Strangeness production in relativistic heavy ion collisions

OUTLINE

- Strangeness enhancement in heavy ion collisions
- Statistical model and strangeness undersaturation
- Core-corona model
- Outlook and conclusions

F. Becattini, University of Florence

QGP school, Torino, March 2011
Strangeness enhancement was proposed as a signature of deconfinement Quark Gluon Plasma

Chiral symmetry restoration favours (relative) strange quark production in a deconfined medium

Strange quark coalescence favours the enhancement of multiple strange hyperons

FIG. 1. Lowest-order QCD diagrams for $s\bar{s}$ production: (a) $q\bar{q} \rightarrow s\bar{s}$, (b) $gg \rightarrow s\bar{s}$.
Enhancement was found in PbPb collisions at SPS

\[\lambda_S = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u}\rangle + \langle d\bar{d}\rangle} \]

Wroblewski ratio: current status

![Graph showing the Wroblewski ratio for different collision types at various energies.]
What is the origin of the strangeness enhancement?

Post-hadronization collisions driving a non-equilibrated system towards equilibrium? (transport models)

Recombination or statistical coalescence of strange quarks from the plasma?

Are strange quarks produced essentially AT the hadronization?

Do we observe a completely equilibrated hadron gas?

STATISTICAL MODEL FITS
Statistical model results in heavy ion collisions

\[
\langle n_j \rangle_{\text{primary}} = \frac{(2S + 1)V}{(2\pi)^3} \gamma_s^{N_s} \int d^3 p \ e^{-\sqrt{p^2 + m_j^2}/T} \ e^{\mu \cdot q_j / T}
\]

Smooth curves for T and μ_B
Results in pp collisions

\[\langle n_j \rangle = \frac{(2S_j + 1)V}{(2\pi)^3} \gamma S N_s \int d^3p \ e^{-\sqrt{p^2 + m_j^2}/T} \ Z(Q - q_j) \]

The role of the chemical factor $Z(Q-q)/Z(Q)$ is crucial in determining the overall strangeness production.
In the framework of this model, the observed strangeness enhancement might be the result of the simple increase of system size.

But it seems that this is not enough...
Statistical model: strangeness undersaturation parameter γ_s

![Graph showing γ_s vs. $\sqrt{s_{NN}}$ for different collision energies and systems.](image)

Study of the freeze-out conditions and strangeness undersaturation parameter as a function of collision centrality

The decrease of γ_S at low centrality is confirmed by other analyses, e.g.
Strangeness correlation volume (SCV) = volume within which $S=0$

Assume exact strangeneness conservation enforced in *subregions* with $S=0$
This entails a reduction of multiplicity of OPEN STRANGE hadrons

SCV is significantly small even for the most central events and it is proportional to *some function of* N_w

The ϕ meson: γ_s^2 suppressed, no canonical suppression

No contribution from decays of heavier states

$$\langle n_\phi \rangle = \frac{(2S_\phi + 1)V}{(2\pi)^3} \gamma_s^2 \int d^3p \ e^{-\sqrt{p^2+m^2}/T}$$

Cannot be explained by canonical suppression in any version
Core-corona model

V. Pantuev, JETP lett. 85 (2007) 107

An effective definition:
Corona as the number of nucleons colliding once in a Glauber Monte-Carlo model

Introduced in:
pp collisions: works very well with the same T

\[
\langle n_j \rangle = \frac{(2S_j + 1)V}{(2\pi)^3} \gamma S \times N_s \int d^3p \ e^{-\sqrt{p^2 + m_j^2}/T} \frac{Z(Q - q_j)}{Z(Q)}
\]
For the ϕ meson, A is independent of centrality!

PHOBOS Collaboration,
Run a Glauber Monte-Carlo and calculate N_{IC}, N_P

Fix A from, say, the most central bin and compare with the data of ϕ meson at RHIC

Run a Glauber Monte-Carlo and calculate N_{RC}, N_P

Fix A from, say, the most central bin and compare with the data of ϕ meson at RHIC

Strangeness enhancement for hyperons

Canonical suppression is a only a correction at low N_p
Replacing γ_s with N_{PC} in statistical model fits to multiplicities: very good agreement with Glauber model
Effectiveness of core-corona model with Glauber-based definition confirmed by subsequent studies

Working hypotheses

Core: *large* (=deconfinement) region successor of the plasma producing a hadron gas at full chemical equilibrium

At sufficiently low energy one expects no core, so the search of the onset of deconfinement could be possibly accomplished by finding where a SHM fits with a core at full chemical equilibrium **fails**
Where is the onset of full chemical equilibrium in the core?

Need to re-analyze carefully SPS, AGS data as a function of centrality and system size but we also need new data in this energy range.
What is the origin of full chemical equilibrium in the core?

- **Collisional equilibration**

 no dependence of T on centrality (U. Heinz, G. Kestin, CPOD Florence 2006, nucl-th 0612015)
 multi-meson collisions cannot reproduce Ω yields (J. Kapusta, SQM03); need of introducing “Hagedorn states” which decay statistically (C. Greiner et al., arXiv:0711.0930, nucl-th/0703079)

- **Direct statistical hadronization**

 full equilibrium

U. Heinz, G. Kestin, CPOD Florence 2006, nucl-th 0612015
CONCLUSIONS

- At RHIC the strangeness production as a function of centrality can be explained by a geometrical core-corona superposition.
 ϕ meson is the key probe
- The core, at RHIC and top SPS energy, is consistent with a completely equilibrated hadron gas throughout all centralities whereas corona is best described as NN collisions where at least one of the nucleons undergoes one collision in a Glauber model
- The core-corona superposition should be seen in all observables and other independent studies seem to confirm it
- If the fully equilibrated core is a by-product of the deconfinement, it should disappear at some low energy. Can this be detected as a failure of statistical model?
PROBLEMS

Does the hadron-resonance gas model hold when $T < 100$ MeV?
Based on the theory (Dashen-Ma-Bernstein theorem) one expects corrections
due to non-resonant interactions. Difficult to assess, no study in literature.

How to subtract the “corona”? Can the “corona” be defined the same way
as at high energy?
Glauber model is not expected to work at low energy.

Common wisdom is that statistical model in its simplest hadron-resonance
gas implementation works for AB collisions at low energy even without γS

J. Cleymans, arXiv:1005.4114

Some points are Au-Au based on very few and old measurements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(MeV)</td>
<td>80.6</td>
<td>4.2</td>
</tr>
<tr>
<td>μ_B(MeV)</td>
<td>815</td>
<td>35</td>
</tr>
<tr>
<td>γ_S</td>
<td>0.47</td>
<td>0.13</td>
</tr>
<tr>
<td>V(fm3)</td>
<td>169.</td>
<td>90</td>
</tr>
<tr>
<td>χ^2</td>
<td>9.5/3</td>
<td></td>
</tr>
</tbody>
</table>

To be confirmed...

It would be interesting to have a Ξ measurement in FOPI to compare with HADES
However, there are two recent analyses (2009-2010) based on new data: HADES Ar-KCl $T_{\text{beam}} = 1.76 \text{ A GeV}$ and FOPI Al-Al $T_{\text{beam}} = 1.9 \text{ A GeV}$

Cross-check: using the same data set, we get fairly consistent results.

However, it seems that the fit sensitivity is rather poor, at least in FOPI case. **POSSIBLE REASON:** the FOPI fit uses ONLY ratios, which is not suitable when the system is small, because the volume dependence is only through the canonical chemical factors and no longer as an overall normalization factor...
Is it all in the volume of the fireballs-clusters \textit{(deconfinement)}?