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Abstract

This paper is the product of the wave modelling community and it tries to make a picture of the present situation in this
branch of science, exploring the previous and the most recent results and looking ahead towards the solution of the prob-
lems we presently face. Both theory and applications are considered.

The many faces of the subject imply separate discussions. This is reflected into the single sections, seven of them, each
dealing with a specific topic, the whole providing a broad and solid overview of the present state of the art. After an intro-
duction framing the problem and the approach we followed, we deal in sequence with the following subjects: (Section) 2,
generation by wind; 3, nonlinear interactions in deep water; 4, white-capping dissipation; 5, nonlinear interactions in shal-
low water; 6, dissipation at the sea bottom; 7, wave propagation; 8, numerics. The two final sections, 9 and 10, summarize
the present situation from a general point of view and try to look at the future developments.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Along the progressive development of the art of wave modelling we have witnessed periods of great
advances usually followed by periods of consolidation, when the focus of activity was mainly on the applica-
tion of the newly developed tools and artifices. Wave modelling is a great art containing two aspects of human
knowledge: theory, often touching basic principles from more fundamental sciences, and practical applica-
tions. Our ever increasing interaction with the sea has offered endless opportunities to apply to the everyday
problems what the theory had just revealed. Granted a certain degree of maturity has been reached, advances
are often rapid at the beginning of a science. With a bit of low pass filtering, we can easily recognise in the last
60 years the periods when more fundamental advances in wave modelling have taken place, followed by
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periods of application and a proliferation of small scale improvements. Unavoidably, the rate with which we
advance tends to decrease. The basic pieces of information, at least within the present perspective, have been
brought to light, and we are much closer to providing satisfactory results on a large scale. Somehow, the wave
modelling community is asking to itself if and when new basic pieces of knowledge will appear. The alternative
would be to carry on with technological and engineeristic improvements, edging our way towards more sat-
isfactory results.

At this stage we feel the need to understand better where we are, and to get a better perspective of the evo-
lution of the problem and of the state of the art of the science we deal with. In this paper, we make a picture of
the present situation, when necessary with some historical perspective, and we try to give indications, in some
cases hints, of where wave modelling should or it is expected to go in the future. Following a common con-
ceptual model, we have split the discussion into separate subjects. To a good degree of approximation this
corresponds to how the problem is presently formulated in its basic equations and physical description. About
this point a more extensive comment will be given in the final discussion. We consider progressively the fol-
lowing subjects.

Input by wind is the essential process without which wind waves would not exist. Witnessed by man since
the early ages, this elusive process has defeated for a long while human intuition. The theoretical and practical
difficulties cannot be overestimated.

Nonlinear interactions are probably the most solid piece of information in wave modelling. Inspired by fun-
damental physics, and brought to light more than 40 years ago, it is well defined. The problem is practical, in
that the necessary computer time for its proper evaluation is not yet available.

White-capping, or dissipation in deep water, is the third basic physical process that governs the evolution of
wind waves in the open oceans. It is the least understood part of wave evolution, and, combining some intu-
ition with a pragmatic approach, it has been for a while, and still is, the tuning knob of any wave model.

Once in shallow water, nonlinear interactions become a more active subject of theoretical research. This
section provides a summary of the recent advances, with substantial expectations for practical applications.

Bottom dissipation represents the interaction and energy sink of wind waves with/at the sea bottom. It sum-
marises a number of different processes. Although bottom friction represents the most commonly used term,
the relevance of each process depends on the local characteristics of the sea floor.

Wave propagation in non-homogeneous media, and in particular wave–current interactions, are the first
link between these two more evident characteristics of the sea. The related interests and practical improve-
ments have gone in one with the available knowledge of the distribution of currents at the coasts and in
the open oceans.

Finally, numerics represents the practical description and application of the above processes. The discrete
description of the sea we use in wave modelling leads to a number of problems whose solution we try to
optimise.

Each of the above subjects may, and often does, represent the focus of activity of the single modeller. Hence
each section has been written by a different group of persons, with their own style. Although we have applied a
minimum of homogenization, there are obvious differences in the way each section is dealt with. In a way, this
reflects the multi-dimensional approach to the problem. Granted the constant flow of information to the
whole community, each person or subgroup contributes autonomously with his/their own initiative. The join-
ing force of our group is the common interest in waves and the wish to improve our results with a permanent
exchange of information.

It has been suggested that a more unified and controlled approach would be more effective. Apart from the
obvious financial and institutional difficulties, this could be true in the short term, for a specific problem. With
a wider perspective and in the long term, we need the wild horse that comes out with unconventional ideas,
one of which may become the seed for further advancements. As human beings, we are far from being a per-
fect organization, but we are joined by our common desire to understand the essence and beauty of nature.

The paper is organised in the logical sequence outlined above. Sections from 2–8 deal progressively with
wind input, nonlinear interactions, white-capping, nonlinear interactions in shallow water, interactions with
the sea bottom, motion in non-homogeneous media and wave–current interactions, and numerics. In Section
9 we summarise the situation, pointing out the well established results and, more interestingly from the

606 L. Cavaleri et al. / Progress in Oceanography 75 (2007) 603–674



Author's personal copy

scientific point of view, the problems we are still left with. Finally in Section 10 we discuss the challenges and
the openings we expect for the future.

Although not up to the level of a paper, each section is self-standing, and it can be easily read autono-
mously. However, a progressive reading of the various sections will made clearer both the difficulties of the
overall problem and how far we have been able to go.

The paper is authored by the whole Group, as we consider any advancement as a collective achievement.
The continuous interactions and exchange of information are an essential part of our activity. However, each
single section has been written by a definite sub-group, whose components, headed by the reference respon-
sible person, are listed at the beginning of each section.

One final point. Our yearly WISE meeting, where the latest results are regularly presented, is oral only,
without any proceedings (this makes the presentations more dynamical and up-to-date). Although usually
later published in journals, here and there in this paper we refer to some specific presentations. There is no
official reference for these, but the interested reader can refer either to the cited author or to the section coor-
dinator for further details.

2. Brief review of wind–wave generation

Contributing authors: Peter A.E.M. Janssen (peter.janssen@ecmwf.int), Luigi Cavaleri, Donald Resio,
Hendrik L. Tolman.

The problem of the growth of ocean waves by wind and the consequent feedback of the ocean waves on the
wind has led to quite some controversy and many debates in the literature. Nevertheless, the combination of
observations from field campaigns in the 1970’s and the theoretical work on the critical layer mechanism
which started in the 1950’s has resulted in parameterizations of the wind-input source function that provide
good results in operational wave models. Together with a realistic representation of the high-wave number
part of the wave spectrum, these parameterizations of wind-input have the potential to yield realistic estimates
of the air–sea momentum transfer. The mutual interaction of ocean waves and the atmosphere has resulted in
improved forecast skill for wind and ocean wave height, in particular in documented cases at ECMWF.

In this section, after reviewing the present state of the art of our knowledge on the wind-input source func-
tion and the feedback of ocean waves on the wind, we discuss a number of open issues which may need to be
addressed in the near future. These concern the problem of high-frequency variability in atmospheric models
and the modelling of the extreme cases of large winds and low winds. In particular, it is becoming increasingly
clear that the drag coefficient may not be well specified in extreme situations such as hurricanes.

2.1. Linear theory

Understanding the growth of water waves by wind is a very challenging task. On the one hand, from the
theoretical point of view it should be realized that one deals with a difficult problem because it involves the mod-
elling of a turbulent airflow over a surface that varies in space and time. On the other hand, from an experimen-
tal point of view it should be pointed out that it is not an easy task to measure growth rates of waves by wind in
a direct manner. Nevertheless, considerable progress has been made over the past 40 years. The history of the
subject of wind–wave generation started in the beginning of the 20th century when Jeffreys (1924, 1925)
assumed that air flowing over the ocean surface was sheltered by the waves on their lee side. This would give
a pressure difference, so that work could be done by the wind. Subsequent laboratory measurements on solid
waves showed that the pressure difference was much too small to account for the observed growth rates. As a
consequence, the sheltering hypothesis was abandoned, and one’s everyday experience of the amplification of
water waves by wind remained poorly understood. This changed in the mid-1950’s, when Phillips (1957) and
Miles (1957) published their contributions to the theory of wave generation by wind. Both theories had in com-
mon that waves were generated by a resonance phenomenon: Phillips considered the resonant forcing of surface
waves by turbulent pressure fluctuations, while Miles considered the resonant interaction between the wave-
induced pressure fluctuations and the free surface waves. Miles’ mechanism looked more promising, because
it implied exponential growth, and it is of the order of the density ratio of air and water.
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However, there was also a considerable confusion and controversy. One of the main reasons for the con-
troversy was that Miles’ theory oversimplified the problem by following the quasi-laminar approach. This
approach assumes that the airflow is inviscid and that air turbulence does not play a role except in maintaining
the shear flow. Another reason is that Miles neglected nonlinear effects such as wave-mean flow interaction,
which are expected to be important at the height where the wind speed matches the phase speed of the surface
waves wind speed (the so-called critical height). Also, early field experiments, in particular by Dobson (1971),
gave rates of energy transfer from wind to waves that were an order of magnitude larger than predicted by
Miles (1957). More recent field experiments (Snyder, 1974; Snyder et al., 1981; Hasselmann and Bosenberg,
1991) show order of magnitude agreement with Miles’ theory, although the theory still predicts energy transfer
rates that are smaller than the measured values, especially for relatively low-frequency waves with a phase
speed that is close to the wind speed at 10 m height.

There have been several attempts to overcome these shortcomings by means of numerical modelling of the
turbulent boundary layer flow over a moving water surface. With suitable turbulence closure assumptions the
interaction of the wave-induced flow with the mean flow and the boundary-layer turbulence can then be sim-
ulated explicitly. One such approach (see, for example, Gent and Taylor, 1976; Makin and Chalikov, 1979;
Riley et al., 1982; Al-Zanaidi and Hui, 1984; Jacobs, 1987; Chalikov and Makin, 1991; Chalikov and Belevich,
1993) considers the direct effects of small scale turbulence on wave growth. Mixing length modelling or tur-
bulent energy closure is then assumed to calculate the turbulent Reynolds stresses. The resulting diffusion
of momentum is then so large that essentially Miles’ critical mechanism becomes ineffective. In addition, in
adverse winds or when waves are propagating faster than the wind speed these theories give a considerable
wave damping, while in Miles’ theory damping is absent. There are, however, no convincing field observations
of wave damping (Snyder et al., 1981; Hasselmann and Bosenberg, 1991), presumably because the actual
damping time scales are quite long.

The above turbulence models rely on the analogy with molecular processes. Van Duin and Janssen (1992)
pointed out that this approach fails for low-frequency waves. Mixing length modelling assumes that the
momentum transport caused by turbulence is the fastest process in the fluid. This is not justified for low-fre-
quency waves which interact with large eddies whose eddy-turnover time may become larger than the period of
the waves. In other words, during a wave period there is not sufficient time for the eddies to transport momen-
tum. For these large eddies (which are identified here with gustiness) another approach is needed. Nikolayeva
and Tsimring (1986) considered the effect of gustiness on wave growth, and a considerable enhancement of
energy transfer was found, especially for long waves with a phase speed comparable to the wind speed at
10 m height.

Belcher and Hunt (1993) have pointed out that mixing length modelling is even inadequate for slowly prop-
agating waves. They argue that far away from the water surface turbulence is slow with respect to the waves so
that again large eddies do not have sufficient time to transport momentum. This results then in a severe trun-
cation of the mixing length in the so-called outer layer of the flow. In fact, the greater part of the flow may now
be regarded as approximately inviscid and the energy transfer from wind to slow waves only occurs in a thin
layer above the surface. Note that the main mechanism for wave growth in the Belcher and Hunt model is the
so-called non-separated sheltering: the Reynolds stresses close to the surface cause a thickening of the bound-
ary layer on the leeside of the waves which would result in flow separation when the slope is large enough. This
mechanism is akin to Jeffreys’ sheltering hypothesis, which was originally developed for separated flows over
moving waves of large slope. The approach of Belcher and Hunt has been further developed by Mastenbroek
(1996) in the context of a second-order closure model for air turbulence, confirming the ideas of rapid
distortion.

In short, the developments over the past 40 years may be summarized as follows. Miles’ quasi-laminar the-
ory was the first model to give a plausible explanation of the growth of waves by wind. Because of the neglect
of turbulence on the wave-induced motion the quasi-laminar model has been criticized as being unrealistic,
therefore questioning the relevance of the critical layer mechanism for wind–wave growth. First attempts to
describe the effects of turbulence by means of a mixing length model have been criticized as well, however,
mainly because the eddies in the outer layer in the air are too slow to transfer a significant amount of momen-
tum on the time scale of the wave motion. But, according to rapid distortion models such as the one of Belcher
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and Hunt (1993) or Mastenbroek (1996), the critical layer mechanism is only relevant for very fast moving
ocean waves with a dimensionless phase speed, defined as c/u*, of the order of 30.

Recently there is evidence that even the rapid distortion approach of Belcher and Hunt overestimates the
effects of eddies on the wave-induced flow. Sullivan et al., 2000 studied the growth of waves by wind in the
context of an eddy-resolving numerical model. Although the Reynolds number was, compared to nature,
too small by an order of magnitude, clear evidence for the existence of a critical layer was found for a wide
range of dimensionless phase speeds. As expected from the Miles mechanism, a rapid fall-off of the wave-
induced stress was seen at the critical height. Furthermore, nowadays, there is even direct evidence of the exis-
tence and relevance of the critical layer mechanism from in-situ observations (Hristov et al., 2003) obtained
from FLIP (a FLoating Instrument Platform created by two Scripps scientists some 40 years ago). This is quite
a challenge because one has to extract a relatively small wave-coherent signal from a noisy signal. Neverthe-
less, for the range 16 < c/u* < 40, Hristov et al. (2003) did see a pronounced cat’s-eye pattern around the crit-
ical height where the wave-induced stress showed a jump. As shown in Fig. 1 there is a good agreement
between observed and wave-induced profiles as obtained from the critical layer solution. Note that there is
no observational evidence of a critical layer for dimensionless phase speeds less than 16. These conditions
can only be observed by means of a wave follower when measurements are taken close enough to the ocean
surface, in between the ocean waves.

A reason for the overestimation of the effect of eddies on the wave-induced motion has been discussed in
Janssen (2004). Following the rapid-distortion ideas of Belcher and Hunt it is argued that the large eddies are

Fig. 1. Real and imaginary parts of horizontal and vertical components of the wave-induced velocity as function of phase speed. Full lines:
solution of Rayleigh equation; open squares: observations from Hristov et al. (2003).
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too slow to transport a significant amount of momentum during one wave period. The outer layer is approx-
imately inviscid and only in a ‘thin’ layer above the surface mixing length modelling applies [the so-called
‘inner’ layer].

An appropriate wave time scale is TA = 1/k(U0(z) � c), while Belcher and Hunt take as turbulent time scale:
TL = jz/u* (with k the wave number and j the von Karman constant). The thickness zt of inner, turbulent
layer then follows from equating the two time scales, TA = TL and the mixing length is truncated to the value
kzt (truncated mixing length model).

However, momentum transfer by eddies occurs on a time scale that is larger than the eddy-turnover time.
Indications for this follow from observations of flow over a hill (Walmsley and Taylor, 1996), which gives a
much thinner layer, and from estimation of the time scale from

oU 0

ot
¼ o

oz
t

o

oz
U 0; t ¼ ju�z; ð2:1Þ

where for a logarithmic profile oU0

oz ffi u�=jz (and not U0/z!).
This estimate gives, compared to the Belcher and Hunt approach, the much longer time scale

TM = jz/e(z)u*, since e(z) = u*/U0(z) is a small parameter. The time scale TM gives rise to a much thinner inner
layer. The resulting eddy viscosities are so small that the corresponding turbulent momentum transport can be
neglected in lowest order. As a consequence, applying the truncated mixing length model with turbulent time
scale TM one rediscovers in lowest significant order Miles critical layer result while in next order the turbulent
momentum transport will give small corrections to the growth rate of the surface gravity waves. In particular,
the long waves will have a weak damping.

The resulting growth rate becomes the sum of Miles’ critical layer effect and a (small) damping term caused
by the inner layer viscosity:
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� �
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� �
; ð2:2Þ

where s is the air–water density ratio, and a = e�C/2 = 0.281 (with C Euler’s constant). The value of a follows
from higher order matching (Miles, 1993) and this sets the scaling velocity V = U0(z = a/k) @ U0(z = 0.045k).
The parameter b is plotted as function of the dimensionless phase speed c/u* in Fig 2.

The analytical form for the critical layer term was checked against the numerical solution of Rayleigh’s
equation and with the present choice of a the agreement is fair for short waves. For long waves the analytical
formula, however, seriously underestimates the numerically obtained growth rate. The observations compiled
by Plant (1982) gives for short waves an average value of b of about 30, hence the short wave limit of Eq. (4.2)
is in fair agreement with observed values of wave growth.

Fig. 2. Miles parameter b versus dimensionless phase speed. Note that the resulting damping rate is very small for waves propagating
faster than the wind. For c/u

*
= 50, u

*
= .2 spatial damping scale is already 2500 km.
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2.2. Nonlinear effects

For a given wind profile quasi-laminar theory is fairly successful in predicting growth rates and wave-
induced profiles. It ignores, however, a possible change of wind profile while the ocean waves are evolving.
The momentum transfer from wind to waves may be so large that the associated wave-induced stress becomes
a substantial fraction of the turbulent stress (Snyder, 1974; Snyder et al., 1981). The velocity profile over sea
waves is controlled by both turbulent and wave-induced momentum flux. Therefore, deviations from the pro-
file of turbulent airflow over a flat plate are to be expected. In addition, the energy transfer from the air to the
waves may be affected by the sea state, so that one expects a strong coupling between the turbulent boundary
layer and the surface waves.

Observations confirm this expectation. Measurements by, for example, Donelan (1982), Smith et al. (1992),
Drennan et al. (1999a) and Oost et al. (2002) indicate that the drag coefficient depends on the sea state through
the wave age. The theory of the interaction of wind and waves was elaborated by Fabrikant (1976) and Jans-
sen (1982). The so-called quasi-linear theory of wind–wave generation keeps track of the slow evolution of the
sea state and its effects on the wind profile. At each particular time the wave growth follows from Miles’ the-
ory. It turns out that quasi-linear theory permits an explanation of the observed dependence of the airflow on
the sea state. The resulting parameterization of the roughness length in terms of the wave-induced stress shows
a fair agreement with observed roughness (Janssen, 1992). Incorporating a wave prediction model in a weather
forecasting system, it is possible to determine every time step how much momentum the air flow is transferring
to the ocean waves. Extensive research at ECMWF has shown that the sea-state dependent momentum trans-
fer has resulted in improved forecast skill for both wind and waves (Janssen, 2004).

Despite the relative success of quasi-linear theory it still cannot be claimed that the problem of wind–wave
generation and the feedback of ocean waves on the wind is well-understood. For example, because the short
waves are the fastest growing waves, the wave-induced stress is to a large extent determined by the spectrum
of the high-frequency waves (see, e.g. Janssen, 1989; Makin et al., 1995). There is presently hardly any evidence
of the wave age dependence of the short wave spectral levels. However, using a wavelet analysis Donelan et al.
(1999) did find that the wavenumber spectrum of the short waves depends in a sensitive manner on wave age:
‘young’ windsea shows much steeper short waves than ‘old’ windsea. Nevertheless, the physics behind the wave
age dependence of the spectrum is not well-understood presently. Four-wave interactions could play an impor-
tant role in this issue because the negative lobe of the nonlinear transfer transports energy from the wavenum-
ber region above the peak of the spectrum towards the longer waves beyond the peak of the spectrum. But this
probably will not explain the wave age dependence of the spectral levels of the really short waves. On the other
hand, it is well known that the dispersion relation of the short waves is affected by the orbital motion of the long
waves and/or the Stokes drift. Such a surface drift may have a considerable impact on the spectral levels of the
short waves (see, for example, Janssen, 2004), giving an alternative explanation of its sea-state dependence.

Furthermore, the quasi-linear approach assumes that the short waves are linear, but most likely those
waves are fairly steep. Therefore, the nonlinear process of airflow separation, similar to what Jeffreys
(1924, 1925) envisaged, may play a role in air–sea momentum transfer. According to Makin and Kudryavtsev
(2002) this could provide an alternative explanation of the sea-state dependence of the drag over sea waves.
However, this explanation requires that a considerable part of the drag is determined by airflow separation
over dominant waves, but it is very unlikely that these large waves are breaking frequently. Even in the
absence of flow separation, there may be concern about the basic hypothesis of linearity in generation by wind.
Miles’ (1957) theory was derived for unidirectional, monochromatic waves. It has been assumed that the
wind–wave interactions are sufficiently linear that the wind input to each spectral component can be consid-
ered independently. This topic was investigated by Tsimring (1983) who studied the interaction of two waves
and the mean air-flow, which is basically the most simple case of a wave group. The resulting wave growth to
one spectral component now depends on the presence of other components. Numerically, the effect is small,
however, as it is proportional to the air–sea density ratio time the square of the wave spectrum.

Finally, what about evidence in the field for the sea state dependence of the drag coefficient?
It is customary to try to relate the Charnock parameter to a measure of the stage of development of wind-

sea, e.g. the wave age cp/u*, with cp the phase velocity of the peak of the spectrum. Here, the Charnock param-
eter is estimated from observations of u* and the windspeed at 10 m height, U10, through the Charnock
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relation and the logarithmic surface wind profile. As a consequence, the Charnock parameter depends in an
exponential manner on the drag coefficient at 10 m height, CD(10), and is therefore very sensitive to errors in
the observations for friction velocity and windspeed. In addition, at a particular measurement site the range of
phase velocities is usually limited compared to the range of friction velocities and as a result, based on obser-
vations from one measurement site, an empirically obtained relation between the Charnock parameter and the
wave age may be spurious because it is in essence a relation between Charnock parameter and the friction
velocity. A way to avoid the problem of self-correlation is to combine observations from a number of mea-
surement campaigns so that the range of phase speeds becomes larger (Johnson et al., 1998; Lange et al.,
2004). This approach was followed by Hwang (2005). In addition, rather then obtaining a parameterization
for the Charnock parameter, which is prone to errors in observed friction velocity, Hwang sought a relation
between the drag coefficient and the wave age. The usual reference height for the drag coefficient is 10 m, but
Hwang argued that from the wave dynamics point of view (see also Eq. (2.2)) a more meaningful reference
height should be proportional to the wavelength kp of the peak of the wave spectrum. Using wavelength scal-
ing Hwang (2005) found

CDðk=2Þ ¼ Aðcp=u�Þa ð2:3Þ
with A = 1.220 · 10�2 and a = �0.704, reflecting the notion that the airflow over young windsea is rougher
than over old windsea. As shown in Fig. 3 the ECMWF version of the WAM model, the physics of which
was developed in the 1980’s, gives, compared to Hwang’s parameterization (2.3), a realistic representation
of the drag coefficient at half the wave length.

Therefore, for windsea it is possible to find a convincing parameterization of the sea state dependence of the
surface stress. The drag coefficient and dynamic roughness under mixed-sea conditions remain difficult to
parameterize at this stage.

2.3. Gustiness

In the previous sub-sections the relevance of air turbulence has been discussed as related to the physics of
interaction between wind and a wavy surface. Once this physics has been translated into formulas for practical
applications in wave modelling, wind is considered constant during each time step and at each grid point of the
numerical integration procedure. However, there is wind variability with a time scale longer than wind gen-
erated waves, but still below the synoptic scale resolved by the meteorological models, that may have a sub-
stantial effect on wave growth.

It is common to assume that the energy transfer from wind to waves is a function of the difference between
the nominal wind speed U and the phase speed c of the wave component of interest. If this dependence would

Fig. 3. Comparison of simulated and parameterized relation of drag coefficient CD(k/2) versus wave age cp/u
*
. Black line: simulation, open

circle: Eq. (2.3), and dashed line the case of constant Charnock parameter (a = 0.01).
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be a linear function then an oscillation of U with respect to its mean value Um would have on average no effect.
However, as is evident from Fig. 2, wave growth depends in a nonlinear manner on U–c, in particular when
the phase speed is close to the value of Um. For c > Um there is practically no interaction between the wind and
the waves, hence wave growth depends in an almost discontinuous manner on U–c. Consider now a wave with
phase speed close to Um, which is the case when wind sea is well-developed. For these long waves a positive
fluctuation in wind speed will result in enhanced wave growth but a negative fluctuation will not give rise to
reduced growth. The growing waves act as a rectifier (Abdalla and Cavaleri, 2002, call it the ‘diode’ effect) and
therefore gustiness may have a considerable impact on wave growth. The implications are that, when waves
reach a mature stage, they keep growing, although at a progressively reduced rate, well above the limit of a
fully developed sea obtained in steady wind conditions. How much the gain in wave height, denoted by
DHs/Hs, is depends on the variability r of the wind field (percent r.m.s. deviation from Um). With r = 10%
there is only a small increase of Hs. However, this grows rapidly with r, and in very unstable conditions, with
r = 30%, DHs/Hs may reach values as large as 0.3.

Apart from the fluctuation level, the gain in wave height also depends on the correlation time scale of the
fluctuating wind. If the wind gustiness has a correlation time scale that is shorter than or similar to the inte-
gration time step (similar considerations apply in space), then the growth curve for wave height will be
smooth. However, if the time scale is longer, then the growth curve will reflect this variability, giving large
oscillations around the mean growth curve. This implies that the significant wave height can achieve values
larger than expected even from the gusty growth.

In practical applications the diode effect can be taken into account following a procedure described by Jans-
sen (2004), who followed Miles (1997). However, the Hs oscillations due to the coherence in wind variability
are not deterministic and are presently not considered in operational models. The same remark applies to the
correlated part of the oscillations of the wind speed. This introduces a certain level of randomness in the com-
parison between observed and modelled Hs values. Together with the common lack of information on the level
of gustiness in the input wind fields, this complicates the validation of wave prediction systems. While there are
good theoretical and practical reasons to believe that the effect is indeed present, a full quantification of its
actual relevance is still missing.

2.4. Open issues

Here, we briefly discuss a number of interesting future developments.

2.4.1. Damping of low-frequency swells

First, the problem of the interaction of low-frequency swells and the atmosphere. This process happens typ-
ically in the Tropics in areas of low wind speed, but it concerns also the extra-tropical areas. Swell is an almost
permanent feature of the oceans. This is an interesting problem because surface gravity waves may transfer
energy and momentum to the atmosphere. In those circumstances the usual Monin–Obukhov similarity the-
ory is not valid (Drennan et al., 1999b). There is, however, some uncertainty regarding the damping rates of
the low-frequency swells.

