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ABSTRACT

The second-order, three-dimensional, finite-depth wave theory is here used to investigate the statistical
properties of the surface elevation and wave crests of field data from Lake George, Australia. A direct
comparison of experimental and numerical data shows that, as long as the nonlinearity is small, the second-
order model describes the statistical properties of field data very accurately. By low-pass filtering the Lake
George time series, there is evidence that some energetic wave groups are accompanied by a setup instead
of a setdown. A numerical study of the coupling coefficient of the second-order model reveals that such an
experimental result is consistent with the second-order theory, provided directional spreading is included in
the wave spectrum. In particular, the coupling coefficient of the second-order difference contribution
predicts a setup as a result of the interaction of two waves with the same frequency but with different
directions. This result is also confirmed by numerical simulations. Bispectral analysis, furthermore, indicates
that this setup is a statistically significant feature of the observed wave records.

1. Introduction

Statistical properties of surface gravity waves are es-
sential for engineering purposes, such as the prediction
of wave forces and structural responses (see, e.g., Goda
2000). For many years, it has been common practice to
model the sea surface at a fixed point as a Gaussian
random process (linear wave theory; Ochi 1998). In na-
ture, however, waves tend to behave differently; crests
are higher and troughs are shallower than predicted by
linear theory. Furthermore, the departure from Gauss-
ian statistics increases when the waves become steeper
or the water depth becomes shallower (Ochi 1998).
Such deviations are critical for predictions of extreme
waves. Extreme waves are rare, their statistical proper-
ties are poorly known, and therefore their probabilities

are usually predicted on the basis of extrapolations of
distributions obtained for regular waves. Extreme
waves, however, are mostly steep and highly nonlinear,
and therefore deviations from Gaussian statistics are
expected. In this respect, addition of the high-order
Stokes-type terms to the linear approximation results in
a more accurate description of the surface elevation
(Whitham 1974).

An expression for the second-order correction to the
linear wave theory was proposed by Hasselmann
(1962), Longuet-Higgins and Stewart (1962), Longuet-
Higgins (1963), and Sharma and Dean (1981). In prin-
ciple, the model is able to include the effects of wave
steepness, water depth, and directional spreading with
no approximation other than the truncation of a small-
amplitude expansion to the second order. Explorations
of this method for short-crested waves (see, e.g., For-
ristall 2000; Prevosto et al. 2000; Jensen 2005) have
shown that statistical properties of second-order simu-
lated time series agree relatively well with field mea-
surements in both deep and intermediate water depth.
Note, however, that if the waves are long crested and
narrow banded, modulational instability can develop
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and, as a result, wave crests can be much larger than the
ones predicted by the second-order model (Janssen
2003; Socquet-Juglard et al. 2005; Onorato et al. 2006).
Analysis of low-frequency wave components (e.g., Her-
bers et al. 1994), moreover, showed that second-order
theory could also accurately represent measured locally
forced infragravity motions.

The second-order wave theory was also used by
Walker et al. (2004) to analyze the so-called New
Year’s wave, measured in 1995 at the Draupner oil field
(in the central North Sea). The experimental data were
low-pass filtered, and it was recognized that under the
wave packet that contains the extreme wave, an anoma-
lous setup, instead of an expected setdown, was
present. They concluded that this result was inconsis-
tent with second-order theory and some new physics
should be incorporated. However, Okihiro et al. (1992)
have shown theoretically that, in particular directional
conditions, wave groups can actually force bound infra-
gravity waves, which are in phase with the group enve-
lope; this would, in principle, yield a setup of the mean
free surface.

In the present study, we discuss the behavior of the
second-order low-frequency response, and in particular
the formation of the setup under energetic wave groups
in short-crested sea states. We will also elaborate on the
contribution of long waves to the amplitude of the larg-
est crests, and the consequent change of the form of the
wave crest distribution. Field measurements from Lake
George in water of finite depth are used to support this
analysis.

The paper is organized as follows: we first begin with
a rapid description of the second-order model, includ-
ing some details on the nonlinear parameters that can
be derived if the narrowband approximation is per-
formed. In section 3, we briefly describe the observed
wave fields as well as the numerical simulations that are
used herein. For selected classes of nonlinearity, the
distribution of observed wave elevations and crest am-
plitudes is compared with second-order predictions; the
findings are presented in section 4. In section 5, we
discuss the behavior of the low-frequency fluctuations
in relation to numerical simulations and field experi-
ments; a bispectral analysis of the low-frequency com-
ponents is also presented. In section 6, the influence of
the long-wave components on the wave crest distribu-
tion is shown. Some concluding remarks are presented
in the last section.

