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In many materials with a highly anisotropic band structure, electron-phonon interactions lead to a novel
type of ground state called the charge-density wave. The condensate is pinned to the underlying lattice by
impurities and by boundary effects, but can, even for small electric fields, carry current in a fashion origi-
nally envisioned by Frohlich. This review discusses some of the underlying theories and the main experi-
mental observations on this new collective transport phenomenon. The frequency- and electric-field-
dependent conductivity, current oscillations, electric-field-dependent transport coefficients and elastic
properties, together with nuclear-magnetic-resonance experiments, provide clear evidence for a transla-
tional motion of the condensate. Various theories, involving classical and quantum-mechanical concepts,
are able to account for a broad variety of experimental findings, which were also made in the presence of

combined dc and ac fields.
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I. INTRODUCTION

More than 30 years have elapsed since the basic con-
cepts of the phenomenon which is the subject of this re-
view have surfaced. It was first pointed out by Peierls
(1955) that a one-dimensional metal coupled to the un-
derlying lattice is not stable at low temperatures. The
ground state of the coupled electron-phonon system is
characterized by a gap in the single-particle excitation
spectrum and by a collective mode formed by electron-
hole pairs involving the wave vector ¢ =2ky. The charge
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density associated with the collective mode is given by

p(r)=py+pcoskp-t+¢) , (1.1)
where p, is the unperturbed electron density of the metal,
and the condensate is called the charge-density wave
(CDW). As in superconductors, the order parameter is
complex and the phase @ of the condensate is of funda-
mental importance; its time and spatial derivatives are re-
lated to the electric current and to the condensate densi-
ty. As noted by Frohlich (1954), in the absence of pin-
ning and damping, the condensate can carry current
leading to superconductivity.

These early ideas resurfaced when the first materials
with highly anisotropic crystal and electronic structures
became available. The formation of charge-density-wave
ground states is by now well documented in a broad
range of so-called low-dimensional solids. While some
evidence for collective dynamical effects has been found
by optical and dielectric measurements in certain organic
materials, and also in the pseudo-organic compound po-
tassium platinocyanide called KCP (see, for example, De-
vreese, Evrard, van Doren, 1979), transport phenomena
clearly associated with the dynamics of the collective
mode have been found to date mainly in various inorgan-
ic linear-chain compounds. Moving CDW’s were
perhaps first observed by Fogle and Perlstein (1972), who
found nonlinear electrical conduction at low electric
fields in the compound K, ;M00;, called the blue bronze;
at temperatures below a metal-insulator transition.
While this observation received little attention, experi-
ments on nonlinear conduction in the material NbSe;, to-
gether with the strongly anomalous microwave conduc-
tivity (Monceau et al., 1976), clearly demonstrated the
collective nature of the electrical conduction process sim-
ply because the energy scale associated with the applied
dc field or ac frequency was orders of magnitude smaller
than those which would lead to E- and w-dependent
single-particle conduction.

In contrast to superconductors, the phase excitations
of the collective mode are gapless. Consequently, electro-
static potentials (due to impurities, grain boundaries, sur-
face effects, etc.) break the translational symmetry and
lead to the pinning of the collective mode. This results in
a nonconducting but highly polarizable ground state and,
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in the case of random impurity distributions, in the ab-
sence of long-range order. For weak pinning, the
response of the system to dc and ac excitations is dom-
inated by the dynamics of the collective mode with
single-particle effects occurring only at optical frequen-
cies. This leads to a strongly frequency-dependent
response in the radio frequency to millimeter wave range
and, in moderate dc electric fields, to a current-carrying
state as originally envisioned by Frohlich. The discovery
of other inorganic linear-chain compounds with a CDW
ground state and with an anomalous response to com-
binations of dc and ac excitations led to the rapid devel-
opment of the field and to a dazzling variety of experi-
mental observations, only partially accounted for by vari-
ous theories at present.

This paper gives an overview of the experimental state
of affairs, starting with a description of the charge-
density-wave ground state, and a short overview of the
materials and phase transitions. This is followed by a
summary of the fundamental experimental observations
on electrical conductivity, other transport coefficients,
elastic properties, and experiments involving local
probes. Pinning is a central concept that leads to the ab-
sence of a dc conduction and to the nonlinear and
frequency-dependent phenomena; the broad variety of
pinning centers is responsible for the large variation of
observations concerning the details of the nonlinear I-V
characteristics, and, most probably, for differences in the
observed ac response and interference phenomena. The
various pinning mechanisms will be discussed in depth,
and this is followed, after a short review of theories, by
the detailed discussion of the frequency- and field-
dependent response and various phenomena that occur in
the presence of joint ac and dc excitations. Sections VII
and VIII discuss two special topics where the dynamics
of charge-density waves were also used to address
broader questions concerning the dynamics of driven,
many-degrees-of-freedom systems. The two sections,
when contrasted, also point to the breadth of phenomena
that are observed and that are related to the dynamics of
charge-density waves.

Several reviews have appeared recently that discuss the
early developments and various aspects of the field
(Fleming, 1981; Griiner, 1983a, 1983b, 1983c; Ong, 1983;
Gruner and Zettl, 1985; Gill, 1986a, 1986b; Monceau,
1986) which is also the subject of a recent monograph
(Monceau, 1986) and proceedings (Charge Density Waves
in Solids, edited by Gy. Hutiray and J. SO0lyom, 1985;
Proceedings of the XV Yamada Conference on Physics and
Chemistry of Quasi-One-Dimensional Conductors, edited
by S. Tanaka and K. Uchinokura, 1986).

Il. THE CHARGE-DENSITY-WAVE
GROUND STATE

While charge-density waves also occur in materials

with two- or three-dimensional band structures, they are
predominantly a one-dimensional phenomenon. Conse-
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quently, most of the discussions concerning the ground
state and the phase transition are based on idealized,
one-dimensional models.

Due to the particular geometry of the Fermi surface, a
one-dimensional (1D) electron gas is not stable at 7' =0,
and correlation effects lead to phase transitions and to
different collective modes at low téemperatures. Depend-
ing on the details of the electron-electron and electron-
phonon interactions, various ground states (such as sing-
let and triplet superconducting), spin-density wave
(SDW), and CDW may occur. These (with the exception
of triplet superconductivity) have been widely observed
in various solids where the Fermi surface is strongly an-
isotropic. Several recent reviews (Berlinski, 1979;
Heeger, 1979; Solyom, 1979) discuss the nature of the
CDW ground state and its thermodynamic and static
properties in detail. Therefore only the main features of
the phase transition and of the collective charge-density-
wave mode will be discussed here, together with the evi-
dence for CDW formation in various inorganic linear-
chain compounds.

A. The Peierls transition: Theory

We consider a one-dimensional metal at 7=0. In the
abserice of electron-electron or electron-phonon interac-
tion, the ground state corresponds to the situation shown
in Fig. 1(a): The electron states are filled up to the Fermi
level gf; the lattice is a periodic array of atoms with lat-
tice constant a. In the presence of an electron-phonon
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FIG. 1. Peierls distortion in a one-dimensional metal with a
half-filled band: (a) undistorted metal; (b) Peierls insulator.
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interaction, it is energetically favorable to introduce a
periodic lattice distortion with period A related to the
Fermi wave vector kp by

v

:;; . (2.1)

This distortion opens up a gap at the Fermi level as
shown in Fig. 1(b), where the situation appropriate for a
half-filled band is displayed. Since states only up to *kj
are occupied, the development of a gap leads to a lower-
ing of the electronic energy. In one dimension the
single-particle gap A is proportional to the amplitude of
the periodic lattice distortion u, and the decrease of the
electronic energy is for small displacements proportional
to u’lnu. The distortion leads also to an increase of the
elastic energy proportional to u? (Rice and Strissler,
1973). Consequently, for a small distortion, the total en-
ergy of the coupled electron-phonon system is smaller
than that of the undistorted metal. The size of the gap
and the magnitude of the distortion can be found from
the condition for the maximum energy gain. The
modification of the dispersion relation also leads to a
position-dependent electron density much in the same
way as in the nearly-free-electron theory of metals. The
density will be a periodic function of the position x with
the period also given by Eq. (2.1). (In the following, the
direction along which the CDW develops shall in general
be called the x direction, and the lattice constant in this
direction shall be called a.) For an arbitrary band filling,
the period of the charge-density wave (and also the ac-
companying periodic lattice distortion) is incommensu-
rate with the underlying lattice, i.e., A /a is irrational.

" At finite temperatures normal electrons excited across
the single-particle gap screen the electron-phonon in-
teraction. This in turn leads to the reduction of the gap
(Kuper, 1955) and of the magnitude of the lattice distor-
tion, and eventually to a second-order transition at the
so-called Peierls temperature T,. The material is a metal
above the transition while it is a semiconductor below T,
with a temperature-dependent gap A(7). The main
features of this so-called Peierls transition and of the col-
lective mode can be described by the mean-field treat-
ment of the 1D electron-phonon Hamiltonian

H=T ercitcrot S ha)gbq*bq
k,o k,o ’

+ 3 gk gocrolby+bt,) Q2

k,q,0
where c;f(cy), b (b,) are the electron and phonon
creation (annihilation) operators with momenta k and gq,
o denotes the spin, g, and wg are the electron and pho-
non dispersions, and g(k) is the electron-phonon cou-
pling constant.
Defining a complex order parameter
Ae'?=g (2kp)(by, +bty ), (2.3)
where A and @ are real, the displacement field of the ions
is given by
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(bELkF‘I-biZkF )ezijx+c.c.=g cos(2kpx +¢@) .

2A
(2kg)
(2.4)
One can diagonalize the electronic part of the Hamil-
tonian by setting up a self-consistent equation in a mean-
field approximation by replacing by, by <b2kF) and us-

ing a linear dispersion relation to describe the electron
band near €,

e =vp( |k | —kg), (2.5)

where vy is the Fermi velocity. The thermodynamics of
the CDW state closely resembles that of a superconduct-
ing ground state (S6lyom, 1979; Kuper, 1955). The gap
A in terms of the dimensionless electron-phonon coupling
constant k’=g2(2kF)(a)ngeF)‘l is given by the BCS gap
equation, and at T =0,

A=2Dexp(—1/1"), (2.6)

where the cutoff energy D is the one-dimensional band-
width. The temperature dependence of A also has the
characteristic BCS form and vanishes at the transition
temperature Tp=A(T =0)/1.76kp.

The temperature-dependent carrier concentration in
the condensate n.(T') is also related to A(T), and close to
T,:

n(T)  7A(T)
n(T=0) 4kpT, ’

(2.7)

while at T =0, n, is equal to the number of electrons in
the metallic state. The spatially dependent electron den-
sity can also be evaluated, and at T' =0,

p(x)=py+ ——A—po—-cos(ZkFx +@)
Nopkp

=po+pcos(2kpx +¢) , (2.8)

where p, is the electron density in the absence of
electron-phonon interaction, and is given in one dimen-
sion by po=w/kp. The appearance of a gap in the
single-particle excitation spectrum, together with the col-
lective mode described by a complex order parameter
[see Eq. (2.3)], is a feature reminiscent of superconduc-
tivity. The collective mode here, however, is formed by
electron-hole pairs, involving the wave vector 2kp as
electrons and holes on the opposite side of the Fermi sur-
face are combined to lead to the CDW and to the accom-
panying lattice distortion. Furthermore, due to the large
cutoff frequency D, which appears in the gap equation
(compared to the characteristic phonon frequency, which
enters into the superconducting gap), the transition tem-
peratures are considerably larger than superconducting
transition temperatures. The fact that in 1D the CDW
state is stable at T =0 for whatever small electron-
phonon coupling constant A’, is the consequence of the
logarithmically divergent response function
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Frnn—
F(q,w)zz_ﬁ.q_fk_
k Ek—€k+q+ﬁw
1 2kp | 1+q/2k
_ F q F ’ (2.9)
TV q 1—q/2kp

where f is the Fermi distribution function. Consequent-
ly, there is an enhanced tendency for CDW formation in
materials with highly anisotropic band structure; the
latter is in general the consequence of a crystal structure
where chains in the x direction are formed.

The mean-field (MF) description neglects the impor-
tant role of one-dimensional fluctuations and, conse-
quently, leads to a finite transition temperature Ty,
even for a strictly one-dimensional metal. Fluctuations
strongly suppress the transition (S6lyom, 1979), and for a
single 2D metallic chain a phase transition does not
occur at finite temperatures. For a system of coupled
chains, with coupling due either to the overlap of the
electronic wave functions or to Coulomb interactions be-
tween the electrons on the neighboring chains, the phase
transition is restored at T-<0 with most of the 1D corre-
lations preserved in the ordered state below the phase
transition temperature (Lee et al., 1973; Rice and
Strassler, 1973). The general picture that emerges, then,
is that materials that are composed of chains and are
metals at high temperatures show strong 1D correlations
along the chain direction even above a three-dimensional
(3D) transition T;p, leading to a wide fluctuating region
for the transition, T3p < T, < Typ. Below T the corre-
lations on neighboring chains couple together, leading to
three-dimensional long-range order (Sélyom, 1979). The
CDW under such circumstances develops along the chain
direction. Perpendicular to the chains, the periodic
change and lattice modulation are either in-phase or
out-of-phase on neighboring chains, depending on the
relative magnitude of the perpendicular bandwidth and
Coulomb correlations (Soélyom, 1979; Barisic, 1986).

B. The Peierls transition: Materials and experiment

Because of the enhanced tendency for nesting Fermi
surfaces and, consequently, strongly singular response
functions in lower dimensions, materials in which CDW
transitions are readily observed have chain or layer struc-
tures. Organic conductors, of which tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ) is the prototype
of one group of solids, have been widely studied (see, for
example, Heeger, 1979). Another group of compounds
with a CDW ground state are inorganic layer compounds
(Wilson et al., 1975) where two-dimensional (2D)
charge-density waves develop. Materials discussed in
this review are inorganic chain compounds, where the
basic structural units form chains with strongly overlap-
ping electronic wave functions along the chains and weak
overlap in the perpendicular directions. This leads to a
quasi-one-dimensional electronic band structure with rel-
atively wide bands in the chain direction, the necessary
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prerequisites for a Peierls transition.

The first inorganic linear-chain material in which
CDW transitions were found is NbSe;, the structure of
which is shown in Fig. 2. The NbSe; units form infinite
and relatively well-separated chains. They are linked to-
gether with Nb—Se bonds in the perpendicular direction.
The main features of this structural arrangement are also
found in the other members of this tri-chalcogenide
group, TaSe;, TaS; (both orthorhombic and monoclinic
forms, o-TaS; and m-TaS;), and in the different
modifications of NbS; (Meerschaut, 1983). While the
bonding both within the chain and between the chains
varies from compound to compound, this influences only
the single-particle properties, such as the conductivity
anisotropy, single-particle bandwidth, and the Peierls
transition temperature. These differences, however, do
not play an important role in the dynamics of the collec-
tive mode aside from that of setting an overall energy
scale and correlation length. For a strictly one-
dimensional band, the electron configuration in NbSe,
would correspond to a quarter-filled band (0.5 e/at.), but
the overlap of the wave functions between neighboring
chains leads to a slight deviation from this value (Mon-
ceau et al., 1982; Monceau, 1986). Nearly-quarter-filled
bands are also expected for other members of this family
of compounds. Materials, called the halogen transition-
metal tetrachalcogens (MX Y ),» where the transition met-
al M =Nb or Ta, X =S or Se, and h =I, Br, or Cl,
represent another group of materials where transitions to
CDW ground states were observed. Here chains of
(MX,) units are separated by halogen chains. While

Chain direction
O Se

e Nb

FIG. 2. Crystal structure of NbSe;.
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most of the members of this group are semiconductors
(Rouxel, 1982), (TaSe,),I (Wang, Monceau, et al., 1983;
Zettl and Griiner, 1983c), (NbSe,); 331 (Wang, Monceau
et al., 1983), and (NbSe,),I (Fujishita et al., 1984) under-
go Peierls transitions below room temperature.

Another group of linear-chain compounds, of which
K, 3;Mo00O; and Rb, ;Mo00O; are the prime examples, also
develop charge-density-wave ground states below room
temperature. The MoOg octohedra form chains, separat-
ed by chains of alkali-metal atoms (Fogle and Perlstein,
1972), leading to a quasi-two-dimensional crystal struc-
ture, but to nearly a one-dimensional band structure
(Schlenker and Dumas, 1986).

In all of these compounds the highly anisotropic
single-particle band is the consequence of not only the
chain structure but also of the strong overlap of the d or-
bitals along the chain direction, with no direct d-d over-
lap perpendicular to the chains. Consequently, the ma-
terials are relatively good metals along the chain direc-
tions with room-temperature conductivities parallel to
the chains, o on the order of ~10°-10* @ ~'cm~!. The
conductivity perpendicular to the chains is between 10
and 10° times smaller (Fogle and Perlstein, 1972; Ong
and Monceau, 1977; Ong and Brill, 1978). As o is (in
tight-binding approximation) proportional to the square
of the transfer integral, this suggests a band with anisot-
ropy between 3 and 30. Both the magnetic susceptibility
(Johnston, 1984; Johnston et al., 1985) and the ther-
moelectric power are small in these materials and are me-
tallic at room temperature and above. Moreover, both
can be analyzed using standard formulas appropriate for
a narrow one-dimensional band. Such analysis leads to
bandwidths of the order of 1-3 eV, typical to d-band
metals, and Fermi velocities of the order of 3Xx 10’
cm/sec. Detailed analysis of these features demonstrates
that electron-electron interactions are not important in
these compounds (Griiner and Zettl, 1985).

The above materials undergo a second-order metal-to-
insulator (or metal-to-semimetal) transition at below
room temperature, as evidenced by a wide range of trans-
port, magnetic, and specific-heat studies. Furthermore,
detailed structural studies demonstrate that these transi-
tions are associated with the development of periodic lat-
tice distortions that are incommensurate with the under-
lying lattice. The compound NbSe; shows sharp in-
creases of the resistivity p(T) (measured along the chain
direction) at T =144 K and T =59 K (Haen et al., 1975),
as shown in Fig. 3. This indicates a partial destruction of

the Fermi surface at these temperatures, which is .

confirmed by Hall-effect (Ong and Monceau, 1977) and
by magnetoresistance (Ong and Brill, 1978) studies. The
two phase transitions, and the metalliclike character of
p(T) is believed to be the consequence of three structural-
ly slightly different chains in the material (Wilson, 1979).
One chain remains metallic down to low temperatures,
while the two phase transitions reflect the development of
lattice distortions in the remaining two chains. Direct
evidence for such distortions are obtained from electron
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FIG. 3. Temperature dependence of the electrical resistance of
NbSe;. Sharp increases of p(T') at 144 and 59 K signal the onset
of two phase transitions involving different chains.

(Tsutsumi et al., 1978) and x-ray (Fleming et al., 1978,
1984) diffraction studies. Both phase transitions are asso-
ciated with the development of incommensurate lattice
distortions along the chain direction. For approximately
0.5 e/at. in NbSe;, the band is approximately quarter-
filled with k. close to m/4a. In both CDW states the ex-
perimentally determined period is indeed close to A=4b
(the chain direction is denoted by b in this compound)
but not exactly equal to 4 times the lattice period, i.e., the
charge-density wave and periodic lattice distortion are
incommensurate with the underlying lattice.

Another member of the group, TaS,;, occurs in two
modifications, orthorhombic (0-TaS;) and monoclinic
(m-TaS;). The former has one type of chain (this has not
been determined by structural studies, but is suggested by
the observation of a single phase transition) and one
phase transition at T =220 K, the latter two transitions
at T\ =240 K and at T, =160 K. In 0-TaS;, the whole
Fermi surface is removed by the transition; consequently,
the material is a semiconductor below T'p, as indicated by
the temperature dependence of the dc conductivity mea-
sured along the chain direction. This is also the case for
(TaSe,),1 and for K, ;Mo00O;, with the former having a
Peierls transition at T'=265 K and the latter at 7 =180
K. Besides the semiconducting behavior of the dc con-
ductivities (all measured along the chain direction), other
transport coefficients such as the thermoelectric power or
Hall effect confirm that for low dc electric fields, the con-
ductivity is due to carrier excitations across the single-
particle gap. They all can be described consistently in
terms of standard formulas appropriate for band semi-
conductors. The materials, for which the conductivity is
displayed in Fig. 4, are more anisotropic than NbSe;.
Consequently, 1D fluctuations play an important role
above the three-dimensional ordering temperature, and
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FIG. 4. Temperature dependence of the electrical conductivity
in 0-TaS;, in (TaSey),I, and in K, ;3M00;. The arrows represent
the Peierls transition temperatures; they are evident by examin-
ing the temperature derivatives dR /dT.

the anomalies in the transport and magnetic properties
can be well described (Johnston, 1984) in terms of
theories that treat these fluctuation effects (Lee et al.,
1973; Rice and Strassler, 1973).

The single-particle gaps have also been determined
directly by optical measurements (Brill and Herr, 1983;
Challener and Richards, 1984; Geserich et al., 1986).
They agree in general with the gaps that are determined
from the temperature dependence of the dc conductivity
below Tp. In all cases the ratio 2A/kp T, is significantly
larger than the mean-field BCS value of 2A /kp T,=3.5,
most probably because of the large anisotropy that leads
to a three-dimensional ordering temperature significantly
smaller than the mean-field transition temperature.
Large gap values have been observed also in NbSe,
(Fournel, Sorbier, Konczykowski, and Monceau, 1986).
Here strong-coupling effects have been suggested to be
important. The gaps that have been obtained by tunnel-
ing are different from the single-particle gaps evaluated
from optical studies (Challener and Richards, 1984); the
reason for this difference is not clear.

The metal-to-semiconductor transition is also associat-
ed with the development of incommensurate CDW’s in
these compounds [TaS;: Tsutsumi et al., 1978, Roucau,
1983; (TaSe,),I: Fujishita et al., 1984; K,3;MoO;:
Pouget et al., 1983, Sato et al., 1983, Tamegai et al.,
1985], with periods in qualitative agreement with those
inferred from valence structure arguments. Below the
phase transition, the phase-phase correlation length is ex-
tremely long, exceeding lu along the chain direction.
This has been most thoroughly established by high-
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resolution synchrotron radiation studies in NbSe; (Flem-
ing et al., 1984) and in K, ;M00; (Fleming et al., 1985c¢).
Perpendicular to the chains, long correlation length was
found in K{ ;Mo00O; (Fleming et al., 1985¢); in other ma-
terials this could not be measured due to the mosaic
structure of the crystals investigated. The temperature
dependence of the amplitude of the superlattice
reflections gives directly the order parameter A. The in-
tensity of the reflections (proportional to A?) as a func-
tion of temperature is shown in Fig. 5 for some of the

0.81
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0.4r

normalized intensity

0.2

0 1 1 1
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T T T T T

(TaSeq)p I

(5.05, 4.95, 3.915)
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FIG. 5. Temperature dependence of the superlattice reflection
intensities in NbSe; (lower transition) (Fleming, 1980), in
(TaSe,),I (Fujishita et al., 1984), and in K, 3;MoO; (Sato et al.,
1983).
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compounds. While a fit to a BCS-type temperature
dependence for A(T) has not been attempted, it is evident
that in all cases a description in terms of a temperature-
dependent gap that goes to zero at the second-order
phase transition is appropriate.