Observations in the field from Snyder et al. (1981) and Hasselmann and Bosenberg (1991) do not support
the idea that there is a substantial wave damping for waves propagating faster than the wind. In the lab, how-
ever, Donelan (1990) did find evidence for wave damping according to the following empirical formula:

c
x
¼ scb

U 0ðk=2Þ
c

� 1

� �
U 0ðk=2Þ

c
� 1

����
���� ð2:4Þ

which parameterizes growth and damping in terms of the wind speed at height k/2. Here cb equals 0.11 for
opposing winds, and 0.28 for following winds. However, when applied to swell cases in the field the damping
is far too large: for 15 s waves one finds spatial damping scales of the order of 75 km. These damping scales are
so small that swells generated in the extra-tropical storms would never arrive in the Tropics. In one of the ear-
lier versions of the Wavewatch wave prediction model damping rates comparable to Eq. (2.3) were used and
the modelled tropical wave climatology seriously underestimated the observed climatology (Tolman et al.,
2002). Consequently, damping rates were reduced by an order of magnitude. Thus, for wave damping in
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the field there is no real guidance: spatial damping scales are expected to be large, of the order of a few
1000 km. Presumably, laboratory experiments are not representative for what is happening in the field. For
example, in the laboratory there may be currents with considerable vertical shear while in the field the vertical
shear is much less. Note that straightforward mixing length modelling supports the formulation of wave
growth and damping of Eq. (2.3) (Al-Zanaidi and Hui, 1984), but rapid-distortion arguments suggest that
such turbulence models overestimate the effects of momentum transport by the eddies. As a consequence, there
results an overestimate of wave damping. In contrast, Eq. (2.2) is based on a truncated mixing length model
and probably results in a more realistic estimate of wave damping in the field. However, it is emphasized that
reliable observations of wave damping in the field are to be preferred.

2.4.2. Momentum transfer for high wind speeds

Another important issue is the understanding of air–sea momentum transfer under high wind speed con-
ditions such as occur for typical hurricanes and typhoons. Not surprisingly, not many observations of wave
growth and momentum transfer are available. The recent work by Powell et al. (2003) and Donelan et al.
(2004) suggests however that in those extreme circumstances the drag decreases with wind speed or saturates.
But, the understanding of the physics of such extreme events is only beginning. What is clear, however, is that
because of the strong interaction and interplay between momentum, latent, sensible heat fluxes and spray,
each transport process cannot be considered in isolation. In particular, in hurricanes spray production is
expected to be an important process which may have some unexpected consequences for the momentum trans-
fer. Following Makin (2005) one may regard spray as suspended particles. In the so-called suspension layer the
heaviest particles remain, on average, closer to the surface so that the particle concentration should decrease
monotonically with height. Hence, the spray droplets form a very stable boundary layer close to the surface,
and such a stable layer may suppress the air turbulence near the ocean surface. In other words, spray produc-
tion may, in extreme conditions, give rise to a reduction of the drag coefficient for increasing wind speed. Note
that Andreas (2004) sketches a somewhat different picture of the impact of spray on the airflow. He argues
that when spray droplets enter the airflow they will be accelerated. As a consequence, spray exerts a stress
on the airflow which for wind speeds above 30–35 m/s becomes comparable to the interfacial stress. This
would result in a sharp increase of the drag with wind speed. Hence, Andreas (2004) proposes that spray
has a direct impact on the mean airflow, while Makin (2005) suggests that spray, while forming a stable layer,
suppresses the turbulent fluctuations thus inhibiting momentum transfer to the surface. Evidently, more
research is required to sort out this delicate issue.

There are other possibilities that could explain that for extreme conditions the drag coefficient is smaller
than expected from a straightforward extrapolation of the familiar linear drag law (e.g. Smith, 1980a). Don-
elan et al. (2004) have suggested a fluid mechanical explanation: for strong winds flow separation may be pres-
ent. Thus, the outer airflow, unable to follow the wave surface, does not ‘‘see’’ the troughs of the waves and
skips from breaking crest to breaking crest. Thus in conditions of continuous breaking of the largest waves the
aerodynamic roughness of the surface is limited giving a reduced drag. On the other hand, Andreas (2004) has
proposed that when spray returns to the water, short waves will be extinguished. This will no doubt reduce the
drag considerably as the short waves carry most of the wave-induced stress. Furthermore, it should be realized
that in the most intense part of a hurricane the wind field is strongly curved, hence the effective fetch for wind–
wave generation is short and the sea state is extremely young. For extremely young sea states the drag is also
reduced quite considerably as explained in Komen et al. (1998).

2.4.3. Quality of modelled wind fields
During the past 10–15 years we have seen a substantial improvement in the quality of the surface wind

speed as follows, for example, from the validation of the analysed ECMWF surface wind against Altimeter
wind speed observations from ERS-2 (Janssen, 2004).

Despite these impressive improvements it should be pointed out that modelled fields lack a considerable
amount of variability in the short scales. This lack of variability is most prominent in the upper layers of
the model atmosphere, near the tropopause. Observations of the kinetic energy spectrum obtained from air-
craft data (Nastrom and Gage, 1985) show that in the synoptic scales the spectrum shows a k�3 power-law
behaviour (corresponding to a potential enstrophy cascade) while in the mesoscales (less than about
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600 km) the spectrum behaves as k�5/3, consistent with an energy cascade to even smaller scales (Cho and
Lindborg, 2001). Global atmospheric models typically miss the k�5/3 power law, presumably because the inter-
polation in the (semi-Lagrangian) advection scheme acts as a smoother. Also near the surface there is a con-
siderable lack of variability of modelled wind as follows from a comparison with kinetic energy spectra derived
from QuikScat scatterometer winds. Because of this lack of variability in modelled surface winds, ECMWF
introduced in April 2002 the average effects of gustiness on wave growth. This change had a beneficial impact
on the wave height field, in particular its spatial and temporal variability. Note, however, that presently no
theory of the atmospheric boundary layer can justify the level of wind variability measured in the field in cer-
tain conditions.

3. Modelling nonlinear four-wave interactions in discrete spectral wave models

Contributing authors: Gerbrant van Vledder (vledder@alkyon.nl), Michel Benoit, Igor V. Lavrenov, Mig-
uel Onorato, Vladislav Polnikov, Donald Resio, Hendrik L. Tolman.

It is nowadays widely accepted that resonant weakly nonlinear interactions between sets of four waves play
an important role in the evolution of the energy spectrum of free surface gravity waves propagating at the
ocean’s surface. This role became clear as a result of the JONSWAP project (Hasselmann et al., 1973). It is
described and discussed in e.g. Phillips (1981a), Resio and Perrie (1991), Young and van Vledder (1993), Ban-
ner and Young (1994) and Resio et al. (2001).

In this section, we summarize the state-of-the art in the understanding and modelling of nonlinear four-
wave interactions. Despite considerable progress, many questions remain. These are summarized at the end
of the section, together with suggestions for further research.

3.1. Theory

The basic equation describing these interactions is the Boltzmann integral proposed by Hasselmann (1962)
and a couple of years later by Zakharov (1968) who derived it in a form known as the kinetic equation.

Hasselmann (1962, 1963a,b) developed the theoretical framework for nonlinear four wave interactions for
homogeneous seas with a constant depth. He formulated an integral expression for the computation of these
interactions, which is known as the Boltzmann integral for surface gravity waves.

Hasselmann (1962) found that a set of four waves, called a quadruplet, could exchange energy when the
following resonance conditions are satisfied:

~k1 þ~k2 ¼~k3 þ~k4; ð3:1Þ
x1 þ x2 ¼ x3 þ x4 ð3:2Þ

in which xi is the angular frequency and~ki the wave number vector (i = 1, . . . , 4). The linear dispersion relation
relates the radian frequency x and the wave number k:

x2 ¼ gk tanhðkhÞ ð3:3Þ
which reduces to x2 = gk in deep water conditions.

Here, g is the gravitational acceleration and h the water depth. The configurations of interacting quadru-
plets are often described by a so-called figure of eight diagram, as illustrated in Fig. 4 for the deep water case.

Hasselmann (1962, 1963a,b) describes the nonlinear interactions between wave quadruplets in terms of
their action density, where nð~kÞ ¼ Eð~kÞ=x and E the energy density. The rate of change of action density at
a wave number ~k1 due to all quadruplet interactions involving ~k1 is:

on1

ot
¼
Z Z Z

Gð~k1;~k2;~k3;~k4Þ � dð~k1 þ~k2 �~k3 �~k4Þ � dðx1 þ x2 � x3 � x4Þ

� ½n1n2ðn3 þ n4Þ � ðn1 þ n2Þn3n4� d~k2 d~k3 d~k4; ð3:4Þ

where ni ¼ nð~kiÞ is the action density at wave number~ki and G is the coupling coefficient. This integral is six-
fold in wave number ordinates. The d-functions in (3.4) ensure that contributions to the integral only occur for
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quadruplets satisfying the resonance conditions, and thus formally reduce this expression to a threefold
integral.

It is worth noting that these resonant interactions basically reflect weak nonlinear transfers in the evolution
of the wave spectrum for the case of homogeneous conditions. Recent work by Janssen (2003) suggests that
quasi-resonant four-wave interactions play a major role in uni-directional wave field, in relation to the devel-
opment of modulational instabilities and the occurrence of freak waves. Yet unclear is the role of non-reso-
nant interactions in two-dimensional cases.

In (3.4) the d-functions also ensure conservation of wave energy, wave action and wave momentum.
The coupling coefficient is given by

Gð~k1;~k2;~k3;~k4Þ ¼
9pg2D2ð~k1;~k2;~k3;~k4Þ

4q2x1x2x3x4

: ð3:5Þ

In this expression Dð~k1;~k2;~k3;~k4Þ is the interaction coefficient, and q is the density of water. The deep-water
expression for the interaction coefficient was first given by Hasselmann (1962). Webb (1978) used an algebraic
manipulator to simplify the mathematical structure of this coefficient. However, his expression contained some
misprints. Corrected expressions are given in Dungey and Hui (1979). Herterich and Hasselmann (1980) de-
rived a finite depth version of the interaction coefficient. Zakharov (1999) re-derived the coupling coefficients
for deep and finite depth water, and expressed them in a form similar to those of Webb (1978). Gorman (2003)
provides a detailed analysis of the finite depth interaction coefficient and he derived expressions for the treat-
ment of discontinuities.

A remarkable property of (3.4) is that it possesses exact stationary isotropic analytical solutions of the form
of power laws that correspond to a constant flux of energy towards high wave numbers and constant flux of
wave action to small wave numbers. These solutions have been found by Zakharov and Filonenko (1966). The
constant energy flux solution corresponds in the frequency wave spectrum to a power law of the form of x�4,
in agreement with experimental observations starting from Toba (1972).

In paper (Lavrenov et al., 2002) a direct numerical simulation of the Hasselmann kinetic equation for grav-
ity waves in water surface confirms basic predictions of the weak-turbulent theory. The kinetic equation for
surface gravity waves is investigated numerically taking into account an external generating force and dissi-
pation. An efficient numerical algorithm for simulating nonlinear energy transfer is used to solve the problem.
Three stages of wave development are revealed: unstable wave energy growth within a range of external force
impact, fast energy spectrum tail formation in high frequency range and establishment of a steady state
spectrum. In both isotropic and non-isotropic cases the spectra are found out to be close to the Zakharov–
Filonenko spectrum x�4, in the universal range. Reliable estimations of the Kolmogorov constants are found
out as a0 = 0.303 ± 0.033 in an isotropic case and as a1 = 0.239 ± 0.023 in a non-isotropic case. Formation of
this asymptotic spectrum happens explosively. Accurate estimations of the first and second Kolmogorov

Fig. 4. The interaction diagram in the wave number plane showing interacting wave number vectors satisfying the resonance conditions
(3.1) and (3.2) for the deep-water case. This figure is often referred to as the ‘‘Figure of Eight’’ diagram, after Phillips (1960).
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constants are obtained. A good agreement between the Toba experimental data and our results obtained with
the help of direct numerical simulation is observed.

In recent numerical simulations of Eq. (3.4), Pushkarev et al. (2003) have shown that nonlinear interactions
generate an x�4 wave spectrum also in anisotropic conditions. Moreover, they have also shown the formation
of the bimodal angular distribution of energy, in agreement with field and laboratory experiments.

It should here be mentioned that many properties of the kinetic equation (for example power laws solu-
tions) are consistent with the fully nonlinear water wave equations. In this context, recently a number of direct
numerical simulations of those deterministic equations have been performed in order to study the validity and
the limitations of the approximations under the kinetic equation (3.4), see Tanaka (2001), Onorato et al.
(2002), Dyachenko et al. (2004), Yokoyama (2004).

3.2. Solution methods

The full solution of the Boltzmann integral (3.4) is rather time consuming due to its complexity, in spite of
numerical optimization efforts such as e.g. Snyder et al. (1993), Lin and Perrie (1998). It is therefore not yet
applicable in operational wave prediction models. To overcome this disadvantage of exact methods, Hassel-
mann et al. (1985) developed the discrete interaction approximation (DIA). They show that the DIA preserves
a few but important characteristics of the full solution, such as the slow downshifting of the peak frequency
and shape stabilization during wave growth. The development of the DIA triggered the development of third
generation (3G) wave prediction models, like the WAM model (WAMDI Group, 1988), WAVEWATCH
(Tolman, 1991, 2002c), TOMAWAC (Benoit et al., 1997), the SWAN model (Booij et al., 1999), and the
recently developed CREST model (Ardhuin et al., 2001).

The DIA was initially developed for deep water. The WAM Group (WAMDI Group, 1988) introduced a
scaling technique to estimate the nonlinear transfer for an arbitrary water depth. This technique contains a
parameterization of the magnitude scaling derived by Herterich and Hasselmann (1980). With this technique
the finite-depth source term is simply obtained by multiplying the deep-water source term with a constant fac-
tor. This factor is a function of the relative water depth �kh where �k is the mean wave number of the wave
spectrum:

RðyÞ ¼ 1þ 5:5

y
1� 5

6
y

� �
exp � 5

4
y

� �
with y ¼ 3

4
�kh: ð3:6Þ

This simple modification has however exhibited a number of shortcomings in shallow water conditions. As
pointed out by Herterich and Hasselmann this approximation is only applicable for kp h P 1.0, which is still
relatively deep water for most coastal applications. Also, this approximation retains a stationary x�4 form
independent of depth; whereas observations and theory support the existence of a general k�5/2 form in arbi-
trary-depth water (Resio et al., 2001, 2004). Due to these inherent problems, we recommend that methods be
developed which take account of finite water depth effects in a more complete way. For instance Van Vledder
(2001a) presents a shallow-water version of the DIA (referred to as the SDIA).

Janssen and Onorato (2007) present a detailed analysis of the application of the Zakharov equation in inter-
mediate water depth. They find that for kh � 1.363 the magnitude of the nonlinear transfer rate becomes very
small. This finding contradicts earlier findings like those of Herterich and Hasselmann (1980) and Resio et al.
(2001). In addition Janssen and Onorato (2007) find that a simple shallow water scaling of the deep water non-
linear transfer rate is not correct since the shape of the transfer rate is also affected. As noted by Van Vledder
(2006) this holds also for the full Boltzmann equation. A smaller nonlinear transfer rate in intermediate water
depth has consequences for the downshifting of the peak frequency. Further studies to these consequences are
needed.

3.3. Properties

A summary of the role of nonlinear four-wave interactions is given in Young and van Vledder (1993). The
main features of nonlinear four-wave interactions are illustrated on a particular case in deep water from
Benoit (2005). In this example we consider the directional wave spectrum corresponding to case 3 of

L. Cavaleri et al. / Progress in Oceanography 75 (2007) 603–674 617



Author's personal copy

Hasselmann and Hasselmann (1981). This spectrum combines a JONSWAP frequency spectrum (with Phillips
constant a = 0.01, peak frequency fp = 0.3 Hz, peak enhancement factor c = 3.3) and a (frequency indepen-
dent) angular spreading function of the form cos4(h). The input spectrum is plotted in Fig. 5.

For this spectrum the nonlinear transfer term due to four-wave interaction is evaluated ‘‘exactly’’ by the
WRT method (see below) and by the standard DIA approximation. The computed frequency-direction non-
linear terms Qnl4(f,h) are plotted in Fig. 6. The upper panel (exact evaluation with the WRT method) shows

Fig. 5. Test wave spectrum corresponding to case 3 of Hasselmann and Hasselmann (1981). Left panel: directional variance spectrum
F(f,h) (due to symmetry, only one quarter of the frequency-direction plane is considered). Right panel: frequency spectrum E(f) obtained
by integration of F(f,h) over wave directions.

Fig. 6. Nonlinear transfer term Qnl4(f,h) computed for the test wave spectrum of Fig. 5 in deep water (due to symmetry, only one quarter
of the frequency-direction plane is considered). Upper panel: WRT exact method. Lower panel: DIA.
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the typical signature of four-wave interactions: first, there is a positive lobe below the peak frequency in the
main wave direction, which corresponds to an increase of wave energy for these frequencies lower than the
peak frequency. Then one can see a large negative lobe for the frequencies above the peak still in the main
wave direction. In this region of the spectrum the nonlinear interactions pump energy. Finally there are also
positive lobes for frequencies higher than the peak but about 45� off the main direction.

The lower panel of Fig. 6 shows that the DIA computation produces a term with some similarities in the
general shape, but also significant differences. The first (positive) lobe is lower and shifted about 40� off the
main direction. The second (negative) lobe is much higher than the exact one and it is shifted to higher fre-
quencies. Finally the positive lobes at ±45� off the main direction are present, but at lower frequencies and
they are clearly higher than the exact ones. The position and magnitude of the positive lobes result for the
DIA in a trend to excessively spread the energy over directions, making the spectrum broader than it should
be. The frequency nonlinear terms (after integration over wave directions) are plotted in Fig. 7. Again the dif-
ferences between DIA and exact evaluation (EXACT-NL and WRT) are clear, in particular for the negative
lobe, which is twice higher than the exact one and also shifted towards higher frequencies.

3.4. Development in computational methods

The development of the discrete interaction approximation partly resolved the limitations of an exact com-
putation. However, as shown on the above example, experience reveals many deficiencies of the DIA, which
hamper the further development of third-generation models. More specifically, deficiencies of the DIA are
masked by tuning of the other source terms. Experience with an exact computational method in 1D and
2D applications shows improved prediction of spectral shapes. Thus, we face the dilemma of having a fast
but inaccurate DIA and an accurate and time-consuming exact method. Therefore, a need exists for a com-
putational method that would be both operationally feasible and accurate enough for application in opera-
tional 3G wave models.

Various attempts have been made to develop such methods. Progress has been made at four fronts.
First, extensions to the DIA have been proposed by adding more interacting wave number configurations.

Van Vledder (2001b) describes the general framework for such extensions. Proposals for multiple DIA’s were
made by Van Vledder et al. (2000), Hashimoto and Kawaguchi (2001) and more recently by Tolman (2004).

Fig. 7. Nonlinear transfer term Qnl4(f) computed for the test wave spectrum of Fig. 5 in deep water. These curves are obtained by
integration of the terms Qnl4(f,h) of Fig. 6 over wave directions.

L. Cavaleri et al. / Progress in Oceanography 75 (2007) 603–674 619



Author's personal copy

These attempts are promising, but not yet successful in the sense that extensions are generally applicable. The
main reason is that each MDIA is developed for a specific set of test spectra.

It is noted that alternative DIA’s have been developed by Abdalla and Özhan (1993). Komatsu (1996)
(referred to Hashimoto et al., 2003) developed the SRIAM, which is a multiple DIA based on the exact RIAM
method. Polnikov and Farina (2002) proposed a version of the fast DIA, which doubles the speed of calcu-
lations without loss of accuracy. Moreover, in Polnikov (2003) it was found some other simple configurations
which have lower errors than the original version of DIA; however, a major remaining problem is that these
interactions represent only a small subset (in which 2 of the interacting wave number vectors are equal, rather
than the more general case of 4 unequal wave number vectors) of the total interactions contributing to the
complete integral. For this reason, the DIA will continue to require tuning for different classes of spectra.

The second line of development consists in starting from exact methods and making some simplifications
and/or reductions of the integration space in the evaluation of the Boltzmann integral. Such methods can
reduce the workload by a combination of smart integration techniques, coarser interpolation techniques
and filtering out unimportant parts of the integration space. These methods differ in the way the delta-func-
tions of the Boltzmann integral have been removed and the final set of equations obtained, and in the treat-
ment of singularities. The following groups of ‘exact’ methods exist:

� EXACT-NL (Hasselmann and Hasselmann, 1981, 1985; Van Vledder and Weber, 1988; Van Vledder and
Holthuijsen, 1993);
� Webb (1978) as implemented by Tracy and Resio (1982), Resio and Perrie (1991) and Van Vledder (2006),

referred to as the WRT method. From this computational method Lin and Perrie (1998) developed the
reduced interaction approximation (RIA);
� Masuda (1980) as extended to finite depth by Hashimoto et al. (1998) or adapted by Polnikov (1997), the

RIAM method by Komatsu and Masuda (1996);
� Lavrenov (2001), the algorithm is based on a numerical integration method of high precision.

Each of these approaches solves the Boltzmann integral with some method. Differences exist in the trans-
formations applied to the Boltzmann integral to remove the delta-functions, and in the numerical integration
technique applied to them. At present it is not clear which of these methods produces the best results in terms
of accuracy and computational requirements. Therefore, an objective inter-comparison between the various
methods is needed to confirm or reject claims about their performance. Resio and Perrie (2006) introduced
a two-scale hybrid method. In this method the spectrum is decomposed in a global part capturing the main
spectral shape, for which the nonlinear transfer rate is computed with the WRT method, and a residual part
for which an approximate correction term is computed. Preliminary results look promising but further veri-
fication is needed.

The third approach is based on neural networks. Tolman and Krasnopolsky (2004) present a method based
on a neural network. It appears that the NN approach can result in stable wave growth in model integrations.
However, much development work still needs to be done before this approach is suitable for general model
applications (Tolman and Krasnopolsky, 2004). A problem that arises in this class of approximation is the
difficulty in using any set of functions to linearly represent nonlinear interactions. The cubic dependence of
the interactions on the energy/action densities typically produces very strong ‘‘cross-interactions’’ among
the different ‘‘basis’’ functions.

The fourth approach comprises diffusion operators. Examples are those presented by Zakharov and Push-
karev (1999), Jenkins and Phillips (2001), and Pushkarev et al. (2004). They developed methods based on a
diffusion operator. Some properties of this approximation were revealed in Polnikov (2002), where he found
a reasonable correspondence of the diffusion approximation to the exact calculations of the integral. Properly
posed, simulations based on this approach can be shown to conserve all constants of motion over time (Push-
karev et al., 2004) and can preserve the basic x�4 characteristic form during evolution. However, this approx-
imation does not provide a very accurate general approximation to the total integral and must be specifically
tuned to fit each different spectral form. Although attractive for its computational simplicity, it is not flexible
enough for application in a discrete spectral wave model, since a coefficient of proportionality needs to be
determined for the class of spectra under consideration.
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3.5. Inter-comparison of computational methods

Up till now no objective comparison has been performed to determine the best (in terms of performance
and accuracy) method for computing the nonlinear four-wave interactions in a discrete spectral model. Still,
a number of attempts have been made to intercompare different computational methods.

Lavrenov (2001, 2003a) made comparisons between his method and those of Hasselmann, Polnikov, Masu-
da’s, and Resio. Lavrenov claims that his method produces accurate results with relatively small computa-
tional requirements. A comparative study of different approximations for the Boltzmann integral was
carried out in a series of papers (Polnikov and Farina, 2002; Polnikov, 2003). Using a certain definition of
the error measure, it was shown that the DIA approximation is the best one among some other theoretical
approximations: the diffusion approximation (Zakharov and Pushkarev, 1999) and the reduced integration
approximation (Lin and Perrie, 1999). Inter-comparisons of results from some of these methods are presented
in, e.g., Benoit (2005) for a few wave spectra in deep water.

These claims need further attention and an objective verification under controlled experiments. Most of the
comparisons were made for a small set of academic spectra. In the case these spectra are smooth, some numer-
ical integration technique might benefit from this smoothness. However, a good fit for parametric spectra is no
guarantee that the computational method will work in an operational model since the interplay with other
source terms and numerical procedures is equally important. Thus, the real test for any computational method
is to implement it into a wave model and to perform fetch-limited or duration limited growth experiments. The
resulting spectra will vary and will often be different from measured or theoretical spectra (cf. JONSWAP). In
addition, an objective comparison is often hampered by differences in compilers and computer hardware.

3.6. Questions and actions

Since the derivation of the Boltzmann integral or kinetic equation great progress has been made in the
understanding of the role of nonlinear four-wave interaction in wind–wave evolution. Despite considerable
advances our knowledge about the application of the Boltzmann integral in numerical wave modelling is still
incomplete. For instance, the range of validity of the Boltzmann integral is not precisely known. Also, the role
of these interactions in determining the spectral shape in complex situations is not fully known. Of practical
interest is the question about the best computational method. Each of these issues is discussed below.

The Boltzmann integral has originally been derived for deep water under the assumption of a homogeneous
and stationary sea state and exact resonance between spectral components. Including shallow water effects
assuming a flat bottom extended this concept. The validity of the Boltzmann integral can only be tested using
numerical simulations of the nonlinear evolution of free surface gravity waves. Various investigations are
underway and seem to confirm the validity of the Boltzmann integral for narrow spectra. However, more
detailed numerical experiments are needed to assess the validity of the Boltzmann integral for other types
of spectra and for shallow water conditions including sloping bottoms. In the modelling practice, the
above-mentioned assumptions are often violated, but it is not known to which extent this affects the evolution
of the wave field. An example of coping with these uncertainties is the way in which the DIA is applied in
shallow water applications. The equations yield that the magnitude of the interactions increases as the water
becomes shallower. To avoid a breakdown of the equations, a lower limit of 0.5 for the dimensionless water
depth kh is applied. Recent theoretical developments indicate that also near-resonant interactions may
exchange energy between sets of four wave components, both for 1D and 2D situations. There are also the-
oretical developments that indicate that the magnitude of the nonlinear transfer rate is much smaller for
kh � 1.363 than previously thought. Further studies are needed to determine to which extent these findings
affect wind–wave evolution in deep and shallow water.

