E835 results on excited S=1 states of charmonium

Roberto Mussa (on behalf of E835)

ICHEP 2002, Amsterdam, July 24-31
Outline

- Total χ_{c0} Width
- Radiative Transitions $\chi_c \rightarrow \gamma J/\psi$
Outline

- Total χ_{c0} Width
- Radiative Transitions
 $\chi_c \rightarrow \gamma J/\psi$
- $\Gamma(\chi_{c0,2} \rightarrow \gamma\gamma)$
Outline

- Total χ_{c0} Width
- Radiative Transitions
 - $\chi_c \rightarrow \gamma J/\psi$
 - $\Gamma(\chi_{c0,2} \rightarrow \gamma\gamma)$
 - BR$(\chi_{c0} \rightarrow \pi\pi, \eta\eta)$
Outline

- Total χ_{c0} Width
- Radiative Transitions
 $\chi_c \rightarrow \gamma J/\psi$
- $\Gamma(\chi_{c0,2} \rightarrow \gamma \gamma)$
- $\text{BR}(\chi_{c0} \rightarrow \pi \pi, \eta \eta)$
- $\psi' \rightarrow J/\psi \gamma \gamma, e^+e^-$, ...
Charmonium sources

Precise measurements of charmonium spectroscopy in the last 2 decades were done using the following processes:

1) e^+e^- annihilations (Mark-III, Crystal Ball, DM2, BES ... CLEO-c):
 - directly only $J^{PC}=1^-$;
 - access to hadronic and EM decay modes;
 - Initial state radiation

2) $\gamma\gamma, \gamma\gamma^*$ scattering, from $e^+e^- \rightarrow e^+e^-\gamma\gamma$ (CLEO, LEP, B factories)
 - Only on states with positive C

3) $\bar{p}p$ annihilations (R704 at CERN, E760/835 at Fermilab)
 - direct on all J^{PC};
 - only EM decay modes (huge hadronic background)
 - Very good $\delta p/p$ (stochastic cooling)

4) B decays, via $b \rightarrow c\bar{c}s$ (B factories)

5) e^+e^- annihilations in double charmonia (Belle)
E760+E835 data samples on P states

The table summarizes the samples collected by E760/E835 in the channels $\bar{p}p \rightarrow \chi_{c0,1,2} \rightarrow \gamma J/\psi \rightarrow \gamma e^+e^-$.

From each resonance scan, 3 observables are extracted: Mass, Total Width Γ_{tot}, and the product $\Gamma_{\text{iBo}} = \Gamma_{\text{tot}} \ast \text{BRin} \ast \text{BRout}$. If $\Gamma_{\text{tot}} >> \Gamma_{\text{beam}}$, $\sigma_{\text{peak}} \sim \text{BRin} \ast \text{BRout}$. If $\Gamma_{\text{tot}} \sim \Gamma_{\text{beam}}$, the correlation between Γ_{tot} and $\text{BRin} \ast \text{BRout}$ depends on the scanning strategy.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Resonance</th>
<th>Ldt/nb1</th>
<th>Nevents</th>
<th>Γ_{tot}/MeV</th>
<th>Fractional error</th>
<th>Γ_{iBo}/eV</th>
<th>Fractional error</th>
<th>Mass/MeV/c2</th>
<th>Error on Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stat.</td>
<td>Syst.</td>
<td>Stat.</td>
<td>Syst.</td>
<td>Stat.</td>
<td>Syst.</td>
</tr>
<tr>
<td>E760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI2</td>
<td>1160</td>
<td>585</td>
<td>1.98</td>
<td>9%\oplus 4%</td>
<td></td>
<td>1.67</td>
<td>5%\oplus 7%</td>
<td>3556.15</td>
<td>0.07\oplus 0.12</td>
</tr>
<tr>
<td>CHI1</td>
<td>1030</td>
<td>513</td>
<td>0.88</td>
<td>13%\oplus 9%</td>
<td></td>
<td>1.29</td>
<td>9%\oplus 10%</td>
<td>3510.53</td>
<td>0.04\oplus 0.12</td>
</tr>
<tr>
<td>E835/96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI2</td>
<td>12392</td>
<td>~7000</td>
<td>Data used for Angular Distributions and $\Gamma(\chi_{c2} \rightarrow \gamma\gamma)$ only: large syst. errors in the Beam Energy Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI1</td>
<td>7256</td>
<td>~3500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E835/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI2</td>
<td>1053</td>
<td>~300</td>
<td>2.39</td>
<td>12%\oplus 4%</td>
<td></td>
<td>1.63</td>
<td>15%\oplus 4% (preliminary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI1</td>
<td>1330</td>
<td>~1250</td>
<td>0.91</td>
<td>7%\oplus 10%</td>
<td></td>
<td>1.11</td>
<td>4%\oplus 5% (preliminary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI0</td>
<td>32785</td>
<td>392</td>
<td>9.9</td>
<td>10%\oplus 1%</td>
<td></td>
<td>1.7</td>
<td>9%\oplus 4%</td>
<td>3415.4</td>
<td>0.4\oplus 0.2</td>
</tr>
</tbody>
</table>