While in NbSe; and in (TaSe,),I the wave vector of the
CDW is independent of the temperature and the lattice
distortion remains incommensurate, in o-TaS; (Wang
et al., 1983c) and in K, ;Mo0O; (Sato et al., 1983; Flem-
ing, Schneemeyer, and Moncton, 1985) the charge-
density wave becomes commensurate with A=4a at_low
temperatures. This has been firmly established in
Ky.3:MoO, but in 0-TaS; the evidence for lock-in at wave
vector A=4a is weaker. This is expected to have impor-
tant consequences for the dynamics of the collective
mode.

Unusual domain structures associated with the CDW
superlattice have been found in NbSe; (Fung and Steeds,
1980) and in o0-TaS; (Chen and Fleming, 1983). These
were studied by examining the dark field electron micro-
scope images associated with the superlattice reflections
in the CDW state. Although many of the details are not
entirely reproducible, a domain structure with a typical
size of 1y along the chain direction and approximately
300 A perpendicular to the chains has been observed in
both compounds. Superimposed on this large-scale
domain pattern are smaller domains of the size of 20X 20
A. The images are time dependent and the domains ap-
pear in constant motion, with a characteristic time scale
on the order of seconds. The origin of this domain pat-
tern has not been explained yet, although it is evident
that it represents some kind of instability in the CDW su-
perlattice. Slight changes in the direction of the wave
vector 2k, which characterizes the CDW distortion,
may explain the observations (Fung and Steeds, 1980). It
has also been suggested (Wilson, 1979; Bak, 1982a) that
the small domains reflect discommensurations. As A is
close to 4a both in NbSe; and in TaS;, the CDW’s may
become commensurate with the lattice over a macroscop-
ic region by breaking into domains separated by phase
slips between domains of commensurate CDW sections.
The observed domain structure, however, has no clear re-
lation to the dynamical behavior of charge-density waves.
While the pattern is time dependent, an applied electric
field that leads to a current-carrying CDW state does not
induce any changes in the size or in the time dependence
of the domain pattern. Although several observations
concerning the response of CDW’s to applied electric
fields can be explained tentatively in terms of the dynam-
ics of coupled domains, a direct correlation between
these observations and those made by dark field electron
microscope studies has not been attempted yet.

Ill.. THE DYNAMICS OF THE COLLECTIVE MODE:
SOME BASIC RESULTS

In the Peierls state the material is expected to be a
semiconductor, with the various properties determined
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by carrier excitations across the single-particle gap. The
dc resistivity due to these excitations displays an ex-
ponential temperature dependence, with deviations from
Ohm’s law only at rather high electric field. The optical
properties are also determined by the gap, which, in gen-
eral, corresponds to #w in the visible-to-infrared spectral
range. In addition to these single-particle phenomena,
the coupled electron-phonon system can contribute to
charge transport by moving thie CDW rigidly, while the
ions that are involved in the periodic lattice distribution
execute only oscillatory motion. The energy of an incom-
mensurate CDW is independent of the phase ¢; conse-
quently, the translational motion could be induced by
small dc electric fields. In the absence of damping, this
would also lead to a supercurrent, as described by
Frohlich (1954).

No evidence for such anomalous conductivity is found
when the experiments are performed in small dc fields;
under such circumstances all transport coefficients can be
described in terms of standard single-particle transport
theories appropriate for a band semiconductor. It has
been emphasized first by Lee, Rice, and Anderson (1974)
that, in contrast to superconductors, the phase of the
CDW condensate can be pinned to the lattice through

‘the interaction with impurities, lattice imperfections,

grain . boundaries, etc. Consequently, the collective-mode
contribution to the dc conductivity measured at low elec-
tric fields is zero. However, the pinning energy per elec-
tron can be much smaller than the single-particle ener-
gies A and €z, and, consequently, the response to finite
amplitude dc and to ac excitations is dominated by the
dynamics of the collective mode.

A. Fundamental concepts

The dynamics of the collective mode is described in
terms of a position- and time-dependent order parameter
A(x,t). As A(x,t) is complex [see Eq. (2.3)], both ampli-
tude and phase fluctuations occur. These can be de-
scribed by assuming that the two types of fluctuations are
decoupled and

Alx,1)=(Ag+8)e'? , 3.1

where A, is the equilibrium order parameter, and 8 and

¢’ are the fluctuations from the equilibrium value. Then

to lowest order in 8 and ¢’ the amplitude mode corre-

sponds to AZkF+A_2kF=2A‘0+28, and the phase mode

corresponds to Asz——A_ZkF=2A0A<p’. The dispersion

relations of these modes were evaluated first by Lee,
Rice, and Anderson (1974), using the electron-phonon

Hamiltonian (2.2). The electron-phornion interaction

transforms the acoustic phonons near the zone boundary

into an optical and an acoustic branch with frequencies

Qi = )»'(a)z,(p )2 + %

m

(vpq)?, (3.2a)
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(3.2b)

. ‘(qu)zz(C()q)z ’

Qi:{’"

where the effective mass m * is given in terms of funda-

mental parameters of the problem X', and A, by

* 4A?
mn "——l—{-zl—s—z' (3.3)
m # )L((i)sz)

at T=0. Both modes soften with increasing tempera-
ture, while the temperature dependence of the effective
mass is given by

m* 4A2 n (T)

=1 (3.4)
m * 7N (0, ) 1 (T =0)

with the temperature-dependent carrier density given by
Eq. (2.7). While the amplitude mode has a gap, the phase
mode is gapless; the ¢ =0 translational mode corresponds
to zero excitation energy. The dispersion relation for €
and ) _ are shown in Fig. 6. The large effective mass m *
is the consequence of the coupled dynamics of the elec-
trons and phonons: in the case of the ¢ =0 translational
mode, the total kinetic energy includes both that of the
electrons that execute translational motion and the ions
that oscillate about theit equilibrium positions. The am-
plitude mode Q + 1s expected to be Raman active, while
the phase mode carries a dipole moment as it involves the
motion of condensed electrons across the background of
the position changes of the ions. Consequently, the g =0
phase mode carries a current. Equation (3.2) is appropri-
ate in the long wavelength ¢ ~'>>A limit. For short-
wavelength fluctuations, deviations from the above
dispersion relation occur that are similar to those that
arise for optical and acoustic phonons near a zorie bound-
ary. In addition, Coulomb interactions may shift the  _
branch up to optical frequencies. Uncondensed elec-
trons, however, most likely screen the Coulomb interac-
tions, and Eq. (3.2) is expected to be appropriate.

q

FIG. 6. Phase and'amplitude mode dispersion relations.

Rev. Mod. Phys., Vol. 60, No. 4, October 1988

With a characteristic Fermi energy €~ 1 eV, single-
particle gap  A;~0.1 eV, and phonon frequency
Dok~ 1072 eV, the electron-phonon coupling constant A’

is of the order of 0.5 [see Eq. (2.6)]. With these values,
Q, (g=0)~5x10"2 eV, which is smaller than A, and
the effective mass is of the order of m * /m ~ 10%. Several
attempts have been made to observe the amplitude mode
by Raman scattering, but the mode has not yet been
urambiguously determined (Tsang et al., 1978; Trava-
glini et al., 1983). Due to the gap in the dispersion rela-
tion for the amplitude mode, amplitude fluctuations do
not play an important role at temperatures kT << .
Therefore most of the descriptions of dynamical collec-
tive phenomena are in terms of the dynamics of the phase
only. Such a description may be appropriate at low tem-
peratures, but close to the Peierls transition important
effects coming from the dynamics of the amplitude mode
are expected to occur. By treating the phase as a classi-
cal field, the Lagrangian density in one dimension can be
written (Brazovskii and Dzyaloshinskii, 1976; Fukuyama,
1976; Fukuyama and Lee, 1978)

* 2
m

mvg

nC
47

de
dx

2
L= de ’ — i (3.5)

dt

to lowest order in the derivatives, and n, is the carrier
density along the chain direction. This form follows
from the elimination of the electronic degrees of freedom
from the Hamiltonian (2.2) (Brazovskii and Dzyaloshin-
skii, 1976). The first term on the right-hand side corre-
sponds to the kinetic energy of a line mass m *n, per unit
length. The second term represents the potential energy
associated with the distortions of the collective mode,
with a phenomenological elastic constant . The equa-
tion of motion corresponding to the above Lagrangian is

2 2
e __m Kld_ﬂ . (3.6)
dt? m*  dx?
The solutions for  Eq. (3.6) are of the form
expli(wt —gx)] with the dispersion relation
*
02 = 2(kg)? ; 3.7
m

comparison with Eq. (3.2b) gives the phenomenological
elastic constant in terms of v as

K=V . (3.8)

The plane-wave solutions represent the periodic
compression and expansion of the CDW; these excita-
tions are called phasons. The dispersion relations (3.2)
and (3.7) also define a phason velocity

172
Up (3.9)

Co=
0
m*

in which, for vz ~3 % 107 cm/sec and for m* /m ~ 103, ¢,
is approximately 10® cm/sec.
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As in a superconductor, the phase ¢(x,?) plays an im-
portant role in the dynamics of the collective mode. The
g =0 phase mode corresponds to the translational
motion of the condensed electrons, with the ions oscillat-
ing around their equilibrium positions. A rigid displace-
ment of the CDW leads to an electric current, and the
current density per chain Jcpw = —n.evy
= —ncpwelde/dt). With o=2kpx and A=m/kg,

. _edg
JCDW—W dt .

(3.10)
A compression of the wave leads to a change of the elec-
tronic density, and therefore

n—cde

=k (3.11)

at zero temperature. The cross derivatives of the above
equations lead to the equation of continuity

djcow  dn,
dx dt

Equation (3.12) is more general than implied by its devia-
tion above and is valid to all orders in the derivative ex-
pansion of the phase (Horovitz, 1986). Here and in the
previous formulas, the subscript refers to the current car-
ried by the CDW. Subsequently, the subscript will be
used only if the effect of normal electrons leading to nor-
mal current is also important. Otherwise all quantities
(current, current density, cordial and differential conduc-
tivity, etc.) refer to transport carried by the collective
mode.

The above relations can also be derived by considering
the modification of the dispersion relation of electrons in
momentum space (Allender et al., 1974; see also Bijelis,
1987). As in a superconductor for a slowly varying
@(x,t) (on the time scale much less than #/As) the Fermi
surface is tied to the position- and time-dependent con-
densate. We consider first a slowly varying ¢(x), for
which (1/kp)d@/dx) << 1. This can be described as a
change in the wave vector 2kp+d@/dx; consequently,
the single-particle gap is shifted from =kp to
t[kr++(d@/dx)], as shown in Fig. 7. If the electrons
do not change their density, then the gap is removed
from the Fermi surface. This leads to electrons in states
above the gap and to a large increase of the total elec-
tronic energy. A change in the electron density, by tying
the gap to the Fermi surface, involves less energy. As
p(x)=2kp(x)/2m, the gap is at the Fermi level if

=0. (3.12)

de
D (3.13)

3=

p(x)=po+

the same relation as Eq. (3.11).

For a time-dependent phase ¢(¢), with de/dt
=2kpvcpw, the inversion symmetry is broken and the
dispersion relation becomes asymmetric, as shown in Fig.
7(b). The electronic energies are given by (Allender
et al., 1974)
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FIG. 7. Displaced Fermi surface for a position- (a) and for
a time-dependent (b) phase. The states are filled up to the
Fermi level, i{kp—i——;—[d(ﬁ(x)/dx]} in (a), and up to =*[kp
+(1/2vsh)(d¢/dt)] in (b) indicated in both cases by the solid
lines. The dotted lines refer to the ariginal Fermi surface at
ikF.

1 172
E(k)j:?

de

ar (3.14)

Epp=

2
+A2

The energies corresponding to the displacement Fermi
surface are different for positive and negative momenta,
leading to different occupation numbers for positive and
negative k values. This then leads to a total current

Co dedk €€ x—t ) e dg
]Cthzefdk 27 T T nodt
(3.15)

(where the integration is over all occupied states), the
same as Eq. (3.10). This relation, and also Eq. (3.13),
breaks down for strong local distortions of the conden-
sate, In such cases both the amplitude and the phase per-
turbations have to be included. The relation that con-
nects the electric current and condensate density to the
time and spatial derivative of the phase @(x,?) of the con-
densate is different from the relations that are appropri-
ate for a superconductor,

_iz4¢ _izd9
Ds lﬁdx and u=i# ar
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where p; and p are the momentum and the chemical po-
tential. This arises because, in contrast to the supercon-
ducting ground state, the charge-density-wave conden-
sate is formed by electron-hole pairs, and pairing also in-
volves the wave vector 2k .

In the presence of an applied electric field
E (w)=E0ei‘°’, the equation of motion becomes

L m ppdg 2reFlo)

) (3.16)
dt? dx? m*
and the frequency-dependent conductivity
.2
_Jle) m 1w, 3.17
= F () = m* an(wtid) 617
where o} =8vpe? is the plasma frequency. The real part

of the conductivity

Reo (w)="=-0}58(0) (3.18)

*
has a Dirac § singularity at ©=0, with an oscillator
strength

7Tn82

F=T

m

(3.19)

Because of the gap A, in the single-particle excitation
spectrum, the w-dependent response due to single-
particle processes also displays a gap resulting in
0(0)=0cpwl®@)+ 0 gngie particte(®@)  displayed in Fig. 8.
The oscillator strength that appears at zero frequency is
removed from the single-particle excitations that appear
at o>2A;. As a consequence, the one-dimensional
singularity, which has the form of (w—24,)~'/%, is re-
moved, and o(w) becomes rounded, as shown in Fig. 8(a).

The appearance of a single-particle gap together with
the zero-frequency collective mode is reminiscent of su-
perconductivity. Here the ® =0 mode corresponds to the
translationally invariant CDW which, in the absence of
damping, would lead to a supercurrent. Various interac-
tions between the CDW and the underlying lattice, how-
ever, remove the translational invariance and lead to pin-
ning of the phase of the condensate. Such pinning is
brought about by the local distortions of the condensate
around pinning centers. When described in terms of a re-
storing force, pinning effects shift the collective-mode
conductivity to finite frequencies (Rice and Strissler,
1973; Lee et al., 1974). With pinning represented by an
average pinning frequency o, and also including a phe-
nomenological damping term I'(d¢/dt), the equation of
motion becomes, for small amplitude displacements,

dl¢ ldg o _
drr T rdr TO0P=

2kpeE

m*

(3.20)

The frequency-dependent conductivity that corresponds
to Eq. (3.20) is given by

n.e? »?

iom* o}

o(w)= (3.21)

—o?—iw/T
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FIG. 8. Frequency-dependent response of the collective mode
(a) without pinning, and (b) with pinning and damping. The
response at frequencies w>2A/h is due to single-particle exci-
tations. i

and is that of an optical mode centered around the fre-
quency @, The dc conductivity, Reo cpw(w=0)=0, and
the zero-frequency dielectric constant is given (including
the contribution from excitations across the gap A) as
dmn.e’  amnep?

m*w} mA?

lo=0)=1+ (3.22)

The second term on the right-hand side describes the
contribution of the collective mode; the third term
represents the contribution of single-particle excitations.
For weak pinning, where #io, << A, Eq. (3.21) leads to the
conductivity shown in Fig. 8(b), with the contribution of
the pinned mode appearing well within the single-particle
gap. This also leads to a giant dielectric constant at low
frequencies and to a zero crossing at o= w,,.

Coulomb interactions have been completely neglected
in the above analysis; consequently, the picture is expect-
ed to be appropriate near the Peierls transition, where
the normal electrons are available to screen the Coulomb
effects associated with the phason excitations.

B. Frequency- and electric-field-dependent conductivity

For band semiconductors the electrical conductivity is
independent of frequencies for w < A/# and is also in-
dependent of electric field for applied fields eEl <A,
where / is the mean free path. For a typical gap of the
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order of 0.1 eV, nonlinear conduction occurs in the kV
range, with frequency-dependent conduction observed at
optical (infrared) frequencies. In contrast, in the materi-
als discussed before, in the CDW. ground state o is both
strongly nonlinear and frequency dependent. In Fig. 9,
the frequency-dependent conductivity Reo(w) measured
along the chain direction is displayed in several com-
pounds. Only experimental results in the region of the
single-particle gaps (shown by solid lines) and in the dc to
millimeter wave spectral range are displayed for clarity.
The solid lines are the results of optical experiments, and
the strong decrease of the conductivity with decreasing
frequency demonstrates the existence of the single-
particle gaps. The gap values evaluated from the optical
experiments (Zeller, 1974; Geserich et al., 1986; Herr
et al., 1986; Travaglini and Wachter, 1984) compare, in
general, favorably with the gaps evaluated from the dc
conductivity below T,. The strong resonances observed
in the millimeter wave spectral range (Ng et al., 1986;
Reagor and Griiner, 1986; Reagor, Sridhar, and Griiner,
1986; Sridhar et al., 1986) indicate a collective response
associated with the charge-density-wave ground state, as
it is evident that the frequency-dependent response such
as that displayed in the figure cannot arise from a single-
particle transport mechanism. The energy that corre-
sponds to the frequency where Reo(w) has a maximum is
orders of magnitude smaller than the single-particle gap

normalized conductivity
®) -,
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FIG. 9. The frequency-dependent conductivity of NbSe;,
0-TaS; and (TaSe,),I, and K, 3;Mo00;. The solid lines represent
the regions where the drop signals the single-particle gaps; the
strong. peaks in the millimeter wave spectral range are due to
the response of the pinned collective mode.
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and also the thermal energy kT. The oscillator strength
that appears at finite frequency (in contrast to what is ob-
served in a superconductor) suggests that the collective
mode is pinned to the underlying lattice. This is borne
out by detailed investigations on specimens where the im-
purity concentration is varied. The peak frequency o,
can be associated with the pinning frequency w, as dis-
cussed in Sec. III. The finite width of the resonances ob-
served may be due to damping effects associated with the
dynamics of the collective mode, or, alternatively, can be
the consequence of inhomogeneous broadening brought
about by randomly positioned impurity pinning centers.
Alternatively, a band of heavy carriers with a small gap
would also lead to an overall behavior, which is displayed
in Fig. 9. :

The low-frequency dielectric constant is enormous, in
general of the order of 107 or more, and this is the conse-
quence of the large oscillator strength which occurs at
low frequencies. The zero-frequency dielectric constant
is given by

E(CL))= s

47e? r» Reo(w)
m* f o w2 do
which for a narrow resonance reduces to &~4mne?/
m*w3, in agreement with Eq. (3.22). Details of o(w) and
also e(w) will be discussed later.

The small pinning energy associated with the collective
mode suggests that for a small dc electric field, the collec-
tive mode can be driven into a current-carrying state
with possibly nonlinear current-voltage characteristics.
Indeed, nonlinear conductivity has been observed in all
the materials discussed before, with a sharp onset field,
called the threshold E;, for the nonlinear conductivity.
The detailed form of the nonlinear conduction varies de-
pending on external factors such as temperature, impuri-
ty concentration, or macroscopic inhomogeneities (such
as grain boundaries) in the specimen.

The dc conductivity, defined as j /E where j is the total
current density and E is the applied electric field, is
shown in orthorhombic TaS; in Fig. 10. Below, a thresh-
old field E, approximately 300 mV/cm, the conductivity
obeys Ohm’s law, and the temperature dependence of this
component reflects the exponential freezing out of the
electrons excited across the single-particle gap. The on-
set of nonlinear conduction is smooth, as evidenced by
the current-voltage characteristics displayed in the figure.
A behavior, similar to that displayed in Fig. 10, is found,
in general, for the other compounds; the existence of the
sharp threshold field E; is well established. The behav-
ior in the figure can be described in terms of a two-fluid
model involving electrons excited across the gap and
electrons concerned in the collective mode. The former
has an Ohmic contribution; the other, a nonlinear

‘response. The total current can be written as

Liyw=I,+Icpw » (3.23)

where the subscripts n and CDW refer to current carried
by the uncondensed and condensed electrons. The validi-
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FIG. 10. Electric-field-dependent conductivity o(E) in 0-TaS;.
The data are normalized to the room-temperature conductivity.
The inset shows typical dc I-¥ characteristics on the same ma-
terial.

ty of such a two-fluid description has been clearly demon-
strated recently by generating nonlinear current-voltage
characteristics in an open circuit configuration (I,,, =0),
where the voltage was generated through the thermoelec-
tric effect (Beyermann et al., 1986).

The current-voltage characteristics are also often ex-
plored by measuring the differential resistance dI/dV,
employing low-frequency lock-in techniques. While the
method cannot be used at high fields because of heating
effects, it is advantageous to study the behavior near
threshold. The first such measurements where a well-
defined E was evident is shown in Fig. 11.

The frequency- and field-dependent response is strong-
ly related, and a smaller pinning frequency, and, conse-
quently, a larger dielectric constant, leads to a smaller
threshold field, suggesting that both are related to an
overall energy that characterizes the pinning of the col-
lective mode.

The conductivities of various materials, when extrapo-
lated to the infinite electric field limit or measured at fre-
quencies @, where Reo(w) is maximum, are finite, and
are close to the conductivities that would be observed in
the absence of the phase transitions. In terms of a relaxa-
tion time 7, the conductivity at high fields or frequencies
is written as

ne 27'

UCDw(E—-)OO or wmax)= m ’

(3.24)

suggesting that the ratio of the relaxation time to the

mass is approximately the same for the uncondensed and

condensed electrons, and
N _ 7

~

m m*,

(3.25)

where m is the band mass. This is approximately obeyed
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FIG. 11. Normalized differential resistance as a function of dc
bias field for the upper (a) and lower (b) CDW states of NbSe;.
A threshold field for the onset of nonlinear conduction is clearly
observed. The field dependence of the current is also shown for
the low-temperature CDW state. The solid lines correspond to
Eq. (5.1) using parameters indicated on the figure.

in NbSe; (Ong and Monceau, 1977), in o-TaS; (Sridhar
et al., 1986), in (TaSe,),I (Reagor, Sridhar, and Griiner,
1985; Reagor, Sridhar, Maki, and Griiner, 1985), and in
K, ;M00; (Reagor and Mozurkewich, 1985) at tempera-
tures where the CDW’s are incommensurate with the lat-
tice. The high-field conductivity is weakly depressed by
small amounts of impurities in NbSe; (Oda and Ido,
1982); in o0-TaS; the high-frequency conductivity is also
fairly insensitive to impurity effects (Reagor and Griiner,
1986). Both suggest that even for a ‘“‘perfect” crystal,
without impurities, sliding charge-density waves would
lead to a finite conductivity.