Many field experiments, starting with the famous JONSWAP experiment, confirmed the role of four-wave
interactions for fetch-limited wave growth and it shed light on the mechanism behind the downshifting of the
spectral peak, shape stabilization and the frequency dependent directional distribution of the wave spectrum.
However, in multi-peaked or directionally sheared spectra, the role of the four-wave interactions is far from
simple. Examples of such conditions are slanting fetch situations, turning winds and mixed sea states where a
wind sea develops on top of a background swell. Of interest is also the role of four-wave interactions in shal-
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low water and its relative magnitude compared to other physical processes, such as three-wave interactions
and depth-limited wave breaking. Although the magnitude of four-wave interactions is proportional to the
frequency to the power 11, yielding that these interactions are very weak for long period swell waves, its role
in the propagation of swell over very long distances has not yet been determined. Knowledge about the role of
the four-wave interactions in all of the above situations is of importance for the development of optimal com-
putational methods.

Various ‘exact’ numerical techniques have been developed to evaluate the Boltzmann integral to great
accuracy. Theoretically these methods should give the same answer, but in practice each method makes
some subtle choices in the numerical evaluation of the Boltzmann integral. It is therefore necessary to per-
form an objective comparison between these methods. In practice the various ‘exact’ methods are compu-
tationally demanding such that they cannot be used in operational applications. To overcome this hurdle,
various approximations have been developed, of which the DIA is most commonly used. Despite its success
in the development of third-generation wave models, the DIA suffers from many shortcomings and more
accurate methods need to be developed. The main challenge is to develop computational methods that
are sufficiently accurate as well as computationally feasible for inclusion in operational models. The devel-
opment of such new approximations is not straightforward due to the complicated (nonlinear) nature of the
Boltzmann integral. Possible ways to come up with an attractive computational method are to extend the
DIA with more generally shaped configurations, neural network techniques, reduced exact integration meth-
ods or hybrid methods. It is very likely that each new approximation works best for a certain range of con-
ditions. Therefore, a good understanding of the role of nonlinear interactions in various conditions is
essential to make choices in developing an optimal computational method. In practice, the first test for a
new approximate method is to compare the results with exact solutions for individual (academic) spectra.
However, the real test is to apply new approximations in combination with other source terms in situations
where the spectrum evolves, like fetch- or duration limited wave growth or slanting fetch situations. Com-
parison with ‘exact’ methods then provides a benchmark to assess the operational benefits of approximate
methods. In this process the balance between the computational requirements and the need to achieve a cer-
tain accuracy in terms of model results should be optimized. This does not necessarily include a good pre-
diction of the shape of the nonlinear transfer rate.

4. Spectral dissipation in deep water

Contributing authors: Alexander Babanin (ababanin@groupwise.swin.edu.au), José-Henrique G.M. Alves,
Fabrice Ardhuin, Michael Banner, Mark Donelan, Paul Hwang, Vladislav Polnikov, Ian Young.

Spectral wave energy dissipation represents the least understood part of the physics relevant to wave mod-
elling. There is a general consensus that the major part of this dissipation is supported by the wave breaking,
but physics of this breaking process, particularly for the spectral waves, is poorly understood. How much
energy is lost due to white-capping and where in the spectrum? What causes waves to break and what causes
them to stop breaking? What does the breaking severity depends on? Recent field observations (Banner et al.,
2000; Babanin et al., 2001; Banner et al., 2002) have found a threshold-like behaviour of breaking probabilities
across the spectrum in terms of spectral steepness parameters, but these results are still to find their way into
operational formulations that, today, are often just tuning knobs even in the simplest case of pure wind sea.

Dissipation due to interaction of waves with turbulence is arguably the second most important wave energy
sink, certainly most persistent. Whether this is a background turbulence or turbulence generated by wave
breaking, it is another source of dissipation that can account for an appreciable fraction of the wave energy
loss (Drennan et al., 1997; Ardhuin and Jenkins, 2005, among others). This sink term, however, is still to find a
consistent way of parameterization in wave models.

Many more other possible energy sink mechanisms can be formulated for the spectral wind–wave environ-
ment. For example, short wave modulation by long waves may also contribute to the dissipation of swell prop-
agating against the wind, by a combination of Longuet–Higgins maser mechanism and Hasselmann’s theory
for the exchange of potential energy between short and long waves. All these theories need a modern re-eval-
uation (e.g. Garrett and Smith, 1976; Ardhuin and Jenkins, 2005).
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Also, our general description of dissipation completely ignores the interaction of waves with the vertical
structure of the upper layers of the ocean. One step back on the mechanics of wave motion is probably nec-
essary. Indeed, many mechanisms can be proposed for wave dissipation at this level. These include, for exam-
ple, interaction with internal waves, which can be significant when the orbital motion due to waves is felt well
below the thermocline. This leads to an increased mixing of the upper layers. In turn, the latter leads to the
attenuation of swell and to consequences presently not considered in wave models, but a sound theoretical
basis is available (e.g. Kudryavtsev, 1994).

While a loss for the wave system, whitecapping is a source of momentum and turbulent kinetic energy for
the ocean currents or longer waves. Presently this two-step transfer is not considered, and modelled currents
are driven directly by the atmospheric stresses. A properly defined body-force representing the momentum flux
of waves to the mean flow combined with a surface flux of turbulent kinetic energy apparently leads to rea-
sonable profiles of Eulerian currents, TKE dissipation, and eddy viscosity (e.g. Terray et al., 2000; Sullivan
et al., 2004).

Theoretical and experimental knowledge of the spectral wave dissipation is so insufficient that, to fill the
gap, spectral models have been used to guess the spectral dissipation function as a residual term of tuning
the balance of better known source functions to fit known wave spectrum features. In this section, studies
of the physics of the dissipation and the numerical simulations of the spectral dissipation are separated into
different subsections. The two approaches target the same objective but should not be confused, as the simu-
lations cannot prove or disprove the physics, and in fact may even disregard the physics and still be successful.
Physics, on the other hand, is the ultimate truth. Discovered physical mechanisms certainly exist, but their rel-
ative importance with respect to the real waves and therefore their relevance for the models is often not clear.

4.1. Theoretical and experimental research of physics of the spectral dissipation

Physics of the spectral dissipation is an elusive subject, and theoretical and even experimental results in this
area are few and often contradictory. Three dissipation sources are considered in this section: those due to
wave breaking, wave–turbulence interaction and wave–wave modulation.

4.1.1. Spectral dissipation due to wave breaking

Theories of breaking dissipation, having started with the work of Longuet-Higgins (1969a), underwent
some two decades of relatively extensive attention, but have enjoyed very little development in the past 10–
15 years. This section is mainly dedicated to recent progresses in the field of wave dynamics, but a brief review
of those older analytical theories of the spectral dissipation is necessary to understand where we currently
stand. The review provided here uses extensively reviews of Donelan and Yuan (1994) and Young and Bab-
anin (2006), but also accommodates most recent advances in the field.

It is generally assumed that Sds is a function of the wave spectrum E:

Sds 	 En ð4:1Þ
but there is no agreement on whether the spectral dissipation Sds is linear in terms of the spectrum E or not, i.e.
whether n = 1 or n > 1. Donelan and Yuan (1994) classified theoretical models of the spectral dissipation into
three types: whitecap models, quasi-saturated models and probability models. We would add a turbulent mod-
el class to this classification (Polnikov, 1993). None of these models, however, deals with the physics of wave
breaking which governs the wave energy loss. This physics, to a major extent, is unknown, although relating
wave breaking to nonlinear wave group modulations is providing encouraging new insight (Banner et al.,
2000; Song and Banner, 2004). Present analytical models for Sds try to employ either the wave state prior
to the breaking or the residual wave and turbulence features after the breaking to derive conclusions on
the dissipation due to the breaking.

Of the models which consider the waves prior to the breaking, the first analytical type developed was a
probability model suggested by Longuet-Higgins (1969a) and further developed by Yuan et al. (1986) and
Hua and Yuan (1992). All of these studies used the Gaussian distribution of surface elevations to predict
the appearance of wave heights exceeding the height of the Stokes’ limiting wave or its limiting acceleration
g/2 at the crest (g is the gravitational acceleration). Such waves were assumed to break until the wave height is
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reduced back to a limiting value, and the difference was attributed to the dissipation. The limiting value used
varied from the extreme Stokes value (Longuet-Higgins, 1969a; Yuan et al., 1986) to the mean value at a par-
ticular frequency derived from the Phillips (1958) equilibrium spectrum. The dissipation was found to be a
linear function of the wave spectrum.

More recently, however, it has been shown that the waves do not necessarily have to reach the g/2 accel-
eration limit to break (Holthuijsen and Herbers, 1986; Hwang et al., 1989; Liu and Babanin, 2004). In addi-
tion, once they are breaking they do not stop at the Stokes limiting steepness but may keep losing energy until
their steepness is well below the Stokes limit and even below the wave mean steepness (Liu and Babanin,
2004). Therefore, even though conceptually attractive, the probability models, as they have been derived,
are not quantitatively plausible.

The second type of prior-to-breaking class of models is what Donelan and Yuan (1994) called quasi-satu-
rated models (Phillips, 1985; Donelan and Pierson, 1987). These models rely on the equilibrium range of the
wave spectrum, where some sort of saturation exists for the wave spectral density. In this region, the wind input,
the wave–wave interactions and the dissipation are assumed to be in balance. Therefore, at each wave scale
(wavenumber), any excessive energy contributed by combined wind input and nonlinear interaction fluxes, does
not bring about spectral growth but wave breaking and can be interpreted as the spectral dissipation local in
wavenumber space. Phillips (1985) found that such dissipation is cubic in terms of the spectral density.

Donelan and Pierson (1987) added consideration of wave directionality to the energy balance of the equi-
librium range, arguing that a simple balance between wind input and dissipation is not observed at large
angles to the wind. They also separated dispersive (gravity and capillary) waves and non-dispersive (gravity
and capillary) waves as the nature of breaking differs for them because of different speeds of propagation rel-
ative to wave groups. Donelan and Pierson (1987) obtained a local-in-wavenumber-space dissipation function,
similar to that of Phillips (1985) but their exponent n depends on the wave spectrum E and wavenumber k.
According to them, n can vary significantly: n = 1–5. It is essential, however, that n 	 5 in most ranges of inter-
est – both for gravitational and for capillary waves.

This model type has multiple shortcomings. Firstly, the very concept of the quasi-saturated or equilibrium
interval is now subject to doubt (Donelan, WISE 2003). Even if it exists, the Phillips saturation level is not
constant, but depends on environmental conditions (Babanin and Soloviev, 1998a). And even more impor-
tantly, none of the source terms which shape the spectral balance are known explicitly and accurately enough
to provide a reliable determination of the dissipation as a residual sink term. Also, a dissipation function based
on the breaking of short waves in the equilibrium interval does not account for dissipation due to dominant
wave breaking near the spectral peak, which may be more severe and can be quite frequent (Babanin et al.,
2001; Young and Babanin, 2006). Finally, there is growing evidence that dominant waves and the breaking
of dominant waves affect dissipation at smaller scales (Banner et al., 1989; Meza et al., 2000; Donelan,
2001; Young and Babanin, 2006). If that is true, dissipation in the saturation interval will not be a function
local in wavenumber space.

The most mathematically well-advanced and most frequently utilised dissipation model is that due to Has-
selmann (1974). This is an after-breaking class model as it relies on the distribution of well-developed white-
caps situated on the forward faces of breaking waves. According to Hasselmann (1974), once there is an
established random distribution of the whitecaps, it does not matter what caused the waves to break: the
whitecaps on the forward slopes exert downward pressure on upward moving water and therefore conduct
negative work on the wave. This model produces a linear dissipation.

Two main assumptions of the model are that the dissipation, even if it is strongly nonlinear locally, is weak
in the mean and that the whitecaps and the underlying waves are in geometric similarity. Both assumptions are
not always strictly accurate. For example, Babanin et al. (2001) investigated wave fields with over 10% dom-
inant breaking rates, Young and Babanin (2006) examined a 60% dominant breaking case. It is not clear
whether the weak-in-the-mean approach is still applicable in such circumstances, which are apparently a reg-
ular feature of wind seas.

The geometric similarity is also an approximation for real unsteady breakers. The whitecapping commences
at some point on the incipient breaking crest and then spreads laterally and longitudinally (Phillips et al., 2001)
and may or may not satisfy the similarity assumption even in the mean. Therefore, both assumptions need
experimental verification. We should also point out that, before the distribution of established whitecaps is
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formed and they commence the negative work on the wave, some energy is already lost from the wave to form
the whitecaps, which is not accounted for by such a model.

Polnikov (1993) suggested another type of an after-breaking model. He argued that, no matter what the
cause of the breaking, the result is turbulence in the water. In his approach the rate of wave spectrum dissi-
pation is governed by the effective turbulent viscosity mT. Therefore, to describe the wave energy dissipation in
a wave spectrum form, it is sufficient to find a link between the wave spectrum and the water turbulence spec-
trum. To do this, he wrote the dynamic equations, performed an averaging, and introduced a Reynolds stress.
Then, the Reynolds stress was expanded into a series with respect to wave velocity components and their spa-
tial derivatives. The Prandtl hypothesis was used to close the turbulent terms in these series. Finally, Polnikov
found that the effective viscosity due to turbulence has a form of series with respect to wave spectrum in which
the quadratic term should dominate. Therefore, the dissipation should be quadratic in the spectrum.

Again, the idea is attractive, but the theory needs further development. Polnikov (1993) assumes a simpli-
fied representation of wave dynamics equations with the efficient stress attenuation that is appropriate for
monochromatic waves. But spectral waves of different scales interact, and the turbulent vortexes of particular
scales are not only generated as a result of dissipation of counterpart waves, but also as a result of the collapse
of larger vortexes (Kolmogorov cascade). Besides, we should point out that application of the eddy viscosity
to the wave-induced motion is in contradiction with accepted approaches in this field (see sub-section on
wave–turbulence interactions below).

Most importantly, however, generation of the turbulence is not the only outcome of dissipation of wave
energy. Melville et al. (1992) showed that 30–50% of energy lost by breaking waves is expended on entraining
bubbles into the water against buoyancy forces. This contribution, relative to the turbulence generation, is not
constant across the spectrum. For example, microscale breakers do not cause air entrainment and therefore
should expend relatively more energy on generating the turbulence.

To summarize this brief overview of existing theories of spectral dissipation, we find several studies which
offer four different analytical models. None of the models deals with the dynamics of wave breaking, which is
responsible for dissipation. Rather, they suggest hypotheses to interpret either pre-breaking or post-breaking
wave field properties. All of the hypotheses lack experimental support or validation. Results vary from the
dissipation being a linear function of the wave spectrum to the dissipation being quadratic, cubic or even a
function of the spectrum to the fifth power.

Experimental confirmation should be an important element of the development of a theory. There have,
however, been few experimental studies of wave dissipation. Thorpe (1993), Melville (1994), Terray et al.
(1996), Hanson and Phillips (1999), among others, addressed the total dissipation. Experimental investigations
of the spectral dissipation are all very recent: Donelan (2001), Phillips et al. (2001), Melville and Matusov
(2002), Hwang and Wang (2004), Babanin and Young (2005), Young and Babanin (2006) have made first
attempts to obtain spectral dissipation functions on the basis of field measurements.

Phillips et al. (2001) used high range resolution radar measurements and Melville and Matusov (2002) used
aerial imaging to study distributions of the length of breaking wave fronts K(c) where K(c)dc is the average
length of breaking crests per unit area of ocean surface travelling at velocities from c to c + dc (Phillips,
1985). They inferred a spectral function for the dissipation in terms of the phase speed c as the spectral param-
eter. Phillips et al., 2001 obtained it for a single wind speed and Melville and Matusov (2002) included a wind
dependence of U 3

10 into the K function:

SdsðcÞ ¼ b
qw

g
c5KðcÞ 10

U 10

� �3

; ð4:2Þ

where the wind speed U 3
10 has to be expressed in m/s. Connection of this dissipation with the wave spectrum was

not obtained explicitly and therefore it cannot be directly compared with other dissipation functions below.
Donelan (2001) (as did Phillips (1985) and Donelan and Pierson (1987) in analytical models described

above) used the balance of source terms to derive Sds. He argued that, for stationary fetch-limited no-current
conditions, Sin and Sds are more than an order of magnitude larger than the advection and the nonlinear inter-
action terms in some parts of the wave spectrum. Therefore, there are wavenumbers in the wave spectrum U(k)
where the balance is totally dominated by the wind input and the dissipation. If spectra of young fetch-limited
waves are considered and an appropriate hypothesis about the form of the dissipation function is used, the
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spectral dissipation can be obtained from the spectral wind input function. Using only peak values of his spec-
tra, Donelan (2001) obtained the dissipation as

Sds ¼ 36xðkÞEðkÞBðkÞ2:5 	 EðkÞ3:5; ð4:3Þ
where B(k) = k4E(k) is termed the saturation spectrum (Phillips, 1984). Here, the dissipation remains local in
wavenumber space.

However, once Donelan (2001) applied his function to the measured spectra at wavenumbers above the
spectral peak, the Sin and Sds balance could not be satisfied. The two energy source functions could only
be brought into balance by assuming that the mean square slope s of long waves modifies the dissipation rate
at shorter waves. The dissipation function was adjusted accordingly:

Sds ¼ 36xðkÞEðkÞ½ð1þ 500sðkÞÞ2BðkÞ�2:5: ð4:4Þ
The dissipation (4.4) is not local in wavenumber space, due to the s term, – as the quasi-saturated theories
suggested, – but on the contrary, acknowledges the importance of influence of longer waves on the dissipation
of short waves.

The influence, according to Donelan (2001), is due to the fact that dissipation rates for the short quasi-sat-
urated waves are modulated by the straining action of longer waves. On the forward faces of longer waves, the
short-wave steepness increases causing frequent breaking and correspondingly a net reduction in the energy
density.

The factor 500, however, may appear too large. A rather large swell of 2 m significant height and 10 s per-
iod gives a dissipation which is greater by a factor 2.3 compared to the case without swell. Such a large dis-
sipation would result in a lower wave growth, which does not seem consistent with the data (e.g. Dobson et al.,
1989), although a detailed hindcast would be necessary.

Apart from this mechanism for longer waves affecting dissipation at shorter scales, other mechanisms have
also been suggested by experimentalists. The other mechanisms involve effects due to breaking of large waves.
Banner et al. (1989) showed that the large scale breaking brings about rapid attenuation of short waves in its
wake and therefore may cause the spectral dissipation function to depend on frequency relative to the peak.
Meza et al. (2000), in a laboratory experiment with forced isolated breakers within transient wave trains,
showed that large breakers do not cause energy loss from dominant waves – but almost exclusively from wave
components well above the spectral peak. An unresolved effect here is whether the loss is predominantly from
bound harmonic nonlinearities of the steep dominant waves, or from the shorter free waves.

Hwang and Wang (2004), like Donelan (2001), used the source term balance idea to derive Sds. The
approach follows closely the discussions of Phillips (1984) who suggested that knowledge of the spectrum
dependence on wind speed can be used to understand the behaviour of the dissipation function. They applied
the source term balance approach to the spectra of short waves, twice the peak frequency and above, with
wavelengths from 2 cm to 6 m, collected in the ocean using a free-drifting measurement technique to mitigate
the problems associated with Doppler frequency shift of short-scale waves. A unique feature in their result is a
non-monotonic behaviour of the dissipation function, proportional to E2.3 for capillary waves, approaching
E3 at the other end of the wavelength scale, and reaching up to E10 in the middle wavelength range (0.2–
1.5 m long). They suggest that the quasi-singular behaviour of the dissipation in the middle wavelength range
may be an indication that the important spectral signature of wave breaking has a maximum in the wavenum-
ber domain.

Why would the maximum of spectral restoration occur in the intermediate scale waves with wavelengths
between 0.2 and 1.5 m? The approach is based on the assumption of local spectral balance between the wind
input and dissipation and, since their spectral wind input is a linear function of the wave spectrum, the sudden
rise of the dissipation to being 	E10 apparently reflects the sudden rise of the responsiveness of wave breaking
to the wave spectral density disturbances at the respective scales. This enhanced spectral density responsive-
ness at the middle wave-length range is suggestive that the wind input, which is assumed a monotonic function
of wavenumber, is not the only mechanism that generates intermediate scale waves. Detachment of breaking
jet, impulsive impact and the waveform deformation due to wave breaking will produce spectral signature in
the intermediate wavelengths. Hwang (2005) argues that the excessive generation at these scales of shorter
waves is perhaps brought about by breaking of larger dominant waves. Such excessive generation is not
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accounted for in our present formulation of the action or energy density conservation equation. As a result, it
is compensated artificially by an excessive dissipation function, and subsequently manifests itself via enhanced
level of breaking of shorter waves. The correlation between the dominant breaking and the short-scale break-
ing was observed by means of radar and acoustic sensing of the ocean surface (Hwang, 2005). Thus, if the
balance approach remains valid in such circumstances, it is not only the spectral energy dissipation appears
to be a function not local in wavenumber space, but the spectral energy input as well. In a way, such mech-
anism is supportive of the idea of the cumulative term described above.

Young and Babanin (2006), based on Lake George field data, conducted a direct attempt to estimate the
spectral distribution of the dissipation due to breaking of dominant waves. A field wave record with approx-
imately 50% dominant breaking rate was analysed. Segments of the record, comprising sequences of breaking
waves, were used to obtain the ‘‘breaking spectrum’’, and segments of non-breaking waves to obtain the ‘‘non-
breaking spectrum’’. The clearly visible difference between the two spectra was attributed to the dissipation
due to breaking. This assumption was supported by independent measurements of total dissipation of kinetic
energy in the water column at the measurement location.

It was shown that the dominant breaking causes energy dissipation throughout the entire spectrum at scales
smaller than the spectral peak waves. The dissipation rate at each frequency appears linear in terms of the
wave spectral density at that frequency, less a spectral threshold value, with a correction for the directional
spectral width A(f) (Babanin and Soloviev, 1998b). The spectral dissipation source term can be represented by:

Sdsðf Þ ¼ agf 
 X ððEðf Þ � Ethrðf ÞÞAðf ÞÞ þ bg
Z f

fp

X ððEðqÞ � EthrðqÞÞAðqÞÞ dq: ð4:5Þ

Here, the integral reflects a contribution to the dissipation at each frequency fr from waves breaking at fre-
quencies fp < f < fr, and X((E(f) � Ethr(f))A(f)) is a yet unknown function that controls inherent wave breaking
at each frequency (perhaps a function of the form described by (4.1) with n = 1, see Babanin and Young,
2005). The experimental coefficients a and b were found to be 0.0065, but these parameters may be also depen-
dent on environmental conditions (only a single record was analysed in the paper).

Thus, the only two experimental dissipation functions available, which cover the entire spectral frequency
band, (4.4) and (4.5) exhibit a common feature: cumulative term that puts whitecapping dissipation at smaller
spectral scales in dependence on what happens at larger scales. Consistency of this feature has been confirmed
by further investigations of the Lake George wave breaking data by independent means (Babanin and Young,
2005; Manasseh et al., 2006) where the two-phase behaviour of the spectral dissipation has also been obtained.

A passive acoustic method of detecting individual bubble-formation events developed by Manasseh et al.
(2006) was found promising for obtaining both the rate of occurrence of breaking events at different wave
scales and the severity of wave breaking. A combination of the two should lead to direct estimates of the spec-
tral distribution of wave dissipation.

If the wave energy dissipation at each frequency were due to breaking of waves of that frequency only, it
should be a function of the excess of the spectral density above a dimensionless threshold spectral level, below
which no breaking occurs at this frequency. This was found to be the case around the wave spectral peak. A
more complex mechanism appears to be driving the whitecapping dissipation at scales smaller than those of
the dominant waves where enhanced breaking frequency and dissipation rates are observed when expressed in
terms of the wave spectrum. This signifies a two-phase behaviour: Sds being a simple function of the wave
spectrum at the spectral peak and having an additional cumulative term at all frequencies above the peak.

The nature of the induced dissipation above the peak can be due to either enhanced induced wave breaking
or additional turbulent eddy viscosity (see the next sub-section on the wave–turbulence interactions) or both.
If the latter is true, then the dimensionless spectral threshold below which no dissipation occurs may not be
universal (or at least may not have a simple identifiable functional form) across the spectrum.

Young and Babanin (2006) also compared directional spectra of the breaking and non-breaking waves
whose difference should be indicative of the directional distribution of the dissipation. They showed that direc-
tional dissipation rates at oblique angles are higher than the dissipation in the main wave propagation direc-
tion and therefore the breaking tends to make the wave directional spectra narrower. If confirmed, this
conclusion may have very significant implications for the directional shape of Sds: unlike Sin, it would be bimo-
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dal with respect to the wind direction, and the main wave direction would be characterized by a local mini-
mum of the directional spectrum of dissipation.

Hence, the experimental evidence indicates that the dissipation function is likely to be not local in wave-
number space and is rather a functional of the wave spectrum. The experiments do not support any of the
suggested theoretical forms for the dissipation as no analytical theories have produced the cumulative dissi-
pation term. There are disagreements between experimental results as well: they offer different conclusions
as to the mechanisms by which dominant waves affect smaller-scale dissipation. Banner et al. (1989), Meza
et al. (2000), Young and Babanin (2006) attribute the effect to breaking waves, whereas, Donelan (2001) attri-
butes the effect to non-breaking waves. On the other hand, results of Hwang and Wang (2004) indicate that, if
the local balance of wind generation and breaking dissipation is true, then the dissipation function exhibits
quasi-singular behaviour at the intermediate wave scales.

To conclude the review, we have to summarize that (1) there is no consensus among analytical theories of
the spectral dissipation of wave energy due to wave breaking, even with respect to the basic characteristics of
the dissipation function, (2) the theoretical dissipation functions strongly disagree with the experiment, and (3)
experimental results, even though exhibit some common features, are often in serious disagreement with each
other. Such a state of knowledge of physics of the wave breaking losses does not help modelling the wave dis-
sipation which has been drifting in its own way (see Section 4.2).

The review of studies of the dissipation term, however, would be incomplete without mentioning an alter-
native approach to the description of evolution of wave spectrum which does not require detailed knowledge
and, in fact, existence of the spectral dissipation (Zakharov, 1966; Zakharov and Filonenko, 1967; Zakharov,
1968; Zakharov and Smilga, 1981; Zakharov and Zaslavskii, 1982a,b; Zakharov and Zaslavskii, 1983a,b;
Kitaigorodskii, 1983; Zakharov, 2002; Zakharov, 2005). In their theory of weak turbulence, Vladimir Zakha-
rov and his colleagues obtain a Kolmogorov spectrum of E(x) 	 x�4 as an exact solution of the kinetic equa-
tion for gravity waves in the equilibrium interval. This spectrum agrees with many experimental observations
(Toba, 1972; Kahma, 1981; Leykin and Rozenberg, 1984; Donelan et al., 1985; Hwang et al., 2000, among
others). In addition, Zakharov (2002) was able to reproduce known growth curves of wave integral properties
as analytical solutions on the basis of the theory of weak turbulence. This theory relies on the assumption that
the whitecap dissipation can be neglected in the frequency range of the spectral peak and the universal region
at wavenumbers above the peak. This theoretical assumption, however, is not obvious again, as the dominant
waves are known to break, sometimes quite frequently (Babanin et al., 2001; Young and Babanin, 2006) and
there are experimental evidences regarding the significant effect that dominant breaking has on wave spectral
peak dissipation (Donelan, 2001; Young and Babanin, 2006; Babanin and Young, 2005).

