Written Exam MFN 0740-1274-1072 Quantum Mechanics

19 June 2012, 2.30-4.30 PM

Please read the following INSTRUCTIONS

- A. Answer at most TWO questions. A pass is obtained for one complete answer.
- B. You may not use notes or textbooks, but the lecture notes etc are available for consultation at the front desk.
- 1 The Hamiltonian for a one-dimensional simple harmonic oscillator of mass m and angular frequency ω is

$$H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}.$$

a) Show that, if $[x,p] = i\hbar$, and $\langle x(t) \rangle$ and $\langle p(t) \rangle$ are the expectation values of x(t) and p(t) at time t, they satisfy *precisely* the classical equations, i.e.

$$m\frac{d < x(t)>}{dt} = < p(t)>, \quad \frac{d < p(t)>}{dt} = -m\omega^2 < x(t)>.$$

b) The state of the oscillator at time t = 0 is given by

$$\psi(x) = \left(\frac{\alpha^2}{\pi}\right)^{\frac{1}{4}} \left(\frac{\alpha x}{\sqrt{2}} + (\alpha x)^2\right) \exp\left(-\frac{\alpha^2 x^2}{2}\right), \quad \alpha = \left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}.$$

and the three lowest energy wavefunctions are

$$\psi_0(x) = \left(\frac{\alpha^2}{\pi}\right)^{\frac{1}{4}} \exp\left(-\frac{\alpha^2 x^2}{2}\right),$$

$$\psi_1(x) = \left(\frac{\alpha^2}{\pi}\right)^{\frac{1}{4}} (\sqrt{2}\alpha x) \exp\left(-\frac{\alpha^2 x^2}{2}\right),$$

$$\psi_2(x) = \left(\frac{\alpha^2}{\pi}\right)^{\frac{1}{4}} \frac{(2\alpha^2 x^2 - 1)}{\sqrt{2}} \exp\left(-\frac{\alpha^2 x^2}{2}\right).$$

What are their corresponding energies E_0, E_1, E_2 ?

c) Show that the initial state can be expressed as

$$\psi(x) = A_0 \psi_0(x) + A_1 \psi_1(x) + A_2 \psi_2(x)$$

with A_0, A_1, A_2 constants, and evaluate these constants. What is their meaning?

2 A particle in a potential well U(x) is initially in a state whose wavefunction $\psi(x,0)$ is an equal-weight superposition of the ground state and first excited state wavefunctions: $\psi(x,0) = C(\psi_1(x) + \psi_2(x))$.

(CONTINUED)

- a) Show that the value $C = \frac{1}{\sqrt{2}}$ normalises $\psi(x,0)$, assuming that ψ_1 and ψ_2 are themselves normalised.
- b) Assuming you know the ground and first excited state energies E_1 and E_2 , determine $\psi(x,t)$ at any later time t.
- c) Show that the average energy $\langle E \rangle$ for $\psi(x,t)$ is the arithmetic mean of E_1 and E_2 , that is

 $\langle E \rangle = \frac{E_1 + E_2}{2}.$

- d) Determine the uncertainty ΔE of energy for $\psi(x,t)$.
- **3** a) Define a hermitian operator in Quantum Mechanics
- b) Show that the eigenvalues of a hermitian operator are real, and give two examples.
- c) Define parity in Quantum Mechanics. Is the corresponding operator hermitian?
- d) Show that wave functions of opposite parity are orthogonal, and give an example.
- e) Show that the wavefunctions of the infinite potential well (V=0 if |x| < a) $V = \infty$ otherwise), have definite parity.
- 4 a) Define the single particle angular momentum operators L_x, L_y, L_z in terms of the position and momentum operators for the particle.
- b) Assuming $[x, p_x] = i\hbar$ etc, show that

$$[L_x, L_y] = i\hbar L_z, \quad [L_y, L_z] = i\hbar L_x, \quad [L_z, L_x] = i\hbar L_y$$

c) Defining $L^2 = L_x^2 + L_y^2 + L_z^2$, show that

$$[L^2, L_x] = [L^2, L_y] = [L^2, L_z] = 0,$$

- d) Show that the eigenvalues of L^2 are all positive or zero.
- e) A point particle moving in three dimensions is described by a wave function

$$\phi(\vec{r}) = cz \exp\left(-\alpha r^2\right)$$

where c and α are constants and $r^2 = x^2 + y^2 + z^2$. Assuming that $\phi(\vec{r})$ is an eigenfunction of L^2 , is it also an eigenfunction of L_z ? If so, what is its eigenvalue?

f) Are there any other eigenfunctions of L_z and L^2 ? (You may wish to use the operators $L_{+} = L_{x} + iL_{y}$ and $L_{-} = L_{x} - iL_{y}$)