The onset of nonlinear conduction is often rather
dramatic and is accompanied by switching and hysteresis
effects. These have been observed in NbSe; (Zettl and
Griiner, 1982a), TaS; (Mihaly and Grliner, 1984), and
K, 3;MoO; (Maeda, Furuyama, and Tanaka, 1986; Mae-
da, Furuyama, Uchinokura and Tanaka, 1986); such
effects usually become more pronounced with decreasing
temperature. An example is shown in Fig. 12, where I-V
curves recorded in NbSe; at two different temperatures
are displayed. At higher temperatures the onset of non-
linear conduction is accompanied by an oscillatory insta-
bility, which, by lowering the temperature gradually,
evolves into a hysteretic current-voltage characteristic.
The behavior is due to extended pinning centers in the
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FIG. 12. Current-voltage characteristics observed in NbSe3 at
two different temperatures (Zettl and Griiner, 1982a, 1982b,
1982c¢).

materials, and this has been demonstrated directly by lo-
cating (by using moving contacts) the exact positions
where such behavior is generated (Brown and Mihaly,
1985; Hall et al., 1986). At very low temperatures
T << T, still a different type of nonlinearity, a rather
steep current-voltage characteristic is observed (Mihaly
and Tessema, 1986), with a threshold field 1 or 2 orders
of magnitude larger than E; where the smooth nonlinear
conduction such as that displayed in Fig. 11 occurs. The
overall behavior of the current-voltage characteristics,
shown in Fig. 13, and the threshold field are similar to
those observed in ordinary semiconductors where the
effect is due to hot electrons. Consequently, the behavior
may be of single-particle origin and not related to the on-
set of charge-density-wave-transport. However, strong
polarization effects, certainly due to deformations of the
CDW, are observed below V. This would suggest that
the nonlinear conduction and charge-density-wave dy-
namics are intimately related. .
The fact that the charge-density wave is not destroyed,
but contributes to the dc current for E > E, in experi-
ments such as those displayed in Figs. 10—12 has been
demonstrated by performing x-ray experiments in the
nonlinear conduction region (Fleming et al., 1978, 1984).
The superlattice reflections were found in the current-
carrying region with intensities equal to those measured
without an ‘applied field. The observation demonstrates
that the charge-density wave executes a translational
motion in the presence of an applied electric field. This
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FIG. 13. Current-voltage characteristics measured in
K(.3Mo0O; at low temperatures. Beyond V; a small change in
the applied voltage leads to orders-of-magnitude increase of the
current.

has been confirmed by a series of NMR experiments per-
formed in various materials.

Other types of experiments also suggest that the CDW
is, by the application of electric fields, driven out of the
pinned configuration, and, furthermore, that the dynam-
ics of the internal deformation of the mode is important.
Here, the relaxation back to a pinned state is monitored
through the measurement of the normal (Ohmic) resis-
tance. Making the natural assumption that local changes
of the CDW phase around pinning centers also lead to
the changes in the resistance R, of the normal electrons
that are excited across the gap, the time evolution of this
quantity can be used as a measure of the above relaxation
process. Figure 14 shows R, as a function of time after

~an applied electric field larger than E; is removed

(Mihaly and Mihaly, 1984). A slow, logarithmic time de-
cay

R,(t)—R,(0)= Agin--

Lo

is observed over many decades in o0-TaS,;, with similar
sluggish time response in other materials. Here R, is
the normal electron resistance for an “equilibrium”
configuration achieved as ?#-—o. The observation is
qualitatively similar to those made on spin glasses after
an applied magnetic field. This similarity is not acciden-
tal and suggests the absence of long-range order (and,
consequently, a broadly defined ‘‘glassy” behavior) for a
CDW that is pinned by randomly positioned impurities.
More complicated phenomena, such as remanent dielec-
tric polarization, are related to the above observation.
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FIG. 14. Time dependence of the low-field dc conductivity
after a thermal quench. The temperatures refer to the base tem-
perature where the reaction is monitored (from Mihdly and
Mihaly, 1984).

The long-time effects associated with these relaxation
phenomena may also play a role in the details of the de-
pinning process, and therefore also in determining
current-voltage characteristics in the nonlinear conduc-
tivity region.

The parameters that characterize the frequency- and
field-dependent conductivity vary from material to ma-
terial, and they also display a characteristic temperature
dependence. While in the majority of cases, pinning by
impurities plays the most important role (except in rather
pure specimens with small dimensions where boundary
effects may be important), as a rule the threshold electric
field E is smaller, and the low-frequency dielectric con-
stant € is larger in materials with smaller Peierls transi-
tion temperature. In Fig. 15 these two parameters are
displayed for various materials as a function of tempera-
ture. The decrease of € and increase of E near T is
most probably related to the strongly temperature-
dependent condensate density, but the low-temperature
behavior of these parameters is unexplained. The de-
creasing € and increasing E; with decreasing tempera-
ture may be related to the local thermal oscillation of the
impurities, but alternatively to temperature-induced local
excitations of the collective mode. In o0-TaS; and in
K, 3Mo00;, which become commensurate below about
T ~100 K, pinning by the lattice may be important, but
such effects presumably do not play an important role in
the other compounds where the CDW remains incom-
mensurate with the underlying lattice. It has also been
suggested that temperature-driven fluctuations of the
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FIG. 15. Temperature dependence of the threshold electric
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f =4 MHz2) in various materials. The solid lines are guides to
the eye.

phasé (a phenomenon similar to the Debye-Waller effect)
lead to the temperature-dependent threshold field (Maki,
1986).

C. Other transport coefficients

While the low-field dc conductivity provides clear evi-
dence for the metal-to-semiconductor transition associat-
ed with the development of the CDW ground state, other
transport coefficients, such as thermoelectric power
(TEP) and Hall effect, also reflect the removal of the Fer-
mi surface by the transition. A small, metalliclike TEP
above Tp is usually followed by a strong rise below the
transition. This is accompanied by similar changes in the
Hall constant. At temperatures below T'p these parame-
ters can, in general, be accounted for by formulas
developed for ordinary band semiconductors, with a
temperature-dependent gap A (7T) having the BCS form
and disappearing at the transition. At low temperatures,
where also the dc conductivity deviates from the ex-
ponential form, anomalies in the TEP (Allgeyer et al.,
1982; Fisher, 1983; Johnston et al., 1983) and Hall effect
(Ong, 1982) can also be found. It is likely these reflect
the contribution of impurity states to the transport
coefficients.

Equation (3.23) implies a two-band model where the
normal electrons and electrons in the CDW condensate
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provide separate and independent channels for the con-
duction process. While this description suggests a collec-
tive transport carried by the CDW when electric fields
exceed threshold, other transport measurements per-
formed in the nonlinear conductivity region provide
direct evidence that the current at high fields is carried
by a ground-state condensate.

Early measurements (Dee et al., 1979) of the ther-
moelectric power in NbSe; are in apparent conflict with
the Frohlich conduction mechanism. Detailed measure-
ments on o0-TaS; (Stokes et al., 1984) and subsequently on
other materials indicate that no, or very little, entropy is
associated with the nonlinear electrical conduction as ex-
pected for a current carried by a ground-state conden-
sate. Both the measurement and the analysis of TEP ex-
periments, when extended to investigate nonlinear phe-
nomena, require special care. First, conventional experi-
ments use an open circuit, J =0 configuration. In order
to detect a contribution to the thermopower in the non-
linear regime, a finite current has to be applied. Second,
conventional discussions of thermoelectric effects consid-
er only small thermal and electric gradients in cases of
systems initially in thermal equilibrium. For a system in-
itially in a nonequilibrium steady state (driven by an elec-
tric field E) at a uniform temperature 7, the electric and
heat current densities 8J and 8U are given by

dJ L,(Ey)
SJ(E)=—+ S8E +——VT,
(E) dE |5 —r, + T2 T
(3.26)
dU Ly, (Ey)
SU(E)=—= 8E +———VT,
(E) dE |5—r, v+ =)

where VT is the applied (small) temperature gradient,
and L, and L,, are Onsager coefficients. The ther-
moelectric power, for constant current density is given by

L
S(Ey)= 2 (3.27)
2.4J.
dE |E=E,

For a two-fluid model of the normal electrons and the
CDW condensate as suggested by Eq. (3.23), the TEP is
given by

dJ dJ
SvaE |, TPV aE
normal CDW
S(Ey)= , (3.28)
dr dr
dE normal dE CDW

where the subscripts refer to the differential conductivi-
ties for the normal and condensed electrons. For the case
Scpw =0, the above equation reduces to

S(E,y) oy(E)

= . (3.29)
SN U;V(E)+U£:DW(E)

Here o'=dJ/dE

is the differential conductivity.

Rev. Mod. Phys., Vol. 60, No. 4, October 1988

Therefore, for Scpw =0, the electric field dependence of
the total measured thermopower S is expected to be the
same as that of the inverse differential conductivity. In
Fig. 16 these parameters measured in o-TaS; are
displayed as a function of electric field. Within experi-
mental error Eq. (3.29) is obeyed over a wide range of ap-
plied fields confirming that (to within the experimental
error) Scpw =0.

The Peltier heat is related to the thermoelectric power
by

I(E)=TS(E¢){0'(Eq)Eo[J (E()]™'} , (3.30)

and consequently II(E) associated with the nonlinear
conduction is also close to zero. This analysis suggests
that, in contrast to single-particle transport where the
Wiedeman-Franz law applies, no or very little entropy
transport is associated with the nonlinear electric con-
duction. The slight deviation from Eq. (3.28) observed at
low temperatures can be accounted for by phonon-drag
phenomena (Stokes ez al., 1983). Similar conclusions are
reached for (TaSe,),I and in the upper transition of
NbSe;, while at the lower phase transition in NbSe; the
anomalous behavior (Dee et al., 1979) suggests that
phonon-drag effects may be dominant. Such effects were
studied subsequently by Kriza and Mihaly (1987), who
extended the early experiments on TaS; higher electric
fields and found deviations from Eq. (3.29) that became
more important at lower temperatures. The reason for
this behavior is not clear at present, but it may signal the
breakdown of a simple two-fluid model for large CDW
velocities.

Within the framework of the two-fluid model, the Hall
voltage Vy, for a magnetic field H perpendicular to the
chain direction, is given by

V.- O NUN1L+ O cpwMcDWL
H (on+0ocpw)L

HE , (3.31)

where E is the electric field applied along the chain direc-
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FIG. 16. Electric field dependence of the thermopower S and
differential conductivity I'=dI/dV in o-TaS; (Stokes et al.,
1984).
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tion. py, and pcpw, are the contributions of the normal
and CDW electrons, respectively, to the mobility perpen-
dicular to the chain direction at electric field E, while
(on+0cpw), refers to the total perpendicular conduc-
tivity that corresponds to the Hall voltage. Measure-
ments performed in NbSe; (Kawabata et al., 1981; Tesse-
ma and Ong, 1981) lead to a Hall voltage that is propor-
" tional to the electric field up to fields of E ~2E; for such
electric field values V is smaller than the threshold field
E;. Consequently, the current associated with the non-
linear conduction is extremely anisotropic and is not
influenced by the Lorentz force. While this was subse-
quently confirmed in TaS; (Artemenko et al., 1984) for
electric fields slightly exceeding E, for larger electric
fields deviations from Vy ~E are found, the effect being
more apparent at low temperatures. The most detailed
experiments were performed recently on K, ;MoO; (For-
16 et al., 1985) and in NbSe; (Everson et al., 1984); both
point to the apparent breakdown of the two-fluid descrip-
tion at low temperatures and at high magnetic fields. In
the former compound the CDW current is accompanied
by normal electron backflow, while in NbSe; there is a
conversion between the CDW and normal carriers by the
magnetic field.

D. Elastic properties

The metal-to-semiconductor transition is associated
with pronounced anomalies of the elastic properties. The
Young’s modulus has a large dip, and the internal fric-
tion increases at Tp (Brill and Ong, 1978; Brill, 1982;
Mozurkewich et al., 1985a, 1985b). These anomalies,
not unexpected for a structural phase transition, are re-
lated to specific-heat anomalies within the framework of
the Clausius-Clapeyron equation (see, for example, Tes-
tardi, 1975), which account for the changes in the elastic
constant. Corresponding changes in the internal friction
remain unexplained.

Both the Young’s modulus and the internal friction
show large anomalies in the nonlinear conductivity re-
gion. This was first investigated in o-TaS; (Brill and
Roark, 1984; Brill et al., 1986), in 0-TaS;, (TaSe,),1, and
NbSe; (Mozurkewich et al., 1985b; Xiang and Brill,
1988), and in K, ;Mo0O; (Bourne et al., 1986). Experi-
mental results for the electric field dependence of the
elastic modulus AE’/E’ and internal friction 8 ~Q !
(where Q is the quality factor of the elastic resonance)
measured in TaS; are displayed in Fig. 17. The onset of
nonlinear conduction leads to a decrease of £’ and an in-
crease of 8. Similar behavior was found in NbSe; and in
(TaSe,),I (Mozurkewich et al., 1985b; Suzuki et al.,
1986), but no effect was observed in K, ;M00; (Bourne
et al., 1986). The shear modulus was also measured re-
cently, showing significant anomalies as the function of
applied electric field (Xiang and Brill, 1988).

While the detailed underlying mechanism for the ob-
served effect is not clear, it is expected that a pinned
CDW would contribute to the elastic constant while, for
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modulus AE/E,=2Af/f, vs voltage at 149 K in TaS;. O, is
the quality factor in vacuum at zero voltage. Inset: AE/E, vs
power dissipated in sample at 149 K. The line shows the pro-
portionality below threshold (Brill and Roark, 1984).

a completely unpinned mode, such contribution would be
negligible. Moreover, damping effects associated with
the dynamics of the internal modes can be responsible for
the increased internal friction observed. The change of
the elastic constant can be estimated by a mode coupling
approach, where the phonon and phason branches are
coupled through Coulomb forces (Mozurkewich et al.,
1985b), or by calculating the longitudinal sound velocity
(Coppersmith and Varma, 1984) and taking the internal
degrees of freedom explicitly into account (Sneddon,
1986; Maki and Virosztek, 1988; Zeyher, 1988). Such
calculations lead to the softening of the lattice in the slid-
ing conductivity region. These models also give specific
predictions concerning the electric field dependence of
the bulk modulus and attenuation; these are in broad
semiquantitative agreement with experiments performed
mainly in TaS;.

E. Nuclear magnetic resonance

The most direct evidence for moving charge-density
waves comes from NMR experiments. Transitions to the
CDW state have profound influence on the NMR spec-
trum, mainly because of the inhomogeneous broadening
caused by the charge-density-wave modulation through
quadrupole effects.

The development of the periodic modulation of the
charge density leads to a periodic modulation of the
electric-field-gradient tensor, and the frequency associat-
ed with the transitions between the nuclear levels is given
by (Berthier and Ségranson, 1987)
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w
Avy oy (RG)= A0S, ((TC)+ Z—;COS(kar—l-(p)
+£—2—cosz(2k r+o) (3.32a)
21 FIT¢’, ’

where the numerical factors w; and w, depend on the am-
plitude of the CDW and on the quadrupole moment. For
an incommensurate CDW, Eq. (3.32a) leads to a line
broadening, which can be calculated and contrasted with
the experimentally found broadening. Such studies have
clearly established the development of charge-density
modulation below the Peierls transition. This has been
studied in detail in NbSe; (Devreux, 1982; Wada et al.,
1984) and in Rby ;3M00; (Butaud et al., 1985).

The NMR line shape in the presence of uniform CDW
velocity has been worked out in detail (Kogoj et al.,
1984) as the function of the velocity v. The solution leads
to a motional narrowing and the appearance of a central
line at the unperturbed Larmor frequency. While early
studies (Douglass et al., 1985) did not reveal any motion-
al narrowing, subsequent experiments in NbSe; (Ross
et al., 1986) and in Rby;MoO; (Nomura et al., 1986;
Ségranson et al., 1986) clearly established the motional
narrowing associated with moving charge-density waves.
A detailed analysis and the reevaluation of CDW velocity
require the calculation of NMR line shapes, with the
added complication that often only part of the sample is
involved in the nonlinear conduction process. Such
analysis leads to CDW velocities in good agreement with
those expected from studies summarized in the next sec-
tion. The results suggest a distribution of CDW veloci-
ties in Rby ;M00; (Berthier and Ségranson, 1987); such
effects are much less evident in NbSe; (Ross et al., 1986).

F. Current oscillations

Perhaps the most spectacular observation in the field is
the detection of current oscillations in the nonlinear con-
ductivity region. The phenomenon, which has been stud-
ied both in the time and in the frequency domain, is often
referred to as ‘“narrow-band noise.” The term ‘“‘noise,”
however, is misleading. Consequently, we refer to the
phenomenon as current oscillations.

Depending on the experimental arrangement, either an
oscillating current or an oscillating voltage is detected;
the former for a constant voltage, the latter for a con-
stant current drive. Due to the presence of normal elec-
trons that lead to a normal component to the total
current and thus contribute to the voltage drop across
the specimen, the usual experimental configuration
represents an intermediate situation. To first approxima-
tion, the current oscillation amplitude Aj; and the oscil-

lating voltage AV, are related by AJ, =AV, /R, where R -

is the measured resistance of the specimen at a frequency
that corresponds to the frequency of the oscillations.
Figure 18 shows the first observation by Fleming and
Grimes (1979) made on NbSe;, where the Fourier spec-
trum of the time-dependent voltage, recorded by a spec-
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FIG. 18. Fourier transform of the time-dependent current in
NbSe; or various applied currents. Narrow-band ‘“noise” re-
sults if the current exceeds the threshold value for nonlinear
conduction. Currents and dc voltages are (a) I =270 uA,
V=5.81 mV; (b) I=219 pA, V=5.05mV; (c) I =154 uA,
V=4.07mV; (d) I =123 yA, V=3.40 mV; (¢) I=V =0. The
sample cross-sectional area 4 ~ 136 um? (Fleming and Grimes,
1979).

trum analyzer, is displayed. Only a structureless broad-
band noise is observed for electric fields below threshold,
but for E > E sharp peaks superimposed on a large am-
plitude broadband noise are evident. The spectrum con-
sists of a fundamental frequency and of several harmon-
ics with slowly decaying intensity. For increasing elec-
tric fields, the amplitude and the frequencies increase.
The spectra shown in Fig. 18 indicate a time-dependent
current with a periodic but nonsinusoidal time depen-
dence. This was subsequently confirmed by studies in
real time domain, following a pulse applied to the speci-
mens (Bardeen et al., 1982; Fleming, 1982). Spectra,
similar to those shown in Fig. 18, have been subsequently
observed in all materials where nonlinear conduction
occurs—in TaS; (Griiner, Zettl, Clark, and Thompson,
1981), in (TaSey),I (Wang, Monceau et al., 1983), in
(NbSe,); 331 (Wang, Saint-Lager et al., 1983), and in
K(.3M0O; (Dumas et al., 1983)—and consequently is a
characteristic overall feature that accompanies the non-
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linear conduction process.

The frequency of the oscillations is approximately pro-
portional to the excess current carried by the CDW
(Monceau et al., 1980); furthermore, the ratio of the ex-
cess current to the frequency varies with temperature,
approximately as the number of condensed electrons n,
(Bardeen et al., 1982). Figure 19 displays the linear rela-
tion between I-pw and f in a wide frequency range for
a pure NbSe; specimen (Bardeen et al., 1982), with the
ratio I cpw /f as the function of T in the inset. Normal-
izing to CDW current for one chain, the above observa-
tions can be described as

n(T)
n (T =0) "’

Jcow
fo
where j-pw refers to the current per chain. While the
precise value of the constant in Eq. (3.32b) is still debat-
ed, it is between 1 and 2 for a broad range of materials.
The above relation between the current and oscillation
frequency is associated with the fundamental periodicity
associated with the phase ¢. The CDW current, de-
scribed in terms of drift velocity v, of the (rigidly mov-
ing) condensate, is given by jcopw =n.ev,;. Associating
the fundamental frequency with a CDW displacement by
one period, f,=v, /A, leads to

=const X e X (3.32b)

Jcow
fo
with A=7/ky and n,=2ky /7. Equation (3.32b) with a

constant ¢ =2 is then recovered. Alternatively, the fun-
damental frequency can be related to the energy

=n,(T)eh , (3.33)
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FIG. 19. Relation between the CDW current and fundamental
oscillation frequency in NbSe;. The inset shows Icpw/fo Vs
temperature (Bardeen et al., 1982).
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difference AE between the two sides of the displaced Fer-
mi surface shown in Fig. 7(b). With

ap 2, Lk,

(3.34)
dv

AE =hf, and jopw=n,ev,; also leads to Eq. (3.32) with
¢ =2. The strictly linear relation between j.pw and f
as displayed in Fig. 19 suggests that the CDW velocity is
constant throughout the specimen. Indeed j-pw is pro-
portional to f; over a broad range of currents and fre-
quencies only in high-quality specimens. In materials
where evidences suggest that disorder plays an important
role, deviations from the linear relation between jcpw
and f, are observed (likely related to finite velocity-
velocity correlation lengths).

The question of whether current oscillations are gen-
erated in the bulk or at boundaries, like current contact,
has been hotly debated, and a variety of experiments
have been designed to test the validity of both assump-
tions. While it is generally agreed that current oscilla-
tions are a finite-size effect and do not occur in the ther-
modynamic limit, the issue of current generation has not
yet been resolved. Experiments where the noise ampli-
tude was measured as the function dimensions of the
specimens (Mozurkewich and Griiner, 1983a; Ong, Ver-
ma, and Maki, 1984) led to contradictory results. Experi-
ments involving nonperturbative contacts that also can
be moved along the length of the specimens favor bulk
noise generation (Brown and Mihaly, 1985). Various ex-
periments have also been performed in the presence of a
temperature gradient, which leads to different tempera-
tures 7| and T, at the site of the current contacts,
placed, in general, at the ends of the specimens. In case
of oscillating current generation at the contacts, under
certain circumstances a splitting of the oscillation fre-
quencies is expected. While the first experiments (Zettl
et al., 1984) did not show such splitting in subsequent
measurements (Ong, Verma and Maki, 1984; Ong and
Maki, 1985), such splitting has indeed been detected. It
has, however, been shown that a further increase of the
temperature gradient leads to further splitting of the os-
cillation frequencies (Brown, Mozurkewich, and Grliner,
1985; Lyding et al., 1986). The multiple splittings sug-
gest the formation of velocity coherent regions with a
minimum length of the order of 100 yum. Similar con-
clusions have been reached by Monceau et al. (1986) by
employing temperature gradients large enough to heat
the contact regions above the transition temperature.
The current oscillations were present under such cir-
cumstances, indicating that they are not generated ex-
clusively by carrier injection at the contacts. While these
experiments do not give a clear answer to the question of
current generation, they do raise the important question
of topological defects in charge-density waves and the
possibility of phenomena associated with the dynamics of
the amplitude of the order parameter (Gorkov, 1983;
Batistic et al., 1984; Ong, 1984; Ong and Maki, 1985).