4.1.2. Wave–turbulence interactions

It was recognised very early that viscosity had a negligible effect on waves of periods of about 10 s and
longer (Lamb, 1932), so that, once generated, swells were supposed to dissipate slowly due to the action of
the wind, as represented by Jeffreys (1925) sheltering theory (Sverdrup and Munk, 1947). These ideas have been
gradually abandoned and traded for eddy viscosity analogies (Bowden, 1950; Groen and Dorrestein, 1950)
that are used today in some operational wave forecasting models (e.g. Tolman and Chalikov, 1996). Yet there
is no evidence that wave-induced velocity profiles are unstable and may become turbulent, except for the sur-
face viscous layer (a few millimeters thick) and the wave bottom boundary layer. Therefore, except in these
boundary layers, the local turbulent motions are possibly not related to the wave velocity field and no theory
can justify the use of eddy viscosities. Instead, the stretching of turbulent eddies by the wave motion may lead
to a different effect, and we should consider also the possible scattering of waves by turbulence. In order to
represent the stretching, rapid-distortion theory was applied on the water-side of the surface by Teixeira
and Belcher (2002). The theory assumes that the eddy turn-over time is less than the wave period, or, said dif-
ferently, that the strain rate of the turbulence by the wave motion is more than that of the turbulence by itself,
and that the turbulent velocity is much less than the wave-induced velocity. For the wave components that
satisfy these conditions, the theory yields the following rate of production of turbulent kinetic energy

P ws ¼ u0aw0 
 oUsa

oz
; ð4:6Þ
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where the Cartesian components of the fluctuating turbulent velocity are u0a (a = 1,2) and w 0 in the water, and
the (horizontal) components of the Stokes drift are Usa. This expression may be considered obvious when com-
pared to the usual production of TKE due to the mean current shear, but it must be kept in mind that the
Stokes drift is not a mean current, and has rather funny properties. Among these the Stokes drift is rotational
although it is the residual of an exactly irrotational motions.

Eq. (4.6) gives an energy rate of change of the form

dEð~kÞ
dt
¼ Sð~kÞ ¼ bxEð~kÞ: ð4:7Þ

Assuming a uniform turbulent flux, for the sake of simplicity, b = bturb, with

bturbð~kÞ ¼ �k
qa

gqw

u2
� cos ~h

cosð2kHÞ
sinh2ðkHÞ

; ð4:8Þ

where qa and qw are the air and water densities, respectively, u* is the friction velocity of the air flow, H is the
water depth, and ~h is the direction of the waves relative to the wind stress direction. Eq. (4.8) takes the fol-
lowing limit for deep water,

bturbð~kÞ ¼ �k
2qa

qw

u2
�

C2
cos ~h; ð4:9Þ

where C is the phase speed of the wave component of wavenumber k.
Ardhuin and Jenkins (2006), arrived at the same expression by using Lagrangian-mean (Andrews and

McIntyre, 1978) of the shear production term in the turbulent kinetic equation and assuming that the turbu-
lent flux u 0w 0 is uniform, and in particular not correlated with the wave phase, or, at most, weakly modulated.
Considering that a large part of the momentum flux may be carried by long-lived and stable Langmuir rolls,
the weak modulation of the turbulent flux by the waves is a likely hypothesis. However, turbulence is also to
be likely strongest at the peak of wave groups where the Stokes drift is largest. Thus the wave dissipation can
easily be larger than that given by (4.9). Employing the latest results on wave breaking relations with wave
groups could lead to a better estimate of this effect. It should also be noted that this process is capable of pro-
ducing turbulence at larger depth compared to that produced by whitecaps. This may resolve some problems
faced by models of the ocean mixed layer that fail to predict mixed layer depth deep enough in cases of positive
or zero buoyant fluxes, such as in the Southern Ocean summer.

4.1.3. Wave–wave modulations

Phillips (1963) noted that short wave breaking in the presence of long wave modulation was taking some
energy from the long waves through the modulation. These ideas were revisited by Longuet-Higgins (1969b)
who proposed a ‘‘maser mechanism’’ with the short wave breaking modulation feeding the growth of the
long waves. However, Hasselmann (1971) showed how the maser mechanism is largely cancelled by the var-
iation of the short wave potential energy, and found that only the much weaker dissipation remained as
proposed by Phillips (1963). When evaluated with reasonable modulation transfer functions, that dissipation
is typically slightly larger than the viscous dissipation (Ardhuin and Jenkins, 2005). Yet, Hasselmann (1971)
neglected the modulations of the wind stress that can be significant (Garrett and Smith, 1976). One may
thus follow Hasselmann’s (1971) and Garrett and Smith’s (1976) derivations and realize that this wind stress
modulation, working against the wave orbital velocity, should be added to the long wave energy rate of
change,

Sinm ¼ hT a
a~uai: ð4:10Þ

This effect dissipates the long waves that propagate against the wind, but may amplify the long waves that
propagate with the wind. In all cases, the exchange of energy and momentum takes place between the wind
and the long waves through the short waves, and not between the waves and the ocean circulation and the
turbulence as in the previous cases. The wind stress modulation was estimated by Kudryavtsev and Makin
(2004) and Ardhuin and Jenkins (2006) by means of using the rapid distortion theory in the air. This suggests
that the swell dissipation is mostly due to this effect and that dissipation occurs for all directions of waves rel-
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ative to the wind, with stronger dissipation for opposing winds. A re-estimation of the mixing length param-
eterization related to the ‘‘inner layer depth’’ (see Janssen, 2004) changes slightly the magnitude of the results.
However, Kudryavtsev and Makin (2004) neglected the modulation of the surface roughness which, as envis-
aged by Garrett and Smith (1976), may contribute to the growth of the waves in the wind direction. A qual-
itative estimation of that effect by Ardhuin and Jenkins (2006), based on the modulation transfer functions of
Hara et al. (2003), suggests that the roughness modulation should have a weaker effect than the stress mod-
ulation. Direct measurements of wind stress modulations is probably a serious challenge, but it should be con-
sidered. A better knowledge of the modulation of short wave amplitudes is also needed to improve
parameterizations of these effects.

4.2. Modelling the spectral dissipation function

Understanding the physics of wave dissipation from a spectral perspective has been so incomplete that the
spectral dissipation rate, unlike the wind input and nonlinear transfer, has been inferred indirectly by model-
ling the evolution of the wave spectrum rather than by parameterizing known physical features of the dissi-
pation directly. Sometimes, such attempts have been based on trying to fit the dissipation term to an
existing analytical model (Komen et al., 1984; Polnikov, 1993), but mostly such terms are tuning knobs that
may or may not involve reference to the physics.

As an illustration, it is generally recognised that a major part of the wave dissipation is produced by the
wave breaking. Nevertheless many recent experimentally-discovered features of the breaking-induced dissipa-
tion have not yet been incorporated in wave models (see Section 4.1). Particular physical mechanisms that
have been identified by modellers for inclusion are breaking threshold behaviour based on local spectral sat-
uration (e.g., Alves and Banner, 2003) rather than integral wave steepness (Komen et al., 1984), and additional
short wave extinction through cumulative nonlinear interaction with longer waves (e.g., Donelan, WISE
2005), amongst several others.

On another part, there is a growing discussion on what physical features have to be excluded from being
damped in the spectral models as a result of artificially tuned dissipations. For example, Lavrenov (2004)
showed that, if the dissipation function is not forced to suppress the low-frequency spectral energy, this
may result in return energy fluxes from the waves into the atmospheric boundary layer, up to a quarter of
the total wind-to-wave flux in magnitude. This considerable additional source of energy for the atmosphere
may prove a significant factor in weather and climate forecasts. Another example: at WISE 2005 mentioned
above, Donelan and Meza in two separate papers presented dissipation functions responsible for the spectral
peak downshift. Such a feature does not appear in dissipation functions presently in use, but is consistent with
laboratory experiments of Tulin and Waseda (1999).

However, the relative importance of such mechanisms, identified above in Section 4.1 for real waves, and
therefore their relevance for spectral models, is often not clear. Thus, models should not have to shoulder the
immediate blame for not conforming to observational physics as soon as the latter is revealed. In any event,
progress in modelling the spectral dissipation rests heavily on validation methods that differ intrinsically from
those which highlight progress in studies of the physics of the dissipation.

Therefore, in this section we will not concentrate on a detailed analysis of dissipation terms included in
wave research and operational models. Given the recent experimental advances, proposed forms for the dis-
sipation rate term are rapidly evolving and are likely to evolve further in coming years. Instead, we shall ana-
lyse the progress of methodology for modelling and verification of the dissipation functions and indicate
possible future ways for this to progress. In brief, the major historical stages of the methodology of tuning
the dissipation term can be summarised as follows: (1) considering the balance of source terms in order to
obtain the known integral evolution curves (e.g., Komen et al., 1984); (2) validating the spectral balance evo-
lution to ensure the known spectrum development behaviour is satisfied (e.g., Banner and Young, 1994); (3)
uncoupling the dissipation term from the source term balance in an attempt to tune it directly against known
wave breaking characteristics (e.g. Banner, Kriezi and Morison, WISE 2004); (4) further tuning the stand-
alone dissipation function against other dissipation-related properties and constraints (next step); (5) employ-
ing exact physics, both experimental and theoretical (future).
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(1) Up to now, progress on dissipation modelling is seen through the growing ability of the employed dis-
sipation terms Sds to reproduce refined features of spectral wave evolution. As mentioned above, the
groundwork was set by Komen et al. (1984) who first demonstrated the possibility of obtaining and
tuning a form of the spectral dissipation function by considering the balance of all source terms in the
radiative transfer equation. They based their choice of the function form on a rather free interpreta-
tion of the Hasselmann’s (1974) analytical model for whitecap dissipation as random pressure pulses,
and introduced a set of wave evolution tests to verify the dissipation function. Once the proposed dis-
sipation function was implemented in the evolution runs, the model had to reproduce the experimen-
tally well-known evolution of wave integral properties – variance and peak frequency. A list of more
recent dissipation functions falling into this category includes, but is not limited to, Makin et al.
(1995), Tolman and Chalikov (1996), Schneggenburger et al. (2000). Unfortunately, all the tests by
Komen et al. (1984) were performed for wind sea growth in the absence of swell, which was later
found to have a very large spurious effect on the parameterizations (Tolman and Chalikov, 1996; Boo-
ij and Holthuijsen, 2002). This problem is inherent to the definition of a mean steepness from the
entire spectrum, and leads to overestimations of wind sea growth in the presence of swell by as much
as a factor of 2 (Ardhuin et al., 2007), even with the latest modifications to Komen et al.’s formulation
by Bidlot et al. (2005).

(2) The next significant step in fine-tuning the dissipation term was achieved by Young and Banner (1992)
and Banner and Young (1994) who introduced a requirement for the modelled evolution, based on the
use of a chosen dissipation function, to reproduce an experimentally known form of the wavenumber
spectrum tail. Obviously, the spectral models need to be able to simulate development of the direc-
tional spectrum as well as its integral properties. This additional requirement put the Komen et al.
(1984) dissipation term to a serious test and it was concluded that this term can hardly satisfy all
the evolution dependences at the same time. Particular difficulties were encountered while attempting
to tune this term to reproduce experimentally known directional properties of the wave spectra.
Recent dissipation models in this category include Meza et al. (2002), Alves and Banner (2003), Lavre-
nov (2004), Bidlot et al. (WISE 2005), Donelan (WISE 2005). Among other important conclusions of
Banner and Young (1994) was a demonstration of sensitivity of the evolution results to variations of
other than the dissipation source terms. Fixing the high-frequency spectrum tail to an f�5 dependence,
as in Komen et al. (1984), brought about essential changes to the nonlinear term which then had to be
compensated by additional alterations of Sds. This revealed an ambiguity in verification of the
dissipation term on the basis of evolution runs that rely on simultaneous balance of all the
sources/sinks.

(3) This ambiguity is being overcome by employing a new series of direct tests in recent attempts to model
the dissipation function (Banner, Kriezi and Morison, WISE 2004). This dissipation function is based on
a local spectral saturation breaking threshold, refining the approach of Alves and Banner (2003). Banner
and his group proposed that, since the major contributor into the spectral dissipation is the wave break-
ing, the dissipation function should be verified against its ability to reproduce observed spectral distri-
butions of wave breaking, as well as against the evolution dependences for spectral and integral
properties. The observed spectral distribution of the length of breaking wave fronts, K(c), obtained
by Melville and Matusov (2002), and more recent results from Gemmrich (2005) have been used for
the verification purposes. This work is still in progress.

(4) In the meantime, it is obvious that even though a major part of the wave dissipation is due to the break-
ing, there are other mechanisms that contribute to the dissipation (see Section 4.1) and a general set of
spectral and integral constraints for the stand-alone dissipation function has to include the impact of
those mechanisms. For example, in a recent experimental study, Babanin and Young (2005) showed that
spectral dissipation rate estimates, when compared to the dissipation rate inferred by Melville and Mat-
usov (2002), indicate that the turbulent viscosity becomes significant at small wave scales, where the
cumulative term of the function (4.5) dominates. Therefore, tuning the dissipation function against dis-
tributions of K(c) would require corrections at those short wave scales, as the additional dissipation due
to turbulent viscosity does not manifest itself by means of whitecapping. As complex as it might appear
in deep water, the physics of wave dissipation in shallow water appears to be dominated by yet more new
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physical features (e.g. Song and Banner, 2004). Implementation of these and other constraints, proper
mathematical employment of experimentally-observed features of dissipation behaviour, as well as exact
physics, still belong to the future of spectral dissipation modelling.

5. Nonlinear interactions in shallow water waves

Contributing authors: Miguel Onorato (onorato@ph.unito.it), Jacco Groeneweg, Thomas H.C. Herbers,
Tim Janssen, Alexandru Sheremet, Jane McKee Smith.

In this section, we discuss the role of the nonlinear interactions in shallow water. The section contains the
description of the two approaches available for describing waves as they propagate towards the shore. The
first approach consists in describing the waves by deterministic equations (simplified models such as for exam-
ple the Boussinesq equations or even the fully nonlinear equations). The second one deals with stochastic mod-
els, i.e., models that are derived from the deterministic ones under a closure hypothesis (usually the random
phase approximation is adopted). Limitations of both approaches are elucidated. Some comments on wave
breaking and dissipation in shallow water are also included.

5.1. Nonlinearity in shallow water

As waves propagate from deep water into shallow coastal areas, frequency dispersion diminishes and qua-
dratic near-resonances (Bryant, 1973) transform near-symmetrical waves to skewed, pitched-forward shapes
as observed on beaches at the onset of wave breaking (see e.g. Elgar and Guza, 1985), and induce radiation
of long waves at the ‘beat’ frequencies of the incident wave field, generally referred to as ‘surfbeat’ (e.g., Munk,
1949).

Historically, shallow-water wave models are based on the classical uniform-depth theories of Boussinesq
(1872) and Korteweg and deVries (1895), extended to variable depth by Peregrine (1967); these theories assume
the Stokes (or Ursell) number O(1) from the outset, i.e., nonlinearity, a/h, and dispersion, (kh)2, are assumed to
be of the same order. Although the original Boussinesq approximation accounted only for weak dispersion and
nonlinearity, limiting its validity to (very) shallow water, recent advances include full nonlinearity (Wei et al.,
1995) and high-order dispersion effects (e.g., Madsen et al., 2003), supporting modelling of waves in deep-inter-
mediate water and to very high-nonlinearity (see, e.g., Fuhrman et al., 2004). Reviews of developments in
Boussinesq theory are found in e.g. Kirby (1997) and Madsen and Schäffer (1999); more recent advances
include Chen et al. (2000, 2003); Watts et al. (2003); Shi and Kirby (2005), and many others.

Hasselmann’s theory for resonant quartet interactions, which forms the basis for most deep water wave pre-
diction models, is restricted to deep and intermediate water depths where the Stokes number 61 (see Zakha-
rov, 1999). It is well known that the lower order triad interactions are non-resonant in deep-intermediate
depth water, forcing second-order bound components that can be important locally but do not contribute
to the wave evolution over large distances. However, as ocean surface waves propagate from deep to shallow
water, triad interactions approach resonance and assume a dominant role in the dynamics. This transition
from quartet to triad interactions is the result of the change in the dispersion relation from a dispersive deep
water regime that does not support resonant triad interactions (Phillips, 1960) to a non-dispersive shallow-
water regime where all wave components travel with the same speed. Although triad interactions are exactly
resonant only for uni-directional waves in the non-dispersive shallow water limit, near-resonant triad interac-
tions can play a dominant role in the evolution of waves in shallow coastal areas. For example, a periodic
wave train with frequency x and wave number k is accompanied by harmonic components (2x, 2k),
(3x, 3k), etc. that are bound in deep-intermediate water depths where they do not obey the gravity wave dis-
persion relation, but grow rapidly in shallow water where the mismatch from resonance is weak.

In general triad interactions transfer energy from the incident wave components to higher- (e.g., harmonic)
and lower- (e.g., infra-gravity) frequency components (see, e.g., Freilich and Guza, 1984; Elgar and Guza,
1985; Agnon et al., 1993; Herbers et al., 1994; Kaihatu and Kirby, 1995; Agnon and Sheremet, 1997; Herbers
and Burton, 1997; Ruessink, 1998; Kaihatu, 2001; Sheremet et al., 2002; Janssen et al., 2003, and many
others). These interactions not only broaden the frequency spectrum in shallow water, but also phase-couple
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the spectral components, causing the characteristic steepening and pitching forward of near-breaking wave
crests.

Shallow water wave propagation models can generally be divided in two major categories (see also Agnon
and Sheremet, 2000):

(i) Deterministic (phase resolving) models are usually derived from the Euler equation for potential flows
(Laplace equation + boundary conditions) under the hypothesis of weak nonlinearity and in the limit
of shallow water, i.e. kh! 0. These models, including both the physical domain Boussinesq models
and the complex amplitude evolution models (spectral models), resolve the phases of the individual
waves.

(ii) Stochastic (phase-averaged) models are derived from deterministic equations by applying a turbulence-
like closure hypothesis to the infinite set of coupled equations governing the evolution of the spectral
moments. For any given deterministic wave equation, with a suitable closure hypothesis, a stochastic
model can be developed. Since the closure approximation invariably introduces errors, the underlying
deterministic model is in principle more accurate than its stochastic counterpart.

As waves approach the shore, additional effects such as bottom friction and depth-induced wave breaking
must be considered.

5.2. Deterministic models: time-domain and spectral-domain

Time-domain Boussinesq models are typically applied to domains with spatial scales of the order of 10
wavelengths. Computational demands become prohibitive for larger scale applications (see, e.g., Fuhrman
and Bingham, 2004). Moreover, in practice, the required phase-resolving boundary conditions are often
not available and the need for wave field statistics (instead of details of a single realization) requires the com-
putation of a multitude of realizations. Given the considerable computational requirements for even a single
realization, clearly such repeated simulations are extremely time consuming for two-dimensional applications
on domains of appreciable extent. Despite the recent advances in Boussinesq modelling, including the mod-
elling of highly nonlinear waves (Wei et al., 1995) in fairly deep water (Madsen et al., 2003; Fuhrman and
Bingham, 2004) and wide ranging capabilities to model refraction, reflections and wave-induced currents,
the computational demands for computing wave field statistics for random, directionally spread waves seri-
ously limits the use of such models for operational nearshore wave prediction.

An efficient alternative to time domain models are so-called (complex) amplitude evolution or spectral
models. This class of models essentially expresses the wave field as a superposition of plane waves (Fourier
modes), and consists of a set of coupled evolution equations for the Fourier amplitudes. The application of
the Fourier transform results in a dimensional reduction of the governing equations at the expense of convo-
lution-type forcing terms to account for nonlinear interactions. Fourier models are attractive because they
provide a natural continuation of the deep-water approach, and are well suited to handling processes of an
intrinsic statistical nature such as dissipation and wind input.

While in deep water the temporal evolution of different wave numbers is usually considered (the Fourier
Transform from spatial coordinates (x,y) to wave numbers (kx,ky) is taken), a careful treatment is required
for the richer family of finite-depth wave-fields (including evanescent, trapped or singular modes, Whitham,
1979), which are also intrinsically inhomogeneous. For variable depth problems, due to the fact that in linear
theory the waves preserve their frequency as they shoal, it is more convenient to work in frequency Fourier
domain (rather than the wave number domain) and solve for the amplitude evolution in space of waves with
different frequencies. Freilich and Guza (1984) developed a frequency domain wave shoaling model based on
Peregrine’s (1967) extension of Boussinesq’s theory to varying depth. Many such models have been reported in
the literature, either based on Boussinesq theory (Freilich and Guza, 1984; Madsen and Sørensen, 1993;
Herbers and Burton, 1997) or fully dispersive theory (e.g. Agnon et al., 1993; Kaihatu and Kirby, 1995;
Eldeberky and Madsen, 1999); the latter class of models includes full linear dispersion and has no inherent
depth restriction in the linear terms, but is derived assuming quadratic resonances from the outset. The
restriction to quadratic near-resonances is removed by Bredmose et al. (2003) for unidirectional wave
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propagation; for directional wave propagation over topography a generalized formulation (including off-res-
onant quadratic components) is derived in Bredmose et al. (2005) and Janssen et al. (2006); the latter model
includes also cubic near-resonances, extending the model validity to intermediate water depths.

Similar to the time-domain models, these models are deterministic and in order to obtain wave field statis-
tics, Monte Carlo simulations are required. Since in general, amplitude evolution models are numerically effi-
cient when compared to time-domain models, such simulations (although time consuming) are feasible (see
also Freilich and Guza, 1984). Monte Carlo simulations are typically performed by assuming the wave field
Gaussian at the seaward boundary. Modal amplitudes are drawn from a Rayleigh distribution with variance
derived from the observed (or theoretical) density spectrum, and random phases are added (see Tucker et al.,
1984).

Deterministic spectral models are particularly well-suited to derive efficient, stochastic evolution models
(see, e.g., Agnon and Sheremet, 1997; Herbers and Burton, 1997).

5.3. Stochastic models

The shoaling evolution of random waves on a beach can also be predicted with stochastic models that solve
evolution equations for statistically averaged spectral wave properties. Such equations can be derived by
manipulating the deterministic equations and ensemble-averaging (e.g., Benney and Saffman, 1966; Newell
and Aucoin, 1971). At the lowest order, the procedure yields an evolution equation for the power spectrum
which includes terms involving the third-order cumulant, the bi-spectrum. An evolution equation for the
bi-spectrum can be derived at the next order, but this equation depends on the tri-spectrum (fourth-order
cumulant), and so on. Thus the system never closes, leading to an infinite set of equations for the spectral
moments. Even though it is well known that the probability density function of surface gravity waves can
be far from Gaussian in shallow water (especially for large Stokes numbers), a quasi-Gaussian (or quasi-nor-
mal) closure is usually introduced.

Most of the stochastic shallow water models consist of two, coupled evolution equations, one for the wave
spectrum and the other for the bi-spectrum. Such equations were introduced by Saffman in 1967, starting from
the Korteweg de Vries equation. The same methodology has been used later for deriving stochastic models
from different deterministic equations (e.g., Agnon and Sheremet, 1997; Herbers and Burton, 1997; Kof-
oed-Hansen and Rasmussen, 1998; Eldeberky and Madsen, 1999).

Although even the earlier stochastic models (e.g., Agnon and Sheremet, 1997; Herbers and Burton, 1997)
were derived for directional wave fields, apart from the simulations by Becq-Girard et al. (1999a) and recent
advances by Herbers et al. (2003), most verification has been done for uni-directional waves. Comparisons of
model predictions of wave spectra evolution to observations generally show good agreement at locations well
outside the surf zone and for Stokes numbers less than 1.5. Higher-order statistics such as wave skewness and
asymmetry are less well predicted, in particular in the surf zone. It is found that these parameters are sensitive
to the type of spectral weighting function used in the dissipation source term that accounts for depth-induced
wave breaking (Chen et al., 1997).

Stochastic models are efficient in the sense that they compute statistical quantities directly, without the need
of repeated simulation; moreover, they can be initialized at the offshore boundary with wave spectra obtained
from routine directional wave measurements or regional wave model predictions; the bi-spectrum can usually
be initialized with standard second-order theory for uniform depth (Herbers and Burton, 1997). However,
inherent to the derivation of such stochastic models is the requirement of some sort of statistical closure.
The commonly used quasi-Gaussian closure is not suitable for modelling wave evolution over long distances
through regions of strong nonlinearity and dissipation, where it produces an unrealistic divergence from
Gaussian statistics, leading to overly strong nonlinear couplings and potentially even negative energies (see
Orszag, 1970), which is clearly unrealistic. For larger Stokes numbers and thus at locations close to the surf
zone, the fundamental nature of the closure approximation negatively affects the model performance, even to
the extent that predictions are physically unrealistic. To alleviate this problem and extend the modelling capa-
bility of these stochastic models into the surf zone, Herbers et al. (2003) proposed a heuristic, dissipation-con-
trolled closure approximation, with a relaxation to Gaussian statistics on the scale of the surf zone width. This
approach is similar to the relaxation of the quasi-Gaussian closure used in turbulence models (e.g., Salmon,
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1998). Generally good agreement between observations and model simulations is found, even at locations well
within the surf zone.

Starting from a general three-wave interaction equation for water waves, Zaslavskii and Polnikov (1998)
have derived an evolution equation for the wave action spectrum. The approach is basically the same as used
in the derivation of the standard kinetic equation in deep water (including the quasi-Gaussian approximation).
However, since there are no exact triad resonances, a spread delta function, characterized by a spreading
parameter, is retained in place of the usual delta function in frequency. The final set of equations is referred
to as a ‘‘quasi-kinetic equation’’. In the case of one-dimensional propagation, numerical results have been
compared with experimental data with some success (see Polnikov, 2000 and Piscopia et al., 2003). Some issues
concerning the conservation of energy for the quasi-kinetic equation remain to be resolved (see Becq-Girard
et al., 1999a). In the same context, Onorato et al. (2004) have derived a single evolution equation for the evo-
lution of the wave action spectrum including quasi-resonant interactions (a spread delta function of the form
of sin(Dxt)/Dx was derived after analytical integration of the equation for the bi-spectrum), but no compar-
ison with experimental data has been reported.

