Written Exam MFN 0740-1274-1072 Quantum Mechanics

19 June 2012, 2.30-4.30 PM

Please read the following INSTRUCTIONS

A. Answer at most TWO questions. A pass is obtained for one complete answer.
B. You may not use notes or textbooks, but the lecture notes etc are available for consultation at the front desk.

1 The Hamiltonian for a one-dimensional simple harmonic oscillator of mass m and angular frequency ω is

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2}
$$

a) Show that, if $[x, p]=i \hbar$, and $\langle x(t)>$ and $\langle p(t)>$ are the expectation values of $x(t)$ and $p(t)$ at time t, they satisfy precisely the classical equations, i.e.

$$
m \frac{d<x(t)>}{d t}=<p(t)>, \quad \frac{d<p(t)>}{d t}=-m \omega^{2}<x(t)>
$$

b) The state of the oscillator at time $t=0$ is given by

$$
\psi(x)=\left(\frac{\alpha^{2}}{\pi}\right)^{\frac{1}{4}}\left(\frac{\alpha x}{\sqrt{2}}+(\alpha x)^{2}\right) \exp \left(-\frac{\alpha^{2} x^{2}}{2}\right), \quad \alpha=\left(\frac{m \omega}{\hbar}\right)^{\frac{1}{2}}
$$

and the three lowest energy wavefunctions are

$$
\begin{gathered}
\psi_{0}(x)=\left(\frac{\alpha^{2}}{\pi}\right)^{\frac{1}{4}} \exp \left(-\frac{\alpha^{2} x^{2}}{2}\right) \\
\psi_{1}(x)=\left(\frac{\alpha^{2}}{\pi}\right)^{\frac{1}{4}}(\sqrt{2} \alpha x) \exp \left(-\frac{\alpha^{2} x^{2}}{2}\right), \\
\psi_{2}(x)=\left(\frac{\alpha^{2}}{\pi}\right)^{\frac{1}{4}} \frac{\left(2 \alpha^{2} x^{2}-1\right)}{\sqrt{2}} \exp \left(-\frac{\alpha^{2} x^{2}}{2}\right) .
\end{gathered}
$$

What are their corresponding energies E_{0}, E_{1}, E_{2} ?
c) Show that the initial state can be expressed as

$$
\psi(x)=A_{0} \psi_{0}(x)+A_{1} \psi_{1}(x)+A_{2} \psi_{2}(x)
$$

with A_{0}, A_{1}, A_{2} constants, and evaluate these constants. What is their meaning?

2 A particle in a potential well $U(x)$ is initially in a state whose wavefunction $\psi(x, 0)$ is an equal-weight superposition of the ground state and first excited state wavefunctions: $\psi(x, 0)=C\left(\psi_{1}(x)+\psi_{2}(x)\right)$.
(CONTINUED)
a) Show that the value $C=\frac{1}{\sqrt{2}}$ normalises $\psi(x, 0)$, assuming that ψ_{1} and ψ_{2} are themselves normalised.
b) Assuming you know the ground and first excited state energies E_{1} and E_{2}, determine $\psi(x, t)$ at any later time t .
c) Show that the average energy $\langle E\rangle$ for $\psi(x, t)$ is the arithmetic mean of E_{1} and E_{2}, that is

$$
<E>=\frac{E_{1}+E_{2}}{2}
$$

d) Determine the uncertainty ΔE of energy for $\psi(x, t)$.

3 a) Define a hermitian operator in Quantum Mechanics
b) Show that the eigenvalues of a hermitian operator are real, and give two examples.
c) Define parity in Quantum Mechanics. Is the corresponding operator hermitian?
d) Show that wave functions of opposite parity are orthogonal, and give an example.
e) Show that the wavefunctions of the infinite potential well ($V=0$ if $|x|<a$, $V=\infty$ otherwise), have definite parity.

4 a) Define the single particle angular momentum operators L_{x}, L_{y}, L_{z} in terms of the position and momentum operators for the particle.
b) Assuming $\left[x, p_{x}\right]=i \hbar$ etc, show that

$$
\left[L_{x}, L_{y}\right]=i \hbar L_{z}, \quad\left[L_{y}, L_{z}\right]=i \hbar L_{x}, \quad\left[L_{z}, L_{x}\right]=i \hbar L_{y}
$$

c) Defining $L^{2}=L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z}{ }^{2}$, show that

$$
\left[L^{2}, L_{x}\right]=\left[L^{2}, L_{y}\right]=\left[L^{2}, L_{z}\right]=0
$$

d) Show that the eigenvalues of L^{2} are all positive or zero.
e) A point particle moving in three dimensions is described by a wave function

$$
\phi(\vec{r})=c z \exp \left(-\alpha r^{2}\right)
$$

where c and α are constants and $r^{2}=x^{2}+y^{2}+z^{2}$. Assuming that $\phi(\vec{r})$ is an eigenfunction of L^{2}, is it also an eigenfunction of L_{z} ? If so, what is its eigenvalue?
f) Are there any other eigenfunctions of L_{z} and L^{2} ? (You may wish to use the operators $L_{+}=L_{x}+i L_{y}$ and $L_{-}=L_{x}-i L_{y}$)