In addition to the current oscillations, the nonlinear
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conduction is also accompanied by a substantial broad
band noise with an effective noise temperature of several
thousand degrees (Richard, Monceau, Popoular et al.,
1982; Griiner and Zettl, 1983). The spectral dependence
can be well described by an f ~¢ behavior (Bhattacharya
et al., 1985; Maeda, Furuyama, and Tanaka, 1986), and
the amplitude of the noise voltage is inversely propor-
tional to the square-root volume, suggestive of fluctua-
tions generated by independent pinning centers in the
bulk (Richard, Monceau, and Renard, 1982; Bhattachar-
ya et al., 1985). It has also been suggested, on the basis
of experiments on intentionally damaged specimens
(Thorne et al., 1987), that broad band noise is either gen-
erated by macroscopic defects or is mainly reflective of
the distribution of various current oscillation com-
ponents. The 1/f* spectrum may then represent the dis-
tribution of heat frequencies between various coherent
regions separated by macroscopic defects. The phenome-
na have also been interpreted as due to a current noise,
generated at various pinning centers (Wonneberger and
Breymayer, 1984)

The amplitude, and also the phase of the current oscil-

lation, displays characteristic time dependences (Brown
et al., 1985b; Bhattacharya et al., 1987; Link and
Mozurkewich, 1988). Fluctuations of both the position
and the amplitude of the peaks in the Fourier-
transformed spectrum are indicative of noise generation
in various regions in the specimens, which then are weak-
ly coupled through the nonlinear medium. Such weak
coupling may lead to temporal locking of oscillations in
the various regions of the specimens, with locking-
unlocking effects leading to low-frequency fluctuations.
The time-average width of the Fourier-transformed
“narrow-band noise” scales with the observed broad
band noise amplitude, indicating that the two are inti-
mately related.

IV. THE MECHANISMS OF PINNING

Both the frequency- and the electric-field-dependent
conduction observed in materials with incommensurate
charge-density-wave ground state are the consequence of
the interaction between the collective mode and the lat-
tice irregularities. The interaction leads to a finite pin-
ning energy; this in turn shifts the oscillator strength to
finite frequencies and also results in a finite dc threshold
for nonlinear conduction. Pinning effects, together with
the fundamental 2k periodicity of the problem, are also
responsible for the current oscillation phenomena.

In contrast to superconductors, the relevant collective
mode, the phason mode with the dispersion relation
(3.2b), is gapless. The collective mode can distort around
potentials represented by V(r), thus lowering the total
energy of the collective mode. The Ginzburg-Landau
Hamiltonian for a potential that couples directly to the
phase of the CDW is (Fukuyama and Lee, 1978)
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n fiv
£ f(V¢>)2dr+ fp,V(r)cos[ZkF-r—i—cp(r)]dr .

H= 47

(4.1)

The first term on the right-hand side represents the elas-
tic energy associated with the long-wavelength phase de-
formations; the second represents the interaction of the
collective mode with the pinning potential. It is assumed
that the amplitude of the collective mode is not per-
turbed by the interaction between the collective mode
and the potential ¥ (r). Consequently, Eq. (4.1) is expect-
ed to be appropriate for relatively weak potentials, which
are substantially smaller than the band gap A;. The com-
bined effect of elastic and potential-energy terms in Eq.
(4.1) is a decrease of the total energy. Because the poten-
tial depends on the position ¥ (r), the interaction also
leads to pinning of the collective mode. For small ampli-
tude displacements the pinning energy is given by
E,=K(x—x, )2/2, where K is the restoring force con-
stant and (x —x,) is the rigid displacement of the mode
from the equilibrium position x, which is established as
a result of the potential ¥ (r). In terms of a purely classi-
cal description of the small amplitude oscillations of the
collective mode, the pinning frequency is w3=K/m¥*,
and the dc dielectric constant is given by
4mn e’

e=1+4 X R 4.2)
which can be substantial for a small restoring force. A
dc electric field leads to the translational motion of the
condensate and, consequently, to a current-carrying state
when the energy provided by the dc field over one period
A is larger than E;,. The condition that follows from
this argument leads to a threshold field

_AK

r==%, 4.3)

The w- and E-dependent responses of the pinned mode
are strongly related. By taking K =m*a)§,, the relation
between E; and the characteristic pinning frequency o,
is

* 2
Am*wyp

Ej=——" | .

T %0 (4.4)
and the dielectric constant is related to E; through the
relation

Ere(w—0)=4men, , 4.5)

where n, is the number of chains per unit area. At
T =0, ncpw=2n,/A. These arguments completely
neglect the role played by the internal modes of the con-
densate in the dynamics. It is assumed that after the
long-wavelength deformations around the pinning poten-
tials are established, the response to external dc and ac
driving forces is accounted for by considering the time
dependence of the average phase. The internal deforma-
tions, however, remain unchanged when going from the



1148 G. Gruner: The dynamics of charge-density waves

pinned to the current-carrying state.

Since the restoring force drops out in Egs. (4.4) and
(4.5), they are expected to be appropriate for any pinning
mechanism. Impurities, grain boundaries, lattice defects,
and even the boundaries of the specimens may contribute
to the overall restoring force. Because of early experi-
mental evidences suggesting that impurities play an im-
portant role in pinning the collective mode, only impuri-
ty pinning has been considered in detail. Recently it has
become increasingly more evident, however, that pinning
by macroscopic defects and surfaces may also be impor-
tant under certain circumstances.

A. Impurify pinning

The interaction between impurities and the CDW has
fundamental consequences on both the static and dynam-
ic properties. As first argued by Sham and Patton (1976),
Imry and Ma (1975), and Efetov and Larkin (1977),
long-range order is destroyed by randomly positioned im-
purities, and, in less than four dimensions, the phase-
phase correlation function has the form

; — o0 —r/Lg,
ez[q:(r) @( )]ze ,

(4.6)
where the characteristic length scale L depends on the
strength of the impurity potential and on the elastic
properties of the condensate. L, can be evaluated using
scaling arguments (Fukuyama and Lee, 1978). For a ran-
dom impurity distribution, with impurity potentials
V(r)=V,b(r), Eq. (4.1) reads :
n v

H=5 [ (Voldra Vap, 3 cosl2kpor +(r)]

4.7)

with i referring to random impurity sites. In Eq. (4.7) it
is assumed that spatial fluctuations of the phase ¢(r)
occur for wavelengths large compared to the amplitude
coherence length £, =hvg/kT,, on the order of 100 A
for typical materials. Also, amplitude fluctuations of the
collective mode, together with quantum and finite-
temperature effects, are neglected. The first term favors a
spatially homogeneous phase, while the second term
favors local distortions of the condensate where the
phase is fully adjusted at every impurity site to obtain a
maximum decrease of the potential energy. The ratio

LV
 mhug

(4.8)

tells whether the potential energy on elastic distortions is
more important; € > 1 is called strong impurity pinning
and €' <1 is called weak impurity pinning. For &' >>1,
where the elastic energy can be totally neglected, the pin-
ning energy is simply due to total energy gain due to the
electrostatic interaction with the impurities in e= Vyp;n;
and, consequently, the pinning energy (Fukuyama and
Lee, 1978; Lee and Rice, 1979) /
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)
8pin= VOPI”I’? 4.9)

and the restoring force constant K = Vypn;. All the ar-
guments advanced earlier apply, and Eq. (4.3) with Eq.
(4.9) leads to a threshold field proportional to the impuri-
ty concentration. The phase-phase correlation length is
expected to be of the order of the distance between im-
purities, as each impurity completely breaks the phase of
the condensate.

The case of € << 1 (weak impurity pinning) is more in-
teresting, and scaling arguments can be used to evaluate
the phase-phase correlation length. In d dimensions one
can define a volume (L) over which the phase is con-
stant but is adjusted to impurity fluctuations to have a
maximum decrease of the potential energy. This argu-
ment (Fukuyama, 1978; Fukuyama and Lee, 1978) leads
to the potential-energy density

172
n; 4

4.10
Ld ( )

Epot="—Vop1

The elastic energy of the domain, using Egs. (4.7) and
(3.8), is given by
2

T \a, 4.11)

nlthLd T
L,

Eelastic = 4 0

where n, is the number of chains per unit area. Minimiz-
ing the total energy density of the domain with respect to
L leads to a finite phase-phase correlation length for any
dimension d < 4. In three dimensions

Vo
Lil=|—— 4.1
0 ﬂhvp ( 2)
and the pinning energy
(Vopy)*
Epin=— 1€ Lo (4.13)

in=— "7 n; .
pin 4 (WhUFnl)S i

An anisotropic band structure also leads to an aniso-
tropic phase-phase correlation length. As L, is propor-
tional to v, see Eq. (4.12), the correlation length in the
various directions scales with the anisotropy of v,. With
typical band anisotropies of the order of 10, L is expect-
ed to be approximately 10 times larger along the chain
direction than it is perpendicular to the chains. The an-
isotropy of L can be included in equations of ¢, and E
by appropriate scaling. Such a procedure leads to addi-
tional numerical factors of the order of (v,v, / v2), where
x refers to the chain direction. The concentration depen-
dence of the parameter remains, howevér, unchanged.
Arguments similar to those used before lead to w, to €
(w—0), and to E with the following results:
172

veLg ',

Wo=2T " (4.14)

m

nt#Htmnvincpwe?

elw—0)=1+ ) (4.15)

x4 4.2
m*Vopin;
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4

mhv .
——F nt. (4.16)

T™ ge

Vop1
Wthn 1

In contrast to the strong pinning case, E is proportional
to the square of the impurity concentration, while
ew—0)~n"2

For a typical impurity potential of Vy=10"2 eV, with
vp=3X%107 cm/sec, and a CDW amplitude p;=0.1, an
impurity concentration of 1000 ppm leads to €'’ ~2, sug-
gesting that for relatively pure specimens, strong impuri-
ty pinning is appropriate, while for alloys, with a sub-
stantial amount of impurities, the weak impurity pinning
limit occurs. From Eq. (4.12) the phase-phase correlation
length L, ~1 mm in three dimensions, comparable with
the length of the specimens investigated. With a typical
bandwidth anisotropy of approximately 10, the correla-
tion length perpendicular to the chain direction is of the
order of 0.1 mm, which is also comparable to the dimen-
sions of typical specimens in this direction. This suggests
that for pure specimens the phase is approximately con-
stant over the volume, and that pinning by sources other
than impurities (such as the surface or contacts) may also
contribute. The pinning energy, for strong impurity pin-
ning [see Eq. (4.14)], is on the order of 10~2 K with the
above parameters. This is the same.order of magnitude
as the energy #iw,, which corresponds to the peak in the
frequency-dependent conductivity in various pure ma-
terials, shown in Fig. 9.

The discussion above, and the notion of weak and
strong impurity pinning, is appropriate only for weak im-
purity potentials ¥, that do not perturb the amplitude of
the collective mode considerably. The Ginzburg-Landau
treatment, which leads, for example, to Egs. (4.12) and
(4.13), breaks down when V> A; in this case, bound
states develop for weak impurities in the gap region, and
for strong impurities outside the gap (Tiutto and
Zawadowski, 1985). These, in principle, could be detect-
ed by optical experiments; however, no attempt has been
made to search for the predicted features.

B. Experiments on alloys and irradiated specimens

The importance of impurity pinning is confirmed by a
broad range of studies where the electric field and
frequency-dependent response is investigated in alloys or
on specimens where impurities are created by irradiation.
Early experiments (Ong et al., 1979; Brill et al., 1981) on
NbSe; alloys suggested that E is proportional to n?, in
agreement with weak impurity pinning.

Experiments performed on alloys in a broad concentra-
tion range (Monceau, 1982; Underweiser et al., 1987),
however, indicate that the situation is more complicated
than that suggested by the scaling approach of Fukuya-
ma and Lee (1978). In Fig. 20, E; measured below the
second phase transition is displayed as a function of the
reciprocal residual resistivity ratio (RRR)™!. The latter
is proportional to the total strength of the impurity
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FIG. 20. Threshold electric field vs inverse residual resistivity
ratio in pure NbSe; and in alloys. The straight line represents
the linear and the quadratic concentration dependence of Er,

E;~n/" (Monceau, 1982; Underweiser, 1987).

scattering and can consequently be regarded as a scaled
impurity concentration n;. While E; strongly increases
with increasing n;, the functional dependence is some-
what stronger than linear, but weaker than niz. The be-
havior is not understood at present. It may be the conse-
quence of a crossover between strong impurity pinning
for small concentration, and weak impurity pinning for
large concentration of impurities. Alternatively, finite-
size effects may play an important role for small impurity
concentrations where the phase-phase correlation length
becomes comparable to the dimension of the specimens.
The large scatter of the data for relatively pure specimens
also indicates that pinning centers other than impurities
may become important. In contrast, in the upper CDW
state of NbSe;, E; was found to be a linear function of n;
suggesting that the strong impurity limit is appropriate
even for small impurity potentials such as those
represented by the Ta atoms. In materials where defects
are introduced by irradiation (NbSe;: Fuller et al., 1981;
TaS;: Mihaly, Mihdly, and Mutka, 1984; K,;MoOj:
Mutka et al., 1984), E is proportional to the defect con-
centration, suggesting strong impurity pinning. Such be-
havior, observed in electron-irradiated Rb,;Mo0O; and
Ko.3:MoO; (Mutka et al., 1984), is displayed in Fig. 21;
the solid line corresponding to Ey ~n;, E also increases
with alloying for TaS;, and this increase is proportional
to the square of AT,, the change of the Peierls transition
temperature with alloying (Hsieh ez al., 1983). As AT
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FIG. 21. Threshold electric field vs irradiation dose in

K ;Mo00O; and Rby ;M00; (from Mutka et al., 1984).

is proportional to n,»“ 2 (Mihaly, Mihaly, and Mutka,
1984), E; increases linearly with the impurity concentra-
tion. In Rby;Mo00O; doping increases E, roughly pro-
portional to the square of the dopant concentration, sug-
gesting that in this material doping the Rb chain may
lead to weak-impurity-pinning effects (Schneemeyer
et al., 1985). The strongly concentration-dependent
threshold field is accompanied by corresponding changes
in the frequency-dependent response. The pinning fre-
quency has been measured directly by investigating the
w-dependent response both in TaS; (Reagor and Griiner,
1986) and in (TaSe4),I (Kim et al., 1987), but in the ab-
sence of the precise impurity concentrations, the func-
tional dependence of w, on n; could not be evaluated.
The relation between €(w—0) and E, has, however, been

TOS3
T=150K

® pure ToS3
= 0.1%Nb 7
¢ 0.2%Nb 4
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FIG. 22. Inverse low-frequency dielectric constant £ (4 MHz)
vs threshold field E; in 0-TaS; alloys (Wu et al., 1985).

Rev. Mod. Phys., Vol. 60, No. 4, October 1988

investigated by measuring both parameters on the same
specimens of alloys Ta;_,Nb,S; (Wu, Mozurkewich,
Mihaly, and Griiner, 1984). The results are shown in
Fig. 22. The solid line gives

e(w—0)E;=0.75en, , (4.17)

which is within an order-of-magnitude agreement with
Eq. (4.5). Although the frequency-dependent response
has not been investigated in detail, the relation E; ~ w3
was also confirmed by frequency-dependent studies per-
formed at microwave frequencies in irradiated o-TaS,
(Mihaly, Hutiray, and Mihaly, 1983).

With the role of impurities clearly established by ex-
periments performed on alloys and on irradiated speci-
mens, it is expected that various correlation lengths
(determined by the strength of impurity potentials, con-
centration, etc.) play a fundamental role in the dynamics
of the collective mode.

The static phase-phase coherence length L, is related
to the overall pinning energy, and Eq. (4.2), which is ex-
pected to be model independent, relates L, to the pinning
frequency w, With the parameters used before,
m*/m~10° and vp=3X10" cm/sec, a characteristic
pinning frequency (derived from the frequency-dependent
response, see Fig. 9) of approximately 10'° sec~! leads to
L, on the order of 10 um. Equation (4.12) refers to the
correlation length along the chain direction L, ; because
of the anisotropic Fermi surface, the correlation lengths
in the perpendicular directions L, and L, are 1 to 2 or-
ders of magnitude less than the above estimate.

The finite static correlation length leads to a broaden-
ing of the superlattice reflections and thus could, in prin-
ciple, be determined by scattering experiments. Because
of the limited resolution, such studies give only a lower
bound on the range of phase correlations both parallel to
the chains and in the perpendicular directions. Both in
NbSe; and in K, 3M0O;, the diffraction peaks are resolu-
tion limited (Fleming et al., 1982, 1984). This sets a
lower bound of Lg, >0.4 ym in NbSe; and >0.7 in
K 3Mo00O;; the phase coherence perpendicular to the
chains extends over a distance of approximately 0.2 um.

While the pinning frequencies are not available in
different materials and for different impurity concentra-
tions, the measured low-frequency dielectric constants
can be used to estimate L in the chain direction. Equa-
tion (4.15) when combined with Eq. (4.14) leads to

27 2
4mn e“Lg,

Tmv}

elw—0)=1+

and £=4Xx10" (appropriate for 0-TaS;) together with
vp=3X10" cm/sec leads to Ly =50 pm. Similar
e(w—0) values are found in other pure materials, and
consequently L, is expected to be the same order of
magnitude. In alloys, the concentration-dependent
dielectric constants (such as those displayed in Fig. 22)
can be used to estimate the concentration dependence of
the correlation length.
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C. Finite-size effects: Pinning by surfaces
and by extended defects

For relatively pure specimens where the overall impur-
ity potential 3; V; is weak, other defects such as disloca-
tions and grain boundaries may also play an important
role; in small specimens, the surface of the specimens or
the contacts may act as pinning centers. The latter has
been investigated in several materials by measuring the
threshold field as the function of the dimension of the
specimens.

The total pinning energy in the case of boundary
effects may come from pinning centers in the bulk, from
the surface, and also from the pinning by the contacts
placed (ideally) at the end of the specimens. These have a
different dependence on the sample dimensions, and in

general, in terms of restoring forces which act on the col- -

lective mode, can be written as
K= Kbulk + Ksurface + Kcontact

=t AL +t,SL +t54 , (4.18)

where 4, L, and S refer to the cross section, length, and
surface (per unit length) of the specimen. The constants
ty, t,, and t; refer to the pinning strengths for unit di-
mensions. The threshold electric field is given in the
presence of the various contributions to pinning by

Ve A k
Ej=—=2 -
'™ L ~ 2e AL
A S I
=L |z 2 421, 4.19
20 MR @19

In the thermodynamic limit with boundary effects
neglected, E is independent of the dimensions of the
specimen. For surface pinning it increases with decreas-
ing cross section (for a square cross section E; ~ 4 ~1/2),
and for contact pinning it increases with decreasing
length, with E, given by Eq. (4.19). The relative impor-
tance of these effects is determined by the constants ¢,
t,, and t;.

Various experiments indicate that pinning by the con-
tacts is important for short specimens. The threshold
field E; has been investigated as the function of length L
of the specimens in NbSe; (Zettl and Griiner, 1984; Gill,
1985; Prester, 1985) and in TaS; (Mihaly, 1983). The re-
sults displayed in Fig. 23, can be described well by

(L +Lg)

3 , (4.20)

Er=Er
with L, a characteristic length also given in the figure.
While the experimental results can be accounted for by
assuming a restoring force due to the contacts placed at
the end of the specimens, or by assuming that a finite
correlation length L, is important, recent experiments
(Monceau et al., 1986) suggest that contact pinning is
important. Indeed, for L,~100u the number of sites
near or at the contacts is comparable to the number of
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FIG. 23. Length dependence of the threshold field E; in NbSe;
and in TaS;. The solid lines are fits to Eq. (4.19) with L, values
given on the figure.

impurity sites. Thus impurity and contact pinning is
comparable for comparable impurity and contact poten-
tials.

Careful experiments have been reported recently on
specimens with small cross section (Borodin et al., 1986;
Gill, 1986c; see also Fig. 24). In both 0-TaS; and in

- NbSe,, the threshold field scales with the cross section of

the specimens as E;~ A4 =172 a clear indication for the

importance of surface pinning in specimens where the
cross section is smaller than approximately 100u?. A
simple estimate suggests that the pinning potential due to
surface is approximately the same as an impurity poten-
tial. The above critical cross section is not unreasonable.
For a specimen of square cross section with 4 = 100u2,
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FIG. 24. Dependence of the threshold field E+ on the cross sec-
tion of the specimens in the upper CDW state of NbSe;.
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the ratio of the surface-to-bulk atomic sites is approxi-
mately 10%. If ¢, ~t,, then an impurity concentration of
1% leads to an equal contribution to the pinning for im-
purities and for the surface. Careful experiments on
specimens with different impurity concentrations are re-
quired to test the above experiments. It is clear, howev-
er, that for sample dimensions of A4~ IOO,u2 and
I ~ 100y, pinning by surfaces plays an important role.

V. MODELS: A SHORT OVERVIEW

A variety of models have been proposed to account for
the main characteristics of the frequency- and electric-
field-dependent conduction of the coherent current oscil-
lations and low-frequency relaxation phenomena. They
range from soliton models, which assume that commen-

surability effects are important (Horowitz and
Krumhans, 1984; Horowitz et al., 1986) through
Frenzel-Kontorova-type models (Bak, 1982b; Cop-

persmith, 1984) to models similar to those that describe
plastic deformations of crystals (Feinberg and Dumas,
1986). While they are interesting as examples of non-
linear dynamical systems, it appears that commensurabil-
ity effects—required to be essential in soliton or
Frenzel-Kontorova models—are not important, while
other models have not been developed to an extent where
a comparison with theory is appropriate.