Earlier models, derived with the purpose of application in operational wave forecasting models (e.g.
SWAN), include only self–self interactions (e.g., Eldeberky and Battjes, 1996; Becq-Girard et al., 1999b).
These approximations are numerically efficient but rather crude representations of the nonlinear physics.
Experiments involving unidirectional wave propagation indicate that, although these models can reproduce
the generation of higher harmonics, they do not reproduce the release of such harmonics for increasing water
depth; consequently, they usually result in an overestimation of the energy content at harmonic frequency
ranges. Difference interactions, forcing low-frequency wave motions, are not accounted for in these simplified
models, which further hamper their successful application in a realistic setting.

It is a misconception that stochastic models as described here can be applied to numerical domains with
much coarser grids than deterministic models. In order to model quadratic interactions, the resonance mis-
match needs to be resolved (e.g., Kofoed-Hansen and Rasmussen, 1998). This implies that grid resolution
requirements for these stochastic models are generally similar to that of deterministic (spectral) models,
and thus more stringent than those of conventional phase-averaged energy transport equations in deep water.

5.4. Dissipation and wave breaking in shallow water

Although nonlinear energy transfers can be predicted with rigorous theories, wave dissipation in the surf
zone is not well understood and is modelled heuristically. Schäffer et al. (1993) include a turbulent surface roller
in a time-domain Boussinesq model that yields a realistic description of the evolution of wave profiles in the
surf zone. Most models for the breaking of random waves are based on the analogy of individual wave crests
with turbulent bores (Battjes and Janssen, 1978; Thornton and Guza, 1983). Although these bore models yield
robust estimates of bulk dissipation rates in the surf zone, the spectral characteristics of the energy losses are
not specified, and somewhat arbitrary quasi-linear spectral forms of the dissipation function are used in Bous-
sinesq models (Mase and Kirby, 1993; Eldeberky and Battjes, 1996). Boussinesq model predictions of wave fre-
quency spectra in the surf zone appear to be insensitive to the precise frequency dependence of the dissipation
function, but predictions of wave skewness and asymmetry are considerably more accurate if dissipation is
weighted toward high-frequency components of the spectrum (Chen et al., 1997). Estimates of nonlinear energy
transfers in the surf zone based on bispectral analysis of near-bottom pressure fluctuations confirm the dom-
inant role of triad interactions in the spectral energy balance, transferring energy from the dominant incident
wave frequencies to the dissipative high-frequency tail of the spectrum (Herbers et al., 2000).

The fate of difference three-wave interactions (which are responsible for the generation of low frequency infra-
gravity waves – frequencies of 0.002–0.02 Hz) as the sea-swell propagates through the surf zone has been studied
recently using field data (see, for example, Sheremet et al., 2002 and references therein). Observations show that
the nonlinear coupling associated with this type of interaction strengthens continuously in the shoaling zone,
where three-wave interactions are increasingly active and most of the shape transformation of the waves occurs.
In the vicinity of the breaking point, however, the coupling is effectively destroyed, and infragravity waves are
released. This process seems to justify the use of ‘‘unidirectional’’ hyperbolic spectral models limited to shore-
ward propagation, as opposed to more complex elliptic ‘‘bi-directional’’ models (e.g., Mild Slope Equation).
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5.5. Open problems

Although great advances have been made in modelling wave propagation in finite-depth, the topic is far
from being exhausted. For instance, there is a wide variety of wave–bottom interaction processes that are dif-
ficult to fit into a single, complete and effective model. Some aspects, such as bottom friction processes, are
discussed elsewhere (reference bottom friction white paper).

Open problems related to nonlinear wave evolution in variable depth (in effect wave–wave–bottom inter-
actions) are abundant. The following short discussion is confined to a few outstanding issues.

Applications of deterministic (phase-resolving) models to random waves are based on a principle similar to
Monte-Carlo simulations. Waves enter the domain at a deep-end, where the wave field can be assumed to be
Gaussian. An estimate of the deep water energy spectrum is used to generate random modal amplitudes and
phases (see Section 5.2) at the domain boundary for each realization. It is unknown how many realizations are
needed to obtain statistically reliable predictions of shallow water wave properties. In practice, a balance needs
to be struck between a desirable large number (around 50 realizations typically reported) and the required
computer time.

Alternatively, stochastic simulations are in principle more efficient since these models compute ensemble-
averaged quantities directly, without the need for repeated simulations. However, the quasi-Gaussian statis-
tical closure hypothesis commonly used in these models, can introduce large errors in applications over long
distances or through regions of strong nonlinearity and dissipation. If the scope of these models is to be
extended so that they can be applied over considerable distances in shallow water and through the surf zone,
improvements in the statistical closure are needed (see e.g., Herbers et al., 2003).

It is important to recognize that, successful as the models discussed here have been at reproducing observed
beach shoaling conditions, they are far from providing a robust general tool for wave forecasting in water of
finite depth. In fact, most models were developed as nonlinear shoaling models, with the implied domain of
application a typical sandy beach. Most of the model validation has been conducted on moderate slope bea-
ches (1–5%) with shoaling ranges of the order of 10 characteristic wavelengths and nearly straight and parallel
isobaths. Many natural coastlines have complex two-dimensional features such as shoals, banks and reefs
where the combined effects of the topography and strong nonlinear interactions transform the wave field.
The accuracy of existing models in these environments is not well understood. Additionally, many coastal
regions contain wide shallow flats where nonlinear interactions evolve the wave field over hundreds of wave-
lengths. These large domains obviously strain the numerical resources needed for deterministic model simu-
lations while likely invalidating the closure hypotheses used in stochastic models. Another limitation of
most existing deterministic and stochastic evolution-type models is that they assume progressive waves,
accounting for the evolution of incident propagating modes, but omitting locally excited evanescent modes
and reflections. Consequently, in their present form, they do not predict the reflection of waves from steep
shores and the nonlinear dynamics of the associated standing waves, and the excitation of refractively trapped
low-frequency modes (e.g., edge waves).

To date, there is no comprehensive model formulation for fully directional wave–wave interactions over
two-dimensional bathymetry, applicable to arbitrary scales of propagation and suitable for operational wave
forecasting problems.

6. Bottom dissipation

Contributing authors: Jaak Monbaliu (jaak.monbaliu@bwk.kuleuven.be), Fabrice Ardhuin, Judith Wolf.

The dissipation terms in the wave energy equation are the least well-known. The wave energy balance equa-
tion explicitly contains a term for white-capping dissipation in deep water. As waves approach shallower water
(depth < k/2, kh < 3) they start to ‘feel the bottom’ i.e. there is a non-negligible wave-induced oscillatory cur-
rent at the sea-bed and the spectrum adopts a new self-similar shape in which enhanced dissipation is evident,
e.g. TMA spectrum (Bouws et al., 1985). The wind input, nonlinear transfer and white-capping terms take
different forms in depth-limited conditions and there is evidence for interaction of waves with the bottom. Sev-
eral bottom-related dissipative processes are known: percolation into a porous bottom, motion of a mobile
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bed or dissipation through turbulent bed shear stress with an associated bottom boundary layer (Weber, p.
156, in Komen et al., 1994). Earlier work suggested that the self-similar adjustment of the spectrum might
be all that was required to account for, with no need for bottom friction (Resio, 1987), but Weber (1988)
showed clearly that this is not the case and dissipation through bottom friction was required to complete
the energy balance in shallow water. Most spectral wave models that take into account bottom dissipation
as a source term, only model dissipation by bottom friction. Below a short overview is given with reference
to the most common literature.

A process that is also worth mentioning is Bragg scattering from bottom irregularities, e.g. sand waves.
However, this is not really a dissipative process but a process that in fact redistributes energy. This process
is therefore covered elsewhere in this paper.

6.1. Wave energy dissipation due to bottom friction

Bottom friction is responsible for energy dissipation, which may reach a few watts per square meter, which
is comparable to the energy input by the wind for moderate winds. Following Mirfenderesk and Young
(2003), we can write Sbf(k), the time rate of energy density loss at wave number k, as:

Sbf ðkÞ ¼ �hs0ubki;
where s0 is the bottom shear stress and ubk is the orbital velocity of the wave component with wave number k.
Much work has been devoted to the detailed study of the bottom boundary layer structure, in order to obtain
s0, ubk and other quantities as a function of the wave and current velocities away from the boundary, e.g.
Grant and Madsen (1979), Christoffersen and Jonsson (1985), Wiberg (1995), Davies and Villaret (1999), Mar-
in (2004). These models perform well against laboratory measurements, e.g. Jensen et al. (1989), for well-de-
fined conditions (smooth and rippled beds with carefully controlled geometries).

6.1.1. Common formulations for spectral wave models: waves only

Luo and Monbaliu (1994) summarised the work done on the bottom friction term used in spectral wave
models (here written in (r,h) space, h is the water depth):

Sbf ðr; hÞ ¼ �Cf
k

sinhð2khÞ F ðr; hÞ:

The coefficient Cf depends on the closure model used to solve the momentum equations of the bed boundary
layer. Of course, flow conditions and bottom roughness (friction factor fw or equivalent roughness KN) are
important parameters.

The following symbols in Table 1 are used: friction coefficient c; drag coefficient Cf; friction factor fw; bot-
tom roughness height KN; kronecker delta dij; ensemble average Æ æ; bottom velocity components Ui and Uj; U

is the magnitude of the bottom velocity vector; wave boundary layer friction velocity u*; dimensionless func-
tion T~k and its complex conjugate T �~k , both dependant on the dimensionless argument 10 expressing the ratio
between the roughness length and the wave boundary layer thickness.

In the field however a degree of complexity is introduced by the randomness of the wave field, e.g. Zou
(2004), but more importantly the bottom is anything but uniform. As a result, a large part of empiricism must
be introduced.

So far also only indirect validations have been performed, based on the recordings of wave attenuation
between several wave gauges, rather than direct measurements in the wave bottom boundary layer. The val-

Table 1
Coefficients Cf for bottom friction dissipation (Luo and Monbaliu, 1994)

Formulation Cited coefficient value Reference

JONSWAP CJ ¼ 2c
g c = 0.038 m2 s�3 Hasselmann et al. (1973)

CDHC ¼ 2CffdijhUi þ hUiUj

U ig Cf = 0.015 Hasselmann and Collins (1968)
CDC = 2CfÆU2æ0.5 Cf = 0.015 Collins (1972)
CDM ¼ 8

3pf w

ffiffiffi
2
p
hU2i0:5 fw or KN Madsen et al. (1988)

CE ¼ u�½T~kð10Þ þ T �~kð10Þ� KN Weber (1991)
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idation of the coefficients given above is often discouraging, but many studies do not take into account var-
iable roughness due to e.g. bedforms (see further). Hasselmann et al. (1973) found that CJ inferred from the
JONSWAP dataset of swell attenuations varied over two orders of magnitude, and (Young and Gorman,
1995) did not find a clear ‘‘winner’’ in their test of several parameterizations for the bottom friction source
term. For the analysis of data from a field experiment of wave decay across the Great Australian Bight in
order to determine the spectral decay which can be attributed to bottom friction, Young and Gorman
(1995) used the spectral wave model WAM as an analysis tool. It is indeed necessary to take other processes
such as atmospheric input, nonlinear interactions, whitecap dissipation, refraction, and shoaling into account
since all these source terms are also active. However, this makes the extraction and interpretation of only bot-
tom friction effects challenging.

6.1.2. Common formulations for spectral wave models: waves and currents
The effect of the interaction between waves and currents on the bottom stress is not completely solved.

There is still some debate about whether the interaction is weak or strong (Kagan et al., 2005). In the concept
of strong interaction both the wave and current bottom stress are enhanced due to nonlinear interactions. The
bottom stress under combined waves and currents is larger than the sum of wave and current only. This
approach was followed in the formulations of Grant and Madsen (1979) and Christoffersen and Jonsson
(1985).

In spite of the importance of these effects on tidal current modelling, there seems to be little field validation
of the wave–current theories. There is evidence that waves affect the bottom friction experienced by the mean
flow, e.g., Wolf and Prandle (1999), Keen and Glenn (2002), Kagan et al. (2005), but there seems little or no
observational nor theoretical evidence that the presence of currents affects wave friction in a substantial way,
see e.g. Kagan et al. (2005), Weber (1991), Tolman (1992a). As pointed out by Kagan et al. (2005), it is pos-
sible that some effects cancel out.

6.1.3. Bottom roughness models for movable beds

Irrespective of the formulation used, some characterization of the bottom roughness is needed. This is
directly evident in the models that require the friction factor fw or equivalent roughness KN as an input
(see Table 1). In the case of sandy bottoms, bed forms may exist. These bed forms (ripples) are dependent
on sand grain size, and on the existing, and the history of, previous hydrodynamic conditions, visible in wave
and current ripples and/or relict ripples. There are strong evidences for an important role played by the wave-
generated bedforms, so that the bottom roughness, at least over sand, appears more important than the details
of the bottom boundary layer (Ardhuin et al., 2003a). In other words an adequate parameterization of the
changing bottom roughness is probably more important than a choice between say Madsen et al. (1988)
and Weber (1991). In a series of investigations on swell propagation over the shelf (Ardhuin et al., 2001; Ard-
huin et al., 2003b), good agreement between modelled and observed wave spectra was shown when taking into
account the variability of the bottom friction due to ripples. In contrast, although on average the empirical
JONSWAP bottom friction term performed about equally well, it could not reproduce the weak swell decay
in low energy conditions (JONSWAP dissipation too strong) nor the strong decay in high energy conditions
(JONSWAP dissipation too weak).

There is a considerable amount of literature on friction factors for movable beds. They all relate hydraulic
roughness to a combination of skin friction on individual grains and form drag due to bed forms. Bed forms
here include ripples formed under oscillatory flow conditions including sheet flow conditions. In principle,
once sand grain size is known and the hydrodynamic conditions are known, it is then possible to estimate
hydraulic roughness of the bed and consequently also the energy dissipation in the wave field.

Tolman (1994) was probably the first one to investigate the effect of bed forms on bottom friction dissipa-
tion in a spectral wave model. He used a roughness predictor based on the sediment grain size and on a char-
acteristic orbital velocity and characteristic orbital amplitude obtained as an integrated parameter from the
wave spectrum. Tolman (1995b) even accounted for subgrid variability in sediment parameters in large-scale
wind wave models.

In practice however roughness values or energy dissipation factors obtained from different experiments dif-
fer often by an order of magnitude or even more, see, e.g., Nielsen (1992). There is the combined effect of
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waves and current on bed mobility, bed forms and suspended sediment concentration (Glenn and Grant,
1987). Also the dissipation process might differ depending on the bedforms involved. For example, in the case
of large roughness elements or steep ripples in oscillating flow, the momentum transfer in the near-bed layer is
dominated by the vortex-shedding process rather than by random turbulence, as pointed out by Nielsen (1992)
and Sleath (1991). Detailed process models of the wave boundary layer over ripples that address the vortex
shedding that is observed have been developed, e.g. by Malarkey and Davies (2004) and by Davies and Thorne
(2005). Possibly these process models may yield new parameterizations for spectral models.

6.2. Energy dissipation due to wave–bottom interaction

Bottom friction is not the only process of importance for the dissipation of wave energy at the water–bot-
tom interface. Shemdin et al. (1978) gave an overview of the different bottom interaction effects and next to
friction dissipation discussed above, two other mechanism were discussed:

� damping due to percolation in a permeable bed layer
� absorption of energy in a bottom layer of soft mud

Both mechanisms have been worked out theoretically for more or less idealized cases.
In the case of percolation, the dissipation of wave energy is due to the wave-induced pressure field at the

bottom which in turns induces a flow in the permeable (sand) layer. The theoretical considerations can be
found in Dean and Dalrymple (1984); Shemdin et al. (1978) and literature therein referred to. The wave energy
damping rate is proportional to the permeability of the sediment layer and only significant for coarser sedi-
ments (grain size > 0.5 mm). For practical applications not only grain size, but also the thickness of the per-
meable layer needs to be known (thickness larger than 0.3 times the wave length can be considered as infinite
according to Shemdin et al., 1978).

In the case of a soft muddy bottom, the energy dissipation is theoretically worked out using a two-layer
model. The top layer is the water column and is treated as an inviscid fluid. The free surface wave will induce
a wave at the mud–water interface which in turn will induce flow in the mud (lower) layer. The flow in the mud
layer is damped rapidly by the high viscosity in the mud layer. The dissipation rate of waves propagating over
mud bottoms is considerably higher than over sandy bottoms. For a more detailed description see, e.g., Dean
and Dalrymple, 1984, Gade (1958), Hsiao and Shemdin (1980), Dalrymple and Liu (1978), Jiang and Mehta
(1996), Ng (2000), and Cavaleri p. 169 in (Komen et al., 1994). Winterwerp et al. (2007) give a formulation for
the energy dissipation source term which they used in the SWAN model.

6.3. Discussion and outstanding problems

Qualitatively, the process of energy dissipation due to interaction with the bottom seems relatively well
understood. Theories exist for energy dissipation due to friction, percolation and water–mud interaction.
Quantitatively however, our understanding is at least incomplete.

First of all, the location of the sea-bottom is in many cases not fixed in time. Fortunately, wave energy dis-
sipation due to bottom friction is not a strong local process. The horizontal movement of a sand bank or shoal
over a few hundred meter will not drastically affect the wave energy propagating over a shelf or coastal area.

Second, our knowledge of the friction or damping characteristics of the sea bottom is limited. For example
not the whole shelf sea has a sandy bottom. Quite often there are areas with sand, areas with rock and areas
with mud. Bed forms are changing due to changing hydrodynamic conditions. Changes at subgrid scale are
likely both in terms of sediment composition (grain size, percentage sand, etc.) as in terms of bedforms (Tol-
man, 1995b). Bedforms in mixed mud–sand sediments seem to be inhibited, but this is a poorly known topic.
In that respect it is also interesting to quote from pp. 296–297 of Nielsen (1992): ‘‘Thus, energy dissipation mea-

surements under waves indicate much greater hydraulic roughness for flat, movable beds than other types of

experiments. . . ... Is it possible that the larger roughness indicated by the energy dissipation experiments can

be explained in terms of the energy dissipation due to percolation under waves, which is not directly related to

the effective bed shear stress. . . .’’. Also, in order to determine the spectral decay which can be attributed to
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bottom friction, Young and Gorman (1995) analysed the data obtained from a field experiment in which seven
wave measurement instruments were placed in a linear transect across the Great Australian Bight. The data
available did not allow the relative contributions of bottom friction and percolation to be determined. Or in
other words, in some cases we are not sure which dissipation process(es) we need to take into consideration.

Similarly, Wolf (1999) points out that it is difficult to make measurements of turbulent shear stresses in
combined wave and currents, especially in the field. Laboratory data may not cover the whole range of phe-
nomena, especially so when sediments are involved.

The energy absorption of soft muddy bottoms is not so well known. A standard source term for spectral
models is not available. Undoubtedly, there is an effect of enhanced damping by cohesive sediment and veg-
etation over salt marshes, as has been demonstrated by e.g. Möller and Spencer (2002). However, Sheremet
and Stone (2003) state that ‘‘Contrary to the widely accepted hypothesis that mud-induced wave dissipation is

important only for long waves, observations show significant damping of high-frequency, short waves, which inter-
act weakly with the bottom.’’ The two layer concept with an inviscid fluid at the top and a viscous flow layer
underneath is probably too simplistic to characterise a more gradual transition in fluid properties over the
water column.

Probably the only way to make further progress in our understanding of wave dissipation due to interaction
with a movable or soft bottom, will be through the combined study of the wave field and its effect on sediment
motion. These are closely linked. But flow properties and sediment concentration close to the bottom, and in
case of mud also visco-elastic properties of the bottom are difficult to measure. This is so in lab experiments,
but even more so in field conditions.

7. Wave propagation

Contributing authors: Fabrice Ardhuin (ardhuin@shom.fr), Kostas Belibassakis, Igor V. Lavrenov, Rudy
Magne, Hendrik L. Tolman.

Wave propagation is usually represented by the left-hand side term of the action balance equation, account-
ing for the well known effects of refraction, shoaling, diffraction and reflection. These effects typically domi-
nate the variation of the wave field over narrow continental shelves, or the evolution of swells over very long
distances in deep water. Large spatial scale variations in the depth and current may cause any of these effects,
and the time evolution of the depth and current also lead to modifications in the wave field that may be less
familiar to the reader but are generally included in spectral wave models. Although such effects are very well
verified by observations for varying depths, there is still little validation of wave propagation over horizontally
varying currents. Further, the action evolution equation over depth-varying current has not yet been given in
the form used for depth-independent current.

In this section we make an overview of the problem, first considering it from a general point of view. Then
we analyse in sequence the limitations of geometrical optics and the effects of varying current, both in space
and time, with a final look at waves in the real ocean. The feedback of the waves on currents is beyond the
scope of the present paper, but it should be noted that waves can generate very strong currents when they
break in the nearshore, imparting their momentum flux to the currents. For all water depths, wave breaking
is the largest source of upper ocean turbulence, with profound influences on current velocity profiles. The pres-
ent analysis of wave evolution is thus only one piece of a bigger jigsaw puzzle, with strong interactions with
turbulence and mean flows.

7.1. Dispersion, geometrical optics and the wave action equation

Wave propagation at sea has been a subject of scientific interest for centuries. A comprehensive theory for
monochromatic linear and nonlinear wave propagation was presented Airy (1845) and Stokes (1847), with
nonlinear effects specific to shallow water studied by Boussinesq (1872) and reviewed in Section 5. A spectral
description of wind waves was introduced by Pierson et al. (1955) in order to account for the irregularity of
waves at sea. In this description, the random wave field is broken into a spectrum of many regular wave com-
ponents which are distinguished by wavenumber vector k, and relative radian frequency r. Most wave fore-
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casting models in use today consider that the wave components are inherently linear so that the wave prop-
erties are attributed to either a component k = (kx,ky) or the pair (r,h) with h the direction normal to the wave
crests, which is the direction of the vector k. The wavenumber magnitude k and r are related by the dispersion
relation for linear waves. Typically, the relative phases of wave components are taken to be random and uni-
formly distributed so that only the amplitude information of the spectra is retained (dropping phase informa-
tion). These amplitudes are then translated to a quadratic wave quantity that may be either the spectral density
of energy qwgE(k), momentum Mw(k) = qwgkE(k)/r or action A(k) = gE(k)/r, where qw is the water density, g

is the apparent acceleration of gravity and E(k) is the surface elevation variance spectrum. This definition of
the action is not applicable in the case of strong nonlinearity or vertical curvature in the current profile. For
these cases one may use the more general definition given by Andrews and McIntyre (1978).

The integral of the spectrum is the local elevation variance E, from which the significant height may be eval-
uated as Hs = 4E1/2. Thus the usual maps of Hs produced by phase-averaged wave models (Fig. 8a) corre-
spond to an ‘‘average’’ wave height (trough-to-crest) of a moving surface, such as represented in Fig. 8b.

Fig. 8. Different representations of wave propagation over the Scripps-La Jolla submarine canyons. (a) Significant wave height computed
for 15 s swells from the West with SWAN (calculation performed by E. Rogers). (b) Solution of the mild slope equation for 1 m amplitude
15 s monochromatic swells, using the model of Athanassoulis and Belibassakis (1999). (c) Wave rays for 15 s with a constant offshore
direction from the West and an offshore spacing of 20 m. (d) Backward ray-tracing for the same wave period but for all directions arriving
at buoy number 34.
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The spectrum E(k) may be obtained by a Fourier transform of the surface elevation field. These spectral den-
sities generally vary in space and time so that the Fourier transform is generally implicitly replaced by a Fou-
rier transform of the surface elevation autocorrelation function, or a Wigner distribution (Wigner, 1932). It
should be noted that the local directional spectrum may have no physical meaning for wave amplitudes that
vary slowly in time but rapidly in space. For example, in Fig. 8b it is impossible to define a wave crest in some
regions of rapid variation of the topography.

Wave forecasting thus reduces to a quantitative determination of the evolution in space and time of the
action spectrum taken as N(k)=A(k)/g since qw and g are generally regarded as constants. The evolution equa-
tion for A is intrinsically simpler than those for E or Mw because the total action conservation is related to the
invariance of the physical problem when the wave phases are changed, which is generally the case in interme-
diate and deep water, in the absence of wind–wave generation, dissipation or triad interactions. This relation is
known as Noether’s theorem. In the same way, the conservation of total energy or wave momentum is related
to invariances by translations of the medium in time or space, respectively, which is generally not the case (e.g.,
Andrews and McIntyre, 1978). A general equation for the total action can be derived for any wave field in
terms of the wave-induced pressure, velocity and displacement fields (Andrews and McIntyre, 1978). This
includes in particular the Earth rotation or current shears that make the wave motion weakly rotational.
An explicit approximation may be given for slowly modulated small amplitude waves (Bretherton and Gar-
rett, 1968) with a corresponding equation for the spectral action density (Hayes, 1970; Komen et al., 1994),

dNðkÞ=dt ¼ oNðkÞ=ot þ $ 
 ½ðCg þUAðkÞÞNðkÞ� þ $k 
 ½CkNðkÞ� ¼ StotðkÞ; ð7:1Þ
where Cg = k (or/ok)/k is the intrinsic group velocity, and UA(k) is an advection velocity that depends on the
current profile (Andrews and McIntyre, 1978), and also on the amplitudes of all wave components (Wille-
brand, 1975). These latter effects may often be neglected in practice, and UA(k) can be approximated to be
the surface drift current or, for shallow-water waves, the depth-averaged drift current. The divergence operator
$ Æ ( ) is the classical divergence restricted to the horizontal directions only, and $k Æ ( ) is a similar divergence
operator in spectral space. The spectral advection velocity Ck represents the turning of the wave crests (refrac-
tion) and change in wave length (shoaling). Explicit expressions for Ck, or their equivalent for the pair (Ck, Ch),
can be obtained in terms of the gradients of the water depth and UA(k), using the hypothesis of slow modu-
lation (e.g., Keller, 1958; Mei, 1989). This approximation is also called WKB or ‘geometrical optics’ approx-
imation, due to its use in the theory of light refraction. The equations for (Ck,Ch) are usually called ‘ray
equations’, and form the basis of the advection part in phase-averaged wave models. Finally, the action of each
component is allowed to evolve as it propagates, with a rate of change given by the total source term Stot.