2. The second-order wave theory

Under the hypothesis of irrotational, inviscid fluid
with constant depth, it is straightforward to show that a

first-order (linear) solution of the Euler equations for
surface gravity waves (Whitham 1974) takes the follow-
ing form:

��1��x, t� � �
i�1

N

�
l�1

M

ail cos�ki�x cos�l � y sin�l� � �i t � �il	,

�1�

where t is time, x � (x, y) is the position vector, 
i is the
angular frequency, �l is the wave direction, and �il is the
phases; ki is related to frequency through the linear
dispersion relation 
i � gki tanh(kih); N is the total
number of frequencies and M is the total number of
directions considered in the model; and ail are the spec-
tral amplitudes, which are calculated as follows:

ail � a��i, �l� � 2E��i, �l�����, �2�

where E(
i, �l) is the spectral density function. Note
that Hasselmann (1962) also considered the random
variation of the amplitudes in order to look in a proper
statistical framework. By performing a few tests con-
sidering the amplitudes as random and deterministic
variables, no significant differences were found in the
probability distribution of normalized crest heights,
which, for the linear case, fits the Rayleigh distribution.
This is in agreement with Forristall (2000), who indi-
cated that if a directional sea is simulated, the addition
of different directional components, each with a ran-
dom phase, at the same frequency automatically re-
stores the statistical variability of the amplitudes.

The second-order correction to the linear wave sur-
face [Eq. (1)] has the following form (see Sharma and
Dean 1981):

��2��x, t� �
1
4 �

i,j�1

N

�
l,m�1

M

ailajm�Kijlm
� cos��il � �jm�

� Kijlm
� cos��il � �jm�	, �3�

where �il � ki(x cos �l � y sin �l) � 
i t � �il, and K�
ijlm

and K�
ijlm are the coefficients of the sum and difference

contributions. Their analytical expressions are reported
in the appendix. Details concerning numerical aspects
can be found in Sharma and Dean (1981), Dalzell
(1999), and Forristall (2000).

Nonlinear parameters

When the water depth decreases the wave steepness
is no longer the appropriate parameter to characterize
the nonlinearity of the waves. To have some perspec-
tive on the relevance of the second-order contribution,
it is instructive to look at the monochromatic limit, that
is, ki � kj � k and �l � �m � 0, of the coefficients K�
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and K� [Eqs. (A1)–(A7)]. For K� the calculation is
straightforward and leads to

K� �
k�4 tanh�kh� � tanh�2kh�	�1 � tanh�kh�2	

tanh�kh��2 tanh�kh� � tanh�2kh�	

� 2k tanh�kh�. �4�

The same coefficient, expressed in a different manner,
can be found in Whitham (1974). As kh → �, it is easy
to verify that K� � 2k, while for kh → 0, then K� �
3k/(kh)3. For K� the calculation is a little bit more in-
volved, because the direct substitution of ki � kj � k
and �l � �m � 0 leads to an undetermined form of D�

in Eq. (A4). Therefore, it is necessary to consider the
case of ki � kj � � and then take the limit for � → 0.
This calculation can be performed by taking the Taylor
expansion of the numerator and the denominator in
Eq. (A4) around � � 0. The final form for K� is the
following:

K� �
16k cosh�kh�2�4kh � sinh�2kh�	

�1 � 8�kh�2 � cosh�4kh� � 4kh sinh�4kh�
. �5�

Similar expressions for the second-order difference
contribution (K�) also can be found in Whitham
(1974), Martinsen and Winterstein (1992), Prevosto et
al. (2000), and Janssen and Onorato (2005). As kh → �,
it is easy to verify that K� � �k/(kh), while for kh →
0 then K� � �3k/(kh)3. It is important to note that if
the contribution from D� is ignored, then K� � �2k/
sinh(2kd). This latter expression for low-frequency con-
tribution has been used in the past (see, e.g., Forristall
2000) to include the setdown in the Tayfun (1980) dis-
tribution in finite depth. In Fig. 1, we show these two
forms of K�/k as a function of the relative depth kh; the

correct expression of K� [Eq. (5)], shown as a solid line,
tends to zero very slowly as the water depth increases.

As a result of the monochromatic approximation, the
surface elevation can be written as a second-order
Stokes series:

��x, t� �
1
4

a2K� � a cos��� �
1
4

a2K� cos�2��, �6�

with � � kx � 
t. Two nonlinear parameters, which
measure the relevance of the second-order contribu-
tion, can be identified. The first one is given by the ratio
of the amplitude of the higher harmonic to the ampli-
tude a of the main wave:

�� �
1
4

aK�. �7�

For deep-water waves �� � ka/2, and therefore is pro-
portional to the wave steepness; in the shallow-water
regime, �� � 3ka/(4k3h3), which is the Ursell number
(Ursell 1953; see also Osborne and Petti 1994). To char-
acterize our experimental data, in the rest of the paper
we will use a parameter given by � � 2��; this is simply
because in deep water � reduces exactly to the wave
steepness of a monochromatic wave, that is, � � ka.

