Written Exam MFN 1072 Quantum Mechanics

22 January 2013, 2.30-4.30 PM

Please read the following IMPORTANT INSTRUCTIONS

Answer at most TWO questions. Only two questions will be marked. A pass is obtained for one complete answer .

You may not use notes or textbooks, but the lecture notes etc are available for consultation at the front desk.

1 A particle is in the *n*-th energy state $\psi_n(x)$ of an infinite square well potential with width L.

a) Calculate the functions $\psi_n(x)$ and their energies E_n .

b) Determine the probability $P_n(\frac{1}{a})$ that the particle is confined to the first $\frac{1}{a}$ of the width of the well.

c) What is $P_n(\frac{1}{a})$ for n large? How does this compare with the classical result?

2 The wave function $\psi(x) = A x e^{-\alpha x^2}$ describes a state of a one-dimensional harmonic oscillator, provided the constant α is chosen appropriately.

a) Determine an expression for α in terms of the oscillator mass m and the classical frequency of vibration ω .

b) Determine the energy of this state and normalise the wave function $\psi(x)$.

(You may need $\int_{-\infty}^{\infty} dx e^{-\lambda x^2} = \sqrt{\frac{\pi}{\lambda}}, \quad \int_{-\infty}^{\infty} dx x^2 e^{-\lambda x^2} = \frac{1}{2\lambda} \sqrt{\frac{\pi}{\lambda}}$)

3 A quantum system has only two normalised energy eigenstates $|1\rangle$ and $|2\rangle$, corresponding to energy eigenvalues E_1 , E_2 . An operator A acts on these energy eigenstates as $A |1\rangle = |2\rangle$, $A |2\rangle = |1\rangle$ (A can be regarded as a sort of parity operator).

a) What are the eigenvalues of A and what are its eigenstates?

b) At time t = 0 the system is in a positive/even parity eigenstate. Determine the probability of finding the system with positive/even parity at times t > 0. (You may find it useful to express $|1\rangle$ and $|2\rangle$ in terms of the eigenstates of A)

4 The normalised wave function for the ground state of the hydrogen atom is $\psi = Ae^{-\alpha r}$ where A, α , are constants and r is the electron–nucleus distance.

a) Show that
$$A^2 = \frac{\alpha^3}{\pi}$$

b) Calculate the expectation value $\langle r \rangle$

c) What is the probability of finding the electron between r and r + dr? For what value of r is it a maximum?

(You may need $\int_0^\infty x^n e^{-x} dx = n!$)