In the deep ocean, spectral components are indeed shown to propagate according to (7.1). The rotation of
the Earth has a negligible influence on wave propagation (Backus, 1962), and individual wave components of
the spectrum travel along great circles until they reach shallow water, strong currents, or coast lines. This was
powerfully demonstrated by Snodgrass et al. (1966), who followed wave propagation a third of the way
around the globe. In shallow water, and in the absence of significant currents, the validity of (7.1) was also
demonstrated by Munk and Traylor (1947), and many following studies. As a matter of fact, the propagation
of long period swells over a relatively narrow continental shelf with no significant current is generally well
described by (7.1), with the right-hand side set to zero outside of the surf zone (e.g., O’Reilly and Guza,
1993; Peak, 2004).

The two forms of the left-hand side of (7.1), the Lagrangian derivative following a wave packet, or the Eule-
rian derivative plus divergence of action fluxes, are rigorously equivalent. The first form was originally proved
for steady conditions without current (Longuet-Higgins, 1957) and is easily used in forward or backward ray-
tracing methods of solution (Fig. 8c and d, respectively). Such rays represents the propagation paths of mono-
chromatic wave packets. According to geometrical optics, the energy flux of such monochromatic waves is
constant between two rays that are integrated from an area where rays have parallel directions, and where
the phase speed is constant (e.g. deep water and uniform current). As a result the spatial energy density varies
as the inverse of the distance between the two rays, going to infinity where the rays cross. This location is
called a ‘caustic’. In reality the wave height is finite because any given component of the spectrum carries
an infinitesimal fraction of the wave energy, and the caustics occur in different places for the different compo-
nents. Nevertheless the presence of such caustics generally correspond to higher waves for narrow wave spec-
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tra. The presence of such caustics makes the backward ray-tracing method more practical (e.g. O’Reilly and
Guza, 1993).

The second form of the left-hand side of (7.1) is most easily translated into methods with discretized phys-
ical and spectral spaces, and where action transports based on characteristic velocities are considered in each
space (see Section 8). The wave action balance can be constructed for any spectral coordinate system, as long
as the Jacobean transformation from N(k) to the alternative description of spectral space is well behaved
(Tolman and Booij, 1998, Appendix A). It should be noted that this is generally not the case for spectra
described in terms of the absolute frequency and direction, because the corresponding Jacobean has a singu-
larity at the blocking point. Numerical issues that arise in the solution of (7.1) are discussed in Section 8.

Current effects represented in (7.1) are still poorly validated quantitatively, even by laboratory experiments,
and some observed effects of currents are not understood.

7.2. Limitations of geometrical optics: diffraction, reflection and random scattering

Whenever the water depth D or the current change on the scale of the wavelength, deviations from geomet-
rical optics are expected. As a result, even a purely monochromatic wave train would have a finite wave height
at a caustic predicted by geometrical optics (Fig. 8c). A classical example is the propagation of waves past a
semi-infinite and absorbing breakwater with the wave field diffracted behind the breakwater (e.g., Penney and
Price, 1952). A general representation of the variation in the wave field at the scale of the wavelength requires a
phase resolving model that accounts for the interference patterns, particularly in areas of crossing wave rays
(e.g., Berkhoff, 1972; Dalrymple and Kirby, 1988; Athanassoulis and Belibassakis, 1999). However, the rep-
resentation of the effect of diffraction on scales larger than the wavelength can be included in (7.1) by a proper
modification of Ch (e.g. Holthuijsen et al., 2003). For natural topographies, the geometrical optics approxima-
tion is generally quite robust. This fact was confirmed by the 2003 Near Canyon Experiment, off La Jolla, Cal-
ifornia, where the bottom slopes reach 3/1 on the walls of Scripps canyon (Peak, 2004). Over such a
topography, deviations from geometrical optics are significant only in a small area around the head of Scripps
canyon, where the wave height has been found to vary by a factor up to 5 over about half a wavelength
(Magne et al., 2007).

Where the water depth goes to zero, on the shoreline, waves are partially reflected. This can be represented
by empirical reflection coefficients in phase-resolving models for wave propagation around artificial coastlines,
but it may also be important on natural shorelines, including beaches (Elgar et al., 1994) and cliffs (O’Reilly
et al., 1999). Such a reflection may be introduced in phase-averaged models as a proper boundary condition
for (7.1). Partial wave reflection also occurs over any bottom topography. This is generally negligible, but sig-
nificant reflection occurs when the depth changes on the scale of the wavelength (Heathershaw, 1982; Elgar
et al., 2003). This phenomenon is formally similar to the scattering of long electromagnetic waves over the
ocean surface, a phenomenon used for mapping sea surface currents with High-Frequency radars. For linear
waves, it can be represented by a Bragg-like bottom scattering source term Sbscat in the right-hand side of (7.1)
(Ardhuin and Herbers, 2002; Ardhuin and Magne, 2007),

SbscatðkÞ ¼
Z

k0
2

M2ðk; k0ÞF Bðk� k0Þ½Nðk0Þ � NðkÞ�=½rr0ðk0C0g þ k0 
UAÞ� dh0; ð7:2Þ

where the primed variables correspond to the component k 0 with direction h 0, such that they satisfy the res-
onance conditions r 0 = r + l Æ U and k = k 0 + l. For weak currents the wave–bottom coupling coefficient is
M = gk Æ k 0/[cosh(kD) cosh(k 0D)]. The bottom is represented by its double-sided spectrum FB, such that its
integral over the entire wavenumber plane yields the bottom elevation variance.

This source term accounts for the interaction of triads involving two wave trains and one bottom Fourier
component. In the form given by Ardhuin and Magne (2007), it also includes interactions between two waves
and one Fourier component of the current or surface elevation that arises from the adjustment of a mean cur-
rent to the topography. The interaction conserves wave action, but wave momentum is not conserved, which
results in a mean recoil force acting on the bottom. This scattering theory over the current fluctuations should
be consistent with the theory of Bal and Chou (2002) for the scattering of gravity–capillary waves over depth-
uniform and irrotational current fluctuations.
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The relative accuracy of reflections coefficient given by Sbscat was found to be proportional to the ratio of
the bottom amplitude and water depth, regardless of bottom slope. Reflection coefficients may thus be
obtained from any bottom topography of small amplitude, including steps with vertical walls, as can be seen
by the correspondence between the Green function method and Fourier transforms (Elter and Molyneux,
1972; Mei and Hancock, 2003; Magne et al., 2005). The source term does not give accurate results, however,
when particular phase relationships exist between interacting waves and bottom undulations, e.g. in cases with
waves propagating over nearshore sand bars and reflecting over the beach (Yu and Mei, 2000). Except for
such conditions, the evolution of wave action over scales larger than the bottom autocorrelation length, is very
well predicted by Sbscat, in agreement with phase-resolving models for wave propagation in one dimension
(Mei, 1985; Kirby, 1988). On natural continental shelves with bottom elevation variances of the order of
1 m2 for scales in the range of 0.5–5 times the wavelength of dominant surface gravity waves, this scattering
term yields a strong broadening of the directional spectrum over a few kilometers for kD � 1. This predicted
broadening was confirmed by observations of the evolution of narrow offshore directional wave spectra across
the North Carolina shelf (Ardhuin et al., 2003a,b), although it accounted for only half of the broadening of
relatively broad offshore spectra. For organized bottom topographies such as the sandwave fields found in the
southern North Sea (Fig. 9), a strong broadening is expected for narrow swell spectra, with an additional weak
reflection. Taking the bottom spectrum shown in Fig. 9, and the mean water depth of D = 20 m, a simple cal-
culation was performed with a one-dimensional WAVEWATCH III model, using periodic boundary condi-
tions in the North–South direction. For an incident narrow spectrum (Fig. 10b) the source term shape and
magnitude depends on the current strength and direction (Fig. 10c and d). The wave field rapidly evolves
to a broader directional distribution (Fig. 10e).

This type of scattering by random media perturbations is quite general (e.g., Ryzhik et al., 1996) and can be
extended to other current perturbations that may be rotational and unrelated to the topography. Although
Laplace’s equation does not hold in that case, one may use an equation for the pressure (e.g., Kirby and
Lee, 1993) or a forced Laplace equation (e.g., McWilliams et al., 2004), or work from the Hamiltonian. With
that approach a scattering source term was derived by Rayevskiy (1983) for waves over random current and a
corresponding diffusion approximation was derived. This effect is found to be potentially important and was
further studied by Fabrikant and Raevsky (1994). For example, these authors found that unidirectional waves
of 40 m wavelength in a drift flow of a few centimetres per second evolve into directional waves with a spread
of 6� in a few kilometers of propagation.

Fig. 9. (a) High-resolution bathymetry of a sand wave field in the southern North Sea with depths relative to chart datum, and (b)
corresponding bottom elevation spectrum with contour values representing log10 (4pFB). In 25 m depth, the locus of the bottom and
surface wave components (l and k 0) that interact with 12.5 s period waves from the North-East (k) are indicated by the ellipses. Different
loci correspond to current velocity UA = 0 (middle circle), UA = 2 m s�1 (smaller ellipse), and UA = �2 m s�1 (larger ellipse), taken
positive from the North-East. k and k 0.
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For large bottom amplitudes or steeper waves, higher order interactions are expected to be relevant (Liu
and Yue, 1998). Such interactions have been observed for periodic and one-dimensional bottom topographies
(Rey et al., 1996). The bottom topography may act as a catalyst, making near-resonant triad wave interactions
(see Section 5) exactly resonant. Again, the proper form of the higher order scattering term is yet to be derived
for random waves.

7.3. Waves over varying currents, nonlinear wave effects and the advection velocity

A proper description of wave propagation over currents is not only necessary for the forecasting of waves
over large-scale currents such as the Gulf Stream or the Agulhas current, or tidal currents on continental
shelves. It is also a key element for the interpretation of remote-sensing observations. This applies to micro-
wave radar or radiometers from satellites, used for measuring anything from sea surface height, current and
wave heights, to sea surface salinity and winds. In that case the instrument is sensitive to short (few centime-
ters) waves that are modulated by the orbital velocities of the longer waves, with additional effects of surface
slopes and accelerations (see, e.g., Henyey et al., 1988, and Elfouhaily et al., 2001). This also applies to High-
Frequency radars, a now popular instrument for mapping coastal ‘currents’, or more specifically the phase
velocity of a waves of a given wavenumber k. That velocity is the intrinsic phase speed kr/k2 plus the advec-
tion velocity UA(k) given by Kirby and Chen (1989),

UAðkÞ ¼
Z

ULðzÞk cosh½2kðzþ HÞ�= sinhð2kDÞ dz; ð7:3Þ

where �H is the mean elevation of the bottom and D is the mean water depth, which is H plus the mean sur-
face elevation. Based on the theory of Andrews and McIntyre (1978), the advction velocity for the action has
the same expression, but the action may differ slightly from the definition given above. This question needs
further research.

Fig. 10. Example of spectral evolution due to bottom scattering. (a) Schematic of the model, (b) incident wave spectrum specified at point
F. (c) Source term at point F with and (d) without current, and (e) resulting spectrum at point O, 40 km inside of the model domain, after
5 h of propagation. The frequency is the relative frequency r/2p.
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The drift current UL may be approximated by the mean current velocity û. However, a more general
approximation for not-so-small waves is, UL ¼ ûþU s where Us is the Stokes drift due to the entire wave field.
In the case of short wave advection by long waves, with a clear scale separation, Broche et al. (1983) showed
that (7.3) is consistent with the theory of Weber and Barrick (1977). In remains to be proved that (7.3), or a
more accurate version of it, is also consistent with the known amplitude dispersion of Stokes waves, or other
theories for the dispersion of waves in a random wave field (Hayes, 1970; Willebrand, 1975; Huang and Tung,
1976; Masuda et al., 1979), short wave modulation by long waves (Phillips, 1981b), and finite amplitude waves
over shear currents (e.g., Dalrymple, 1974; Peregrine, 1976).

In practice wave models and most users of HF-radars assume that UL is uniform over the depth. This is
probably a good approximation for swells propagating over large-scale geostrophic, tidal or wind-driven cur-
rents, as the current velocity û is generally uniform close the surface due to the strong mixing induced by wave
breaking (Santala and Terray, 1992; Terray et al., 2000). However, a differential advection of shorter waves by
the sheared Stokes drift is to be expected. Fore reference, Us at the surface it is typically 1–1.5% of the local
10 m wind speed for fully-developed waves. Further, the advection velocities of short and long waves propa-
gating in stratified estuaries are markedly different due to vertical shears of û. This has been shown for the
advection of the wave phase (Ivonin et al., 2004), but such a validation is still lacking for the wave action
advection velocity. The common practice of using the surface velocity is expected to be generally valid.

The wave action advection velocity UA is known to modify the wave heights by a combination of three
effects. We consider monochromatic waves for the sake of simplicity. First of all, the conservation of the wave
action flux means that in cases of along-crest uniform conditions, a gradient of UA in the direction of prop-
agation should result in a change of the local action density in order to keep (Cg + UA)A constant. Specifically,
for waves against an increasingly strong current, Cg is reduced as the wavelength gets shorter and Cg + UA is
made even smaller by the change of UA. Second, the change in surface elevation variance E = A/r is amplified
compared to A due to the change in the intrinsic frequency r. Third and last, UA generally varies along the
wave crests so that current-induced refraction leads to further local increases of wave heights for waves prop-
agating against a current jet. For weak current shears the current-induced refraction gives a ray curvature
radius equal to the ratio of the wave group speed and the current vertical vorticity (Landau and Lifshitz,
1960), giving a scale over which refraction becomes significant. This combination of effects for the wave height
and the associated change in wavelength makes current fronts a preferential site of wave breaking. Current
jets, from large scales to river mouths are one of the most hazardous areas for navigation (e.g., Gutshabash
and Lavrenov, 1986; Masson, 1996).

Practical wave forecasting in which currents are taken into account are, to this day, limited to tidal currents
(e.g. at the UK Met Office). Quasi-geostrophic currents are probably not observed or predicted well enough in
order to perform these calculations. This may change with the advent of absolute measurements of the ocean
dynamic height, using the latest high-resolution measurements of the geoid, and improvements in ocean cir-
culation models. Large benefits are expected for the forecasting of extreme waves.

On smaller scales, when current variations are significant over one wavelength, partial wave reflection
occurs. The two cases of current discontinuity (Evans, 1975) and slowly varying current (McKee, 1974) have
been well investigated. A Mild Shear Equation analogous to the Mild Slope Equation was derived and
extended by McKee (1996). Effects of evanescent modes have also been considered by Belibassakis and Ath-
anassoulis (2004). Partial wave reflection may be relevant for the wave–current interactions that occur in
Langmuir circulations (Smith, 1980b; Veron and Melville, 2001), the essential mixing engine in the ocean
mixed layer. Indeed, the vortex forces that are generally believed to drive Langmuir circulations only exists
as a compensation of the divergence of the wave momentum flux that occurs when waves refract over the cur-
rent pattern (Garrett, 1976). Analytical solutions suggest that such reflections are generally weak for typical
dominant wind waves with periods of a few seconds, except for grazing incidence angles. However in that case
the effect is minimal since the reflected and incident wave directions are almost identical.

7.4. Waves blocking

Wave blocking occurs where opposing currents are sufficiently strong to stop wave propagation in physical
space, i.e. where Cg + UA(k) = 0. In a traditional monochromatic geometric optics approach, a singularity
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occurs in the wave energy equation at the blocking point, where the wave action and energy fluxes converge.
However, Shyu and Phillips (1990) have shown that a continuous solution exists on both sides of the blocking
point. Furthermore, a spectral approach leads to continuous non-crossing characteristics in (x � k) space,
indicating that no singularity exists in a spectral description of wave propagation. Laboratory observations
of wave blocking (Lai et al., 1989; Chawla and Kirby, 2002; Suastika and Battjes, 2005) clearly validate
the concept of a blocking point. However, the mechanism by which the wave energy is ‘removed’ at the block-
ing point does not seem to be understood yet.

7.5. Unsteady water depths and currents

Traditionally, waves propagating over stationary currents have been considered. This approach is valid for
conditions where the currents are (quasi-) stationary on time scales comparable with the propagation time of
waves through the area. This is generally the case for persistent deep-ocean currents like the Gulf Stream, or
for current patterns related to bathymetric features such as shoals, headlands and inlets. However, currents on
the continental shelf are often largely due to tides. A free travelling tidal wave travels much faster than a wind
wave and therefore results in a quasi-homogeneous rather than quasi-stationary current field. Such temporal
variations of currents result in Doppler shifts only (Tolman, 1990). In many practical applications, interac-
tions occur due to both spatial and temporal variations of the current field (Barber, 1949; Tolman, 1991).

7.6. Waves in the real ocean

The occurrence of other types of motions (e.g. internal waves) or special boundary conditions (sea ice, sur-
face films) have significant effects over the wave motion. Although such situations are frequent, they are gen-
erally neglected except for the effect of sea ice. Ice is as a powerful attenuator of waves propagating from the
open ocean (Wadhams, 1978) and generally prevents any wind–wave generation of significance to the ice-free
ocean (Crocker and Wadhams, 1988). Still, 1 m high swells have been observed to break up the ice as far as
500 km from the ice edge, making navigation difficult (Liu and Mollo-Christensen, 1988). As for the other
conditions, there is clear evidence of attenuation of waves by oil poured on the sea surface, an ancient tech-
nique for ship rescue operations. Theory on surface waves–internal wave interactions lead to possible large
changes in the surface wave energy (Kudryavtsev, 1994) with observed significant wave generation by large
amplitude internal waves (Osborne and Burch, 1980). Further research on these processes is clearly needed,
with an evaluation of their impact in numerical wave models.

8. Numerics and resolution in large-scale wave modelling

Contributing authors: W. Erick Rogers (rogers@nrlssc.navy.mil), Fabrice Ardhuin, Igor V. Lavrenov,
Hendrik L. Tolman.

Although most efforts have been devoted to the understanding of the physical processes responsible for the
evolution of the wave action spectrum, mathematically represented by Eq. (8.1), it must be recognized that the
choice of a numerical method for arriving at the solution may be the source of large errors in the results (Tol-
man, 1992b). In this section, we provide a description of the basic problem, related to both the finite descrip-
tion of the physical world and to the time step integration. We analyse the related existing solutions. Then we
discuss the relative importance of the various sources of error, with a look at the future.

8.1. A description of the problem

Two fundamentally different approaches have been used for solving (8.1). The ray method, using backward
ray-tracing to avoid caustics, is convenient and very efficient for steady media, where the rays need to be com-
puted only once (e.g., Cavaleri and Malanotte-Rizzoli, 1981).

The advantages of the grid method are that conservation of action can be enforced rigorously, and that the
inclusion of nonlinear source terms is straightforward with a splitting of the integration time step in advection
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and source term integration. Problems with grid methods are that high spatial resolution is required for an
accurate description of bathymetric and some current effects, and high spectral resolution is required for accu-
rate swell propagation over large distances. It should be noted that where the same governing equation is
solved, the different numerical methods should ideally produce the same result, as demonstrated in Holthuij-
sen and Tolman (1991), for example.

8.1.1. Error due to the numerical scheme for geographic propagation on a grid

For the purpose of discussion, we pose the wave model governing equation in one-dimensional form, with
uniform group velocity, no source terms, and only one spectral component (frequency/directional bin)
considered:

o

ot
N þ Cgx

oN
ox
¼ 0: ð8:1Þ

When this continuous equation is discretized using finite differencing, numerical error occurs. To give an
example, if one uses the explicit, first-order upwind scheme of the WAM model, the numerical error (or trun-
cation error) is the right-hand side of the following equation (from Petit, 2001):

o

ot
N þ Cgx

oN
ox
¼ 1

2
CgxDxð1� lÞ o

2N
ox2
� 1

6
CgxDx2ð1� lÞð1� 2lÞ o

3N
ox3

þ 1

24
CgxDx3ð1� lÞð6l2 � 6lþ 1Þ o

4N
ox4
þOðDx4Þ; ð8:2Þ

where l is the Courant–Friedrichs–Lewy (CFL) number, l = CgxDt/Dx. Thus, we can see that numerical geo-
graphic propagation error is dependent on several dimensional quantities:

1. geographic resolution,
2. the time step,
3. the speed of propagation, and
4. the curvature of the field of spectral density, and/or various other spatial derivatives of this field.

This may also be posed as a dependence on two dimensionless quantities:

1. the CFL number, which quantifies the number of grid spaces traversed by a packet of energy in one time
step, and

2. the geographic resolution relative to the scale of the feature in the wave field which is being propagated. (In
(8.1), ‘‘scale’’ would be in the x-space.) All else being equal, a larger-scale feature will have smaller gradi-
ents; if these gradients are small, the numerical error will tend to be small.

8.1.2. Diffusion
The term ‘‘numerical diffusion’’ is used in this paper to describe the unintended spreading or smearing of

wave energy during propagation due to discretization of a continuous problem. More specifically, it is due to
even-ordered truncation error terms in the governing equation finite differencing associated with propagation,
e.g. (8.2). The behaviors of individual schemes are rather unique. With any proper numerical scheme, diffusion
becomes small at very high resolutions, but does not necessarily do so in a monotonic fashion. Dependence on
CFL is even more varied. For example with increasing CFL, diffusion of the implicit first order upwind scheme
(for most resolutions) will increase, while diffusion of the explicit first order upwind scheme will decrease until
it becomes zero at l = 1.0. In the two-dimensional case, some schemes are more sensitive to propagation direc-
tion than others; the first order scheme of WAM is especially notorious for this (see Fig. 1 of WAMDI Group,
1988).

In some computational fluid dynamics literature, this diffusion is referred to as ‘‘dissipation’’. We do not
use the term ‘‘dissipation’’, since that would improperly imply to most wave modelers a loss of energy. Dif-
fusion does not directly cause a loss of energy: the numerical schemes of widely-used 3G wave models
(WAM, WW3, SWAN) are energy-conserving.
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8.1.3. Numerical dispersion

Numerical dispersion is the practical effect of the odd-ordered truncation error terms in the governing equa-
tion finite differencing associated with propagation, e.g. (8.2) (In the context of a wave model, one should spec-
ify that this is numerical dispersion, to avoid confusion with physical dispersion.) Like diffusion, numerical
dispersion is dependent on CFL number and relative resolution. Consider a geographic feature in the wave
spectral density field as a ‘‘signal’’ being propagated. Due to the discrete representation of a finite difference
model, the celerity of different Fourier components of this signal deviate from the proper celerity of the signal
(which is the group velocity calculated by the wave model); thus the Fourier components ‘‘disperse’’ as this
feature is propagated in the model.

8.1.4. Combined effect of diffusion and dispersion

The error in celerity tends to be greater for the shorter Fourier components. As numerical dispersion
occurs, two things can happen to the shorter components: they can either be smoothed by numerical diffusion
(merging with the longer components), or become visible in the solution. In the latter case, the components are
referred to as numerical oscillations or ‘‘wiggles’’. The wiggles do not indicate model instability, but they do
have an entirely unnatural appearance, and should therefore be prevented. The most straightforward way to
do this is to employ a numerical scheme which tends to produce dispersion and diffusion in roughly equal por-
tions; another method is to intentionally add diffusion as a separate term in the governing equation (denoted
below ‘‘controlled diffusion’’ to distinguish it from ‘‘numerical diffusion’’, which is a type of error).

8.1.5. Error due to the numerical scheme for spectral propagation

Like propagation in geographic space, propagation in spectral space is treated with finite differencing meth-
ods in all widely-used 3G wave models. As such, it is subject to the same types of numerical error (diffusion
and dispersion).

8.1.6. Error due to coarse geographic resolution

We have already mentioned that geographic resolution has a strong influence on numerical error (diffusion
and dispersion). It can also affect model accuracy in a manner not directly related to numerics. This tends to be
most noticeable in shelf-scale and nearshore applications, but can also be apparent in large-scale models. In
the latter case, if an island or peninsula is not well represented by the computational grid, then the blocking
and scattering of wave energy by this land mass will not be well represented. Present-day global wave models
are computed at 0.5–1.5� resolution; at these resolutions, some island groups will not be represented at all in
the computational grid, which will lead to a persistent underprediction of the blocking/scattering of energy.

In cases where high resolution (finer than 1�) ocean-scale wind forcing is available, there may be some ben-
efit to running the wave model at comparable resolution. This, of course, depends on the scale of meteorolog-
ical features and the wave model sensitivity to these features.

8.1.7. Error due to coarse spectral resolution

When spectral (frequency/directional) discretization is too coarse for the scale of propagation, non-
physical discontinuities manifest in the wave field as natural dispersion occurs. In the extreme case, as a
propagating swell field propagates, it disintegrates into discrete geographic features, with each feature corre-
sponding to a frequency/directional bin in the model’s computational grid. This is known as the ‘‘garden
sprinkler effect’’ (GSE) (e.g., SWAMP Group, 1985).

With higher order propagation schemes, the GSE is unfortunately more apparent. Numerical diffusion,
though it is an error, has the positive quality of tending to counteract the garden sprinkler effect, smoothing
these discrete features together. Note, however, that numerical diffusion in existing models is unrelated to
physical dispersion and is not controlled, so it does not properly mimic the natural dispersion of continuous
spectra. In fact, the GSE can be clearly observed in WAM predictions of very old swell fields, despite the dif-
fusive first-order scheme of WAM.

The GSE is not limited to propagation of swells across great distances: the directional GSE (i.e. the part of
GSE related to directional discretization of the wave spectrum) is sometimes seen in the lee of islands: in these
cases, the gradation between ‘‘illuminated’’ and ‘‘shadowed’’ areas is stepwise, rather than smooth.
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Tolman (1995a) demonstrates that the conventionally used frequency resolution may be inadequate insofar
as the spectral peak is not well represented during the growth stage, leading to incorrect dispersion of resulting
swell (this is not the GSE, so it is not addressed by GSE-correcting methods described in Section 8.2).

