 3 pgm |IM|*(2m)*6% (¢ — ;1 102)(271_)3219(1J 2]

and so:
d®py d>ps
dPsy = (27)"6% (¢ — p1 —

s2= (M0N0 = = P) Gy B a2,

d3p1 d3p2
— (20)465(a° — 10 — 963 (q — Dr —

(2m)°0(a” =Py = p2)0°(a = P1 = P2) 5 5o 9 vaa s,
py d*py

= (2m)*0(Myz — By — E2)5*(—p1 — p2)

1 1
- (27‘1’)2 ma(MZ —Ey - E2)53(p1 + pz)d3p1d3p2

(27)32E, (27)%2F,

integrating over py we get:

d3p1 .
dPsy = | d®py—ra-——06(My — Ey — E5)8°
52 / D2 (27)24F: By (Mz 1 2)0°(P1 + P2)
d3p1
=————0(Myz — FEy — E»)
(27T)24E1E2 (p1=—p2)

but expressing the differential in polar coordinates: d®p; = |p1|?d|p1|dQ and putting p; = |p1]:
p2dp1dSY

————0(Myz—-FE, - E
(27T)24E1E26( Z ! 2)

dPSQ =

(P1=—P2)

(36)



and the energies can be written:

5(MZ—E1 —Eg) :5(MZ—\/m%+p12—\/m§+p12) :5(MZ—2\/mf—|—p12)

where in the last step we have used m; = mgo (which is guaranteed by CPT theorem) and p; = —pa.

Let’s now use the Dirac d-distribution property:

57 =S =P g g

of
i ‘ Op1 |P:P7i
in our case f(p1) = Mz — 2\/m? + p? and
af 1 2p
o2l -] (-2)(2m)| = 2
D1 2,/m3 + pi 1
using this expression in the Lorentz invariant phase-space:
2
pidpid)  Ey /
dPsy = —————6(p1 —
52 (277)24E1E2 2p1 (pl P )
pldpldQ /
= 76 —
msE, 0P )

since Foy = 4 /m? + p? neglecting fermion mass, we have: Fy ~ p;, and this gives:

dpldQ
dPsy = S(pr —p'
S2 3972 (1 —p')
dp1dQ dQ
= (S — 9 = —_—
/ 30,2 01— P) = 30
where p; = p’ such as:
2 2
M2 M f4mf
f(p/)zMz—%/mfc—!-p’Q=O=>m?—|—p’2:TZ:> p/:72
This implies:
1 1 1 dS)
y=_— 2dPsy = —— [ - 2
2= 9M /'M‘ 52 2MZ/3Z| 3o

1 1/ é? 9 9\, .o dS2
2My /§ (S?UC?U) vy +af)M2327r2

aQ 1 e? 9 9
Ir 187 () (vy +ap)Mz

and thus we come finally to the deacy width expressions:

dFZ 1 62 2 2
a0~ 19272 (gEchJ) vy +ap)Mz

taking into account the quantum number of colour by a factor NJ?:

c
Ny

2
T, == —————— | (W} +a})M
Z=ff 48w (sin29w00529w>(vf+af) 7

using the conventions one have used for the calculation of the Z° lineshape we can write:
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NfC e 2

0(Z—ff)= (v} +a}) My

487 sin? 0, cos? 0,
_ NP ()
487 sin® 0, cos? 6,
_a N
~ 125sin% 6, cos2 6,
_ NCY (v} +a})
- s 2 2
3 4sin“ 0, cos? 0,
—_————

Cr

(v} +a7)Mg

(vfc + afc)MZ

— @
My =|T(Z— ff)= ngCchZ

This expression allows to re-write the cross-section of e*e~ — ff near the Z pole. We have written the cross-
section as:

dra?
Coreay7(s) = 5o N§ (Q; — 2QRe[x(s)VeVy + |x<s>|2(:ecf>

near the Z pole, the Z-exchange term is dominating the cross-section:

Ce Cy
4o 52 v? + a? v} + a}
B —(s~ M _ NC e e f f
Oete—f7 (8 2) 3s (s — M2)24+T%LM2 <4Sin 0%, cos? Oy | \ 4sin? 6, cos? Oy
4o 52 127 a , « 52
3s 4 (s— MZ)Z+1ZMZ 37°37 T (s — M2)2+ T3, M3
_12a0(Z - efen)D(Z = ff) s2
o S MZ MZ (S—M%)2+F2ZM%

127sT(Z — ete )['(Z — ff)
Mz (s — Mz)> + T3 M7

so that:

1278 T(Z — ete )I(Z — ff)
M - MIR IO

Ue*e*ef?(s = MZ) =

and exactly at the peak we have:

12nT(Z — ete )I(Z — ff)  12x

M3 I3 M3

Ot gfls =Mz) ~ BR(Z — e*e”)BR(Z — ff)

We want to measure the partial decay width of Z° into neutrinos. The total width of the Z is the sum of the
partial widths:

1_‘Z = Fee + F,u,u + FTT + Fhadrons + Pulul + FV2U2 + Fl/gl/g + ...