Two rather different approaches have been advanced
to account for the variety of experimental findings. Both
assume that the dynamics of the phase of the order pa-
rameter is important, and pinning is provided by inho-
mogeneities that couple directly to the phase. In both
models, the frequency- and electric-field-dependent con-
duction is the consequence of the translational motion of
the CDW condensate, as originally envisioned by
Frohlich (1954). Both models neglect a host of factors
likely to be important, such as the dynamics of the ampli-
tude mode and finite-temperature effects, among others.
Consequently, the models are not expected to account for
all the observations in all of the materials that have been
investigated. Neglecting inertial effects, the equation of
motion for the time dependence of the phase ¢(r) is given
by

ldetr) _8H kpeE

5.1
T dt Sp m* 6D

treating the phase @(r) as a classical variable. For one
dominant pinning center, or for specimens with small di-
mensions, the phase may be regarded as uniform
throughout the specimen. The equation of motion then
is

+wgsing = ; (5.2)
m

the so-called ‘‘single-particle” model (Griiner, Zawa-
dowski, and Chaikin, 1981; Monceau et al., 1986). The
form of the potential has been chosen for its apparent
simplicity, but other potentials have also been considered
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(Gruner, Zawadowski, and Chaikin, 1981). They, too,
follow from an electronic circuit analog (Weger et al.,
1980, 1983), also proposed as a simple description of
CDW transport. Equation (5.2) is that of a classical par-
ticle moving in a sinusoidal washboard potential, as
shown in Fig. 25. The response to small amplitude ac
fields is the same as that of a harmonic oscillator. For
small applied dc fields, the particle is displaced from the
bottom of the potential well; for electric fields exceeding
a certain threshold field E;, the particle starts to roll
down in the washboard potential. This leads to a non-
linear time-average velocity (v (¢)) and also to a time-
dependent component with a frequency proportional to
(v(1)). v

The current-voltage characteristics depend on whether
the applied electric field E or the current is constant dur-
ing the experiment. For E=const, the solution of Eq.
(5.2) gives (Griiner, Zawadowski, and Chaikin, 1981)

2’7‘
(E*—E})'?, E>Eg,

(J(1))= 5.3)

where { ) refers to time average, and the threshold field
for the nonlinear conduction is given by

* 2
A m wy

™ o e

(5.4)
The current also has a time-dependent component in

the nonlinear conductivity region, with fundamental fre-
quency

dc conduction:

cow
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ENET
E>Eq

ac conduction:

\ /
\
\ //
\ /
/M\/\/\

FIG 25. Classical particle model of charge-density-wave trans-
port.
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2et

m*A
Combining Eqgs. (5.3) and (5.5), we see that the relation
between the time-average current and oscillation frequen-
cy is given by Eq. (3.33). With A=w/kp and n|=kg/m,
for one chain

fo= (E2—E%)'? . (5.5)

4e’r
m*A

(j(t))=2ef,= (E2—E})'? . (5.6)

When the applied current is constant, the equation of
motion [eliminating E from Egs. (5.2) and (5.3)]

l[1+(nci)we27'/m*)]ig—|—co(2,sin<p= ° J (5.7
T dt ‘ *o N

has the same structure as Eq. (5.2) but with renormalized
parameters and with a driving current replacing the ap-
plied electric field E. The measured electric field is time
dependent, and the time-average electric field

__1 |, _Tlcowede
(E(1))= o 2k, di (5.8)
is given by
j ( 2r/m*)E
(E(t)y=—L _ oW T/ 0T v g5 1] 2

ON O'N+nCDWeZT/m*

(5.9)

where J; is the threshold current corresponding to the
threshold field E;. The time-dependent component leads
also to a linear relation between j-pw and f as before.
The current-voltage characteristics that follow from the
two descriptions are fundamentally different. While both
predict sharp threshold fields for the onset of nonlinear
conduction and lead to the same high electric field limit
given by
ncepwe T

0(E——>°0)=T+UN . (5.10)

A constant electric field leads to zero differential resis-
tance, while for a constant current J an infinite negative
differential resistance is obtained at threshold.

While this approach may be appropriate for rather
small specimens, effects associated with the finite-phase
correlation length L, may be important when L, ap-
proaches the dimensions of the specimens. Such a model
was discussed by Klemm and Schrieffer (1983, 1984) and
subsequently by Klemm and Robbins (1986). The equa-
tion of motion for 8¢(r,t) is treated by perturbation in
terms of the impurity fluctuations. The solution gives a
large number of metastable states even within a single
domain of size LS. A finite threshold field, comparable to
that given by Eq. (5.4), is obtained, with current-voltage
characteristics different from those given by the classical
particle model. In particular, the differential conductivi-
ty increases with increasing electric field (except close to
threshold) in contrast to the equations that describe the
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dynamics of a singie degree of freedom. Current oscilla-
tions with features slightly different from those of the
classical particle model are also recovered for a single
domain. The model has also recently been extended to
include finite-frequency effects (Robbins and Klemm,
1986). These become important at low frequencies and at
fields close to the threshold field.

For sufficiently large specimens, close to the thermo-
dyndamic limit, a perturbation expansion in terms of im-
purity fluctuations breaks down, and Egs. (4.1) and (5.1)
represent a complicated nonlinear problem for which
analytical solutions are not available for the full range of
parameters. In the large velocity limit the effects of im-

‘purities can be treated perturbatively (Sneddon et al.,

1982) by a hydrodynamic approach. The average veloci-
ty is determined by dissipative processes associated with
the dynamics of the local deformations, and in contrast
to Eq. (5.3), the leading correction to the current is given
by

(J(t)),=0,E — AVE (5.11)

in the infinite velocity limit. The frequency-dependent
conductivity has a similar square-root behavior (Fisher,
1985; Robbins and Klemm, 1986), and in the high fre-
quency, o >> cu(z,r limit ‘
A4,
olw)=0,——=.

v (5.12)

Equations (5.11) and (5.12) imply a scaling between the
o- and E-dependent response in the high-velocity limit,
i.e., the functional dependence on the frequency and field
expected to be identical. Due to the local deformations
of the charge-density wave around impurities, the
velocity-velocity correlation function is finite and, conse-
quently, the currerit oscillations disappear in the thermo-
dynamic limit. The response to various joint ac and dc’
excitations has not been considered in detail in this limit.
The dielectric constant, however, goes to zero for large
velocities (Sneddon, 1984a, 1984b), and the amplitude of
the Shapiro steps is independent of the volume (Sneddon
et al., 1982).

The perturbation treatment of the local deformations
breaks down for small velocities, and a nonperturbative
treatment of the large number of nonlinearly interacting
degrees of freedom is required. Computer simulations
can be performed by going from the continuum equation
to a discrete lattice version (Weisz et al., 1979; Sokoloff,
1981; Sokoloff and Horovitz, 1983; Matsukawa and
Takayama, 1984) or by assuming that damping occurs
only at the (discrete) lattice sites (Teranishi and Kubo,
1979; Pietronero and Strassler, 1983). In both cases the
equilibrium configuration, and also the time-dependent

- phase at a particular site i, ¢(r;,?) is related to phases at

other sites through a set of different equations. Due to
the complexity of the problem, only one-dimensional
models have been considered.

A different approach has been taken to treat the essen-
tial features of the dynamics in the nonperturbative re-
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gime near threshold (Fisher, 1983, 1984, 1985). It is as-
sumed that the phase-phase correlation length L, is
much smaller than the dimensions of the specimens, and
a discrete version of the Fukuyama-Lee-Rice model is
proposed. The Hamiltonian on a discrete lattice is given
by

H=3k(t;—1;)@;—¢;*— 3 V;cos(g;, —B;) ,

ij ij
(5.13)
H,= Y eEgp, ,

where the first term represents the elastic energy of the
charge-density wave, with elastic constant «’, the second,
the interaction of the CDW with impurities at sites j,
with the phase B; a random variable between O and 7.
H, describes the coupling of the CDW to the applied
electric field. An essentially similar model has been pro-
posed by Tua and Zawadowski (1984), where the sub-
scripts i and j refer to macroscopic domains rather than
to impurity sites. The important features of the model
are the infinite number of internal degrees of freedom and
the randomness due to the preferred phases 3;. The de-
velopment of the current-carrying state is treated as a
dynamical critical phenomenon, with several critical ex-
ponents that characterize the dynamical properties of the
system. The behavior in the presence of applied fields is
described using relaxational dynamics, both in the mean-
field approximation (Fisher, 1983) and for short-range in-
teractions (Fisher, 1984, 1985). The model leads to vari-
ous critical exponents near Er, among them the behavior
of the average velocity. Above threshold is the most
relevant to various observations. It is given by
(v(t)) ~(E —Ep), £=3. (5.14)
The exponent is different from the one that follows from
the single-particle model that leads to £=1. Several fre-
quency scales are important both above and below E;
they determine the detailed frequency dependence in the
presence of a dc bias and the amplitude of the current os-

cillations close to threshold (Fisher, 1985).

A rather different situation may occur when a large
pinning center, such as a grain boundary, situated in the
bulk of the specimen is important. This can effectively
decouple the sample into two coherent domains, with
weak coupling between the domains. The dynamics of
the coupled phases at the two sides of the barriers may
display features different from that of a single degree of
freedom, or infinite degree of freedom of dynamics. In
particular, switching and hysteresis effects similar to
those that occur in-coupled Josephson junctions may fol-
low from such models (Mihaly, Chen, and Griiner, 1987).
Similar features are recovered from models that assume
that the amplitude mode goes to zero at the barriers (Inui
and Doniach, 1987).

While all of the above models treat the phase of the
condensate as a classical variable, a rather different ap-
proach has been taken by Bardeen (1979, 1980, 1984,
1986) by assuming that tunneling processes are responsi-
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ble for the advancement of the average phase (@) of the
condensate. Advancement of the CDW phase by tunnel-
ing in a single chain was first treated by Maki (1977,
1978). Bardeen’s model, which has been used extensively
to analyze experimental results, relies heavily on phase
coherence between the neighboring chains. The model,
which applies in the weak impurity pinning limit, has
evolved hand-in-hand with the experiments and at
present it is able to account for a broad variety of obser-
vations made in the presence of dc and ac electric fields
(see, for example, Thorne et al., 1987, and references cit-
ed therein). The model starts from the Fukuyama-Lee-
Rice theory (Fukuyama and Lee, 1977; Lee and Rice,
1979) and replaces the phase-phase correlation length L,
given by Eq. (4.12), with periodic pinning forces at dis-
tance L, apart. This leads to a position-dependent phase
as shown in Fig. 26. Two degenerate solutions are possi-
ble for this particular pinning, and these are given by

=T in X
ba=smp oo
(5.15)
= —7—Tgin X
(2 2L,

with both minimizing the pinning energy (Bardeen,
1986). The periodicity of the pinning fields to a pinning
gap at the Fermi level and this has to be overcome by the
dc field in order to induce nonlinear conduction. The
pinning potential has the form of

. T T
—cosf for —<O<—,
cosf for - <O< -

kd 3

0<—,
2 <77

Vo)~
cos@ for

which is distinctively different from the sinusoidal poten-
tial that appears in Eq. (5.2). The pinning gap is given by

o
T
2

X/'”'LQ

FIG 26. Phase variations that minimize the pinning energy in
the tunneling model. ¢ ,(x) gives a minimum pinning energy
when the average phase 0=0, while ¢B(x) gives minimum
when 6= — 7 (after Bardeen, 1986).
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m
m

(5.16)

2
E ==
where Q,=7C,/L,, with C, the phason velocity given
by Eq. (3.2b). The nonlinear conduction has the typical
tunneling form

(E I Eo (5.17
o(E)=0, |1— = exp | — E | .17)
with
22
m* 77'6017
= —_— 5.18
0 m VFe ( )

similar to the equation for single-particle (Zener) tunnel-
ing. The threshold field E; is the consequence of the
finite correlation length. The frequency-dependent con-
duction follows from Tucker’s photon-assisted tunneling
(PAT) theory (Tucker, 1979), giving (Bardeen, 1984,
1986) a scaling relation between the w- and E-dependent
response,

£
ET

@p

o . (5.19)

According to Eq. (5.19) the small amplitude ac conduc-
tivity as the function of frequency has the same function-
al form as the dc conductivity on the function of electric
field. Both saturate at the high-frequency and high-field
limit, and Eq. (5.19) also implies a sharp threshold fre-
quency @,.

A detailed discussion of the tunneling steps and of the
microscopic wave functions that characterize the pinned
and current-carrying state, as well as the possible effects
of disorder, can be summarized by Bardeen (1986, 1987)
in several reviews.

The model does not treat the low-frequency fluctua-
tions that are assumed to be decoupled for the tunneling
that occurs at high frequencies (Tucker, 1986), nor does
it treat the polarization effects that are important for pro-
cesses below threshold (Miller et al., 1985). Such pro-
cesses are responsible for the absence of threshold fre-
quency in contrast to Eq. (5.19).

VI. THE FREQUENCY- AND FIELD-DEPENDENT
RESPONSE

Based on the models discussed above, a variety of pre-
dictions have been made concerning the small amplitude
ac response o(w) and the nonlinear dc response o(E).
Detailed comparisons between theory and experiment are
also available. The models also describe various experi-
ments performed in the presence of both dc and ac ap-
plied excitations. The fact that many of the observations
can be observed for rather different approaches concern-
ing the dynamics of the collective mode is not too
surprising, as theories that are in agreement with the ex-
perimentally observed o(w) or o(E) are expected to ac-
count also for most of the observations on o(w,E).
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Many of the issues involved in analyzing the available ex-
perimental results are highly controversial at present;
this is due partly to the fact that the experiments can be
accounted for to a degree of accuracy using various start-
ing points about the underlying theory, but also because
the details of the nonlinear and frequency-dependent
response are determined by the details of the pinning it-
self, and are dependent also on factors like temperature,
size of the specimens, impurity concentration, etc.

A. Frequency-dependent response

The frequency-dependent response of pinned CDW
condensates has been explored in detail over an extreme-
ly broad spectral range, with experiments ranging from
audio to the millimeter wave frequencies. The main
features of the small amplitude response are displayed in
Fig. 9; such representation emphasizes the high-
frequency part of the response, with important features
observed in the radio-frequency spectral range and below
not visible in the figure.

The simplest approach to account for the frequency-
dependent conduction is to assume that the response is
that of a harmonic oscillator with the equation of motion

dx?  ldx 5 €E ix

ar T x4 TORE e (6.1)

where the pinning frequency w, has been discussed before
(see Sec. IV), the effective mass m * is given in mean-field
approximation by Eq. (3.4), and 7 is a phenomenological
damping constant. The real and imaginary part of the
conductivity is given by

ne’r »*/7*
Reo(w)= , (6.2)
eo(w) m* (R—w? ) +w?/r
2 (03— /T
Imo(w)= 24" ) (6.3)

m* (w(z)_w2)2+w2/7_2

Frequency-dependent-conductivity measurements have
been performed in all materials that show charge-
density-wave transport phenomena, and, in general, Eq.
(6.27) gives a good description of the experimental
findings. In Fig. 27, Reo(w) and Imo(w) are displayed
for TaS; with a solid line given by Eq. (5.2) with parame-
ters given in the figure (Sridhar et al., 1986). The dotted
line assumes a distribution of pinning frequencies, and
the significance of this will be discussed later. The
frequency-dependent response appears to be overdamped
in TaS;, and also in NbSe; (Reagor, Sridhar, and Griiner,
1986) in both CDW states, while in other materials a
weakly damped response is observed—with 7, however,
temperature and also impurity concentration dependent.
The conductivity measured in (TaSe,),I and two different
temperatures is shown in Fig. 28 (Kim et al., 1987).
While w, is slightly temperature dependent, the main
effect is the strongly increased damping of the higher
temperature. Similar behavior has been found in
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FIG. 27. Reo(w) and Imo(w) measured in nominally pure
TaS;. The solid line is a fit to a harmonic oscillator response,
Eq. (6.2), with parameters given in the figure.

(NbSe,),I (Phillip et al., 1987) and, although the data are
far less complete, also in K, ;MoO; (Ng et al., 1986).
Fits such as those displayed in Figs. 27 and 28 can be
used to evaluate the basic parameters—the pinning fre-
quency o, the effective mass m *, and the damping con-
stant 7—and these can be compared with theory.

w
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(TaSea)2 1 _ ' j T
. €
A @ T=200K |
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‘e = .
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T 3
o 3 s ]
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.
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frequency (GHz)

FIG. 28. Reo(w) and Imo(w) measured in nominally pure
(TaSe,),I at two different temperatures. The solid line is a fit to
a harmonic oscillator response, Eq. (6.2).
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The pinning frequency o, is in general of the order of
10" sec ! corresponding to a pinning energy #iw,~ 10~*
eV. It has also been shown, both in TaS; (Reagor and
Griiner, 1986) and in (TaSey),I (Kim er al., 1987), that
impurities increase w, dramatically, but, due to lack of
knowledge about the precise impurity concentrations, in
the alloys investigated the concentration dependence
could not be evaluated. In the strong pinning limit, the
restoring force is given by K = Vp,n; and, consequently,
the pinning frequency
172

, (6.4)

Vopin;

wo=Vk/m*= "

m

giving, with V;=10"2 eV, p;=0.1, m*=10’m, (the
free-electron mass), and n;=0.1%, a characteristic fre-
quency of 10! sec™!, in good agreement with the experi-
mental findings. It should be noted that w, is higher for
materials with high transition temperatures, and this is
related to the higher threshold fields observed in materi-
als with higher T, (see, for example, Fig. 15). The
significance of this is not clear, and the finding is surpris-
ing because w, is expected to be determined by the resid-
ual impurity concentration, which certainly varies from
material to material. Clearly detailed studies of w, as a
function of n; in various materials would be highly desir-
able. The pinning frequency is also only weakly tempera-
ture dependent in the materials studied so far, in contrast
to the strongly temperature-dependent threshold field E
and dielectric constant e(w—0). This suggests that both
E; and e(w <<wy) are determined by processes that are
not directly related to the harmonic oscillator response as
given by Eq. (6.2).

The effective mass is found to be temperature indepen-
dent (Reagor, Sridhar, and Griiner, 1986; Sridhar et al.,
1986), except close to T, where the ratio m*/m is (ap-
proximately) independent of temperature, in agreement
with theory (Lee and Rice, 1979). m™ varies from ma-
terial to material and strongly increases with increasing
transition temperatures. The mean-field theory predicts
that

m* 447

m Mg -

, (6.5)

where A, is the single-particle gap (not necessarily relat-
ed to the transition temperature T, due to the anisotrop-
ic nature of these materials). The phonon frequency and
the electron-phonon coupling constant are not expected
to vary significantly from material to material, and, con-
sequently, to a first approximation m * should be propor-
tional to A2. Such a plot is shown in Fig. 29, where the
single-particle gaps were evaluated from the optical data,

from the temperature dependence of the dc resistivity

below the transition, or from the analysis of the
temperature-dependent magnetic susceptibility (Johnston
et al.,, 1985), and from optical (Geserich et al., 1986;
Herr et al., 1986) and tunneling (Latyshev and Sav-
itskaya, 1986) studies. The error bars represent ambigui-
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FIG. 29. Effective mass m*/m, vs the mean-field single-
particle gap A for various compounds. The solid line represents
the relation m* /m, ~ A%

ties associated with such determination of A (Reagor,
1987). In NbSe;, it has been assumed that the BCS rela-
tion A=35ky T, is appropriate; this, however, appears to
be in disagreement with recent tunneling measurements
(Fournel, Sorbier, Konczykowski, and Monseau, 1986).
The solid line in Fig. 29 is Eq. (6.5) with A'=0.5 and
@y, =350 K, both reasonable values.

In all cases investigated so far, a Drude-type equation
with a single relaxation time describes well the
frequency-dependent response at frequencies w > @, and
the relaxation time 7 can be evaluated, both as the func-
tion of impurity concentration (where such studies are
available). In TaS; (Reagor and Griiner, 1986; Sridhar
et al., 1986), in (TaSe,),I (Reagor, Sridhar, and Griiner,
et al., 1986; Kim et al., 1987), and in (NbSe,),I (Phillip
et al., 1987), 1/7 decreases with decreasing temperature
and remains finite as T—0. Experimental results on two
(TaSe,),I specimens and on alloys of (Ta;_, Nb,Se,),I
with x =0.6% are displayed in Fig. 30. The data can be
well represented by the empirical equation

1

——=A4 +BT?,
27T

(6.6)

with A independent of the impurity concentration and B
increasing with increasing number of impurities. This is
in contrast to what is expected, as the temperature-
dependent part should be the result of phonons or uncon-
densed electrons with the residual damping as T—0 of
impurities. The observation is not explained at present.
The frequency-dependent response in the spectral
range o < @y cannot be accounted for by a single harmon-
ic oscillator response; the decrease of Reo(w) with de-
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FIG. 30. Inverse relaxation time vs 72 in two (TaSe,),I speci-

mens (A and B) and an alloy with 0.6% Nb. Samples 4 and B
have a pinning frequency of wy= 17 and 35 GHz, respectively.

creasing o is more gradual than what follows from Eq.
(6.2). The behavior can be explained by assuming wide
distribution pinning frequencies (Sridhar et al., 1986).
Such an assumption gives, for a particular distribution,
the dotted line of Fig. 31. While such an ad hoc assump-
tion accounts for the main qualitative features of both
Reo(w) and Imo(w), a different approach has been taken
to describe the w-dependent response in the radio fre-
quency spectral range. At low frequencies both Reo(w)
and Imo(w) can be described by a power-law frequency
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FIG. 31. Real and imaginary parts of the ac conductivity of
TaS; vs frequency (Wu et al., 1985).
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dependence (Wu, Mozurkewich, Mihaly, and Griner,
1986)

glw)=A4
(2]

. a
’—“’} with @=0.8 . (6.7)

Such behavior has been widely observed in  various
glasses and random systems (Ngai, 1979, 1980). The be-
havior also leads to a divergent dielectric constant
elw)=—4mImo(w)/w as w—0, and this is often referred
to as zero-field cusp (Fisher, 1985; Littlewood, 1986). At
low frequencies deviations from Eq: (6.7) are observed
(Cava, Fleming, Littlewood, Rietman, Schneemeyer, and
Dunn, 1984; Kalem et al., 1987), and the data are well
represented in terms of an equation,

1

—_—— 6.8
)[1+(ian'0)1““]f" 68

e(w)=eyr+(eg—Eyp

where €, and ey are the zero- and high-frequency dielec-
tric constants, 7, is an average relaxation time, and «,f3
(both less than one) are phenomenological parameters.
Similarly to Eq. (6.7), Eq. (6.8) is also extensively used to
describe the complex dielectric constant of various ran-
dom and amorphous solids, and it has been found to ac-
count well for e(w) over a broad frequency range in pure
(Cava, Fleming, Dunn, Rietman, and Schneemeyer, 1984)
and in doped (Cava et al., 1985) K,3;M00;, in TaS;
(Cava et al., 1985; Kalem et al., 1987), in NbSe; (Cava,
Fleming, Littlewood, Rietman, Schneemeyer, and Dunn,
1984), and in (TaSe,),I (Cava et al., 1986). A fit to data
taken on (TaSe,),I is displayed in Fig. 32. The average
relaxation time increases with decreasing temperature,
and in all materials with a semiconducting CDW ground
state the temperature dependence
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FIG. 32. Frequency dependence of the real (solid symbols) and
imaginary (open symbols) parts of the dielectric constant for
(TaSe,),1 at three representative temperatures. Solid lines are
from fits of Eq. (6.8) (from Cava et al., 1986).
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with Ay close to the single-particle gap, suggesting a
close relation between the low-frequency CDW relaxa-
tion and the resistivity due to uncondensed electrons.
The rather different behavior of the relaxation times eval-
uated from the high- and low-frequency transport data
most probably reflects the different role of screening in
different spectral regions. At high frequencies the small
amplitude response is dominated by the oscillatory no-
tion of the spatially averaged phase with the dynamics of
local deformations not playing a significant role. Conse-

" quently, screening effects due to the normal electrons are

not important. In contrast, at low frequencies Egs. (6.7)
and (6.8) suggest that the dynamics of local deformations
are important. These involve the buildup of electric di-
poles that have to be screened by the normal electrons.
This screening time is often the order of the dc conduc-
tivity that rises exponentially with temperature, thus
leading to Eq. (6.9) (Sneddon, 1984a, 1984b; Tucker
et al., 1986; Littlewood, 1987).