8.1.8. Errors in source term integration

The integration in time of the source terms is usually performed in a separate ‘fractional step’ of a wave
model. In this step, the following equation is solved

oF
ot
¼ S: ð8:3Þ

The simplest way to solve this equation is a simple first order Euler approach

F nþ1 ¼ F n þ SDt; ð8:4Þ
where n is the discrete time counter and Dt is the discrete time step. The main difficulty with integrating the
source terms in time is the inherently small time scales involved with this process, particularly at higher fre-
quencies. When the simple Euler approach is used, the attainable time step is at the best of the order of min-
utes. For early third generation wave models, this was unacceptable, and methods were developed to be able to
integrate the source terms with time steps of about 20 min. The WAM group (WAMDI Group, 1988) solved
this problem in two ways. First, the Euler approach of (8.4) was replaced by a semi-implicit method

F nþ1 ¼ F n þ S
1� aDDt

Dt; ð8:5Þ

where D represents the diagonal contributions of the partial derivative of S with respect to F. The parameter a
represents the centricity of the scheme. Originally, it was set to a = 0.5, making this scheme central in time.
More recently a = 1 is favored. This makes the scheme lower in order, but increases the stability of the inte-
gration. Particularly, oscillations are avoided at higher frequencies, as the scheme more properly represents a
root finder for the quasi-steady solution that dominates the source term integration in the equilibrium range of
the spectrum (e.g., Hargreaves and Annan, 2001). Introducing the semi-implicit scheme is not sufficient to al-
low for time steps of the order of 20 min. The WAM model therefore used a so-called limiter, which sets a
maximum allowable (absolute) change DF per time step Dt. The combination of the semi-implicit scheme
and the limiter resulted in stable model integration with large time steps. The limiter of WAM Cycles 1–3
had the favorable characteristic of not affecting the solution for small time steps (in other words, as the time
step size approaches zero, the solution will ‘‘converge’’ to the solution of the model without a limiter). How-
ever, since the limiter was not prescribed as a function of time step size, the effect of the limiter was shown to be
rather sensitive to the time step size, particularly for initial wave growth (Tolman, 1992b).

8.2. Existing solutions

8.2.1. Improved numerical schemes for propagation on a grid

Both WAM and WW3 have, or have been used with, higher order schemes which can be employed instead
of the explicit, first order upwind scheme. The higher order scheme used in WAM is the second order leapfrog
scheme (which has zero numerical diffusion). The higher order scheme of WW3 is the ‘‘ULTIMATE QUICK-
EST’’ scheme and limiter (see Tolman, 1995a; Leonard, 1979, 1991; Davis and Moore, 1982). The QUICK-
EST scheme is third order when solved in one dimension. In the case of WAM, the higher order scheme is not
part of the present official version and is, to our knowledge, rarely used. In the case of WW3, it is the suggested
numerical scheme (used for both geographic and spectral propagation). So-called ‘‘total variance diminishing’’
limiters can be used to control wiggles (the reader is referred to Leonard (1991) for a description of the scheme
used in WW3 and Fletcher (1988) for a general overview).

Numerical schemes are sometimes presented in the literature in one-dimensional form. For application in a
wave model, they must obviously be extended to two geographic dimensions. There exist more than one
method for doing this, and the efficacy of the extension method will depend on the scheme being extended.
One method is to solve for propagation in both dimensions simultaneously, with each finite difference term
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being equivalent to the one-dimensional form. A second method – the fractional step method – is to propagate
each dimension in sequence, with each operation being identical to the one-dimensional operation (see e.g.
Yanenko, 1971). In either of these methods, the order of accuracy of the scheme should be expected to
decrease compared to the one-dimensional equivalent. A third method is the ‘‘Product Generalization’’
method of Petit (2001) which preserves the order of accuracy of the one-dimensional scheme; this extension
method may be prohibitively expensive in many cases.

The SWAN model uses an implicit propagation scheme which is second order when solved in two dimen-
sions; this model is less efficient than WAM or WW3 applied at oceanic scales. Other schemes have been pro-
posed, such as semi-Lagrangian schemes (e.g., Lavrenov and Onvlee, 1995), using analytical ray-tracing
solutions to search the grid for the position of wave packets at the previous time-step.

8.2.2. Alternatives to the finite difference schemes on a grid
The oldest wave forecasting models have been based on the propagation of energy or action along wave

rays, which are geodesic lines in deep water. The ray method is ideally suited for addressing long-distance swell
propagation, for which the source terms on the right-hand side of (8.1) are small, with minimal numerical
accuracy issues. Among such models, The Navy Swell Model (Hsu et al., 2004) is a ray-tracing model; prop-
agation within this model contains virtually no error associated with numerics and resolution. This model con-
tains no source/sink terms (e.g. swell attenuation is not represented). This model is initialized using spectral
density fields from WAM simulations. The initialization fields thus are affected by numerical error of the input
model. Nevertheless, it is useful for creating long-range swell forecasts and as a research tool.

Ray-based advection also disconnects the advection along rays, which are different for each component,
from the grid where the wave spectra are put together. This allows an easy use of unstructured grids (e.g.,
Benoit et al., 1997), or no grid at all; some models are used for forecasts at a single point (e.g., the Navy
Swell Model, Hsu et al., 2004). The main advantage of ray-based advection is that it does the spectral and
spatial advection in a single step, with virtually no numerical diffusion. Some numerical diffusion is still
introduced if the same rays are not followed all the way to the model boundaries (Ardhuin and Herbers,
2005).

A potential drawback of ray-based advection is the greater difficulty of ensuring a conservation of the total
wave action over a given area, although there is no evidence of a lesser accuracy on modelled wave parameter.
However, the largest challenge is the integration of source terms if the rays are followed over more than one
time step in order to benefit from the low diffusion. Several levels of complexity have been tested. Cavaleri and
Malanotte-Rizzoli (1981) have thus restrained their representation of source terms to parameterization that
are local in the spectrum, i.e. S(k) is a function of A(k) and external parameters only (see also Lavrenov,
2003b). In order to be able to use generic parameterization, the rays must be linked to the grids where the
spectra are assembled. This was done by Ardhuin et al. (2001) for application to bottom friction and that
approach has been used to hindcast fetch-limited growth with both the DIA parameterization and the
Webb–Resio–Tracy method for estimating nonlinear interactions, with very good agreement with finite-differ-
ence models (Ardhuin et al., 2007).

Since high-spectral resolution is mostly needed for swells, and swell attenuation may be described as a fully
linear process (e.g., Kudryavtsev and Makin, 2004), there should be some benefit in computing swell and wind
sea evolutions with different methods, even on a global scale. Such benefits for swell hindcasting in the coastal
ocean were demonstrated by Ardhuin et al. (2003b) and Ardhuin and Herbers (2002). A careful comparison of
ray-based advection with finite difference schemes would probably provide useful guidance. Further, alterna-
tive methods using unstructured grids are also possible. These are not necessarily less diffusive but provide an
efficient use of a variable grid resolution when details are needed close to the coast. Hsu et al. (2005) proposed
a Taylor–Galerkin FEM method to solve the spatial advection discretized to second order.

8.2.3. Addressing error due to coarse geographic resolution

The approach of Fleet Numerical Meteorology and Oceanography Center has been to simply increase res-
olution (the global WW3 implementation, from 1� to 1/2� resolution). In this case, the computation time of the
propagation routines of the model is increased by a factor of eight (23, for two geographic dimensions and for
the increased temporal resolution, to satisfy the stability criterion).
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The approach of Hardy et al. (2000) is to represent the blocking/scattering of wave energy by topography
using sub-grid approximations. With this method, a transparency matrix that is dependent on wave direction
and geographic location is specified within the model. Similar methods have been adopted with the WAVE-
WATCH-III model (Tolman, 2003) and with the WAM model at ECMWF (Bidlot et al., 2005; Janssen et al.,
2005).

Geographic resolution is of obvious importance to shelf-scale and nearshore applications. In that case, nest-
ing methods are available in all 3G models. For example, Lahoz and Albiach (1997) (also Albiach et al., 2000)
use two-way nesting with the WAM model, with step-wise increases in resolution.

8.2.4. Garden sprinkler effect correction methods

For oceanic-scale models, no operational center has yet taken the approach of simply increasing spectral
(frequency/directional) resolution, due to the computational cost. WAM, WW3, and SWAN all have the
option of adding controllable diffusion to deal with the garden sprinkler effect. In the case of WAM, the con-
trollable diffusion, like the leapfrog scheme, it is rarely used. In the case of WW3 and SWAN, the controllable
diffusion is specified in the manner of Booij and Holthuijsen (1987). WW3 also includes the option of simple
grid point averaging, in lieu of the Booij and Holthuijsen method (Tolman, 2002a). In either case, the scheme
requires a tuning parameter to control the degree of smoothing. Another type of procedure is used by Lavre-
nov and Onvlee (1995), in which an angular diffusive operator is included with the advection scheme numerical
realization, spreading energy in directional space.

8.2.5. Errors in source term integration

Three solutions have been applied in operational models to remove the sensitivity of the results to the time
step size described in the previous sub-section.

Tolman (1992b, 2002b) dynamically adjusts the time step, using the limiter to compute the maximum
allowed time step. This results in a numerically accurate solution of (8.3). For large-scale model applications,
this method was found to be very economical; average global model time steps of up to 40 min could be
attained. For small scale applications, where rapid wind and wave changes occur over the entire domain at
once, this approach can still become fairly expensive, because of the small time steps involved.

In WAM Cycle 4, the limiter was made proportional to the time step size (see Hersbach and Janssen, 1999).
This modification greatly reduces the dependence on the time step size, but also prevents convergence of the
solution: for very small time steps, the model does not converge to the solution of the model with no limiter
(Hersbach and Janssen, 1999, Fig. 4). The disadvantage with non-convergent limiters is that the limiter
becomes part of the solution, and appears to result in significant impacts on the spectral shape, even if wave
heights are well represented (see Tolman, 2002b). This is especially noticeable in cases of fast wave growth
(short-fetch applications).

Hersbach and Janssen (1999) reformulated the limiter of WAM4 to remove the time step dependence from
the solutions. This scheme is still non-convergent, but does appear to be much closer to convergence than the
earlier WAM4 limiter (Hersbach and Janssen, 1999, compare their Figs. 4 and 5). The primary advantage of
this method is that cheap and robust model results are obtained, without notable time step dependencies.

An alternative for the time source term integration can be based on a spreading numerical method (Lavre-
nov and Kozhevnikov, 2003; Lavrenov, 2003b). It uses the semi-analytical solution for integration source term
which includes the wind wave input, dissipation term, and exact nonlinear energy transfer function. The
authors present an idealized test case in which reliable and stable results are achieved for time steps as large
as three hours without limiters.

8.3. Relative importance of problem

In this section, we discuss the relative importance of errors of numerics and resolution. This discussion is
deliberately separated from the previous descriptions, since it contains some subjective statements (or, at least,
statements that are not possible to prove here). Further warning to the reader: be wary of generalizations on
the subject of error in wave modeling; they are rarely, if ever, universal.
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8.3.1. Error due to the numerical scheme for geographic propagation

Is it worthwhile to use higher order propagation schemes, or is a first order scheme sufficient? There is some
controversy to this, so we present two points of view here (both are essentially correct). Note that there are
implications for future directions: if the accuracy of a model with a first order propagation scheme is similar
to that of a model with a third order scheme, this further implies that the benefit of upgrade (e.g. from third
order to fifth order) will be trivial.

8.3.2. Argument

In a majority of papers that treat the subject of numerical error, there is at least one presentation of a spike
of wave energy, which is supposed to represent a swell field, propagated with a first order scheme. The signal
is, of course, greatly diffused. This naturally leads readers to believe that swell predictions with a first order
scheme will not bear even the faintest resemblance to nature. This conclusion is incorrect for two reasons.
Firstly, the curvature of the wave field – and higher order derivatives – are very rarely this extreme in nature,
so the demonstrated level of diffusion is extreme. Secondly, only one spectral component is represented in this
simple case. In an actual model, at any given location, numerical error of all spectral components will rarely be
of the same sign; the effect of numerical geographic propagation error on wave height (i.e. the integrated wave
spectrum) will tend to be relatively smaller than its effect on individual spectral components. It was shown by
Rogers (2002) that the difference in error statistics (root-mean-square error and bias) between two models (one
with a first order scheme, the other with more accurate propagation) can be trivial, even if only very old swells

are considered.

8.3.3. Counter-argument

If methods are available to compute propagation more accurately without a large increase in computation
time, then these methods should be used. Wave modelers should not be satisfied with continued reliance on
cancellation of errors via spectral integration, since this hinders further model development and leaves signif-
icant errors in the spectral distribution of energy. Further, even if error statistics are not particularly sensitive
to the accuracy of propagation, a model with more accurate propagation will produce images of geographic
distributions of swell fields that are much more realistic in appearance than would be produced with first-order
numerics. The difference, though aesthetic, is important to operational forecasters. Further, a diffusive prop-
agation scheme makes it much more difficult to identify individual swell fields in a time series (Wingeart et al.,
2001). Also, error in spectral distribution due to diffusion and dispersion make it more difficult to calculate the
origins of swell energy. Lastly, even if model wave height bias is not sensitive to numerical accuracy in the
open ocean, it has been demonstrated that it can be very sensitive in cases where strong gradients exist
(e.g., in the lee of islands in shelf-scale applications, Rogers et al., 2002).

8.3.4. Error due to the numerical scheme for spectral propagation
This subject has received attention in the literature only in limited cases, e.g. Tolman (1991, p. 791), where it

is shown that in cases of significant propagation (i.e. refraction by bathymetry and currents), a first order
scheme for propagation in directional space leads to broader directional distributions. Thus far, there has been
little to suggest that it should be a concern. Implementation of surface current input for wave models (such as
the Gulf Stream) will make this numerical error more important.

8.3.5. Geographic resolution

On the subject of blocking and scattering by unresolved topography, the practical effect follows common
sense: there is a significant positive bias near island groups, which tends to vanish in the far-field. The method
of Tolman (2003) is an effective way to address the problem.

On the subject of resolving O(1�) variations in surface wind forcing: all else being equal, we expect that
more variable wind fields will produce greater wave energy, analogous to the treatment of gustiness, see Sec-
tion 2. Once the level of variability within the integration time step is known, this can be taken into account
using the procedure presently in use at ECMWF (Janssen, 2004). The time variability at the single points also
implicitly represents the spatial variability. Longer period variability, i.e. of the order of a few time or grid
steps or more, is in principle automatically taken into account. However, as discussed in Section 2, while
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one hand the meteorological models tend to underestimate the wind variability, the ECMWF procedure only
considers its average effect. Therefore, the apparently random oscillations we see in the recorded Hs time series
around an otherwise smooth, e.g., growth curve are not represented or strongly smoothed in the model results.

8.3.6. Spectral resolution

The practical effect of the garden sprinkler effect (GSE) is expected to be similar to that of the propagation
scheme (small impact on error metrics, significant impact on aesthetics). In time series of swell fields, the gar-
den sprinkler effect associated with directional resolution (15� in most operational models) is almost always
more apparent than that associated with frequency resolution (logarithmic spacing factor of 1.1 in most mod-
els). The problem with representation of the spectral peak demonstrated by Tolman (1995a) does, however,
suggest that the factor 1.1 in frequency resolution is insufficient for accurate dispersion in global-scale appli-
cations. Yet, sensitivity of source/sink terms must also be considered; choosing a too fine spectral resolution
may cause unphysical behavior of spectral evolution (Van Vledder et al., 2000).

8.3.7. Source term integration

With the three mainstream 3G wave models (SWAN, WAM4, WW3) each using very different solution
methods, the relative importance of this numerical error is also different. As mentioned above, in the context
of WW3, the primary impact of the limiter is on computation time, rather than on error. SWAN uses the
WAM Cycles 1–3 limiter, so growth rates are very sensitive to the time step size: for example, even with a time
step size of five minutes, the growth rate of that model is considerably slower than that with a five second time
step.

The WAM4 limiter with improvements by Hersbach and Janssen (1999) appears to be much more accurate
than the previous WAM limiters, though still lagging behind the ‘‘no limiter’’ growth rate at early stages of
growth; this occurs even for very small time step sizes, so it is clearly symptomatic of non-convergence. From
practical experience it appears that the limiter of Hersbach and Janssen (1999) is a good solution for engineer-
ing problems, where the goal is to estimate wave conditions accurately and economically. However, it can be
argued that this non-convergent limiter is less suitable for scientific research of source term parameterizations,
because the effects of the limiter on the final solution are difficult to assess, short of disabling the limiter.

8.4. Future solutions

8.4.1. The numerical scheme for geographic propagation

The objective of future development should be toward greater computational efficiency while maintaining
or improving the accuracy of existing numerical schemes. In this regard, semi-Lagrangian schemes (Lavrenov
and Onvlee, 1995; Ardhuin et al., 2001; Petit, 2001; Rogers and O’Reilly, 2002) are an attractive alternative to
traditional Eulerian schemes. These can be simultaneously accurate, efficient, and unconditionally stable.
There are two difficulties, however:

1. For the general case where propagation speed is not uniform, ray-tracing must be performed for the
Lagrangian stage of the schemes, which requires some extra work. Assuring mass-conservation is generally
less straightforward than with an Eulerian scheme.

2. The primary benefit of these schemes it that a parcel of energy can be propagated a long distance in a single
time step, as opposed too many small steps. Thus, less error accumulates, and the higher the CFL number,
the more accurate the propagation. Unfortunately, source/sink terms must be applied along the ray at the
Lagrangian stage (otherwise, a parcel of wave energy might skip past a storm without receiving energy from
it). Doing this in a computationally efficient manner is a challenge.

8.4.2. Geographic resolution

For shelf-scale applications, unstructured grid methods are expected to become more prevalent, since scales
of variation tend to be small nearer to the shoreline, while at the same time the offshore wave field only varies
on the scale larger than that of the wind field. Thus high-resolution away from the coast is generally useless,
and even in hurricane conditions a resolution of a few kilometers is probably adequate. Unstructured grids are
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already used now in TOMAWAC (Benoit et al., 1997), MIKE21, and have been implemented as a non-stan-
dard version of the SWAN model (Hsu et al., 2005). The present version of SWAN is also able to apply cur-
vilinear grids allowing for finer resolution near the coast. However, the variation of the aspect ratio of the grid
cells may not vary too much.

8.4.3. Spectral resolution

The existing operational methods for dealing with the garden sprinkler effect require a tuning param-
eter ostensibly related to wave age, but applied as a constant since the actual age of wave energy is not
known to the model. Thus, there is apparent room for improvement. Tolman (2002a) proposes a new,
more correct, technique using ‘‘divergent advection’’ but that method is still too expensive to apply.
With more efficient propagation methods and/or more powerful computers, it will be feasible to increase
spectral resolution (the most direct method of addressing GSE). Increasing frequency resolution may be
troublesome, since the nonlinear interaction computations are sensitive to this. Thus, a reasonable
approach would be to let the source/sink terms dictate frequency resolution, and gradually increase
directional resolution as computational resources allow. At the same time there is little study on the
improvements provided by higher directional resolution, although it is expected that better than 15� is
probably necessary in coastal areas with headlands and islands in order to properly define the shadow
areas. At present a frequency resolution of 10% is recommended. This choice seems to be related to the
shape parameter of k = 0.25 of the DIA, but the motivation for this choice is not clear. Applying other
parameterizations of the nonlinear four-wave interactions will possibly lead to other optimal frequency
resolutions. This implies that numerics and physics are coupled through some parameterizations of phys-
ical processes.

8.4.4. Errors in source term integration

Alternative non-convergent limiters have been proposed by Luo and Sclavo (1997), Hargreaves and Annan
(1998), and Monbaliu et al. (2000). A prototype for a convergent limiter with reduced time step dependencies
is proposed by Tolman (2002b).

8.5. Numerics and resolution: problems particular to finite depth and high resolution applications

In shallow water the higher resolution and stronger refraction require smaller time steps when conditionally
stable Eulerian advection schemes (based on finite differences) are used (as with WAM and WW3). Even with
unconditionally stable advection schemes, such as that used by SWAN for geographic propagation, accuracy
decreases with larger Courant numbers. The traditional solution is to avoid the problem by switching to a sta-
tionary mode of computation at these smaller scales. This mode of computation inherently assumes that wave
energy propagates across the domain instantaneously, and – in the case of models that include wave growth –
that the wave field responds instantaneously to changes in the local wind field; both assumptions are reason-
able at smaller scales. SWAN allows this infinite-duration mode of computation, and many nearshore models
use it exclusively. At this scale, stationary models often have significant numerical challenges (e.g., Zijlema and
van der Westhuysen, 2005), but since these problems, limitations, and solution methods are often unique to
each model, we cannot discuss them in detail here.

Despite the solution of using stationary computations, there is recently some impetus to push exclusively
nonstationary models such as WAM and WW3 closer to shore, since this avoids learning, maintaining, and
running multiple wave models at a given operational center. Ray-tracing can be very efficient to avoid the cost
of very small time steps, and in coastal areas source terms may often be completely neglected (e.g., O’Reilly
and Guza, 1993; Peak, 2004). In general source terms may be important and the general problem is more the
relationship between the advection and source term integration time step. Indeed, a few minutes or less is often
needed for high resolution applications, but the source terms do not evolve on this scale and remain virtually
unchanged over tens of minutes. The separation of these time steps allows great gains in CPU time in WAVE-
WATCH-III for example. Yet, even in the case when source terms are strong, the separation of advection and
source term integration requires an update of the spectrum after the advection step, which is usually per-
formed by recomputing the source terms. Efficient solutions may be obtained by applying the diagonal part
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of the previously computed source term to the new but almost identical spectrum, or considering the evolution
of the wave field as a series of steady state conditions, as discussed above.

9. Where we are

In the previous sections we have described the present situation in the various branches that, all together,
compose the art of spectral wave modelling. We can look at this overview with two different approaches. On
one hand we can be pleased with what has been achieved. After all, the bias and scatter index of an operational
global wave model, e.g. at the European Centre for Medium-Range Weather Forecasts (Reading, UK), are an
impressive 4% and 0.11 (statistics of the first four months of 2006), or even lower once the error of the instru-
ment we compare with, in the above case the altimeter, is taken into account (P.A.E.M. Janssen, personal
communication). Also, better results are occasionally achieved by local scale modelling. Indeed, on the back-
ground of these results stand the substantial improvements in the definition of the surface wind fields. Nev-
ertheless, if for a moment we detach ourselves from our daily habit, it is a sort of a marvel that we can
anticipate the wave conditions in any part of the globe a few days in advance. However, as scientists we like
and must also be critical with our results and look always forward to the next steps ahead. If we do so, we
realise that there is still plenty to do. Although we are able to evaluate with good accuracy the integral prop-
erties of the sea (significant wave height, period and direction), our results are definitely less impressive once
we look at the shape of the one- and, more so, two-dimensional spectra. Peaks and extreme conditions are
frequently not well reproduced, and not only because in these cases the meteorological input is not good
enough. The point is that in such conditions the validity of the physical assumptions we have more or less
consciously absorbed in our theories are often stretched to their limits. Imbedded in our models there is still
a substantial degree of empiricism, that unavoidably is due to fail at a more or less large degree once we act out
of the usual range of conditions. Clearly a critical review is required, and this is what we have tried to achieve
with this paper. It is worthwhile to summarise where we stand in the single subjects we have described.

The generation by wind is an extremely complex process. We deal with the highly nonlinear interaction of
two fluids whose densities differ by three orders of magnitude. This implies a multi-phenomenological behav-
iour at the interface, more or less complex as the difference of speeds in the two layers increases. Also, direct
visual observation is of little help, providing evidence of the integral results rather than of the mechanism by
which energy is transferred from one fluid to the other one. Nevertheless, using some simplifying assumptions,
quite a bit of physical intuition and devoted measurements we have been able to formulate some basic theory
that indeed, once applied to the models, provides rather good results.

On the other hand the very fact that two of the most popular models, WAM and WAVEWATCH, oper-
ational at two of the most prominent meteorological centres, use different approaches to the problem is in
itself an indication that a single ‘‘best’’ solution has not yet been accepted.

In the present theories the very hypothesis of linearity, i.e. to consider the sea as a superposition of sinu-
soidal components, should at least be open to doubts. An immediate example is the skewness of a stormy sur-
face, by definition not considered in the standard spectral wave models. This is likely to have an effect on
generation, whose process, like white-capping, is not so smooth in space and time as the theories imply. Who-
ever has been at sea in the middle of a storm is led to question the hypothesis of linearity. Of course this can be
said for all the processes where the hypothesis has been used, but generation by wind is the only one where at
present, safe for the dependence of u* on the overall sea conditions, the modelled energy input at certain fre-
quency and direction does not depend on the contemporary situation at the other components.

Of course this makes even more noticeable the results achieved till now, and it is a good proof of the inge-
nuity and brilliant hypotheses that stand at the base of the present theories. Indeed the very fact that with a
theory based on the linear hypothesis we manage to achieve good results should in itself be a valuable piece of
information.

For nonlinear interactions in deep water the basic problem seems to be the practical implementation of an
already well established theory. The struggle between the sheer volume of calculations implied by the theory
and the practical possibilities of the present computers has been dominating the stage for a long while. The
capability of routinely carrying out full exact computations is still far away. The present efforts aim at devel-
oping new methods (MDIA, neural, diffusion), while exploiting the ever increasing computer power, reducing
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the necessary time within manageable limits. These calculations are always compromises, and usually this
appears as undesirable characteristics of the final results. Each one of the newly proposed methods has its
own limitations, often still to be explored.

Notwithstanding its sound theoretical definition more than 40 years ago, the subject is still characterised by
an active development. The full properties of the kinetic equation are still to be explored. One first brilliant
example of recent developments is the evaluation of the probability of freak waves starting from the modelled
spectra, in so doing correcting as a following step the limitations on the skewness of the sea surface we pointed
out above. Another similarly valuable example has been to show that the nonlinear interactions lead to a
bimodal spectrum also in anisotropic conditions. In particular, the considerations of the quasi-resonant inter-
actions seem to be a promising field of research.

The number of different approaches and proposed new solutions to the calculation of nonlinear interactions
suggests that an intercomparison exercise, both in idealised and practical conditions, is required. This will help
to define in a comparative way the characteristics and the capabilities of the single approaches.

The dissipation of wind waves in deep water is by definition the source term we know less. There is hardly
any agreement neither on the basic physics of the process nor on the best way, although empirical, to model it.
We find worthwhile to repeat here two paragraphs of Section 4 related to the physical knowledge of the
process:

‘‘To summarize this brief overview of existing theories of spectral dissipation, we find several studies which
offer four different analytical models. None of the models deals with the dynamics of wave breaking, which
is responsible for dissipation. Rather, they suggest hypotheses to interpret either pre-breaking or post-
breaking wave field properties. All of the hypotheses lack experimental support or validation. Results vary
from the dissipation being a linear function of the wave spectrum to the dissipation being quadratic, cubic
or even a function of the spectrum to the fifth power.’’
‘‘To conclude this review, we have to summarize that (1) there is no consensus among analytical theories of
the spectral dissipation of wave energy due to wave breaking, even with respect to the basic characteristics
of the dissipation function, (2) the theoretical dissipation functions strongly disagree with the experiment,
and (3) experimental results, even though they exhibit some common features, are often in serious disagree-
ment with each other. Such a state of knowledge of physics of the wave breaking losses does not help mod-
elling the wave dissipation which has been drifting in its own way.’’