Roberto Mussa, ICHEP 2002, Amsterdam, July 24-31
Total width and Mass of χ_{c0}

*E835/00 sample = 6x E835/97

- Increased statistics (x 6)

Roberto Mussa, ICHEP 2002, Amsterdam, July 24-31
Multipole structure of the $\chi_{c1,2}$ radiative decay

When $J_i \otimes J_f \neq 0$, higher multipoles can be measured, through the
interference terms in angular distributions:

e.g.: $d\Gamma(\Omega)/d\Omega=|E1|^2 f_{E1}(\Omega)+E1*E2 f_{E2}(\Omega)+E1*E3 f_{E3}(\Omega)+...$

Measurements exist for the processes:

From $\bar{p} p \rightarrow \chi_{c1,2} \rightarrow \gamma J/\psi \rightarrow \gamma e^+e^-$

From $e^+e^- \rightarrow \psi \rightarrow \gamma \chi_{c1,2} \rightarrow \gamma \gamma J/\psi \rightarrow \gamma \gamma e^+e^-$

Angular distributions allow also the extraction of the helicity zero contribution to $\Gamma(\chi_{c2} \rightarrow \bar{p} p)$.
The anomalous magnetic moment of the charm quark, κ_c, can be extracted from the fractional M2 amplitude, using the expressions:

\[
a_2(\chi_{c1}) = -(1 + \kappa_c) \frac{E_y}{4 m_c}
\]

\[
a_2(\chi_{c2}) = -(1 + \kappa_c) \frac{3}{\sqrt{5}} \frac{E_y}{4 m_c}
\]

The ratio $a_2(\chi_{c1})/a_2(\chi_{c2})$ should then be 0.68, canceling out any κ_c or m_c dependence.

Helicity zero contribution to $\Gamma(\chi_{c2} \rightarrow \bar{p}p)$ is measured to be $B_0^2 = 13 \pm 8\%$.
\[\Gamma(\chi_{c0,2} \to \gamma\gamma) \]

*E835/97 measurement of

\[R_{\gamma\gamma}(\chi_{cJ}) = \frac{BR(\chi_{cJ} \to \gamma\gamma)}{BR(\chi_{cJ} \to \gamma\psi)} \]

\[R_{\gamma\gamma}(\chi_{c0}) = (24.4 \pm 12.5) \times 10^{-2} \]

\[R_{\gamma\gamma}(\chi_{c2}) = (1.67 \pm 0.30) \times 10^{-2} \]

*Analysis of the 2000 \(\chi_{c0} \) data set is in progress (> 6x more statistics).

*The global refit in PDG 2002 reduces the discrepancy on \(\Gamma(\chi_{c2} \to \gamma\gamma) \) between \(\bar{p}p \) and \(e^+e^- \) experiments.

*Recent result from \(\gamma\gamma \to \chi_{c2} \to \gamma J/\psi \) at Belle is ~consistent with the new average.

Abe et al., hep/ex-0205100 (2002)

Roberto Mussa, ICHEP 2002, Amsterdam, July 24-31
\[\text{BR}(\chi_{c0} \rightarrow \pi\pi) \]

Despite the large hadronic continuum cross-section, the interference between resonant and continuum behavior gives a sizeable signal, at \(\cos\theta_{\text{cm}} \sim 0 \), at the \(\chi_{c0} \) peak energy.

The angular distribution at the peak is shown in the figure, and illustrates the separate contributions from interfering (helicity 0), non interfering (helicity 1), resonant amplitudes. The excess of events above the red curve is due to the interference between resonant and continuum behaviour.

The distribution is given by the expression:

\[
\frac{d\sigma}{dz}(x, z) = \left| \frac{-A_R}{x + i} + A_I(x, z) e^{i\delta_I(z)} \right|^2 + \left| A_{NI}(x, z) \right|^2
\]

where \(x = 2 \left(\frac{E_{\text{CM}} - M_R}{\Gamma_R} \right), z = \cos(\theta_{\text{cm}}) \)
The interference between resonant and continuum behavior gives a sizeable, asymmetric, signal: the figure describes cross section vs energy, for $|\cos\theta|<0.125$.