Considerable effort has been made to account for the
frequency-dependent response in terms of the tunneling
model. The model predicts a scaling relation, given by
Eq. (5.19), between o(E) and o(w). Early experimental
results on NbSe, (Griner, Clark, and Portis, 1981) and
TaS; (Zettl and Griiner, 1982) could indeed be well
represented by a scaling relation. No threshold frequen-
cy was, however, observed. Subsequently, it was suggest-
ed (Miller et al., 1985) that due to polarization effects, no
threshold frequency occurs, and a revised scaling be-
tween w and E —E; was postulated. This leads to an w-
dependent conductivity having the form :

o(w)~exp
1)
' P

Experiments that support this scaling theory have been
summarized by Tucker (1986) and by Bardeen (1985a,
1985b). A behavior that can be represented as well as
scaling has, however, been derived by Sneddon (1984a,
1984b, 1984c) and has also been shown to hold in the
high-field and high-frequency limit (Robbins and Klemm,
1986), both of these on the basis of a classical description
of the CDW dynamics.

B. Nonlinear conductivity

Nonlinear conduction has been studied in more detail
than the frequency-dependent response, and a variety of
nonlinear phenomena have been observed, depending,
even for the same material, on the temperature, impurity
concentration, crystal perfection, and sample dimensions.
In the majority of cases, the onset of nonlinear conduc-
tion at E is smooth, with a qualitative behavior similar
to those displayed in Figs. 10 and 11. The phenomeno-
logical equation (5.17), first suggested by Fleming and
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Grimes (1979) on the basis of experimental data
displayed in Fig. 11, has subsequently been found to ac-
count for o(E) in other materials in a semiquantitative
way over a broad range of electric fields. The behavior is
in clear contrast to the prediction of the single-particle
model, Eq. (5.6), which leads to a sharp rise of o(E) at
fields close to E;. The two functional dependences of o
and E are displayed in Fig. 33, together with numerical
simulations by Tua and Zawadowski (1984) and by
Matsukawa and Takayama (1986), both taking the dy-
namics of internal deformations into account. Both
simulations depend on the parameters, such as the ratio
between the elastic energy of the CDW and the interac-
tion energy between the CDW and impurities. The ma-
jority of the experimental results reported to date on
NbSe; follow the solid line closely, and this also is ap-
propriate for TaS; (Zettl, Griiner, and Thompson, 1982).
Due to heating effects, experiments have not been per-
formed in (TaSe,),I in in K, 3;M00;, which would have
allowed a close comparison between theory and experi-
ment. Based on Fig. 33, it is clear, however, that both a
classical description of the CDW dynamics, with internal
degrees of freedom included, and the tunneling model
can describe the main features of the nonlinear conduc-
tion in various materials over a broad range of electric
fields.

Several groups have measured the details of nonlinear
conduction, both in the high electric field (or in the high
CDW velocity) limit, and at electric fields close to E;.
The perturbation equation of the deformable continuum
model leads to a square-root field dependence of the
current {j(¢)) [see Eq. (5.6)], while in the high-velocity
limit Eq. (5.17) leads to (j(¢))=0,E — AV'E. The ex-
perimental situation is highly controversial at present.
While a V'E behavior was found in NbSe; by Maeda,
Naito, and Tanaka (1985), a linear decrease of j with de-
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1.0F ——_—_—— e — e T
- - --— -
/ —
/
—_ Lo/
8 /
? . .
= - ———— Classical Particle 4
bé ~~~~~ Tua and Zawadowski (1984)
= Matsukawa and
Wl -
"’g Takayama (1986)
s Tunneling Model
O 1 1 1
0 10 20
F/Fs
FIG. 33. Electric-field-dependent conductivity that follows

from the classical particle model [Eq. (5.6)], from the tunneling
model [Eq. (5.17)], and from calculations that take the dynamics
of internal degrees of freedom into account. The experimental
results follow the solid line closely.
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creasing E was found by Zhang and Ong (1985), Oda and
Ido (1982), and Tucker et al., (1981). In contrast, a
stronger dependence, which could be described with an
exponent of n :%, was found by Gill (1986¢). The reason
for these differences is not clear. Furthermore, crystal
perfection, temperature, and other factors may also
influence the experimental observations, and Joule heat-
ing may be difficult to avoid even by applying short elec-
tric field pulses.

Equally controversial is the experimental state of
affairs near threshold, where the mean-field treatment of
the dynamics of the many-degrees-of-freedom system
leads to a power-law behavior, given by Eq. (5.14). Both
the time-average current {j(¢)) and the oscillation fre-
quency f, were studied in various compounds; under
ideal circumstances where the current density is uniform,
(j(2)) is proportional to f,, the ratio being independent
of the applied field. While various groups have found
that a power-law dependence can describe the experimen-
tal results well, in NbSe; the exponent is strongly temper-
ature dependent, varying between 1.5 and 2.5 (Monceau
et al., 1985). In TaS,;, £=1.5 (Gill, 1985), and in
K,.3;M00O;, the current is a linear function of the applied
field (Janossy et al., 1987). No attempt has been made to
see whether these differences are due to different sample
dimensions and/or whether the exponent varies from
specimen to specimen.

In small samples the onset of nonlinear conduction
tends to be sharp, and this often leads to well-defined
peaks in the differential resistance dV /dI (Monceau
et al., 1982; Borodin et al., 1986). An example of this
behavior is displayed in Fig. 34, which also demonstrates
the different behaviors that can be obtained depending on
the temperature. The most likely explanation for the
peaks in dV /dI is that they are a finite-size effect due to
the phase-phase correlation length becoming comparable
to the sample dimensions. This has been investigated in
detail by Robbins and Klemm (1986) by using the model
proposed originally by Klemm and Schrieffer (1983).
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FIG. 34. Differential resistance dV /dI at various temperatures
measured in NbS;. The sudden onset of nonlinear conduction
leads to a peak in the derivative (after Monceau et al., 1982a).
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Finite-size effects play a particularly important role at
low CDW velocities and at low frequencies, due to the
divergence of the dynamical phase-phase coherence
length in those limits. At high velocities and high fre-
quencies, the dynamics of the internal modes become
progressively more important. The effect leads to single-
particle-like behavior near threshold, with a peak in
dV /dI, with o(E) closely resembling the behavior ob-
tained by Tua and Zawadowski (1984) and by Matsukawa
and Takayama (1986). The resulting differential resis-
tance curves, with different ratios @ =1/L of the sample
length / to the phase-phase correlation length L, are
shown in Fig. 35. The curve labeled by 0.0 corresponds
to the classical particie model, and the crosses represent
unpublished experimental results obtained on a sample of
pure NbSe;, with / ~1 mm. As discussed in Sec. V, the
behavior near threshold may depend on the experimental
conductions: a constant electric-field drive leading to a
positive differential resistance (DR) and E;,, with an
infinite negative DR for constant applied current. The
latter was investigated in detail (Hall et al., 1984b) in
NbSe;, and the relation to various dynamical instabilities
such as 1/f noise and intermittent oscillations between
various states has also been established.

Switching and hysteresis effects associated with the on-
set of nonlinear conduction were observed first in NbSe,
(Zettl and Griiner, 1982b) and have also been found in
TaS; (Mihaly and Griiner, 1984; Kriza et al., 1985), in
(NbSe,); 331 (Wang, Saint-Lager, Monceau, Renaud,
Gressier, Meerschaut, Guemas, and Rouxel, 1983) and in
K 3;MoO; (Dumas et al., 1983). The effect is related to
extended pinning centers in the bulk of the specimens;
this has been established by experiments where nonper-
turbative contacts were moved along the chain direction,
and the current-voltage characteristics were investigated
(Brown and Mihaly, 1985; Hall et al., 1986). Models
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FIG. 35. Differential resistance calculated for finite sample
sizes. The parameters shown in the figure are a =1/L, with [
the length of the specimen and L, the phase-phase correlation
length. Crosses represent experimental results on pure NbSe;,
of length / ~1 mm.
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that attempt to account for switching assume that a large
pinning center divides the specimen into two coherent re-
gions each characterized by an average phase ¢; and gy,
on the left- and right-hand side of the barrier. The cou-
pling of the phases through the barrier may occur
without the destruction of the CDW order parameter
(Mihaly, Chen, and Griiner, 1987) or through the devel-
opment of an amplitude collapse of the pinning site (Hall
et al., 1986). The coupled equations of motion, similar in
structure to the equations of motion that were proposed
to describe coupled Josephson junctions, lead, in certain
parameter ranges, to switching and to time delay effects
that are associated with the switching (Zettl and Griiner,
1982b; Janossy et al., 1985). The models, however, do
not take into account the internal degrees of freedom in
the two sides of the barrier; this may be important, in
particular, to materials like TaS; where the phase coher-
ence is less well established than in NbSes,.

When switching occurs, intermittent chaotic behavior
associated with the onset of the current-carrying state is
also observed, although the phenomenon has not been in-
vestigated in detail. When the onset of the current-
carrying state is associated with switching and hysteresis
phenomena, apparently random transitions between the
two states are also detected (Griiner and Zettl, 1983;
Mihaly and Griiner, 1984). In this region a dramatic in-
crease of the low-frequency noise is also observed (Hall
et al., 1984a, 1984b). Although the random behavior
may be due to temperature fluctuations, a more likely ex-
planation is in terms of bistable states (Ben-Jacob et al.,
1981). Such bistable configuration follows from the hys-
teretic nature of the transition, and any effect that leads
to hysteretic behavior would also lead to the intermittent
route to chaos.

The temperature dependence of the nonlinear conduc-
tion has been investigated recently in detail (Zhang and
Ong, 1985; Fleming et al., 1986). The temperature
dependence of the threshold field was discussed earlier.
Close to the transition temperature, the magnitude of the
nonlinear response in the large velocity limit was found
to be close to the value that would be recovered in the ab-
sence of the Peierls transition (Monceau et al., 1976; Ong
and Monceau, 1977; Zettl, Jackson, and Griliner, 1982);
this has been discussed by Gorkov and Dolgov (1979) in
terms of a two-fluid model. With decreasing tempera-
ture, the nonlinear current decreases and ocpw freezes
out with a temperature dependence closely following the
linear (Ohmic) current due to the electrons excited across
the single-particle gap (Fleming et al., 1986). The behav-
ior found for (TaSe,),I is displayed in Fig. 36. Writing
the nonlinear current in terms of an electric-field-
dependent damping,

ne’r(E)
* b

suggests that (with n/m* independent of the tempera-
ture) the CDW damping 7~ (E) observed in moderate
electric field diverges as the temperature is decreased.
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FIG. 36. Temperature dependence of linear and the nonlinear
portion of the current in (TaSe,),I (Fleming et al., 1986).

This divergence is closely related to the divergent damp-
ing observed in the low-frequency dielectric relaxation.
In both effects screening of the internal deformations by
the normal electrons appears to be the rate limiting pro-
cess in the field- and frequency-dependent response
(Sneddon, 1984b; Littlewood, 1987).

C. Experiments in the presence of joint dc and ac
electric fields

With the conductivity both strongly nonlinear and fre-
quency dependent, a broad variety of experiments can be
performed in the presence of both dc and ac applied
fields,

E =E  +E, coswgt , (6.11)

with either the dc or the ac response detected. The ex-
periments lead to additional information on the response
of the driven collective mode and, in principle, could also
be used to distinguish between the various models pro-
posed. Broadly speaking, the measurements can be di-
vided in two groups: (1) those that test the overall non-
linear response o(E,w), and (2) those that focus on in-
terference effects arising as a consequence of mode lock-
ing between the intrinsic current oscillation and the ap-
plied ac field. These will be discussed in depth in Sec.
VII. Here only the nonlinear ac response will be summa-
rized.

Both the ac and dc response have been studied in vari-
ous materials in the presence of combined electric fields,
and both classical approaches and the tunneling model
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have been extensively used to account for the experi-
ments.

Many of the phenomena that occur in the presence of
ac and dc electric fields have been calculated on the basis
of the single degree of freedom, the so-called “classical
particle,” model (Wonneberger, 1979, 1983a, 1983b);
Wonneberger and Breymayer, 1981; Breymayer er al.,
1982). The model leads to qualitative disagreemerit with
experiments, in particular, near threshold. The reason
for this is clear because the model also leads to divergent
differential conductivity at E, also not observed. Mod-
els, which lead to w- and E-dependent conduction in
broad agreement with experiments, are in general also
able to describe a variety of observations made in the
presence of joint dc and ac fields. This most probably fol-
lows from nonlinear circuit theory and suggests that
many of these experiments cannot be used to distinguish
between the classical and quantum description of CDW
dynamics. For other experiments, such as photon-
assisted tunneling, the predictions of the models are
drastically different. However, other complications often
make a direct comparison with the relevant theories
difficult, if not impossible.

Experiments involving small applied ac electric fields
are in general more straightforward to account for, since
in this limit a perturbative treatment of the nonlinear dy-
namics in terms of the ac drive is appropriate. The first
experiments of joint dc and ac fields, however, have been
made in the large ac signal limit, where the ac-field-
induced dc conduction was detected (Griiner, Zettl,
Clark, and Bardeen, 1981). For a purely classical
response, the dc conductivity is not modified by an ap-
plied ac signal for electric-field strengths E4, +E,. <E7.
However, a nonlinear dc response can be induced when
E,.+E, exceeds the dc threshold electric field. The dc
current I, detected for dc fields less than threshold E; is
a strong function of both E,. and o, in NbSe; (Griiner,
Clark, and Portis, 1981) and in 0-TaS; (Zettl and Grliner,
1982b).

While detailed calculations on ac-field-induced ac con-
duction that are based on the classical particle model
have not been performed to date, qualitative arguments
can be advanced (Griner et al., 1980; Griiner, Zettl,
Clark, and Thompson, 1981) to account for the observa-
tions. For a pinned and strongly damped collective
mode, the maximum displacement from the equilibrium
position is given—for a parabolic potential —by

(eE,./m*)w}

- [14+(w/0dr)*]?

X0 (6.12)

If there is a critical displacement x_,;, that leads to non-
linear dc conduction, then a critical ac field amplitude
corresponding to the critical displacement is given by

l;crit(w):E‘crit(w:o)[1_|_(C‘)/w(2)7-)2]l/2 ’ (6.13)

where Ey +E ;(0=0)=E;. The above equation de-
scribes well the nonlinear ac behavior of the system as
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the function of applied field and of applied frequency,
with parameters like E; and o3 obtained from the mea-
sured dc nonlinear and small amplitudes ac response.
The effect can also be described adequately in the frame-
work of the tunneling model. The dc current density in
the presence of an ac field is given by (Tucker, 1979;
Tucker et al., 1981; Miller et al., 1983)

o

3 7

n=-—oo

eV

fiw

nfio
Idc( Vdc’ Vac)=

Idc Vdc +

b

(6.14)

where J, is the Bessel function of order n. With I4(V.)
and o(w) as input parameters, the I,.(Vy.,V,.) curves
generated compare favorably with experiments both in
NbSe; and in TaS;. Various experiments have also been
performed in the small ac signal limit, but in the non-
linear dc conductivity region. Both the ac and dc
response can be detected in the presence of joint ac and
dc excitation. Moreover, phenomena that arise in the
presence of two applied ac fields can also be studied. The
applied fields

E =E,; +E,, coslowt +¢)+E,, cosw,t (6.15)

and the parameters that are measured are classified as
follows.

(a) ac response: differential conductivity. Here I, is
detected for E,,. =0 with E,. and w, varied. In the low
frequency, w—0 limit, the classical equation

I E (6.16)

ac= d‘Edc\
leads to the differential conductivity; o,  gives directly
the first derivative of the dc I-V characteristics.

(b) Rectification. The dc response AI, is detected,
again with E,, . =0. In the o0 limit

d*
2 de
AL =1E% > (6.17)

and at low frequencies the rectified current is proportion-
al to the second derivative of the I-V curve.

(c) Harmonic mixing. The signal is detected at fre-
quencies w; —2w,, and this, for w,=2w,, corresponds to a
dc harmonic mixing current. In the low-frequency limit

3

Al =g g, e
nm—TElac 2ac dE?jc COSZ(p,

(6.18)
i.e., the harmonic mixing signal is proportional to the
third derivative of the current-voltage characteristics.
The ac conductivity in the presence of a dc field has
been studied both in NbSe; (Longcor, 1981) and in TaS,
(Miller et al., 1983, 1984; Zettl and Griner, 1984). In
Fig. 37, both the real and imaginary part of the ac con-
ductivity for o0-TaS; in a broad parameter range is
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FIG. 37. Real and imaginary parts of the ac conductivity of or-
thorhombic TaS; vs applied dc bias voltage V.. The threshold
field for the onset of nonlinear dc conduction is indicated by an
arrow (Zettl and Griiner, 1984).

displayed. The ac response is not affected by dc fields
E4 <Er, but both the in-phase and the out-of-phase
components are enhanced with increasing dc bias in the
nonlinear conductivity region. These experimental
findings have not been accounted for in terms of the clas-
sical particle model, but an extension of the classical dy-
namics to a model for which coupled particles are con-
sidered accounts for the experiments in detail (Sneddon,
1984b, 1984c). In Fig. 38 the results of these calculations
are displayed. Here o’ and o'’ refer to the in-phase and
out-of-phase components of the ac conductivity; P and
HP are parameters, which are related to the threshold
field E; and to a characteristic frequency determining
the w-dependent response in the absence of dc bias.
Comparing this figure with Fig. 37, it is clear that all the
important features of the experiments are recovered by
calculations based on purely classical dynamics. In terms
of photon-assisted tunneling theory, the ac current (Mill-
er et al., 1983; Thorne et al., 1984) is

1
ReI(a))=Ea—a—)-[ldc(Edc—i—aw)—IdC(Edc—aa)] ,
1 (6.19)
ImI(w)=E[Ikk(Edcﬂ—aw)—Hkk(Edc)

+Ikk(Edc—aa))] »

where the imaginary part is written in terms of the
Kramers-Kronig transform
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tivity (after Sneddon, 1984c).

Iiw(Eg) I4(Eg), (6.20)

=7 f_wEdc_Edc

and «a is the voltage-frequency scaling parameter a=h /e,
as given by Eq. (5.44). With a evaluated from the mea-
sured o(w) and o(E), Egs. (6.19) and (6.20) can be used
to generate ac conductivity curves in the presence of a dc
bias. These are shown in Fig. 39, together with experi-
mental results on 0-TaS; (Thorne et al., 1984).

The most straightforward experiment on rectification
is photon-assisted tunneling (PAT). Here the classical
and quantum theories lead to fundamentally different
predictions. The name PAT refers to an experiment
where the specimen is biased below threshold, and a
small amplitude ac excitation is used to induce nonlinear
- conduction. For a purely classical system, no rectified
current is obtained for combined dc and ac fields
Ey+E, <Er. In the quantum limit, Tucker’s theory
(1979) leads to a rectified current

2
[Idc Edc +aw)

e*E,.

2%

2 o (Eqg,)

Al =

I (Ey—aw)], (6.21)

which for V. <V (and for V4, —aw., < V) reduces to

*

2%

Al =

r

(6.22)

]Idc(Edc—sz)

Thus the energy quantum aw can span the difference be-
tween V. and Vr even though a classical field amplitude
Vac is too small to do so. Early experiments on NbSe,
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curves, using the tunneling model prediction Eq. (6.19) with pa-
rameters given in the text (Miller et al., 1985).

(Griiner, Zettl, Clark, and Bardeen, 1981) and on o-TaS;
(Zettl and Griiner, 1982a, 1982b) failed to detect photon-
assisted tunneling for specimens biased below E and at
frequencies where [on the basis of scaling relation be-
tween o(w) and o(E) the tunneling theory suggests
significant AI,. The reason for this is not entirely clear at
present; if the tunneling model is appropriate, then a like-
ly explanation lies in complicated low-frequency and
long-time phenomena, which are associated with the de-
velopment of the current-carrying CDW state (Lyons
et al., 1985).

Detailed rectification experiments in the dc nonlinear
conductivity region have been performed both in NbSe,
(Richard et al., 1984) and in o-TaS; (Miller et al., 1983;
Thorne, 1984; Miller et al., 1985). Harmonic mixing has
also been investigated in detail both in the radio frequen-
cy spectral region (Miller et al., 1983) and at microwave
frequencies (Seeger et al., 1982, 1984a, 1985), and has
been accounted for within the framework of the tunnel-
ing model. In particular, the experimental result that
was observed is principal evidence for tunneling in the
absence of phase shift in the small difference-frequency
harmonic response (Miller et al., 1983, 1985; Thorne
et al., 1986). Similar, small phase shifts were, however,
obtained on the basis of the classical particle model by
Wonneberger (1983a, 1983b), and detailed calculations by
Liu and Sneddon (1987) on the basis of the Fukuyama-
Lee-Rice model lead to a rather good agreement with all
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of the essential features of the experiment conducted in a
broad range of frequencies and electric field.

It appears therefore that both a classical description
and the tunneling model can account for all the essential
findings concerning the small amplitude ac response, the
nonlinear dc response, and a wide class of experiments
performed in the presence of the ac and dc fields. De-
tailed comparison between theory and experiments that
often are claimed as clear evidence for one or another
model are often not reproduced in other laboratories;
consequently, the matter whether classical or quantum
models are required to describe the dynamics of the col-
lective mode remains controversial.

VIl. CURRENT OSCILLATIONS
AND INTERFERENCE EFFECTS

Since the discovery of Fleming and Grimes (1979) of
the current oscillations in the nonlinear conductivity re-
gion a variety of experiments have been performed where
interference effects between this intrinsic oscillation and
the externally applied ac field have been studied. The ex-
periments, similar in many respects to those performed in
Josephson junctions, display a variety of phenomena that
are of general interest (such as the possibility of various
routes to chaos; see, for example, Zettl and Griiner,
1986). They also have been used to distinguish between
the various models of charge-density-wave transport.

A. Current oscillations

Questions as to whether the current oscillations are a
bulk effect and whether they are generated at the con-
tacts or also at other pinning centers have been addressed
in Sec. III. While the question is not fully resolved, the
existence of these oscillations, indicating a high degree of
coherence, particularly in NbSe;, is well established. In
carefully prepared specimens the quality factor of the os-
cillations is high, and a fundamental with several har-
monics with decreasing intensity is observed. An exam-
ple is shown in Fig. 40 (Mozurkewich and Griiner,
1983b).