The second nonlinear parameter is given by the ratio
of the amplitude of the low-wavenumber contribution
to a:

	 �
1
4

a|K�|. �8�

It is clear that the Stokes series, Eq. (6), is convergent
if both nonlinear parameters are small, therefore, these
two parameters can furnish a first guess on the rel-
evance of the second-order contributions in experimen-
tal data.

3. Datasets: Field measurements and numerical
simulations

Surface elevations are taken from an integrated set of
measurements, which were carried out at the Lake
George field experimental site (Australia) from Sep-
tember 1997 to August 2000 (see Young et al. 2005 for
details). The observations were collected by means of a
spatial array of eight capacitance gauges sufficiently far
from any disturbances at the sampling frequency of 25
Hz; for this analysis the original records have been sub-
divided in 15-min time series.

The lake bottom in the region of the observation site
is very flat. As the lake was drying out, following its
natural cycle, the water depth gradually changed from
1.1 m in the beginning of the measurements down to

FIG. 1. Coupling coefficient K�/k for a monochromatic wave
considering the D� term (solid line) and ignoring the D� term
(dashed line).
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0.4 m by the end of the experiment in year 2000. Under
typical meteorological conditions the range of the rela-
tive depth kh was mainly representative of a deep and
intermediate water depth wind sea. The degree of non-
linearity, as measured by �, varies from a minimum of
about 0.14 for kh k 1 up to 0.70 for kh � 0.70. Note
that � has been defined in the previous section for a
monochromatic wave; for random waves we have used
a � Hs /2, where Hs is the significant wave height of
each individual time series, and k � 2�/�p, where �p is
the wavelength related to the peak period.

To describe the wave field at Lake George, we chose
to approximate the spectral density function with the
Joint North Sea Wave Project (JONSWAP) formula-
tion (Komen et al. 1994), because it is most frequently
used for a variety of applications. According to the
spectral parameters and the spectral form of the mea-
sured records, we construct a JONSWAP-like spectrum
with a peak period of Tp � 1.8 s, a peak enhancement
factor of � � 2.0, and a Phillips parameter of � � 0.02
to provide an average description of the observed spec-
tra; these parameters correspond to a significant wave
height Hs � 0.23 m. The directional distribution can be
expressed by a cos�2s function (e.g., Hauser et al.
2005), where the s coefficient is evaluated as follows:

s��� � �11� �

�p
�2.7

� 
 �p

11� �

�p
��2.4

� � �p

, �9�

where 
p � 2�/Tp is the peak angular frequency. The
expression of s [Eq. (9)] was derived by Young et al.
(1996), who used a maximum likelihood method to fit
Lake George’s data (measured from April 1992 to Oc-
tober 1993) to the analytical form of the spreading func-
tion.

These spectral distributions are used herein as input
to simulate directional surface elevations at a fixed
point {for convenience we assume x � [0, 0]}. A first-
order description of the sea surface is initially calcu-
lated from Eq. (1), choosing the phases � from a uni-
form random distribution in the interval [0, 2�] and
using an inverse fast Fourier transform to perform the
summations in Eq. (1). The second-order corrections
are then calculated for each pair of wave components
using the summations in Eq. (3). Different degrees of
nonlinearity are achieved by performing the simula-
tions at several water depths. Table 1 illustrates the
different relative water depths and nonlinear param-
eters (�, �, and �) that were taken into account.

Repeating a simulation many times with different
random phases for the same spectral density and water

depth gives enough samples to stabilize the statistics at
low probability levels. In a typical run, we would pro-
duce 500 repetitions with 2048 time steps at the sam-
pling frequency of 25 Hz (approximately 25 000 waves);
an angular resolution of 12° is used for these simula-
tions.

4. The distribution for surface elevation and wave
crests

The form of the statistical distribution changes ac-
cording to the values of the nonlinear parameters � and
�. In the following, we investigate whether this behavior
is captured by the second-order simulations for increas-
ing nonlinearity. Because often the extreme values
have an important role in applications, we concentrate
this analysis on the tail of the statistical distribution.

In the remainder of the paper, it is convenient to
normalize the surface elevation by means of the stan-
dard deviation � � m0, where m0 is the spectral
variance. The statistical distributions of the simulated
and measured wave elevation and crest amplitude are
presented in Figs. 2 and 3. Note that we compare
datasets with equivalent nonlinearity. We have, there-
fore, classified the field observations into groups on the
basis of the nonlinear coefficient �; for the present
analysis, only those 15-min time series that fall within
the following classes are considered: 0.17 � � � 0.20,
0.20 � � � 0.23, 0.23 � � � 0.26, and 0.26 � � � 0.29.
For each class we take approximately 25 000 waves to
be consistent with the number of simulated waves.

