Written Exam MFN 1072 Quantum Mechanics

25 September 2012, 2.30-4.30 PM

Please read the following INSTRUCTIONS

- A. Answer at most TWO questions. A pass is obtained for one complete answer.
- B. You may not use notes or textbooks, but the lecture notes etc are available for consultation at the front desk.
- 1 The Hamiltonian for a one-dimensional simple harmonic oscillator of mass m and angular frequency ω is

$$H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}.$$

a) Show that, if $[x,p] = i\hbar$, and $\langle x(t) \rangle$ and $\langle p(t) \rangle$ are the expectation values of x(t) and p(t) at time t, they satisfy *precisely* the classical equations, i.e.

$$m\frac{d < x(t)>}{dt} = < p(t)>, \quad \frac{d < p(t)>}{dt} = -m\omega^2 < x(t)>.$$

b) The state of the oscillator at time t=0 is given by

$$\psi(x) = \left(\frac{\alpha^2}{\pi}\right)^{\frac{1}{4}} \left(\frac{\alpha x}{\sqrt{2}} + (\alpha x)^2\right) \exp\left(-\frac{\alpha^2 x^2}{2}\right), \quad \alpha = \left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}}.$$

and the three lowest energy wavefunctions are

$$\psi_0(x) = \left(\frac{\alpha^2}{\pi}\right)^{\frac{1}{4}} \exp\left(-\frac{\alpha^2 x^2}{2}\right),$$

$$\psi_1(x) = \left(\frac{\alpha^2}{\pi}\right)^{\frac{1}{4}} (\sqrt{2}\alpha x) \exp\left(-\frac{\alpha^2 x^2}{2}\right),$$

$$\psi_2(x) = \left(\frac{\alpha^2}{\pi}\right)^{\frac{1}{4}} \frac{(2\alpha^2 x^2 - 1)}{\sqrt{2}} \exp\left(-\frac{\alpha^2 x^2}{2}\right).$$

What are their corresponding energies E_0, E_1, E_2 ?

c) Show that the initial state can be expressed as

$$\psi(x) = A_0 \psi_0(x) + A_1 \psi_1(x) + A_2 \psi_2(x)$$

with A_0, A_1, A_2 constants, and evaluate these constants. What is their meaning?

2 A particle in a potential well U(x) is initially in a state whose wavefunction $\psi(x,0)$ is an equal-weight superposition of the ground state and first excited state wavefunctions: $\psi(x,0) = C(\psi_1(x) + \psi_2(x))$.

(CONTINUED)

- a) Show that the value $C = \frac{1}{\sqrt{2}}$ normalises $\psi(x,0)$, assuming that ψ_1 and ψ_2 are themselves normalised.
- b) Assuming you know the ground and first excited state energies E_1 and E_2 , determine $\psi(x,t)$ at any later time t.
- c) Show that the average energy $\langle E \rangle$ for $\psi(x,t)$ is the arithmetic mean of E_1 and E_2 , that is

$$\langle E \rangle = \frac{E_1 + E_2}{2}.$$

- d) Determine the uncertainty ΔE of energy for $\psi(x,t)$.
- **3** a) Define a hermitian operator in Quantum Mechanics
- b) Show that the eigenvalues of a hermitian operator are real, and give two examples.
- c) Define parity in Quantum Mechanics. Is the corresponding operator hermitian?
- d) Show that wave functions of opposite parity are orthogonal, and give an example.
- e) Show that the wavefunctions of the infinite potential well $(V = 0 \text{ if } |x| < a, V = \infty \text{ otherwise})$, have definite parity.
- **4** Assume that, in spherical polar coordinates (r, θ, ϕ) , the z-component of angular momentum L_z is represented by $-i\hbar\partial/\partial\phi$, where ϕ is the polar angle, in the range $(0, 2\pi)$. Show that L_z has eigenvalues $m\hbar$, with m an integer.
- b) The following three states describe the motion of a particle moving in three dimensions

$$\psi_1(r) = \frac{c}{\sqrt{2}}(x+iy)\exp{-r^2}$$

$$\psi_2(r) = \frac{c}{\sqrt{2}}(x - iy) \exp{-r^2}$$

$$\psi_3(r) = cz \exp{-r^2}$$

where c is a normalisation constant and $r^2 = x^2 + y^2 + z^2$.

Verify, using Cartesian coordinates x, y, z, that each of these states is an eigenstate of L_z and find the corresponding eigenvalues.

c) Describe the possible outcomes of measuring L_z for a particle in the state

$$\psi(r) = \frac{c}{\sqrt{5}}(2z - x)\exp{-r^2}$$