In recent experiments in NbSe; (Thorne et al., 1987)
extremely coherent current oscillations were detected. In
certain cases Q ~ 30000 was observed in the upper CDW
state. The measured spectral width is a sensitive function
of crystal perfection, and in samples of average quality
the spectral width is significantly larger. The quality fac-
tors also depends strongly on temperature, and as a rule
it decreases with decreasing 7. In other materials, Q is
significantly smaller; in good quality TaS; specimens
Q ~ 10, while in (TaSe,),I the value is of the order of 1
(Mozurkewich et al., 1983).

It also tends to be smaller in specimens with larger
cross sections (Mozurkewich et al., 1983), as expected for
loss of perpendicular dynamical coherence with an in-
creased cross-sectional area. The above observations
clearly establish the intimate relation between the quality
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FIG. 40. Amplitude of the fundamental oscillation in NbSe; at
42.5 K vs oscillation frequency. The amplitude is plotted both
as a voltage AV, (solid symbols, left-hand scale) and as an
equivalent current density Aj, (open symbols, right-hand scale).
The inset shows a typical spectrum. The dotted line is Eq.
(6.25). From Mozurkewich and Griiner (1983).

factor of current oscillations and dynamical coherence
throughout the specimens. Whether normal electron
screening is important in establishing such coherence in
NbSe;, and also in other materials near to T, remains to
be seen.

Another fact that plays an important role in the gen-
eration of oscillating current is the existence of macro-
scopic defects. These have been studied by employing
nonperturbative contacts (Brown and Mihaly, 1985). For
large extended defects, the amplitude fluctuations of the
order parameter are also expected to be important, and
several models have been suggested (see, for example,
Maki, 1985, 1986). Because of the nonlinear response a
mode locking is expected between the intrinsic current
oscillation and an externally applied field. This was first
detected by Monceau et al. (1980). The locking leads to
a frequency pulling and, consequently, to a modification
of the dc I-V characteristic in the form of well-defined
steps. The ac response is also influenced by mode lock-
ing, leading to inductive dips in the dielectric constant.

B. Interference effects

While interference phenomena have been reported in
various materials (Brown and Grilner, 1985; Brown
et al., 1985a; Fleming, Dunn, and Schneemeyer, 1985;
Wu et al., 1985; Latyshev et al., 1986), most of the ex-
periments have been performed in NbSe;. In this com-
pound the phase-phase correlation length appears to be
long, comparable to the dimensions of the specimens
(Fleming et al., 1984), and, consequently, the response to
external drives is highly coherent. This is responsible for
the extremely coherent current oscillations observed in
pure specimens in both CDW states, in contrast to the
weak and broad Fourier components of the oscillating
current in other material CDW states. The high degree
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of dynamical coherence also suggests that internal de-
grees of freedom may be of less importance in this ma-
terial than in others, and these can be included perturba-
tively when the observations are accounted for by any
particular model.

In order to discuss these phenomena in detail, it is use-
ful to recall the formal correspondence between the equa-
tion of motion, Eq. (5.2), and the Stewart-McCumber
model of the resistively shunted Josephson junction (see,
for example, Barone and Paterno, 1982), and to use the
vast literature on the Josephson effects to account for ob-
servations associated with the dynamics of charge-
density waves. (The equation of motion is also equivalent
to that of a damped, driven pendulum and of a phase-
locked loop.) Including the inertial terms, Eq. (5.2) in di-
mensionless form reads

2
4 4P | Ginp=L | (7.1)

dt? dt I

where 8=(wo7)~! and time is measured in units of wy .
The equation of motion of the resistively shunted Joseph-
son junction is

d?e dé I

— +G—— +sinf=—,

i dr 7 (7.2)

~.

where I' is the phase difference across the junction, I is
the current, G =(RCa)j)*1, with R and C the junction
resistance and capacitance and w;=2el,/Ch. Time is
measured in units of !, and I ; is the critical current.

The threshold electric ]ﬁeld for CDW conduction corre-
sponds to the critical Josephson current, and the pinned
CDW state to the zero-resistance state in Josephson junc-
tions. Current oscillations in the current-carrying CDW
with jopw/fo=2e per chain correspond to the ac
Josephson effect with the voltage-frequency relation
V/fo=2e/#Ai. The latter was first demonstrated by
detecting a change of the dc current-voltage characteris-
tics in the presence of applied ac radiation. Steps in the
I-V curve when f,=f,,, were first found by Shapiro
(hence the name “Shapiro steps”), and, consequently,
similar ac interference effects found in CDW systems will
also be called Shapiro steps. Experiments of this kind
were first performed in NbSe; by Monceau er al. (1982),
who measured the differential resistance d¥ /dI in the
presence of ac fields. Their results, obtained for keeping
the dc current constant and varying the frequency of the
applied ac field, are displayed in Fig. 41. Peaks in the
derivative correspond to applied frequencies for which
Wy =N, With ® ranging from 1 to 4, as indicated in the
figure. Various sequences called F,, F,, and F; are
detected, and this may be due either to the fibrous nature
of the material or to the contact configuration used in the
experiments. In small and highly uniform specimens, the
interference is more dominant and shows up in direct I-V
curves (Zettl and Gruner, 1983b, 1984). Interference
effects have also been observed recently in the elastic
properties (Bourne et al., 1986). In Fig. 42, dc I-V traces
are shown in the presence of an applied field at constant
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FIG. 41. Differential resistance dV /dI in NbSe; observed by
sweeping the frequency of the rf current, for a constant dc
current. The various sets of interference peaks are labeled by
F\, F, and F; (Monceau et al., 1982).

frequency f.,, =100 MHz. For V, =0, a smooth non-
linear I-V curve is obtained with a well-defined threshold
voltage V; for the onset of nonlinear conduction. In-
creasing V,. results in the appearance of broad peaks at
certain dc currents, and these become sharper with in-
creasing ac amplitude. The position of the n =1 step, in-
dicated on the figure, corresponds to a dc current [,
which, in the absence of ac fields, yields an intrinsic oscil-
lation frequency f,=100 MHz, as established by direct
measurements of the current oscillations. There are also
harmonic steps corresponding to n =2 (where the intrin-
sic oscillation frequency couples to the first harmonics of
the external frequency), and a subharmonic step corre-
sponding to n =1 is also visible in the figure. The step
height 8V first increases and then decreases with increas-
ing V,., while the threshold voltage V' is strongly re-
duced by the applied ac fields. The step height and
threshold field can be calculated by solving Eq. (7.1)
directly [Fack and Kose (1971); Clark and Lindelof
(1976); Lindelof (1981)]. In the high-frequency (® >>w3r)
limit,
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FIG. 42. Shapiro steps in the dc I-V traces for NbSe; when rf
field is applied at frequency /27 =100 MHz and of amplitude
‘Vac. The step height 8V is defined in the figure. No Shapiro
steps are observed for V,, =0, while the maximum step height is
at approximately V,.=100 mV. The arrow indicates the dc
current that yields a fundamental noise frequency f,=100
MHz. The step index is n (Zettl and Griiner, 1984).

SV =B2V(0=0)J/(Vg) ,

(7.3)
Vi=Vr(o—0)Jy( V) ,
where J,, is the Bessel function of order n, and
V 2
v, ac 0T (7.4)

eff = VT(CO—T_—O) .

The parameter 3 is phenomenological, representing the
volume fraction of the specimen that responds coherently
to the applied dc and ac fields. In Fig. 43 the n =1 step
height is shown as a function of the ac amplitude V.
The solid line is Eq. (7.3) with parameters w§r/27=170
MHz and =0.17. The characteristic Bessel function
behavior is clearly recovered by experiment; furthermore,
the crossover frequency w37 is in approximate agreement
with that derived from the low-field ac conductivity mea-
surements. The value 8=0.17 indicates that a large frac-
tion of the specimen is responding coherently to the
external perturbations.. While analytical solutions are
not available in the low-frequency @ < @37 limit, comput-
er simulations (Fack and Kose, 1971; Clark and Lindelof,
1976) also lead to Bessel function behavior with step
heights strongly dependent on the frequency. The fre-
quency dependence of the maximum step height (Zettl
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FIG. 43. Step height 8V vs ac amplitude V. for Shapiro steps
in NbSe;. The rf frequency is 310 MHz and the step index is
n=1. The solid line is the prediction of the classical model, Eq.
(7.3), with parameters w3r/27m=80 MHz. V;=24 mV, $=0.17
(Zettl and Griner, 1984).

and Griiner, 1984) can be analyzed in terms of the model
leading to a crossover frequency, in agreement with the
values quoted above. While the threshold voltage de-
creases with increasing V., the Bessel function behavior
predicted by Eq. (7.1) is not recovered by early experi-
ments, and instead of displaying oscillations, ¥, goes to
zero smoothly with increasing V,.. Subsequent experi-
ments by Latyshev et al. (1987) and by Thorne et al.
(1987) on carefully prepared specimens displayed oscilla-
tions in E, in full agreement with predictions based on
Eq. (7.1). :
Interference phenomena also influence the frequency-
dependent response, leading to steps in Reo(w) and in-
ductive dips in e(w) at currents for which fy~ f.,,. The
dielectric constant € and conductivity Reo, both mea-
sured at fixed frequency wy/27=3.2 MHz, are shown in
Fig. 44 as a function of dc bias voltage. The large step
and strong inductive response at V4, ~2.3 mV corre-
spond to currents where f,=f,,, and similar to the
Shapiro-type steps, both a harmonic and subharmonic in-
terference are evident. Although no calculations based
on Eq. (7.1) are available, the interference effect can be
accounted for by qualitative arguments that use mode
locking between the intrinsic oscillation and the external-
ly applied ac field (Zettl and Griiner, 1984). Not surpris-
ingly, interference effects are observed also. when
V4. =const and the ac frequency is varied; these, howev-
er, have not been analyzed in detail. Frequency modula-
tion effects related to interference phenomena have also
been measured and analyzed (Stokes et al., 1987).
Interference effects have also been observed in TaS;
(Brown and Griiner, 1985) and in K;;Mo00; (Fleming,
Dunn, and Schneemeyer, 1985), but, similar to the
current oscillations, their magnitude is much weaker
than those observed in NbSe;. As discussed before, this
may reflect a smaller degree of coherence in TaS;, leading
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FIG 44. Real part of the ac conductivity Reo(w) and dielectric
constant £(w) measured at w/27=3.2 MHz as a function of ap-
plied dc bias voltage. The threshold field is indicated by an ar-
row (Zettl and Griner, 1984).

to smaller values of 3 in Eq. (7.3). In these cases, the in-
terference peaks are also much broader than those ob-
served in NbSe;, suggesting a distribution of CDW veloc-
ities in the specimens. Such effects cannot be accounted
for by models where the internal dynamics of the collec-
tive mode are neglected. Experiments where the deriva-
tive dV/dI is recorded instead of direct I-V curves
(Brown et al., 1984) show, aside from the harmonic lock-
ing structure, a rich subharmonic structure. In Fig. 45
the differential resistance, measured with and without an
externally applied rf voltage at w.,=25 MHz, is
displayed. For the low ac voltage used, the threshold for
the onset of nonlinearity is not reduced significantly, but
peaks (which correspond to steps in the direct I-V curves)

S e
NbSes (a) Vi =50mV
42K y
3
=
[Ze]
3
5
g
5
5
3 -
= o5k (b) V=0
20F 1
15 7
%

sample voltage V (mV)

FIG. 45. Differential resistance of NbSe; with and without an
applied rf voltage V. The numbers indicate the various
subharmonic steps (Brown et al., 1984).
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develop for a whole series of dc currents for which

PWe=4qWg » (75)

where p and g are integers. The ratio of p /q can be eval-
uated by plotting the frequency associated with a given
peak versus the current Jopw and comparing the slope
Jcpw /@y With that corresponding to the main Shapiro
step, labeled by 1/1 in the figure. The steps ¢ =1 and
p >1 correspond to frequency locking between the inter-
nal frequency f,=w,/27 and all harmonics pa,,, of the
applied rf field, as studied before (Zettl and Griiner,
1984), while steps that occur when p /g <1 are called the
subharmonic steps. Interference effects corresponding to
subharmonic steps have been observed in the ac response
(Zettl and Griiner, 1984; Fleming, Dunn, and
Schneemeyer, 1985), and have also been detected in o-
TaS; (Brown et al., 1985b). As the intrinsic oscillation
contains many harmonics, and also the response of the
nonlinear system to a sinusoidal ac field E, .cOs@y! is
highly nonsinusoidal, it is natural to interpret the peaks
as regions in which any harmonic of the internal frequen-
cy locks to any harmonic of the external field. Such be-
havior is in general referred to as a “devil’s staircase”
(Bak, 1982b).. The interference peaks shown in Fig. 45 do
not reflect complete mode locking, for which the
differential resistance is the same as the ohmic resistance
below Eg, and are usually referred to as “interference
features.” Complete mode locking and serveral subhar-
monics were first detected by Hall and Zettl (1984a,
1984b), and were subsequently observed by applying low
frequencies and larger drive amplitude (Sherwin and
Zettl, 1985; Thorne et al., 1987); an example for this be-
havior is displayed in Fig. 46. The condition under
which complete mode locking is observed has not been
completely settled, but most probably it is related to the
extent of phase coherence throughout the specimens,

3 V2 3 !

Nb583 Inooa
T=a2K |

bias ()
T

4 6
-1I5 (o) 15
bias current (nA)

dv/dl Q)

FIG. 46. Mode-locked Shapiro steps in NbSe;. Over the
mode-locked region, dV /dI is independent of dc bias. The inset
shows the subharmonic structure in detail, with corresponding
p /s values (Sherwin and Zettl, 1985).
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since, as a rule, smaller samples with careful handling
(and, consequently, less defects introduced during the
contact preparation, etc.) display complete mode locking
more readily. The effect of driven amplitude has been
directly demonstrated by Sherwin and Zettl (1985) by
performing broadband noise measurements in the pres-
ence of dc and ac drive. Broadband noise results from
internal dynamics of the collective mode (Bhattacharya
et al., 1985); consequently, its presence or absence clearly
indicates the importance of internal dynamics of free-
dom. It was found that during mode locking the broad-
band noise is absence for complete mode locking, which
is achieved for increasing ac drive; for small amplitude ac
fields, only partial mode locking is observed.

Several dramatically different explanations have been
advanced to account for the existence of the subharmonic
steps. While an overdamped classical response, such as
that given by Eq. (5.2), does not lead to subharmonic
mode locking, inertial effects described by Eq. (7.1) re-
store subharmonic mode locking (Bak, 1982a, 1982b; Az-
bel and Bak, 1984). Furthermore, the main features of
the mode-locking phenomenon can be studied by using a
return map, which describes the time evolution of the
CDW phase sampled at discrete times ¢, =27m /w,,.
Assuming that 6, is determined only by 6,,, due to dissi-
pation, a “circle map”

0, 1=0, +Q+Ksin(270,,) /27 (7.6)

results, where Q=27f,/w,, and K describes the
strength of the coupling between the system and the
external perturbation—and is consequently assumed pro-
portional to E, .. The circle map is the return map ap-
propriate to Eq. (7.1), as demonstrated by detailed nu-
merical integrations (Bohr et al., 1984; Jensen et al.,
1984). For finite-coupling K, mode locking occurs for
certain values of w, and f, i.e., fy remains fixed at
(p/s)w,, over a finite range of E ;.. From Eq. (7.1) the
time-averaged CDW current [and hence (3¢ /d¢)] is then
dictated strictly by w.,. The mode-locked regions are
separated by regions corresponding to free-running solu-
tions of the phase.

The extent of the mode lock, i.e., the completeness of
the devil’s staircase, can in principle be determined
directly from the subharmonic interference structure. In-
strumental noise sets a lower limit to the size of the step
that can be observed experimentally; consequently, the
completeness of the staircase cannot be confirmed direct-
ly. The completeness of the staircase can, however, be
examined by the following test: Choosing a discrimina-
tion level r, one adds up to the total width S(r) of steps
wider than r. If N(#)=[I —S(#)]/r in an interval of unit
length, then rN is the fraction of interval unoccupied by
steps larger than ». For a complete staircase, ¥N —0 as
r—0, and

N(r)=r—9, 1.7
with d defining the fractal dimension of the complemen-
tary Cantor set. As mentioned previously, the circle
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map, Eq. (7.6), leads to d =0.87, for K =1. This univeral
behavior has been confirmed by analog computer simula-
tions and by studying a two-dimensional dissipative map
(Alstrom et al., 1984). An analysis as described above,
for experiments performed on NbSe; (Brown et al,
1984), gives a dimension d =0.91, in striking agreement
with theory.

There are, iowever, several serious problems with such
an interpretation. First, one expects, on the basis of the
circle map and corresponding simulations of Eq. (7.1),
that the value of d depends critically on E,. and on the
selected range of p/s. Such behavior has not been ob-
served in NbSe;, and indeed a critical line cannot be
clearly identified. Equally important, subharmonic steps
are predicted by Eq. (7.4) only in the underdamped limit,
and therefore should not exist in an overdamped system
as determined - from the frequency dependence of the
low-field ac response. Furthermore, in the underdamped
limit where Eq. (7.4) does predict subharmonic interfer-
ence steps, chaos is also predicted on mode-locked steps.
In contrast to this, for the samples displayed in Figs. 3
and 5, chaos is not observed for any combination of ac
and dc drive parameters. In the language of the circle
map, the fractal dimension d =~0.91 indicate that the sys-
tem is at criticality (K =1), yet the absence of chaos sug-
gests K =1 cannot be exceeded, irrespective of the mag-
nitude of E .

A conceptually simpler explanation has been advanced
by Thorne et al. (1986, 1987) by assuming that the
periodic potential is nonsinusoidal, but inertial effects
and the effects of internal degrees of freedom are neglect-
ed. The magnitude of the subharmonic steps can be
directly related to the components of the Fourier trans-
form of the potential, and a good agreement has been ob-
tained between experiment and theory for a potential

—cosf for —% <9<§ R
V()= (7.8)

cosd for %<9<3T7T (mod 2m) .

Such potential is assumed for the tunneling model (Bar-
deen, 1986). The subharmonic step height, calculated
and measured for the parameters given in the caption,
are displayed in Fig. 47. The agreement is remarkable,
suggesting that the above simple approach may be ap-
propriate. One should note, however, that the detailed
form of the potential is probably not very important, as
any potential with cusps [such as ¥(8) given by Eq. (7.8)
as a triangle potential-potential, for example] leads to
subharmonic mode locking with a smaller locking region
for larger p and g values. More detailed experiments
(Thorne et al., 1986) on NbSe; were also analyzed in de-
tail, with a periodic potential such as that given by Eq.
(7.8), which is completely adequate to account for all the
features of the interference experiments.

A rather different approach has been taken by Tua and
Ruvalds (1985) and by Coppersmith and Littlewood
(1986), who assume that internal degrees of freedom are
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essential in obtaining subharmonic steps. In a model of
coupled domains (Tua and Ruvalds, 1985), a rich subhar-
monic structure is recovered in qualitative agreement
with the experiments. The amplitude of the subharmonic
disappears in the thermodynamic limit, in parallel with
the disappearance of the current oscillations in this limit.
Internal degrees of freedom, when treated perturbatively
in the large CDW velocity limit, also lead to the emer-
gence of subharmonics, with an increasing number of
mode-locking regions having an increasing number of
perturbative steps (Coppersmith and Littlewood, 1986).
Such an approach leads to mode locking in the thermo-
dynamic limit and allows a detailed calculation of the
shape of the mode-locking curves. The results of such a
calculation are displayed in Fig. 48, ioge_ther with unpub-
lished experimental results of Brown and Griiner (1988).
The classical single-particle model (Griiner, Zawadowski,
and Chaikin, 1981) leads to well-defined “wings” that ac-
company the mode-locked region. In contrast, the mode
locking obtained by the model whose internal degrees of
freedom are included (called the FLR, or Fukuyama-
Lee-Rice, model on the figure) leads to no such wings, in
agreement with experiment. In contrast to the experi-
mental results displayed on the figure, substantial wings
are also often observed (see, for example, Thorne et al.,
1987), and the experimental state of affairs is far from be-
ing clear at présent. The details of the mode locking ap-
pears to depend on several factors, such as sample quali-
ty, contact geometry, sample purity, and temperature,
and a systematic investigation of these factors has not
been performed as yet. Such experiments, however, ap-
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FIG. 48. Differential resistance dV /dI vs dc voltage ¥V, near
the first harmonic feature Q-v ~ w,, for NbSe; with ac frequen-
cy w,.=25 MHz and ac voltage amplitudes V| ~50 and 75 mV
(Brown and Griner, 1988) for a sample with V;~2 mV. Also
shown are theoretical fits using the Fukuyama-Lee-Rice (FLR)
deformable  CDW model (dotted line) and the Griiner-
Zawadowski-Chaikin (GZC) = one-degree-of-freedom result
(dashed line). For FLR, both curves are fitted by use of a single
parameter of order unity, as discussed in the text. The tops of
the peaks are not calculated because the perturbation theory
breaks down when the change in d¥ /dI is large (Coppersmith
and Littlewood, 1986).

pear to be essential in order to distinguish between the
various proposed models. It is also conceivable that
internal degrees of freedom are important under some
circumstances and are negligible in different situations.
As discussed earlier, in certain specimens of NbSe; the
onset of the current-carrying state is not smooth, and the
current-voltage characteristics display well-defined
switching and hysteresis behavior. When subjected to
combined ac and dc electric drive fields, such specimens
again display dramatic mode locking with hysteretic
structure (Hall et al., 1984b). The dc response is like
that predicted by the circle map and similar to that

_displayed in Fig. 46. However, the range of mode lock

for the harmonic Shapiro steps, i.e., for p =1,2,3, ...,
s =1, is substantially larger, and the harmonic steps vir-
tually fill all of Q space, as shown in Fig. 49(a). The
simultaneously measured ac response is a complicated
function of ac amplitude E,  and frequency w,,, and dc
bias E ;.. With fixed E, . and w,,, increasing E 4, leads, on
each mode-locking step, to a period doubling route to
chaos. This is displayed schematically in Fig. 49(a),
which shows vertical windows, each corresponding to a
partiuclar period (or chaos) for the response. The corre-
sponding frequency response spectra are displayed in Fig.
49(b). Period-doubling bifurcations and a chaotic behav-
ior, distinguished by large broadband noise, are clearly
observed. A period doubling route to chaos can also be
observed by keeping the dc bias constant and smoothly
changing E, . or w.,. By systematic variation of all three
parameters, i.e., E4, E,., and o, the response bound-
ary between period 1,2,4,. .. and chaotic solutions may
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FIG. 49. (a) Schematic representation of the current response
in the Shapiro step region of NbSes, for forward and reverse
bias voltage sweeps. The heavy lines are the direct I-V traces,
offset vertically for clarity; (b) frequency spectrum of the
current response in the Shapiro step region. External rf drive
frequency and amplitudes as in (a). (i) V4. =25.0 mV, period 1;
(i) Vg.=25.1 mV, period 2; (iii) V4. =25.2 mV, period 4; (iv)
V4. =25.5 mV, chaos (Hall et al., 1985).

be mapped out. In general, repetitive (hysteretic)
period-doubling routes to chaos can be induced by vary-
ing all three parameters monotonically through a limited
range of phase space. )

A repetitive period-doubling route to chaos on each
mode-locked Shapiro step suggests a modulo 1 variable
for the CDW phase, such as 8,, in Eq. (7.6). This equa-
tion is identically recovered by changing ) to Q +n, with
n an integer. The periodicity of the bifurcation sequence
in dc bias is thus consistent with the periodicity of the be-
havior predicted by the circle map. Similarly, period-
doubling routes to chaos on mode-locked Shapiro steps
are predicted by Eq. (7.2) if the inertial term is retained
(Kantz, 1981).