We first consider the distribution of the surface el-
evation �/�. For a relatively low value of the nonlinear
parameter, that is, � � 0.19, the second-order simula-
tions approximate the measurements well. As the non-
linearity increases, the crests become sharper and
higher while the troughs become broader and less deep.
For � � 0.22 and � � 0.25, the changes of the upper tail
of the distribution seem to be captured by the second-
order interactions, though a departure of the lower tail
increases in magnitude as the value of the nonlinear
parameter increases. At a degree of nonlinearity as
high as � � 0.28 (Fig. 2, bottom-right panel), the simu-
lations generate negative displacements up to 15%

TABLE 1. Relative water depths kh, wave steepness �, nonlinear
parameter �, and second-order difference contribution �.

kh � � �

1.75 0.14 0.19 0.04
1.52 0.15 0.22 0.05
1.39 0.15 0.25 0.07
1.29 0.16 0.28 0.08
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deeper than those of the measurements. In addition, a
deviation of the upper tail of the distribution also be-
comes visible.

We then investigate the statistical distribution of the
crest amplitude (�c/�), which we define as the maxi-
mum elevation of an individual wave (IAHR Working
Group on Wave Generation and Analysis 1986). For a

degree of nonlinearity equivalent to � � 0.19 and � �
0.22, the second-order truncation of a Stokes expansion
provides an adequate description of the observations
(see Fig. 3, top panels). A departure from the simula-
tions, however, becomes visible for a degree of nonlin-
earity as � � 0.25, and increases in magnitude as the
nonlinearity is enhanced (Fig. 3, bottom panels). To

FIG. 3. Statistical distribution of second-order dimensionless crest amplitudes (solid line)
compared with the Rayleigh probability density function (dashed lines) and field measure-
ments (�).

FIG. 2. Statistical distribution of second-order dimensionless wave elevations (solid line)
compared with the Gaussian probability density function (dashed lines) and field measure-
ments (�).
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measure whether this deviation is statistically signifi-
cant, we have estimated the confidence limits for the
statistical distribution of the simulated amplitudes by
means of a bootstrap technique. This method is a re-
sampling procedure, which provides random copies of
the original dataset (see Emery and Thomson 2001 and
references therein). For each bootstrap sample, the sta-
tistical properties, that is, wave crest distribution, can
be recomputed; repeating this process many times
(typically 1000), the asymptotic 95% confidence inter-
val for the probability density function can be evalu-
ated. The tail of the second-order wave crest distribu-
tion and the related uncertainty are presented in Fig. 4.
At a degree of nonlinearity equivalent to � � 0.25, the
distribution of the observed crests lays within the 95%
confidence limits related to the simulated statistics (see
Fig. 4, left panel); the deviation is not statistically sig-
nificant. For values of the nonlinear parameter that
overcome this threshold (e.g., � � 0.28 in this study),
the error that one would make by approximating the
observations with the second-order time series is larger
than the uncertainty of the simulations. Note, however,
that such a result is not totally unexpected, because the
assumption of a small amplitude is not completely sat-
isfied for � � 0.28.

To explain the observed deviation, it is instructive to
look at the fourth-order moment of the probability den-
sity function, the kurtosis, which refers to extreme val-
ues (see, e.g., Mori and Janssen 2006). Although a
Stokes expansion truncated at the second-order pro-

vides a good description of the third-order moment
(i.e., skewness) of the probability density function
(Martinsen and Winterstein 1992), it does not ad-
equately represent the kurtosis (see Socquet-Juglard et
al. 2005). For a degree of nonlinearity as � � 0.25,
however, the observed kurtosis is, on average, close to
the value that one would expect for Gaussian-distri-
buted waves (i.e., linear waves). Because its contribu-
tion is therefore negligible, the second-order theory
gives a proper statistical description of the observations
(the deviation, in fact, is not statistically significant).
For higher nonlinearity, however, the contribution of
kurtosis becomes more relevant. Therefore, third-order
terms should be added to the Stokes expansion in order
to capture this enhancement, which is responsible for
the significant deviation of the wave crest distribution
observed for � � 0.28 (Fig. 4, right panel).

It is also important to note that the JONSWAP pa-
rameterization for the frequency spectrum may not be
adequate in finite water depths, where high values of �
are expected. The probability distribution might as-
sume a slightly different form if, for example, a Texel–
Marsen–Arsloe (TMA) spectral formulation (Bouws et
al. 1985) is used; this has not been investigated though.

5. The low-frequency nonlinear response

a. Behavior of the long-wave components

The most basic feature that one would expect from
second-order interaction is the sharpening of the wave

FIG. 4. Bootstrap uncertainty of the simulated wave crest distribution: second-order crest
distribution (solid line), Rayleigh probability density function (dashed line), 95% confidence
limits (dash–dot line), and field measurements (�).
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crests and the flattening of the wave troughs. This is
expressed by the second-order sum contribution in Eq.
(3), which occurs at the sum of the frequencies of the
interacting wave components. But, the second-order in-
teraction also generates a low-frequency response,
which occurs at the difference of the frequencies and
is phase coupled to the group envelope. For a nar-
row directional distribution, it is expected to depress
the mean sea level, that is, it gives a setdown under
the energetic groups, and to increase it elsewhere
(Longuet-Higgins and Stewart 1962, 1964; Hasselmann
et al. 1963; Elgar and Guza 1985; Okihiro et al. 1992;
Herbers et al. 1994; Dalzell 1999). Thus, the wave en-
velope and low-frequency components result in a phase
shift of �. An example of the second-order difference
contribution is presented in Fig. 5 for a degree of non-
linearity � � 0.25 (� � 0.07); the profile was simulated
by using a JONSWAP-like spectrum (Tp � 1.8 s, � �
2.0, � � 0.02) and a cos�2s directional function, with s
defined as in Eq. (9).