The expected contribution from the pure resonance (symmetric Breit-Wigner) is shown also, magnified by 20.

From the fit to this data set, we can extract a measure of the product of branching fractions:

$$BR(\chi_{c0} \rightarrow \pi^0\pi^0) \times BR(\chi_{c0} \rightarrow p\bar{p}) = (5.09\pm0.81) \times 10^{-7} \text{ (preliminary)}$$
BR(χ_{c0} → ηη)

Analysis of the ηη channel is under way the phase looks opposite to π^0π^0

\[\psi' \rightarrow J/\psi \gamma \gamma \]

Samples:

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Events</th>
<th>PSI' produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRYSTAL BALL</td>
<td>2920</td>
<td>0.8 (+1) M</td>
</tr>
<tr>
<td>E835/96+00</td>
<td>2080</td>
<td>1.0 M</td>
</tr>
<tr>
<td>BES</td>
<td></td>
<td>4.0 M</td>
</tr>
</tbody>
</table>

- Access to \(\gamma \chi_c, \psi \pi^0, \psi \eta \).
- ECAL: NaI(C.Ball), PbG(E835)

- Analysis under way in E835:
 - \(\text{BR}(\psi' \rightarrow \gamma \chi_{c0}) \times \text{BR}(\chi_{c0} \rightarrow \gamma J/\psi) \)
 - angular distributions

Further studies on 2000 data: \(\psi' \rightarrow J/\psi \pi \pi, e^+e^-, \gamma \phi \phi \)

Roberto Mussa, ICHEP 2002, Amsterdam, July 24-31
Conclusions

The study of charmonium P states in $p\bar{p}$ is close to completion; only a new generation of experiments can reduce the current statistical and systematic errors.

33 pb$^{-1}$ of data were taken by E835 in year 2000 at the χ_{c0} energy, yielding samples of $\psi\gamma$, $\gamma\gamma$, $\pi\pi$, $\eta\eta$ events.
- The total width of the χ_{c0} is now known at 10% level.
- The first charmonium signal in pure hadronic channels ($p\bar{p} \rightarrow \pi\pi$, $\eta\eta$) was observed, exploiting interference in scattering at 90° in CM frame.

The study of $\chi_{c1,2}$ and ψ' angular distributions shed light in the multipolarity of radiative transitions, and on the helicity structure of the $p\bar{p}$ coupling to charmonium.

To fully exploit the stat accuracy of $p\bar{p}$ measurements on products of BR's, new e^+e^- data on their ratios are needed.
Global refitting in PDG 2002

The PDG 2002 shows a substantial change in the overall pattern of branching ratios and radiative widths of P states as a result of a global refitting of all χ_c and ψ' data, accounting correctly for all the correlations between different experiments. The variety of sources of exclusive charmonium data provides a powerful set of crosschecks, which is crucial to allow the extraction of parameters about a single process from data who normally involve 2 or more reactions.

(see also C. Patrignani, Phys. Rev. D 64(2001) 034017)
Global refitting in PDG 2002

The PDG 2002 shows a substantial change in the overall pattern of branching ratios and radiative widths of P states as a result of a global refitting of all χ_c and ψ' data, accounting correctly for all the correlations between different experiments. The variety of sources of exclusive charmonium data provides a powerful set of crosschecks, which is crucial to allow the extraction of parameters about a single process from data who normally involve 2 or more reactions.

(see also *C. Patignani, Phys. Rev. D 64(2001) 034017*)
Syst errors from inclusive photon spectra

- **All** BR($\eta_c\chi_c\rightarrow$hadrons) measured from e+e- annihilations *depend* on BR($J/\psi,\psi'\rightarrow\gamma+...$), measured by Crystal Ball. *Gaiser et al. Ph. Rev. D34,711 (1986)*
- Crystal Ball's charged tracking inefficiency: 20% syst error on BR($\psi'\rightarrow\gamma\chi_c$)?
- Low statistics of M1 transitions: 30% stat error on BR($J/\psi,\psi'\rightarrow\gamma\eta_c$)

Fig. 8. Simultaneous fits to the η_c mass in the ψ' and J/ψ inclusive photon spectra. The data are plotted in 3% bins in the photon energy. The preferred resolution value of $\eta_c=2.7$% is used in the fit. The spectra labeled (b) and (d) correspond to the photon selection criteria of the χ analysis. The spectra labeled (c) employ a modified cut on the internal photon energy pattern as described in the text.
The determination of this quantity depends directly from two processes:

- $\mathrm{p}\mathrm{p} \rightarrow \chi_{c2} \rightarrow \gamma\gamma$: R704, E760, E835/97 (Ambrogiani et al., Phys. Rev. D62 (2000): 052002)
- $\gamma\gamma \rightarrow \chi_{c2} \rightarrow \gamma J/\psi$, hadrons: CLEO, L3, OPAL, BELLE (new: Abe et al., hep/ex-0205100 (2002))

And indirectly from various other quantities, deduced from:

- $\psi' \rightarrow \gamma + \chi_c \rightarrow \gamma\gamma J/\psi$
- $\psi' \rightarrow \pi\pi J/\psi$
- $p\mathrm{p} \rightarrow \chi_{c2} \rightarrow \gamma J/\psi$

PDG 2000 outlined a big discrepancy between the measurements coming from different reactions.
\[\Gamma(\chi_{c2} \rightarrow \gamma \gamma) \]

The determination of this quantity depends directly from two processes:

\(\star \ p \bar{p} \rightarrow \chi_{c2} \rightarrow \gamma \gamma \) : R704,E760,E835/97 (Ambrogiani et al., Phys.Rev.D62(2000):052002)

\(\star \ \gamma \gamma \rightarrow \chi_{c2} \rightarrow \gamma \ J/\psi \), hadrons : CLEO, L3, OPAL, BELLE (new:Abe et al., hep/ex-0205100 (2002))

And indirectly from various other quantities, deduced from :

\(\star \ \psi' \rightarrow \gamma + \chi c \rightarrow \gamma \gamma \ J/\psi \)

\(\star \ \psi' \rightarrow \pi \pi \ J/\psi \)

\(\star \ \bar{p} \ p \rightarrow \chi_{c2} \rightarrow \gamma \ J/\psi \)

The global fit of all previous data (PDG 2002) substantially reduces the discrepancy between the measurements from the two different processes, as the BR(\(\chi_{c2} \rightarrow \gamma \ J/\psi\)) is raised from 13.6% to 18.7% (38% increase)
η_c mass and width

★ Quasi recent data from:

★ Still preliminary data from **E835**

Studying syst errors from energy dependence of $p\bar{p} \rightarrow \pi^0\pi^0+\pi^0\gamma$ feeddown.

Roberto Mussa, ICHEP 2002, Amsterdam, July 24-31
\(\eta_c \) mass and width

🌟 *Quasi* recent data from:

🌟 *Still preliminary* data from **E835**
- Energy dependence of \(p\bar{p} \to \pi^0\pi^0 + \pi^0\gamma \) feeddown.
- Interference with \(\gamma\gamma \) continuum?

🌟 *New* data from B factories look promising but statistically still poor:
- **Belle**: Abe et al. Hep-ex/0205104 (2002)
η_c mass and width

- **Recent data:**
 - E835, BES, CLEO, LEP, BELLE, BABAR

- **MASS:**
 - Hyperfine splitting:
 $$M(J/\psi)-M(\eta_c) = 117\pm2 \text{ MeV}/c^2$$

- Bad overall χ^2 on PDG:
 - $M(\bar{p}p)>M(e^+e^-)$?

- **TOTAL WIDTH**$=\Gamma(\eta_c\rightarrow gg)$

 - BES-I data from ψ and ψ' sample
 - $\delta\Gamma/\Gamma\sim25\%$??? Bad χ^2 casts doubts on PDG2000

Roberto Mussa, ICHEP 2002, Amsterdam, July 24-31
1P_1 (a.k.a. h_c) search

- E760 data: 16 pb$^{-1}$ in the M_{cog} region
 - Observed a state at $M=3526.2 \pm 0.15 \pm 0.20$
 - in $p\bar{p} \rightarrow h_c \rightarrow J/\psi \pi^0$
 - Not seen in $p\bar{p} \rightarrow h_c \rightarrow J/\psi \pi\pi$, and
 - $p\bar{p} \rightarrow h_c \rightarrow \gamma \eta \rightarrow \gamma\gamma$
 - Large amount of cross-calibration data: $\chi_{c1,2}$ scans, $J/\psi, \psi'$ double scans.
- E835 data: 47 pb$^{-1}$ (in 96-97) and 50 pb$^{-1}$ (in 2000) in the M_{cog} region
 - Careful study on the stability of E_{beam} measurements (at a level of few hundred keV) under way.