Vill. DISORDER AND METASTABLE STATES

The observation of current oscillations and the pro-
nounced interference effects in the presence of ac and dc
excitations are suggestive of a highly coherent response
in the current-carrying state, with a phase-phase correla-
tion length L, comparable to the dimensions of the speci-
mens. Such a high degree of coherence can be achieved
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only in relatively pure NbSe; specimens where the small
threshold fields E; for nonlinear conduction suggest
through Egs. (4.16) and (4.12) that L, is substantial, of
the order of 1u. This is confirmed directly by x-ray stud-
ies (Fleming et al., 1978, 1984). Consequently, the dy-
namics of internal modes may be largely neglected (for
rather pure and small specimens), or can be included per-
turbatively by considering first the dynamics of the aver-

-age phase (@). The situation is somewhat different in

TaS; where the small amplitude of the current oscilla-
tions and the relatively weak interference effects suggest
that disorder and/or sample inhomogeneity play an im-
portant role. In the materials (TaSe,;),I and K; ;Mo0O;
the current oscillations, when Fourier analyzed, give a
substantial distribution of CDW velocities within the
specimen, and interference effects are either not observed
or are extremely weak. For these materials, the phase-
phase correlation length is presumably small. This, to-
gether with the relatively large sample dimensions both
parallel and perpendicular to the chains, L and L, leads
to a situation where the number of degrees of freedom, or
number of metastable states, is of the order
(Lsample/L0)3, where Lsamplez(L“Lf)lﬁ, an ‘“average”
sample dimension, is large and can, for all practical pur-
poses, be regarded as close to the thermodynamic limit.
Under such circumstances, the dynamics of internal de-
grees of freedom are important. This may lead to obser-
vations similar to those made in spin-glass random-field
magnets. ‘

The close relation between the observations on low-
frequency and long-time relaxation phenomena in materi-
als with a charge-density-wave ground-state and
random-field systems is not surprising. Equation (5.13) is
formally identical to the random-field X-Y model,

H=3J;S;S;+ 3 (h;S; 2,
i i

in the limit where the angle 0 between the neighboring
spin direction is small. Arguments on the absence of
long-range order and the behavior of the various correla-
tion functions are appropriate for both systems, and it is
expected that the dynamical behavior displays strong
similarities for small amplitude driving fields. H, in Eq.
(5.13), however, corresponds to an applied torque in the
random-field X-Y model, and the electric polarization P,
corresponds to a rotational magnetization. The differ-
ence between the coupling to external fields leads to fun-
damentally different behavior in the large amplitude
response: In the random X-Y model the magnetization
saturates in the infinite magnetic field limit, while for an
applied torque there is a phase transition to a ‘“phase-
winding” state where all spins rotate under the influence
of the applied torque. This transition corresponds to the
transition from the pinned to the current-carrying CDW
state. 'Furthermore, because of the large polarizability
(related to the large length scale L,) nonlinear response
phenomena may become important even for moderate
applied fields. Effects associated with metastable states
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are also expected to be temperature dependent because of
the possibility of temperature-driven transitions between
the various metastable configurations.

The small amplitude ac response of various materials
has been discussed in detail in Sec. VI. In the full fre-
quency range, from dc to millimeter wave frequencies,
the response can be described by a distribution of pinning
frequencies (Wu et al., 1985). Alternatively, phenome-
nological equations, such as (6.7) and (6.8), have been
used extensively to describe both Reo(w) and Imo(w);
both are suggestive of “glassy dynamics”, i.e., of the im-
portance of internal degrees of freedom. Certain
features, such as the anomalous low-frequency response
of the dielectric constant, have been recovered by calcu-
lations (Fisher, 1985; Littlewood, 1986) based on the
FLR model. The experimentally found behavior for vari-
ous materials is displayed in Fig. 50. The strongly diver-
gent response as w—0 is in clear conflict with single-
degree-of-freedom dynamics, which would suggest a lead-
ing low-frequency behavior of

e(w)~e(w=0)—Baw? . 8.1)
Linked, as ®—0, the behavior can be described as
e(w)=e(w=0)—B'w® (8.2)

with o’ <1. The behavior is usually referred to as the
zero-frequency cusp. Whether &(w=0) is finite and
whether there is a crossover to a behavior given by Eq.
(8.1) for very small frequencies and small excitation am-
plitudes is not clear. The behavior most probably de-
pends on factors like sample dimensions or temperature.

A. The nonlinear ac response

Dielectric constant measurements in the small ampli-
tude E,.—0O limit sample the relaxation effects around
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FIG. 50. Frequency-dependent dielectric constant in various
materials (Wu et al., 1984).
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the state, which has been reached prior to the excitation
applied. This state is, in general, expected to be frozen in
a metastable state (Fisher, 1983; Littlewood and Rice,
1982; Matsukawa and Takayama, 1984). Other metasta-
ble states close in energy to the “frozen-in” metastable
state, but presumably far from its configuration space,
can, however, be excited by the application of finite-
amplitude dc or ac drives. The effect was first demon-
strated by Cava, Fleming, Dunn et al. (1984) in
K, 3Mo00;, by measuring the dielectric response at vari-
ous ac signal amplitudes. The data have been analyzed
using

(8.3)

1
e(w)=(gy—¢epp a1 +&nr >

)[1+(im0>1—
where €, and ey are the static dielectric constant and 7,
is a characteristic relaxation time. Both a and 7, were
found to be dependent on the applied ac amplitude, sug-
gesting a strong modification of the long-time response of
the system by finite-amplitude ac fields. The effect was
found to be less pronounced at higher frequencies, as ex-
pected for internal modes the dynamics of which is de-
scribed by relaxational dynamics. Similar amplitude-
dependence ac response was found by Ong et al. (1985)
in 0-TaS;.

The nonlinear ac response was further studied by mon-
itoring the higher harmonic generation (Chen er al.,
1988; Mihaly and Griiner, 1987). For a linear system, the
response to an excitation 'V =Vsinw,,, is purely
sinusoidal, and no harmonics at frequencies n ., are ob-
served. In general, for a simple nonlinear system, the
dielectric constant can be expressed in terms of powers of
the excitation amplitude V, and  e=¢'4+e?p3
+e®V8+ - -+ where 2"+ represents the response of
the system at frequency (2n +1)w.. Experimentally,
the third harmonic response measured at frequencies
3w, was found to be both amplitude ¥V, and frequency
o,,; dependent, and the observations can be described as
(Chen et al., 1987)

v

Vo
S(co)=A;7“

(8.4)

with both v and 7 less than one and 4 =const. This be-
havior, which is similar to the nonlinear susceptibilities
observed in spin glasses both below and slightly above
the glass transition temperature, is unexplained at
present. The behavior is most probably related to the ap-
parent inductive response observed in low-frequency
large-amplitude measurements in a Lissajous representa-
tion (Tessema and Ong, 1985).

B. Time domain studies and remanent polarizations

The highly anomalous frequency and electric-field-
dependent response is strongly related to anomalous
time-dependent effects and also to remanent polarization
phenomena, the latter observed at low temperatures.
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The response to steplike electric field excitations of the
form of V(t)=V,6(t —ty), where & is a step function, is
in general nonexponential and displays long-time tails.
The functional form observed depends on various factors,
such as temperature and drive amplitude. For small ex-
citation amplitude the response appears to be exponen-
tial, but for large step excitations, the observed time-
dependent polarization was found to be well described by
the so-called Kohlrausch equation (Kohlrausch, 1947;
Jonscher, 1977),

L

P(t)=P, 11— exp a

] , (8.5)

with a <1 (Mihaly and Tessema, 1986). Typical time-
dependent polarizations, obtained after various pulse ex-
citations, are displayed in Fig. 51 (Mihaly and Tessema,
1986). - Here P is the remanent polarization, 7 and aver-
age relaxation time and the exponential a < 1. Equation
(8.4) has been used extensively to describe long-time re-
laxational phenomena in spin glasses and various
random-field systems (Chamberlin, 1984; Chamberlin
et al., 1984). Logarithmic time dependencies, in the
form
P()=AlnT, (8.6)
have also been observed (Mihaly and Mihaly, 1984; Ong
et al., 1985; Mihaly et al., 1985).. The above observa-
tions are clearly related to the frequency-dependent
response, which is also described by fractional powers of
frequency [see Eq. (8.4)]. In Eq. (8.5) P, refers to a
remanent polarization. Because of the long-time
response P, cannot be directly measured, and, in general,
it is assumed that the polarization measured on substan-
tial time after the pulse is applied is close to P,. In addi-
tion, the remanent polarization can be detected only at
low temperatures, where thermally induced transitions
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FIG. 51. Relaxation processes in response to a steplike external
voltage drive measured on a blue bronze sample at T =4.2 K.
The numbers on the right-hand side indicate the voltage before
and after the step. The continuous lines were obtained by using
the stretched exponential formula (8.7) with parameters shown
on the left-hand side.
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between the various metastable states are not significant.
Py, i.e., a polarization close to P, has been measured in
detail in K, 3;MoO; by applying a sequence of electric
field excitations with successively larger amplitude. A
typical hysteresis loop shown in Fig. 52 is recovered by
such experiments.

At low temperatures, where the conductivity due to
the normal electrons is small, the polarization can be
measured directly. At higher temperatures this is not
possible because of screening currents shown to the un-
condensed electrons. The CDW polarization, however, is
the result of frozen-in local distortions of the collective
mode, and this leads to changes in the small-field (ohmic)
resistance of the specimens. Although the detailed mech-
anism is not clear, the effect can be used to monitor the
buildup of CDW polarizations at higher temperatures.
This method was employed to establish the existence of
remanent polarizations in NbSe; and in TaS; (Brown,
Griiner, and Mihaly, 1986). Furthermore, the polariza-
tion observed was shown to be a bulk effect and the result
of long-range remanent deformations of the collective
mode, which leads to the breakdown of translational in-
variance in the bulk (Tessema er al., 1985; Brown,
Griiner, and Mihaly, 1986). This has been directly
demonstrated by measuring the polarization as the func-
tion of distance along the long axis of the specimens,
which also corresponds to the chain direction. Further-
more, metastable states induced by the application of
electric fields have been directly observed by x-rays
(Fleming, Dunn, and Schneemeyer, 1985; Tamegai et al.,
1985; Mihaly, Lee, and Stephens, 1987). The remanent
polarization increases dramatically with increasing ap-
plied voltage V), and the experimental results displayed
on the figure are suggestive for a divergent polarization
when the threshold field E, is approached from below.
This has been studied in detail (Wang and Ong, 1987;
Mihaly and Grlner, 1987), and the observations have
been described in terms of a polarization catastrophe
with critical exponents that describe the divergence of

T T T

A=0.15mm? 4

[ 2 =5mm .
40F V=13V 4
L d
“g  20r .o 4
$ 7

2

5 OF | famlirmrreresi A
s L i
2 -20F - 1
-40+ - o -
C ) L I .
-1.0 -05 0 0.5 1.0

sample voltage V,/Vr

FIG. 52. Dielectric polarization loops observed in K, ;Mo00; at
low temperatures. Vr refers to the threshold voltage for the on-
set of nonlinear conduction (Mihaly and Tessema, 1986).
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P,. Because of the extremely long time scales involved,

and because of the ambiguities as far as the detailed time

dependences involved (whether logarithmic or stretched
exponential), a clear-cut analysis of this novel type of
critical phenomenon has not been possible to date. The
behavior displayed in Fig. 52 is, however, well repro-
duced by numerical simulations (Matsukawa and Takay-
ama, 1986) that are based on the. Fukuyama-Lee-Rice
model of impurity pinning. Numerical simulations have
not yet been extended to treat the behavior near the
threshold field. The problem has been treated by- a
simplified model (Mihaly, Chen, and Grliner, 1987) that
indeed leads to critical exponents for the divergent polar-
ization and for the relaxation time 7, which appears in
Eq. (8.5). The remanent polarization effects also suggest
that special procedures, similar to those that lead to
demagnetization for, ferromagnets, are required to arrive
at an unpolarized CDW state. Such procedures, along
with temperature-induced depolarization effects, have
been discussed by Wang and Ong (1987).

At higher temperature, thermally induced transitions
between the various metastable states destroy the
remanent polarization and lead to the so-called thermally
stimulated currents; the relaxation back to the unpolar-
ized state is well described by a stretched exponential or
by logarithmic (Mihdly and Mihély, 1984) time depen-
dence. These have been investigated by measuring the
Ohmic resistance R of the specimens, assuming that
changes in the CDW polarization lead to changes in the
single-particle gap and thus to R.

Detailed studies performed on TaS; (Kriza and
Mihaly, 1986) over a broad time domain demonstrate
that the time-dependent depolarization currents can be
well described by the stretched exponential form. More-
over, the average relaxation time 7 obeys the empirical
form

(T)=7pexp | — T | (8.7)

with 2A close to the single-particle gap in this material.
The behavior is most probably related to the strongly
temperature-dependent relaxation time obtained from the
analysis of the low-frequency dielectric constant (Cava
et al., 1985) and from the analysis of the temperature
dependence of the nonlinear conduction (Fleming et al.,
1986). Similar temperature- (and also field-) dependent
relaxation time was observed in K, ;Mo00, for the field-
activated relaxation (Wang and Ong, 1987) in (TaSe,),I
(Tucker et al., 1986).

These studies, along with thermal and electric field cy-
cling experiments (Wang and Ong, 1986; Duggan and
Ong, 1986), raise interesting questions about the ap-
proach toward the ground state and about the dynamics
near the ground state. Various distinct routes to equilib-
rium were found, and the extreme sensitivity of the
ground state to small temperature changes was also es-
tablished (Wang and Ong, 1986).
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C. Transitions from below to above threshold

-A variety of interesting phenomena occur when the
pinned CDW is driven through E; to the current-
carrying state and back by the application of a sequence
of various pulses. These are usually referred to as
memory effects because the response to an applied pulse
depends on the history polarization and deviation of the
previous pulse. The observations are clearly metastable
states in the pinned configuration, and their rearrange-
ment under the influence of applied electric field.

The so-called pulse sign memory effect refers to the
phenomenon where the response of the system to a pulse
depends on the direction of the polarization of the previ-
ous pulse. When the electric field applied is the same
direction as the preceding pulse, the response is fast,
while a sluggish response is detected for a reverse polar-
ization. The phenomenon was first observed in TaS;
(Gill, 1981b; Gill and Higgs, 1983), and has subsequently
been found in K,3;MoO; and NbSe; (Fleming and
Schneemeyer, 1983; Fleming, 1985b). The observations
are shown in Fig. 53 for both NbSe; and K,;MoO,.
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FIG. 53. Pulse sign memory effect. Response of NbSe; and
Ky.30M0O; to a repetitive series of constant-current pulses con-
sisting of two positive pulses followed by one negative pulse.
The amplitude of the pulses are in excess of threshold. When
the current direction is reversed, the response becomes very
slow. (a) for NbSe;; the linear response is subtracted so that
only IR}, — V'(2) is plotted as a function of time; (b) the total
signal V() is plotted.



1174 G. Griiner: The dynamics of charge-density waves

Both types of response phenomena-—the so-called
overshoot observed in NbSe; and the smooth gradual
buildup of the response observed in K, ;M00,, both for
applied pulses in the reverse direction from the preceding
pulse—are reproduced by numerical simulations based
on the treatment of the Fukuyama-Lee-Rice model (Lit-
tlewood, 1986; Coppersmith and Littlewood, 1985a,
1985b). The explanation of the phenomenon is relatively
straightforward. When the applied electric field is sud-
denly removed, the charge-density wave does not relax
back to the equilibrium configuration, but remains in a
polarized staie (see, for example, Fig. 52). This polarized
state is a metastable state with remanent local
configurations of the CDW deformation, similar to those
that characterize the current-carrying state in a particu-
lar current direction. = Consequently, with these
configurations already established before the next electric
field pulse, the response to this pulse will be fast. This is
the case when the pulse polarities are identical. Different
local configurations represent the current-carrying state
in the opposite current direction, and a sluggish response
or overshoot results because the long-range correlations
have to be “unwound” and then “rewound” in the oppo-
site direction (Littlewood, 1986).

The notion of pulse deviation memory effect refers to
features found in the transient voltage or current oscilla-
tions observed in the current-carrying state after the ap-
plication of a sudden electric field pulse. The transient
oscillations occur at the fundamental frequency of the
current oscillations, but their amplitude decreases slowly
with increasing time (Fleming, 1981; Zettl and Griiner,
1982a, 1982b) saturating at a constant value as t— 0.
The initial phase of the oscillations is adjusted to the
leading edge of the applied pulse, and, more important,
at the end of the pulse the phase of the oscillations is also
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FIG. 54. Voltage response to repetitive pulse drive. For repeti-
tive pulses of constant amplitude, the phase of the last transient
oscillation is fixed relative to the end of the pulse for arbitrary
pulse width (Fleming et al., 1986).
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the same. The phenomenon is shown in Fig. 54. This
so-called pulse duration memory effect (Brown, Mihaly,
and Griiner, 1986; Fleming and Schneemeyer, 1986) is
clearly related to the mode-locking phenomena discussed
in the previous section. However, it should not occur for
a single-degree-of-freedom system (Coppersmith and Lit-
tlewood, 1986). Reasons why a many-degrees-of-freedom
system should display pulse duration memory effects
have been discussed recently (Tang et al., 1987), and
concepts such as phase organization and dynamical selec-
tion of states have emerged from models that mimic the
dynamics of charge-density waves. These effects are dis-
cussed in detail by Littlewood (1987).

IX. FINAL REMARKS

During the past decade the field has advanced consid-
erably, and the basic notions on the dynamics of charge-
density waves are well documented by a broad range of
experimental studies. Most of the important features of
this novel type of collective transport phenomenon are
well established.

Several questions remain, however. Experiments on
properties other than electrical conduction, such as Hall
effect, thermoelectric power, and acoustic properties,
clearly require an underlying microscopic theory, and the
same is true for the high-frequency damping and for the
temperature-dependent low-frequency damping process-
es. Little is known about the effects associated with the
dynamics of the amplitude mode. While this may not be
important at low temperatures, in most materials the gap
associated with the amplitude excitations is less than
kT,, and also less than the temperatures where the exper-
iments are conducted, and, éonsequently, should be im-
portant. In contrast, Coulomb effects are important at
low temperatures because they can lead to long-range or-
der, even in the presence of impurities, and lead to a gap
in the phason spectrum (Fukuyama and Lee, 1978). Both
effects (Wong and Takada, 1988) are expected to
influence the dynamics of the collective mode. The ques-
tion of whether quantum-mechanical concepts are re-
quired to describe the dynamics of charge-density waves
is still hotly debated (Thorne et al., 1987, and references
cited therein), and a broad variety of experiments involv-
ing joint ac and dc excitations have been interpreted in
terms of quantum and classical models. Experiments on
effects where the predictions of the two models are
different, such as photon-assisted tunneling from the
pinned to the current-carrying state, have not been suc-
cessful to date.

Charge-density waves have also served in the past as
models for the study of the dynamics of driven nonlinear
systems. Mode locking and interference phenomena
(similar in many respects to those observed in Josephson
junctions) were used to study the possibility of transitions
to chaos, but because of the complexity of material prob-
lems (associated with pinning effects) most of the issues
remain unresolved. Charge-density waves have also been
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used to study relaxation effects in random systems, with
analogies to spin glasses and random field magnets. The
effect of an applied electric field in. CDW transport is
analogous to an applied torque in random field magnets;
this leads to a phase transition (in terms of the analogy to
random-field systems), and then to a phase-winding state.
Only initial attempts have been made to measure the
various parameters near this novel type of driven phase
transition, in particular, below E .

Practically nothing has been said in this review about
the nonlinear and frequency-dependent transport, which
is observed at low temperatures (Maeda, Furayama, and
Tanaka, 1986; Mihaly and Tessema, 1986; Mihaly et al.,
1988). The phenomenon, which is also accompanied by
polarization divergences (Chen et al., 1988) and changes
in the CDW deformations (Mihaly, Crommie, and
Griner, 1987), appears to be rather different from the
nonlinear and frequency-dependent response observed at
high temperatures. The difference between the two re-
gimes most probably is due to the effects associated with
screening (Wong and Takada, 1987). At high tempera-
tures, screening by the normal electrons leads to a gapless
phason spectrum and, consequently, to the possibility of
long-range deformations around impurities. In the ab-
sence of normal electrons, at low temperatures such
screening is not possible. This results in a gap in the
phason spectrum and, possibly, also long-range order
even in the presence of random impurities. Charge trans-
port where the dynamics of local deformations are im-
portant cannot occur with the nonlinearity determined
by the translational motion of the rigid condensate (Lit=
tlewood, 1988). This low-temperature regime, with the
possibility of true Frohlich superconductivity, clearly
deserves further investigation.

Relatively little is known about the various nonlinear
excitations of the collective mode, which may occur at
energies below the single-particle gap. Various soliton-
like modes may occur, in particular, in systems that are
close to commensurability, and higher harmonic phason
modes (Sherwin et al., 1984; Travaglini and Wachter,
1984) have also been discussed.

Whether features in the observed optical spectra can
be clearly identified with the fundamental features of the
dynamics of the collective mode remains to be seen. Ex-
periments on different materials and on alloys may clarify
this aspect of CDW dynamics.

Nonlinear and frequency-dependent phenomena have
also been reported recently in systems other than dis-
cussed in this review. In the organic linear-chain com-
pound TTF-TCNO, the nonlinear response is clearly due
to charge-density waves (Lacoe et al., 1986), with added
complications that two charge-density waves are present
where the nonlinear conduction was observed. Less clear
is the situation in intercalated graphite (Iye and
Dresselhaus, 1985) and on the material Hg-Cd-Te, which
is assumed to undergo a phase transition to a Wigner-
crystal state. The electrical conductivity is a nonlinear
(Osada et al., 1987) and a frequency- (Javadi et al., 1986)
dependent organic linear-chain conductor with a spin-
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density-wave ground state. The question whether spin-
density-wave dynamics is similar to the dynamics of
charge-density waves deserves further investigation.
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