An estimation of the setdown can be extracted by
low-pass filtering the wave signal with a cutoff fre-
quency of 
 � 0.5 
p. The approximated low-frequency
response is presented as a dashed line in Fig. 5b. The
choice of the cutoff frequency is consistent with the
work by Walker et al. (2004), who separated the sec-
ond-order difference contribution from the measured
records. In the remainder of the paper, this approxima-
tion will be used to represent the low-frequency re-
sponse.

In nature, sometimes, the low-frequency components
may behave differently from the second-order narrow-

band prediction. Walker et al. (2004), analyzing the
Draupner New Year wave (Haver and Andersen 2000),
showed that the low-frequency contribution resulted in
an elevation setup of the mean free surface under the
largest wave height. The particular meteorological and
oceanographic conditions at the time of the event and
the bathymetry defined a nonlinear coefficient � �
0.18; satellite measurements close to this location indi-
cate that this event was fairly short crested (Nieto-
Borge et al. 2004). Although unexpected, a similar fea-
ture can be extensively seen under many (but not all)
energetic groups in Lake George’s dataset. Despite the
fact that it appears for any considered degree of non-
linearity, it is more common for high values of � and �,
that is, � � 0.25 and � � 0.07. Two examples of the
observed setup, which has been extracted by low-pass
filtering the measured time series, are presented in Figs.
6 and 7 for nonlinearity � � 0.25 (� � 0.07). Filtering

FIG. 7. Example 2 of setup under energetic groups of steep
waves as measured at Lake George’s instrumentation site: (a)
measured profile and (b) filtered low-frequency components; de-
gree of nonlinearity � � 0.25 (� � 0.07).

FIG. 5. Simulated (a) second-order wave profile and (b) low-
frequency response: second-order difference contribution (solid
line) and approximated low-frequency response (dashed line).
The profile was simulated by using a JONSWAP-like spectrum
(Tp � 1.8s, � � 2.0, � � 0.020) and a cos�2s directional function;
the degree of nonlinearity is � � 0.25 (� � 0.07).

FIG. 6. Example 1 of setup under energetic groups of steep
waves as measured at Lake George’s instrumentation site: (a)
measured profile and (b) filtered low-frequency components; de-
gree of nonlinearity � � 0.25 (� � 0.07).
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with progressively lower cut-off frequencies (see, e.g.,
Figs. 6b and 7b) confirms the robustness of this feature.

It is important to note that free infragravity waves
(0.005–0.05 Hz), such as radiated long waves from the
nearby coast, can contaminate the low-frequency range
well offshore (see Okihiro et al. 1992; Herbers et al.
1994, 1995). Because these waves are no longer forced
by wave groups, namely, free infragravity waves are not
phase coupled, they may be responsible for the setup of
the mean free surface (see, e.g., Battjes et al. 2004, and
references therein), if they dominate the infragravity
frequency band. To understand the role of free infra-
gravity waves in the observed time series, we have com-
pared the total, observed, infragravity energy Eobs with
predictions of infragravity, second-order (bound) en-
ergy Ebnd (cf. Herbers et al. 1994); observed and pre-
dicted energies in the infragravity frequency band are
calculated as follows:

Eobs � �
�1

�2

d�̃�
0

2

E��̃, �� d� and �10�

Ebnd � 2�
�1

�2

d�̃�
�̃

�

d��
0

2

d�1�
0

2

���2�

� �� � �̃, �, �1, �2�E�� � �̃, �1�E��, �2� d�2,

�11�

where 
1 � 
̃ � 
2 is the infragravity range expressed
in angular frequency, and E(
, �) is the measured di-
rectional spectrum, which is calculated from the wave
records by using the maximum likelihood method (see

Young et al. 1996 for details). In Fig. 8, the total and
predicted infragravity energies are compared.