Roberto Mussa, ICHEP 2002, Amsterdam, July 24-31
η′ searches

A \(^1S_0\)(n=2) candidate at 3594±5 MeV/c\(^2\) was observed by Crystal Ball in
\[e^+e^- \rightarrow \gamma+X \]
Edwards et al., Phys.Rev.Lett.48(1982),70
... but never confirmed
\(\eta_c' \) searches

A \(^1S_0\) candidate at 3594\(\pm 5\) MeV/c\(^2\) was observed by Crystal Ball in

\[e^+e^- \rightarrow \gamma + X \]

Edwards et al., Phys.Rev.Lett.48(1982),70

... but never confirmed

DELPHI: did not find it in

\[\gamma\gamma \rightarrow \eta_c' \rightarrow \text{hadrons} \]

η_c' searches

🌟 A 1S_0 (n=2) candidate at 3594 ± 5 MeV/c2 was observed by Crystal Ball in $e^+e^-\rightarrow \gamma+X$

Edwards et al., Phys.Rev.Lett.48(1982),70

... but never confirmed

DELPHI: did not find it in $\gamma\gamma \rightarrow \eta_c' \rightarrow \text{hadrons}$

E760-E835: did not find it in $p\bar{p} \rightarrow \eta_c' \rightarrow \gamma\gamma$ ($3576<$EcM<3660 MeV)

Ambrogiani et al., Phys.Rev.D64(2001),052003

Upper limits at 90%CL on BR$(p\bar{p})$*BR$(\gamma\gamma)$ with Γ=5,10,15 MeV are given.
η_c' searches

A \(^1S_0\) (n=2) candidate at 3594±5 MeV/c\(^2\) was observed by Crystal Ball in

\[e^+e^- \rightarrow \gamma + X \]

Edwards et al., Phys.Rev.Lett.48(1982),70

... but never confirmed

DELPHI: did not find it in

\[\gamma \gamma \rightarrow \eta_c' \rightarrow \text{hadrons} \]

E760-E835: did not find it in

\[p\bar{p} \rightarrow \eta_c' \rightarrow \gamma \gamma \ (3576<\text{Ecm}<3660 \text{ MeV}) \]

Ambrogiani et al., Phys.Rev.D64(2001),052003

BELLE: finds it at 3654±6±8 MeV/c\(^2\)

\[B \rightarrow \eta_c' \ K \rightarrow (K_S K^+\pi^+)K \]

Choi et al. Hep-ex/0206002 (2002)
\(\eta_c' \) searches

A \(^1S_0(n=2) \) candidate at 3594\(\pm \)5 MeV/c\(^2\)

was observed by Crystal Ball in

\[e^+e^- \rightarrow \gamma + X \]

Edwards et al., Phys.Rev.Lett.48(1982),70

... but never confirmed

- **DELPHI**: did not find it in

 \[\gamma\gamma \rightarrow \eta_c' \rightarrow \text{hadrons} \]

- **E760-E835**: did not find it in

 \[p\bar{p} \rightarrow \eta_c' \rightarrow \gamma\gamma \ (3576<\text{Ecm}<3660 \text{ MeV}) \]

 Ambrogiani et al.,Phys.Rev.D64(2001),052003

- **BELLE**: finds it at 3654\(\pm \)6\(\pm \)8 MeV/c\(^2\)

 \[B \rightarrow \eta_c' K \rightarrow (K_S K^+ \pi^+) K \]

 Choi et al. Hep-ex/0206002 (2002)

 and/or at 3622\(\pm \)12 MeV/c\(^2\)!?!?

 in \(e^+e^- \rightarrow \gamma^* \rightarrow J/\psi + X \)

 Abe et al. Hep-ex/0205104 (2002)
Quarkonium Working Group

The Genoa mini-workshop on charmonium, in June 2001, has triggered a very constructive and collaborative effort between experimentalists and theoreticians, who are eager to fully benefit from the wealth of heavy quarkonium data who are becoming available in the present and near future. During the winter, N.Brambilla and myself, with help from A.Vairo(CERN), A.Bohrer (Siegen), M.Kraemer(Edinburgh) and D.Gromes (Heidelberg), wrote down a proposal for the formation of a

Joint experimental-theoretical working group on heavy quarkonium physics, aiming to a unified QCD-based formalization of all the aspects of its dynamics: production, decays, spectroscopy, interactions with nuclear matter.

The proposal, circulated in February-March, received a wide-spread enthusiastic support from most theoreticians and but a cooler response from experimenters. Nevertheless, we succeeded to get responses from at least 1 person of each running or future experiment.

We are now preparing for a first workshop to be held at CERN in November, and requested funding for a second workshop in Turin, June 03.

Visit our website at http://alephwww.physik.uni-siegen.de