T'(Z—invisible)=T .,

= Zrz +Thaa + N T,
[

this implies:
Tiny =Tz =Thaa = » Tt =Tz = Thag — 3T
l

where in the last step we have used lepton universality (I'ce = 'y = T'77).
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now the hadronic decay width is not an independent parameter, because if we are condidering the process
ete™ — Z — hadrons at the Z peak the cross section is:

127 T(Z — ete™ )[(Z — hadrons) 127 Teelhaa
0€+6_—vhadrons(s = MZ) = 0'2 >~ — _ ="
M7 % MZ 1%

and this means:

lhaa = Mz &
“ 127 Tee
so that:
M2 0 F2
Finv = NZIFV = FZ - 1—‘had - 3Fee = 1—‘Z - 2%h_z - 3Fee
127 Tee

and if we exclude the possibility of the decay of Z — w44 with v4 a new fourth generation neutrino species we

are left with 3 neutrino species:
1 M2o9 T2
I,=-(Iy—-—%£1_2 _3r,.,
3 ( 27 127 T..

One can for example extract from the fit to the lineshape of the ete™ — Z — hadrons cross section, the mass
of the Z (Mz) the total width 'z and the cross-section at the peak (o)

"¢~ — Z — hadrons)/nb

o 10}

- imz
3 8 % 92 9

Vs/GeV

Fig. 9. Fit to the ete™ — Z — hadrons cross section by the four LEP experiments

and the after measuring the branching ratio to leptons BR(Z — {£¢) compute the neutrino width.
Conversely if one does not fix the number of neutrinos, one can compute the Z — v decay width from Eq. 37
and extract an estimate of the number of active neutrinos in the process. This is a stringent and non-trivial test
of the Standard Model.
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5. Problem sheet 5

5.1.  Problem 1
Show that in the Standard Model the decay width I'yyy of the Higgs boson into W bosons is:

_ \/ﬁGFM%VMH \/1 — TWw

F'ww (322, — 4wy, +4),

81 22w
where:
4oy
Gp=V2—Fr———
e f&sin?ﬁwMi
and:
4M§V
€T =

It is useful the following expression for the calculation on the decay width:

IM|? |acwm|
Tyww = [ dQ
ww / 3272 M2,

where |qeaz| is the modulus of the three-momentum of either W boson in the Centre-of-Mass (CM) frame (i.e.,
where the Higgs boson is at rest).

Solution
The Feynman diagram of Higgs decay into two gauge bosons is:

W
. = f'gwm.wg#v

W

Fig. 10. Feynman diagram for scalar SM Higgs decaying into W’s (h°(q) — W (k1)W ~(k2))

The invariant amplitude for the process in the Leading Order of Standard model is:

’MH—WV'*'W— = igwagm,E“(kl, )\1)8*11(/{2, )\2) ‘ (38)
The rate is:
— 1 AA 1 7 *
I(H—WW™) = M/|MH—>W+W*|2dPS = M{g%"M‘%V/dPSAz; e (K1, Mg, (Ko, A2)|?

Let’s concentrate on the matrix element calculation, squaring and summing on final state spins Eq. 38:

Mu—ww-* = gy My Y (e (ki Mg (ka, M) [P = giy My, Y e (kr, M) (ka, Ao)e™ (ka, A ey (Ko, A)
/\1,)\2 /\1;>\2

arranging the spin sums:
My —wew-* = giy M, (Z e (k1, A1)e™ (k1, )\1)) (Z £, (k2, A2)ey (Ko, )\2))
Al A2
The polarization sum for a massive vector yields:
*U k kV
Dt (kN (kN = —guw + 773
A w

so using Eq 39 we have:

|mHﬂw+W— |2 = g%}VMgv Z 5”(/’(51, )\1)8“’(1171, )\1) Z E;(kg, )\2)8,,(]172, )\2)
/\1 /\2

Hav
k1 ’2“1
MZ,

k2/_b kay

—gnvt ~Gu+ 2
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ie.:

M 2 = g2, M2 (7 o kﬁLkT)(i n k2#k2u)
H-W+W- gw My ( —g M‘%V Guv Mav

Performing the tensorial contraction:

Mu—ww-* = gy My, (4 - -
Mg, My My,

ko-ko k1Kt (k- kz)z)

now since we are assuming the are producing two on-shell gauge bosons we have k¥ = ki - k1 = M3, and

k% = ko -ky = M%, The fourth term in the sum is proportional to: (& - k2)2. We can use momentum conservation
to write:

q:kl—‘rk‘g=>q2=(k1+k2)2:kf—Fk%-l-le'k‘g:QMi—‘rQ(k‘l-k‘g)
now using the on-shell mass condition on the Higgs we have ¢ = M% and so: M% = 2M2 + 2(k; - ko) and so:

M2 —2M32,

Mz = 2M2 4+ 2(ky - ko) = | (k1 - ko) = 5

so the squared matrix element is:

— M3 M3 M% —2M2,)? 1 M% —2M2,)?
|MH—>W+W*|2:.912/VMI%V(4_ W w o (Mg w) (M5 W))

- : = g My (2
M2, M3, 1 M{}V) w M \2+ "y

Performing the algebra:

2 (2+ (Mg — 2M5V)2>

— M3 + 4Mj, — AMEME, + 8 M
(M-I = giv Miy 40, = g My (" T v)
M4 — AM2Z M2, + 12M4 g2, M2 M2, M3,
:zMz( i 1My W):W H(1_4 194w )
Jww AN, AN, Mz g
let’s now focus on the phase space factor:
dD(H - WHW ™) = ——[M 2dPs = ! — M 2 Py Ak (27m)46(q — k1 — ko)
_ — ke
oMy " HoWIWE oMy W 0 E, (an)saE, Y VT TR
so we have
1 — (27‘1’)_2 d?’k‘l 43 ko
['=_-——|M*dPs = 2 —0(g—ki —k
oag, MUl = Sy /|M| 2E, 28, 04 ki k)
so that:

d3ky d3ks
QMH 2F, 2FE,

where it is understood that Ey = \/kf + M7, and Ey = \/k3 + M3, with k; = |kq| and ks = |ka|. In the rest
frame of the Higgs (the centre of mass frame), we have Ey = My, py = ¢* = 0 and the decay rate becomes:

F:

/‘M| (5 MH —E]_ E2)53(q k1 —kz)

r= /|M|6M — By — E»)8°(k +k)d%d3k2
B QMH e R A TR0 2k,
carrying out the integral [ d*k20”(ky + k2) (and the ¢ function imposes ky = —ko gives:
1 — d*ky
- §(My — E, — E
872 My /‘M| ( H 1 2)4E1E2 S

where Es is now to be understood as Ey = \/k3 + MZ, = \/k? + M2,.
Let’s now introduce the function:

Flk) = My — K2 4 M3, —\[K3 + M3, = —\ 12 + M3, — /12 + 01, (40)

and setting: d®k; = k?dkyd cos fd¢ in spherical polar coordinates we have:
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T k3dk,
= W/M/” 5(f(k1))4E1E2

The function f(k1) has a single zero at a fixed value k1 = k* given by the solution of the equation:
Fk) = My — (k)2 + M3, — (k)2 + M3, = 0 (42)

This equation expresses the requirement that energy is conserved in the decay, My = E; + Es. The constant
k* is simply the value of p; which results from the constraint of overall energy-momentum conservation; it is the
physically allowed momentum of either of the final state decay particles in the centre of mass frame.

We can now use the general result:

d cos 0do (41)
ki=—k

)
/g(k}1)5(f(k1))dk1 B Ldf/dlﬁ] f(k1)=0

to carry out the integral over k; in Eq. 41. Differentiating Equation 40 gives:
daf —2k —2k ki ko 1 By + Es
dky 2B+ M2, 22+ ME,  BEr By EiB

hence the rate becomes:

1 —
dcosOdp = ——— 2
87r2M /‘ e = 33m200, /|M|

whenk; = k* the sum FE; + F, is given simply by the momentum conservation constraint of Equation 42:
FEy + E5 = Mpy. Finally therefore, the rate for the two body decay H — WW in the rest frame of the decaying
Higgs particle is obtained as:

k1
B+ Es

E\Ey, k2

dcos 0d
k:1 Er + By AE, By cos 0d¢

k=k*

= 33 2M2 /|M|2d0059dgb

where k* = |k;| = |kz| is the momemtum of either of the final state particles. For an isotropic decay of a spin 0
particle (such as the Higgs boson), there is no preferred spatial direction in the system and M| must be independent
of § and ¢. Using [ dcosfd¢p = 4w, we obtain:

k*

=
8T M%

(M]? (43)

we have now to determine k* by solving Eq. 42:
My — 2y/(k*)2 + M2, = 0 = M% = 4((k*)® + MZ)

so that:

k2 — MI%I_4MI%V = [ *2 = \/MJ%I_4MI%V

4 n 2

so we are ready to write the final expression for the Higgs width into W bosons:

VM — 4013, VE =AM, g3 MY M2, MY,
T(H — WHWw~—) = W M2 = iy (1—4M2 r12tw )

C2-8tME 16w M% 4M3Z, MY,
2 ar2 2 4
gwMp 5 ( My, My, )
= My, 1—4— +12—
64 M2, \/ ) M2 * M},
2 ) 2 2 4
_ 9wMnu M3 174M (174MW+§16J\/£W>
167 - 4M3, M3 M% 4 My

now using the definition of the adimensional parameter zy = 4M§V /M?% we have:

2. M 3 2 My /1=
(H — wHw—) = IWw2H xw(l —aw + m%v) = dwiTH
16wy 4 327 2xW

now using the definition of G the Fermi decay constant:

(4 dow + 3xW)



_ V2g% V203 V24ma
- 8ME,  8MZ  8sin20w M3,

Gr

since gw = e/sinfy,. We have finally:

I'(H—WTW")

GrpMgM2, /11—
— TP HTW W (4 —dxw + 31’%{;)
42 2rw

then multiplying by a factor v/2/v/2 we obtain:

[(H—WTW™)

_ \/iGFMHM‘%V \/1 — Tw

8 2£EW

(4 —drw + 330%,[/), Tw =

g,
i1
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