Predicted infragravity bound energy (Ebnd) approxi-
mates the total infragravity energy (Eobs) well if surface
gravity waves are very energetic; namely, bound waves
dominate the infragravity frequency range. If the en-
ergy level is small, however, free infragravity waves
contaminate the low-frequency band. Consequently,
the predicted infragravity bound waves underestimate
the total infragravity energy. Nonetheless, because
bound waves contribute, on average, to 60% of the
total energy in the infragravity frequency range, we can
conclude that the influence of free infragravity waves
on the formation of the setup should be marginal.

b. Influence of the directional distribution

Okihiro et al. (1992), Herbers et al. (1994), and Dal-
zell (1999) showed that the second-order interaction
between different directional components could sub-
stantially influence the behavior of the low-frequency
response. In Fig. 9, we show the values that the second-
order difference contribution [Eq. (A2)] assumes for
different relative depths, when the interacting wave
components have identical frequencies, 
i � 
j � 
p,
and different directions, �l � �m. The difference con-
tribution coefficient K� [Eq. (A2)], in particular,
reaches positive, large values as the interacting wave
components propagate with well-separated directions.
In general, for a certain degree of nonlinearity and a
common analytical form of the directional spreading
[e.g., the cos�2s function with s defined as in Eq. (9)],
the contribution of the different directional compo-

FIG. 8. Predicted infragravity (0.005–0.05 Hz) bound wave
energy (Ebnd) vs total observed infragravity wave energy (Eobs).

FIG. 9. Second-order negative interaction kernel (K�) for two
identical frequency (
i � 
j � 
p) with different directions: kh �
1.75 (dotted line); kh � 1.52 (dash–dot line); kh � 1.39 (dashed
line); kh � 1.29 (solid line).
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nents results in a substantial reduction of the amplitude
of the setdown (Dalzell 1999; Toffoli et al. 2006). How-
ever, the second-order low-frequency response could
also produce a positive elevation of the mean sea level,
that is, setup, under energetic wave groups if a more
directionally spread spectrum is considered (see Oki-
hiro et al. 1992). For example, Toffoli et al. (2006) ob-
tained such a result by performing second-order simu-
lations of a bimodal wave field, which was defined by
two identical JONSWAP-like spectra (with a very nar-
row directional spreading) with mean wave directions,
such that �1 � �2 � 90°. In this condition, the second-
order subharmonics were observed to be in phase with
the wave envelope.

In Lake George, the actual directional spreading can
differ from the analytical form, which was chosen to
perform the simulations; the latter, in fact, only repre-
sents an average description of Lake George’s wave
field. The records used for this analysis, for example,
show a relatively broader directional spreading than the
one predicted by Eq. (9) at the energy peak. In Fig. 10,
we compare, as an example, a directional wave spec-
trum observed for � � 0.25 (� � 0.07) and the analyti-
cal form of the directional spectrum. In particular, the
increase of the nonlinear coupling between wave pairs
in finite water depth (this corresponds to high values of
� and � in this work) can result in an enhancement of
the directional spreading of the wave spectra (Young et
al. 1996). Thus, the actual directional distribution, in
some particular cases, may be more directionally

spread than the analytical representation (Fig. 10).
Such directional patterns, therefore, can be responsible
for the generation of the observed setup.

To validate this hypothesis, second-order time series
have been simulated by using progressively broader
input spectra but an identical phase �. At the peak
frequency, Eq. (9) provides a directional spreading
s(
p) � 11; herein, we use a modified form of Eq. (9),
such that s(
p) � 7, 5, and 3. Note that directional
spreading with s(
p) � 5 was rather common at Lake
George (see, e.g., Fig. 6 in Young et al. 1996). As an
example, a part of the simulated wave profile and the
concurrent low-frequency component are presented in
Fig. 11; long waves are extracted by low-pass filtering
the signal with the cutoff frequency 
 � 0.5 
p. For a
directional spreading corresponding to s(
p) � 11, a
setdown is usually observed under energetic groups. As
the spreading becomes wider, the setdown effects re-
duce (cf. Dalzell 1999). However, for very broad direc-
tional distribution [i.e., s(
p) � 5 and 3] the low-fre-
quency component tends to raise the local mean sea
level; when s(
p) � 3, in particular, a setup can be
clearly seen under the largest waves (thick solid line in
Fig. 11b).

c. Bispectra and phase relation of the low-frequency
response

The bispectrum provides a measure of the nonlinear
phase coupling between wave triads with frequencies of

i, 
j, and 
i � 
j (Hasselmann et al. 1963), that is, two

FIG. 10. Example of (a) broad directional wave spectrum at Lake George and (b) analytical
spectrum; degree of nonlinearity � � 0.25 (� � 0.07). The spectra are normalized by using the
concurrent energy peaks.
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primary wave components forcing a secondary wave
component. Here, bispectral analysis is used to investi-
gate the contribution of the low-frequency components
and the phase relation of the forced low-frequency mo-
tion, which were observed at Lake George. For dis-
cretely sampled data, the complex bispectral estimate
B(
i, 
j) can be expressed in terms of Fourier coeffi-
cients (see, e.g., Haubrich 1965; Kim and Powers 1979)

B��i, �j� �  F ��i�F ��j�F*��i � �j�!, �12�

where  ! denotes an expected value, F(
i) is a complex
Fourier coefficient, and the asterisk indicates a complex
conjugate. Whereas the imaginary part of the bispec-
trum is related to the horizontal asymmetry of the wave
profile, the real part is proportional to the skewness
(i.e., vertical asymmetry; see Elgar and Guza 1985).

