# Written Exam MFN 1072 Quantum Mechanics 

## 22 January 2013, 2.30-4.30 PM

## Please read the following IMPORTANT INSTRUCTIONS

Answer at most TWO questions. Only two questions will be marked. A pass is obtained for one complete answer .

You may not use notes or textbooks, but the lecture notes etc are available for consultation at the front desk.

1 A particle is in the $n$-th energy state $\psi_{n}(x)$ of an infinite square well potential with width $L$.
a) Calculate the functions $\psi_{n}(x)$ and their energies $E_{n}$.
b) Determine the probability $P_{n}\left(\frac{1}{a}\right)$ that the particle is confined to the first $\frac{1}{a}$ of the width of the well.
c) What is $P_{n}\left(\frac{1}{a}\right)$ for $n$ large? How does this compare with the classical result?

2 The wave function $\psi(x)=A x \mathrm{e}^{-\alpha x^{2}}$ describes a state of a one-dimensional harmonic oscillator, provided the constant $\alpha$ is chosen appropriately.
a) Determine an expression for $\alpha$ in terms of the oscillator mass $m$ and the classical frequency of vibration $\omega$.
b) Determine the energy of this state and normalise the wave function $\psi(x)$.
(You may need $\int_{-\infty}^{\infty} d x \mathrm{e}^{-\lambda x^{2}}=\sqrt{\frac{\pi}{\lambda}}, \quad \int_{-\infty}^{\infty} d x x^{2} \mathrm{e}^{-\lambda x^{2}}=\frac{1}{2 \lambda} \sqrt{\frac{\pi}{\lambda}}$ )
3 A quantum system has only two normalised energy eigenstates $|1\rangle$ and $|2\rangle$, corresponding to energy eigenvalues $E_{1}, E_{2}$. An operator $A$ acts on these energy eigenstates as $A|1\rangle=|2\rangle, A|2\rangle=|1\rangle(A$ can be regarded as a sort of parity operator).
a) What are the eigenvalues of $A$ and what are its eigenstates?
b) At time $t=0$ the system is in a positive/even parity eigenstate. Determine the probability of finding the system with positive/even parity at times $t>0$. (You may find it useful to express $|1\rangle$ and $|2\rangle$ in terms of the eigenstates of $A$ )

4 The normalised wave function for the ground state of the hydrogen atom is $\psi=A \mathrm{e}^{-\alpha r}$ where $A, \alpha$, are constants and $r$ is the electron-nucleus distance.
a) Show that $A^{2}=\frac{\alpha^{3}}{\pi}$
b) Calculate the expectation value $\langle r\rangle$
c) What is the probability of finding the electron between $r$ and $r+d r$ ? For what value of $r$ is it a maximum?
(You may need $\int_{0}^{\infty} x^{n} \mathrm{e}^{-x} d x=n!$ )