For the remainder of this study, we shall use a nor-
malized form of the bispectrum; it can be written as
follows (see, e.g., Kim and Powers 1979):

b��i, �j� �
B��i, �j�

 |F ��i�F ��j�|! |F ��i � �j�|!
. �13�

Phase information of the phase-coupled components
can be obtained from the biphase (Kim and Powers
1979), which is defined as

���i, �j� � arctan�ℑ�B��i, �j�	

ℜ�B��i, �j�	
�, �14�

where ℑ() and ℜ() are the imaginary and real parts of
the bispectrum, respectively.

A measure of the nonlinear phase coupling between
primary waves and low-frequency components (K�)

can be estimated by integrating the bispectrum over all
wave pairs with difference frequency 
̂ � 
i � 
j (cf.
Herbers et al. 1994), such that 0 � 
̂ � 0.5
p,

bint � 2�
0

0.5�p

d�̂�
�̂

�

b��, �̂� d�. �15�

To understand the role of the directional distribution
on the integrated bispectrum, we have first undertaken
a bispectral analysis on simulated second-order wave
profiles, where all energy in the low-frequency band is
phase coupled. Long time series (219 points) have been
used to reduce the statistical uncertainty of the results.
In Fig. 12, the biphase (") and the real part (ℜ) of the
integrated bispectrum [Eq. (15)] are presented; a uni-
directional case and two directional cases [s(
p) � 11
and 3], are considered; the degree of nonlinearity is � �
0.25 (� � 0.07).

In the unidirectional case, the formation of the set-
down is related to the fact that the contribution of K�

is negative; this leads to a negative value for the real
part of the integrated bispectrum (cf. Okihiro et al.
1992; Herbers et al. 1994). The biphase ["(bint)], in this
respect, shows that the low-frequency components and
the group envelopes are approximately 180° out of
phase. If the energy is distributed on a fairly broad
directional range [s(
p) � 11], the contribution of K�

reduces. As a result, the amplitude of the setdown re-
duces, and the real part of the bispectrum assumes a
small, negative value [ℜ(bint) � �0.05]; long waves still
show a phase shift of 180° relative to the group enve-
lopes. In the case in which the directional distribution is
very broad [s(
p) � 3], however, the positive contribu-
tion of noncollinear components dominates the differ-
ence-frequency interaction, and hence a setup of the
mean free surface occurs (see also Fig. 11). Conse-

FIG. 11. (a) Second-order profile and (b) low-frequency re-
sponse for progressively broader directional spectra: s(
) � 11
(solid line), s(
) � 7 (dash–dot line), s(
) � 5 (dashed line),
s(
) � 3 (thick solid line). Degree of nonlinearity � � 0.25 and
� � 0.07.

FIG. 12. Biphase (") vs real part (ℜ) of integrated bispectra
(over all wave pairs with difference frequency 0 � 
̂E
# � 0.5
p)
from simulated second-order time series; degree of nonlinearity
� � 0.25 (� � 0.07).
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quently, the value of the integrated bispectrum be-
comes positive [ℜ(bint) � 0.27], and the low-frequency
component and the group envelopes are approximately
in phase ["(bint) � 0].

We now extend the bispectral analysis to the Lake
George dataset. Long time series (219 points) have been
considered to perform the analysis; to this end, wave
records with similar characteristics (i.e., similar Hs, Tp,
and �) have been combined. The biphase and real part
of the integrated bispectra are shown in Fig. 13.

The experimental data show that the real part of the
integrated bispectra assumes both negative and positive
values. When ℜ(bint) � 0, the low-frequency compo-
nent and the group envelopes are approximately 180°
out of phase. Owing to wide directional distributions,
however, the real parts of the observed, integrated
bispectra can become positive, as predicted by the sec-
ond-order theory. For these cases, the low-frequency
response and the group envelopes are approximately in
phase. This confirms, to some extent, that the formation
of the setup (Figs. 6 and 7) is a statistically significant
feature of the observed, bound low-frequency response.

6. Effect of setup on the wave crest distribution

For broad directional spreading, the formation of a
setup produces a positive contribution to the second-
order surface elevation; this may lead to an increase of
the amplitude of the largest crests. In Fig. 14, we show
an individual wave, corrected to the second order,
which has been obtained with progressively wider di-
rectional spreading and an identical phase. For a direc-
tional distribution characterized by s(
p) � 3, the wave
crest is up to 8% higher than the one simulated with a
narrower directional distribution, that is, s(
p) � 11
[Eq. (9)].

It is now instructive to verify whether the setup
changes the form of the wave crest distribution in a
random wave field. An additional set of 500 random
time series, therefore, have been simulated by using a
modified form of the spreading function in Eq. (9), such
that s(
p) � 3; only nonlinear coefficients � � 0.25
(� � 0.07) have been considered herein. The distribu-
tion of the crest amplitude is presented in Fig. 15; it is
compared with the probability density function related
to a narrower directional spreading [s(
p) � 11], which
does not produce setup. Although, for a broad direc-
tional distribution, the setup contributes positively to
the amplitude of the wave crests, the form of the prob-
ability density function does not change significantly.
The wave crest distribution, in fact, lies within the 95%
confidence limits, which are associated to the crest
height distribution of a wave field with narrower direc-
tional spreading.

7. Conclusions

Simulated times series corrected to second order
have been used to study the form of the wave crest
distribution at different degrees of nonlinearity in a fi-
nite water depth environment. Field measurements
from Lake George’s instrumentation site (Australia)
have been used to support this research.

The simulations have been performed by using a
JONSWAP-like frequency spectrum and a cos�2s
directional function, such that they represent an aver-
age description of the observed wave field. The statis-
tical properties, derived from a second-order wave
model, provide a good approximation of the measure-

FIG. 13. Biphase (") vs real part (ℜ) of observed, integrated
bispectra (over all wave pairs with difference frequency 0 �

̂E
# � 0.5
p). FIG. 14. Second-order wave profile: s(
p) � 11 (solid line),

s(
p) � 7 (dash–dot line), s(
p) � 5 (dashed line), and s(
p) � 3
(thick solid line). Degree of nonlinearity � � 0.25 (� � 0.07).
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ments. However, for large degrees of nonlinearity (i.e.,
� $ 0.25), a deviation of the observed wave crest dis-
tribution can be easily seen; such a deviation becomes
statistically significant only for a value of the nonlinear
coefficient of � � 0.28, because the contribution of the
kurtosis is no longer negligible. Additional terms of a
Stokes expansion will be needed for such high nonlin-
earity. Note also that the JONSWAP parameterization
of the frequency spectrum could be inadequate in finite
water depth; a slightly different form of the probability
distribution might be obtained if, for example, a TMA
spectral parameterization would be used. Further in-
vestigations are needed to clarify this.

At the second order in nonlinearity, it is usually ex-
pected that long-wave components produce a setdown
of the mean sea level under the most energetic wave
groups. The analysis of field measurements, however,
indicates that low-frequency components can some-
times generate a setup when a wide spreading charac-
terizes the directional distribution. A numerical study
of the coupling coefficients, in this respect, shows that
this result is consistent with the second-order theory;
the second-order difference contribution, which is re-
sponsible for the formation of the setdown, becomes
positive when the interacting wave components travel
along well-separated directions. Repeating the simula-
tion with a progressively broader directional distribu-
tion confirms the generation of a local increase of the

mean sea level under energetic groups. Note, however,
that because of the particular geometrical characteris-
tics of the measurement sites, effects of reflected free
infragravity waves on the formation of the setup may
not be excluded a priori. An analysis of the spectral
energy over the infragravity frequency band show that
free infragravity waves only have a marginal influence
for the formation of the observed setup. A bispectral
analysis over the low-frequency band, furthermore,
confirms that the formation of the setup resulting from
bound long waves is a statistically significant feature of
the observed records.

If a setup replaces the expected setdown, the ampli-
tude of an individual wave crest may increase, because
of the positive contribution of the low-frequency com-
ponents. Nonetheless, a broad directional distribution
does not significantly change the form of the probabil-
ity density function; at least, not at the degrees of non-
linearity and level of probability considered in this
study.
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APPENDIX

Coupling Coefficients

Here we report the analytical form of the coupling
coefficients of the second-order theory:

Kijlm
� � %Dijlm

� � �kikj cos��l � �m� � RiRj	&�RiRj�
�1�2

� �Ri � Rj� and �A1�

Kijlm
� � %Dijlm

� � �kikj cos��l � �m� � RiRj	&�RiRj�
�1�2

� �Ri � Rj�, �A2�

where

Dijlm
� �

�Ri � Rj��Ri�kj
2 � Rj

2� � Rj�ki
2 � Ri

2�	

�Ri � Rj�
2 � kijlm

� tanh�kijlm
� h�

�
2�Ri � Rj�

2�kikj cos��l � �m� � RiRj	

�Ri � Rj�
2 � kijlm

� tanh�kijlm
� h�

,

�A3�

Dijlm
� �

�Ri � Rj��Rj�ki
2 � Ri

2� � Ri�kj
2 � Rj

2�	

�Ri � Rj�
2 � kijlm

� tanh�kijlm
� h�

�
2�Ri � Rj�

2�kikj cos��l � �m� � RiRj	

�Ri � Rj�
2 � kijlm

� tanh�kijlm
� h�

,

�A4�

kijlm
� � ki

2 � kj
2 � 2kikj cos��l � �m�, �A5�

kijlm
� � ki

2 � kj
2 � 2kikj cos��l � �m�, �A6�

and

Ri � �i
2�g. �A7�
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