This could be a rather discouraging situation and shows how much there is still to be done in this subject.
On the other hand this has stimulated quite a bit of basic research in the recent years. However, the results of
this research have still to find their way into the operational models that, as just quoted, given the theoretical
situation have been mostly drifting in their own way. Indeed, given the relative level of knowledge, spectral
dissipation has been for a long while, and still is, the tuning knob of the numerical wave models to make them
fit at least the wave integral properties (significant wave height, period, direction).

Attempts to reproduce more integral properties of the wave field, e.g. the characteristics of the spectra, have
recently led to various lines of research. In particular, it has been made clear that any pre-assumption of the
spectral shape, like the power law of the high frequency tail, is bound to make sooner or later the solution
diverge from the truth. This has led to more fundamental approaches that have yet to find their way into oper-
ational models.

Nonlinear interactions in shallow water are characterised by the relevance of the third-order ones. Dealing
with interactions, not only in resonant, but also in near-resonant conditions, is today an active field of
research, and the associated wave modelling activity has different lines of attack in this respect.

While the stochastic (i.e. spectral energy) approach is the undebated approach in the open oceans, close to
shore, where changes can take place at a high rate and the degree of nonlinearity may jump at high levels, the
deterministic approach (i.e. complex amplitude or surface elevation) would appear to be the natural solution.
For the time being the obvious limit of the required computer power makes this approach suitable for short
distances only (a limited number of wavelengths). However, a practical problem is also the connection with the
offshore, spectrally modelled, wave conditions, from which different realizations of the boundary conditions
would need to be modelled if suitable statistics are to be derived. This is presently off-limits, even at the level
of devoted experiments. However, an efficient alternative would be provided by spectral, complex-amplitude
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evolution models, with high spatial resolution where nonlinearities are significant, and low resolution where
they are not, run in frequency space and on unstructured geographic grids.

A third alternative is offered by the stochastic approach, derived from deterministic equations and ensemble
averaging. Most models limit the derived hierarchy of equations to two coupled equations for spectrum and
bi-spectrum. This solution is attractive, because it allows the direct computation of statistical quantities with-
out the need for Montecarlo simulations. The model can be initialised with standard spectra (buoys or offshore
spectral models), while the bi-spectrum is derived from second order theory.

While there is a tendency to push the operational large scale spectral models towards the shore, it is nec-
essary to point out that some of the solutions present in these models are still rather crude, especially when
compared to the phase resolving and complex amplitude models. A strong obstacle is given by the lack of
sound physical approaches on how to handle dissipation, particularly the depth induced one, so relevant in
shallow water. We still do not know how to distribute the energy loss throughout the spectrum. Also, we
should not forget that most of the calculations with the nonlinear models mentioned above have been carried
out on very simplified, regular bathymetries. Any operational application in real conditions is much more
problematic.

Dissipation associated to the interaction of waves with the bottom is another subject where we still have a
lot to learn. The problem is associated with two basic characteristics of what is going on: the number of con-
temporary and alternative bottom mechanisms that can be active to dissipate the wave energy, and the diffi-
culty of analysing and measuring a process while it is active. As a matter of fact practically all the data we have
concern the measurements of wave characteristics at different progressive locations, in so doing providing
information only on the integrated effect of the process, rather than on the physics and its details. Somehow
we can also think to be more sensitive in our observations, hence more speculative, to surface breaking, simply
because of its visibility, while of bottom dissipation we have only a perception of its consequences. In general
we can say we have a fair idea of the physics involved, but we lack a solid quantification of the energy lost in
the process. Related model data, estimated to be off by an order of magnitude, are not unknown.

There are practical difficulties. On one hand also the integrated characteristics of the surface are not always
purely indicative of the bottom dissipation processes, simply because there are often other, not necessarily bot-
tom, processes at work, e.g. generation by wind and white-capping. On the other hand the true characteristics
of the bottom are mostly unknown (dimensions of the ripples, sheet flow, etc.) or, at best, modelled only with
large approximations, and they can easily change the estimate of the derived energy loss of an order of
magnitude.

Also the physics of the influence of a current on bottom dissipation is not fully understood. The intuition
suggests that, when contemporarily present, both losses, those due to waves and to current, should be
enhanced. However, the evidence is not clear, notwithstanding the relevance of the subject for storm surge
modelling and the evaluation of wave and current conditions in tidal inlets.

For practical and operational applications a serious problem is given by the sub-grid variability. Particu-
larly close to shore this can be quite high, and average conditions over one grid step are not granted to provide
the correct integral over its extent.

Notwithstanding this rather pessimistic panorama, bottom dissipation, mostly represented by the bottom
friction process, is regularly considered in shallow water modelling. The point is that, with the exception of
particular conditions as the Southern North Sea or a long swell on oceanic coastlines with an extended con-
tinental shelf, bottom friction is rarely the dominant process for the proper evaluation of the wave conditions
at a given location. Of course this does not cancel the need for a deepening of the subject.

Although non-dissipative, bottom scattering, discussed also in Section 7, has a more positive situation, at
least from the theoretical point of view. The interaction of the surface spectrum with the geometrical charac-
teristics of the bottom is relatively well understood. In recent times also the effects of single perturbations of
the bottom, like a single step, have been dealt with mathematically. While the laboratory results support these
approaches, confirmation from the field seems more difficult to obtain.

Wave propagation addresses the problem of waves propagating on an uneven bottom or across a non-uni-
form and time varying current. Most of the present models rely on the validity of the linear theory, using the
classical linear dispersion relationship to relate frequency and wavenumber. Also the Earth rotation has a lim-
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ited influence, and waves propagate with very good approximation along great circles that, on limited dis-
tances, coincide at all the effects with straight lines.

If depth and current change over distances much larger than the considered wavelength, the usual geomet-
rical optical approximation is quite robust. Expectably complications arise when the changes take place over
distances comparable with the wavelength. In phase-averaged models these discontinuities are usually treated
introducing frequency dependent reflection coefficients at the proper locations and directions, providing quite
reasonable results. More in general the interaction of the surface waves and the bottom elevation spectra
implies a conservative scattering of the surface waves. This process is still not yet included in most wave mod-
els because a proper theory has only been given recently, and practical methods for its calculation are still to
be defined when only little information is available on the bottom spectra.

The same approach used for wave–bottom conservative interactions is usable also for currents. Here too
the level of interaction depends on the amplitude and the spatial scale of the current variations. The modifi-
cations of waves when interacting with current are not interesting only on themselves, but also for remote
sensing, both from space and from coastal water. A strong limitation to the operational implementation of
the extensive theory available is the lack of sufficiently accurate description of the current field in the open
sea. While improvements are expected in the near future, in practice for the time being the only interactions
with currents that receive sufficient attention in operational models are the ones with tidal currents.

In any case all these approaches are generally applied with the current assumed to be uniform on the ver-
tical. This is not always the case, but the implications are not considered in standard wave modelling. While
the problem is probably limited for large scale currents, the Stokes drift is expected to have a non-negligible
impact on shorter waves.

With respects to the other subjects, numerics has the big advantage of being perfectly defined, and suitable
for an analysis of the practical results with respect to the ones expected from theory. This does not make the
problem simpler, but at least we can have a clear idea of where we are. Of course the problem is associated to
the discretization with which we describe an otherwise continuous nature. This implies some approximations,
as for instance in the description of the peak of the spectrum (frequency resolution) or in the characterization
of the bottom profile (spatial resolution). More seriously, it implies a modification of the signal while it prop-
agates, theoretically undisturbed, across the grid. The approaches to this problem are different, depending if
we deal with advection, both in lat-lon and in spectral space, or with the description of the spectra and the
geography of the area.

In the case of advection, the problem is well understood and a whole hierarchy of approaches has been pro-
posed. Indeed it is remarkable that a ‘‘best solution’’ is not universally adopted. Clearly this points to the fact
that in a certain environment any practical solution, besides being linked to historical reasons, is always a
compromise between several requirements. One peculiar fact of these compromises is the apparent compen-
sation introduced by the signal diffusion for the patchy distribution due to the garden sprinkler effect.
Although criticised, the solution has certainly served its purpose. Higher order advection schemes, paralleled
by a controlled diffusion algorithm, are presently available, although the opinions on which one is preferable
are certainly not uniform.

A correct geography is just a matter of resolution, and implicitly of computer power, because the system of
differential equations must be solved at each grid point at each time step. The combination of these two needs
makes the overall computer power to grow as 1/D3, where D is the geographical resolution. A substantial prob-
lem are the sub-grid characteristics of the area of interest, typically small islands not represented in the com-
putational grid. In this case the solution is a transparency coefficient, calculated from a much higher resolution
bottom topography, for each point of the grid and for each component of the spectrum.

The natural solution to the general problem is to use a variable grid resolution, typically more coarse in the
large ocean spaces, and highly defined close to the coasts. This can be achieved either with nested modelling or
with unstructured grids. This latter solution has never been very popular in wave modelling, but it is rapidly
gaining ground, particularly for dealing with an optimised resolution with coastal and inner areas with a com-
plicated bathymetry.

The discretization in space is reflected also in time, and the step integration of the set of equations at the
base of a model has its implications. With the traditional Eulerian approach the time step is upper limited by
the grid step size due to either stability or accuracy. In some models the introduction of a semi-Lagrangian
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advection has somehow relaxed this condition, but attention must be given to the physics of the processes. In
particular the use of the same Dt for all the frequencies can be questionable, leading to the use of suitable, but
artificial, limits to the changes during each integration step. Notable progresses have been made in this respect
in recent times.

This compact summary, and more in general the material presented in the previous sections, points to the
extensive effort that is still going on in wave modelling. This is due to two characteristics not easily found in
other subjects. On one hand we deal with a very complex physical process where physics, from fundamental
principles till very practical problems, plays a dominant role. On the other hand the subject is highly in
demand for its very wide applications, with a continuous push by the market forces to improve the quality
of the results.

Since the first order approximation of the historical SMB method (Sverdrup and Munk, 1946), we have well
achieved the next step, with much reduced bias and r.m.s. errors of the integral parameters, particularly off the
coasts. What is next? We expect to decrease further the above errors. This can be achieved refining the formu-
lation of the single processes following the various approaches described in the various sections, improving the
numerics, and, still critical, although not so much as in the past, improving the input wind fields. However, the
real task is to ameliorate the quality of the spectra. Although not yet strongly required by the market, their use
in practical applications is growing and the present limitations of spectral wave modelling in this respect are
beginning to be felt. It is not only a matter of users. To improve the quality of the spectra will allow a better
description of some physical processes that depend so much on their details.

A substantial question concerns the high frequency tail of the spectrum, presently parameterised in a not
yet agreed way, notwithstanding its relevance in the overall physics and for practical applications, e.g. remote
sensing and coupling with meteorological models.

Notwithstanding the good average results of a wave model, at least as integral parameters, a still missing
point is the physics, hence modelling, of extreme conditions. We still are not sure of the processes that are
taking place and of the resolution required for their representation. The difficulties cannot be underestimated,
also because the corresponding laboratory results provide only limited replies. However, the recent events and
our growing interaction with the sea are clearly pushing towards a better understanding of what is going on in
these conditions.

Clearly an area where action is required is the interaction between waves and currents. At the simplest level
of a vertically uniform current field, improvements are expected in a relatively short while from global circu-
lation models. However, this will concern the general features of a field. Somehow this is similar to the argu-
ment on the tail of a wave spectrum mentioned above. Both because of a lack of information and of the
present limits of the circulation models, the representation of the details of the fields is rather approximate.
However, this is still a scale capable to affect the wave fields at an appreciable level.

The difficulty of the problem steps up once we consider the currents as three-dimensional. Particularly, but
not only, in coastal areas this can indeed be the case. Even assuming we know the details of the current field,
the know-how of how to deal with this problem is not yet a granted background of the wave modelling
community.

So our feeling is a mixture of satisfaction for the results achieved so far and of realization of our present
limitations and the need to go further. Some of the areas where to act are quite clear, other ones are more
foggy. The next and final section will deal, although also in a speculative way, with this last point.

10. Where to go

Having stated where we are and the obvious problems to face in the immediate future, we need to think in
longer terms and argue about the strategy for the future. A forecast in a still partly unknown territory is
always a hard bet, but it is worthwhile to try, at least to quantify the problem. Cavaleri (2006) argues about
the far future of wave modelling. Here we concern ourselves with more immediate developments.

In the introduction we had mentioned that, just because we are acting at the far front of research, our opin-
ions are often not uniform. We had also pointed out that this is a necessary and favourable condition to go
further, simply because we do not know in advance which will be the winning strategy. Expectably, the spec-
trum of opinions widens in a nonlinear way the further we speculate on the future. Therefore, this section rep-
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resents in some cases some obvious requirements and expectations, in other cases ideas floating around with a
different level of agreement. Perhaps this is the most exciting part of our work.

Clearly our field is highly variegated. We have different branches where we act with different levels of con-
fidence, and where the physics and the possible paths for the future are known with a similarly variable degree
of uncertainty. Some of the problems are technical, other ones are physical, so it is not possible to give a single
general statement. Rather, we can touch several points in sequence.

We begin with the generation by wind. All the present approaches stand on the spectral hypothesis, i.e. the
sea is conceived as a superposition of sinusoids, and we estimate the input to each component on the base of
the, although modified, Miles’s theory. This approach has been very successful, but the view of a stormy sea
hardly suggests this idea. Already 30 years ago Banner and Melville (1976) have shown that the input by wind
to waves is not the smooth continuous process implies by the Miles’s approach. Rather, it is highly discontin-
uous, with strong bursts of momentum and energy transfer. The point is that we do not know how to deal with
such a process. However, this should not make us hide the fact that our present approach, albeit successful, is
not a faithful representation of what is going on the sea. How to deviate from our present path is an open
question, but sooner or later something will have to be done.

The work by Banner and Melville (1976) has shown the clear link in an active young sea between generation
and white-capping dissipation. While for the time being they are independently evaluated, it is a real possibil-
ity that at some stage they will have to be considered as a single process. However, this is not for the near
future. For the time being a more physical description of white-capping is highly in demand. There are indi-
cations that the careful analysis of the available experimental data is opening doors in this direction. In any
case the move must clearly be from empirism towards the physics.

Remaining in the physical realm, the bottom dissipation processes are a real challenge, perhaps not so
much for their physics that, at least in the first approximation, is relatively understood. The problem is
the availability of the information (the characteristics of the bottom) required for their correct evaluation.
Within the relevance of the process for the evaluation of the wave conditions at a certain location, a
detailed knowledge of the bottom characteristics of the area is a mandatory condition. This will also help
to decide which processes can be locally relevant and it is therefore worthwhile, if not all of them, to con-
sider. However, granted this information, the correct quantification of the energy involved in the processes
is still a problem, as their physics itself implies that small changes of the wave conditions can lead to an
order of magnitude difference of the involved energy budget. How to deal with this problem is still an open
question.

Also, quite a bit of physics is still to be clarified. Although limited to some special areas, the anelastic
motion of a viscous muddy bottom is not properly understood, especially in connection with the dissipation
of also relatively high frequencies. The relevance for hurricane affected areas as the Gulf of Mexico or the Bay
of Bengal is evident. This requires some devoted measurements and physical intuition.

It can be surprising, but, at a second thought, instructive, that nonlinear interactions, the most purely phys-
ical process we deal with, is theoretically the best known. The sheer complexity has its revenge in the present
practical impossibility of routinely evaluating the exact result. Of course in the long term we can expect the
computer power to keep growing, although perhaps not so rapidly as during the last thirty years. However,
this will not be enough, and, as already discussed, compromise solutions need to and will be found. The ques-
tion is how accurate we need to be to guide the evolution of the spectrum towards the correct results. Some-
how this needs to be quantified through the already proposed intercomparison exercise.

In shallow water there seems to be more ground for not-only-numerical developments. Somehow the explo-
ration of this area of research has begun in more recent times, and further developments are needed and
expected. The substantial gap of computer power required by phase resolving and phase averaging models
leaves ample ground for intermediate solutions. Considering spectra and bispectra is just an example in this
direction, but quite a bit of activity is expected for the future along this or similar lines of activity. Whichever
the solution adopted, it is clear that a higher resolution is required close to the coasts. The tendency for having
a single model for the whole area of interest stresses the need for variable resolutions, with an expected
increased use of unstructured grids.

A stronger interaction between the wave and the circulation modelling community is a must and an
expected development. It is not only a problem of operational applications, but also of physics of both
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the models. For applications, we have the mentioned need of a better description of the current fields to
properly evaluate their effect on the wave field. Conversely, there is also the effect of waves on the current.
Similarly for what done for the coupling with the atmosphere, we need a two-way coupling between wave
and circulation models. There are various aspects open to findings. Perhaps the most macroscopic one is
the driving of circulation by wind. While this is presently done using the wind stresses, the flow of energy
and momentum wind! waves! breaking! circulation needs to be considered as the real driving
mechanism.

The increased coastal resolution mentioned above needs to be considered also as regards the propagation
on an uneven bottom. Apart from the technical aspects with which the irregularities of the bottom profile can
be dealt with, clearly these features need to be resolved. While intuitively we associate an increasing resolution
to the approach to the coastline, we can certainly think of using it also on required isolated spots.

Finally, concerning numerics, improvements are expected in two directions. On one hand we need more
efficient and accurate algorithms, both for advection and for time integration. Some improvements are
expected, although apparently the clear definition and limits of the problem leaves a limited ground for
manoeuvre. Possibly a stronger improvement will come from the combined use of Eulerian and Lagrangian
advection techniques, both in open and coastal waters.

Having discussed how to improve the modelling of the single processes and what we expect for the near
future, we need to ask ourselves a basic question. Even assuming that all the representations of the single pro-
cesses are improved with respect to their present state of the art, can we assume that this will produce better
overall results with respect to the present performances? The point we should not hide is that in the present
models, although they are declared as purely physical, there is quite a bit of tuning and artifices to make them
fit the measured data. This happens at different parts of the models and with different strategies, but it is there.
We have mentioned that white-capping, just because it is the least known process, is often used as a tuning
knob to best-fit the results and measurements. Given this situation, what can we expect once each process
is independently described at its best, even improved, level of knowledge? Most likely, if not certainly, the
results will be worse than the present ones, at least at the beginning. With progressive improvements we will
move ahead of the present performance. However, most likely also in the longer term new ‘‘optimised’’ models
will continuously branch out of the main line of development, improving for the time being the overall
performance.

Should we refrain from acting in this direction? Certainly not, because we must keep in mind the duty of
practical applications. While we develop our models towards the best and most physical solution, we have also
to provide continuously the best possible results to the users. So somehow we have to live with this dichotomy
that we recognise also in the present large scale operational models, where we find different levels of pragma-
tism depending on where one institution puts the focus for its results.

How to conclude? Many doors are open, and work will be done in many directions. Some are known or
expected, in other cases we look for new ones. However, one general idea is clear. Whatever we do, we have
to move towards a more fundamental coupling between the sea and the atmosphere. The meteorological
models must interact continuously with the ocean circulation models, not through empirical formulations,
but through the physically sound interface of a wave model, acting as the element that determines how the
exchanges take place and their extent. This is how nature works, and this is how we have to represent it if
we aim at a better understanding and modelling of the thin layer of fluid that surrounds our beautiful
planet.
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Donelan, M.A., 1990. Air–sea interaction. In: LéMahauté, B., Hanes, D.M. (Eds.), The Sea, Ocean Engineering Science, vol. 9. Wiley,

New York, pp. 239–292.

Donelan, M.A., 2001. A nonlinear dissipation function due to wave breaking. In: ECMWF Workshop on Ocean Wave Forecasting, 2–4

July, 2001, Series ECMWF Proceedings, pp. 87–94.

Donelan, M.A., Pierson, W.J., 1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry.

Journal of Geophysical Research C95, 4971–5029.

Donelan, M.A., Yuan, Y., 1994. Wave dissipation by surface processes. In: Komen, G.J., Cavaleri, L., Donelan, M.A., Hasselmann, K.,

Hasselmann, S., Janssen, P.A.E.M. (Eds.), Dynamics and Modelling of Ocean Waves. Cambridge University Press, pp. 143–155.

doi:10.2277/0521577810.

Donelan, M.A., Hamilton, J., Hui, W.H., 1985. Directional spectra of wind-generated waves. Philosophical Transactions of the Royal

Society of London A 315, 509–562.

Donelan, M.A., Drennan, W.M., Terray, E.A., 1999. Wavenumber spectra of wind waves in the range of 1–50 m. In: Banner, M.L. (Ed.),

The Wind-Driven Air–Sea Interface. School of Mathematics, The University of New South Wales, Sydney, pp. 35–42.

Donelan, M.A., Haus, B.K., Reul, N., Plant, W.J., Stiassnie, M., Graber, H.C., Brown, O.B., Saltzman, E.S., 2004. On the limiting

aerodynamic roughness of the ocean in very strong winds. Geophysical Research Letters 31, L18306. doi:10.1029/2004/GL019460.

Drennan, W.M., Donelan, M.A., Terray, E.A., Katsaros, K.B., 1997. On waves, oceanic turbulence, and their interaction. Geophysica 33,

17–27.

Drennan, W.M., Graber, H.C., Donelan, M.A., 1999a. Evidence for the effects of swell and unsteady winds on marine wind stress. Journal

of Physical Oceanography 29, 1853–1864.

Drennan, W.M., Kahma, K.K., Donelan, M.A., 1999b. On momentum flux and velocity spectra over waves. Boundary-Layer

Meteorology 92, 489–515.

Dungey, J.C., Hui, W.H., 1979. Nonlinear energy transfer in a narrow gravity-wave spectrum. Proceedings Royal Society London A 368,

239–265.

Dyachenko, A.I., Korotkevich, A.O., Zakharov, V.E., 2004. Weak turbulent Kolmogorov spectrum for surface gravity waves. Physical

Review Letters 92 (13). Art. No. 134501.

Eldeberky, Y., Battjes, J.A., 1996. Spectral modeling of wave breaking: application to Boussinesq equations. Journal of Geophysical

Research 101, 1253–1264.

Eldeberky, Y., Madsen, P.A., 1999. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves.

Coastal Engineering 38, 1–24.

Elfouhaily, T., Thompson, D.R., Vandemark, D., Chapron, B., 2001. Higher-order hydrodynamic modulation: theory and applications

for ocean waves. Proceedings of the Royal Society London, Series A 457, 2585–2608.

Elgar, S., Guza, R.T., 1985. Observations of bispectra of shoaling surface gravity waves. Journal of Fluid Mechanics 161, 425–448.

Elgar, S., Herbers, T.H.C., Guza, R.T., 1994. Reflection of ocean surface gravity waves from a natural beach. Journal of Physical

Oceanography 24 (7), 1503–1511.

Elgar, S., Raubenheimer, B., Herbers, T.H.C., 2003. Bragg reflection of ocean waves from sandbars. Geophysical Research Letters 30 (1),

1016. doi:10.1029/2002GL016351.

Elter, J.F., Molyneux, J.E., 1972. The long-distance propagation of shallow water waves over an ocean of random depth. Journal of Fluid

Mechanics 53, 1–15.

Evans, D.V., 1975. The transmission of deep water waves across a vortex sheet. Journal of Fluid Mechanics 68, 389–401.

Fabrikant, A.L., 1976. Quasilinear theory of wind–wave generation. Izvestiya. Atmospheric and Oceanic Physics 12, 524–526.

Fabrikant, A.L., Raevsky, M.A., 1994. The influence of drift flow turbulence on surface gravity wave propagation. Izvestiya. Atmospheric

and Oceanic Physics 262, 141–156.

Fletcher, C.A.J., 1988. Computational Techniques for Fluid Dynamics, Parts I and II. Springer, pp. 409–484.

Freilich, M.H., Guza, R.T., 1984. Nonlinear effects on shoaling surface gravity waves. Philosophical Transactions of the Royal Society of

London A 311, 1–41.

L. Cavaleri et al. / Progress in Oceanography 75 (2007) 603–674 665



Author's personal copy

Fuhrman, D.R., Bingham, H.B., 2004. Numerical solutions of fully nonlinear and highly dispersive Boussinesq equations in two

horizontal dimensions. International Journal for Numerical Methods in Fluids 44, 231–255.

Fuhrman, D.R., Madsen, P.A., Bingham, H.B., 2004. A numerical study of crescent waves. Journal of Fluid Mechanics 513, 309–342.

Gade, H.G., 1958. Effects of a nonrigid, impermeable button on plane surface waves in shallow water. Journal of Marine Research 16 (2),

61–82.

Garrett, C., 1976. Generation of Langmuir circulations by surface waves – a feedback mechanism. Journal of Marine Research 34, 117–

130.

Garrett, C., Smith, J., 1976. On the interaction between long and short surface waves. Journal of Physical Oceanography 6, 925–

930.

Gemmrich, J., 2005. On the occurrence of wave breaking. In: Muller, P., Henderson, D. (Eds.), The 14th ‘Aha Huliko’a Winter Workshop

ROGUE WAVES, January 24–28, 2005. U. Hawaii, School of Ocean and Earth Science and Technology, pp. 123–130.

Gent, P.R., Taylor, P.A., 1976. A numerical model of the air flow above water waves. Journal of Fluid Mechanics 77, 105–128.

Glenn, S.M., Grant, W.D., 1987. A suspended sediment stratification correction for combined wave and current flows. Journal of

Geophysical Research – Oceans 92 (C8), 8244–8264.

Gorman, R., 2003. The treatment of discontinuities in computing the nonlinear energy transfer for finite-depth gravity wave spectra.

Journal of Atmospheric and Oceanic Technology 20 (1), 206–216.

Grant, W.D., Madsen, O.S., 1979. Combined wave and current interaction with a rough bottom. Journal of Geophysical Research 84,

1797–1808.

Groen, P., Dorrestein, R., 1950. Ocean swell: its decay and period increase. Nature 165, 445–447.

Gutshabash, Y.S., Lavrenov, I.V., 1986. Swell transformation in the cape Agulhas current. Izvestiya. Atmospheric and Oceanic Physics 22

(6), 494–497.

Hanson, J.L., Phillips, O.M., 1999. Wind sea growth and dissipation in the open ocean. Journal of Physical Oceanography 29, 1633–1648.

Hara, T., Hanson, K.A., Bock, E.J., Uz, B.M., 2003. Observation of hydrodynamic modulation of gravity–capillary waves by dominant

gravity waves. Journal of Geophysical Research 108, 3028. doi:10.1029/2001JC001100.

Hardy, T.A., Mason, L.B., McConochie, J.D., 2000. A wave model for the Great Barrier Reef. Ocean Engineering 28, 45–70.

Hargreaves, J.C., Annan, J.D., 1998. Integration of source terms in WAM. In: Proceedings 5th International Workshop of Wave

Forecasting and Hindcasting, pp. 128–133.

Hargreaves, J.C., Annan, J.D., 2001. Comments on improvement of short fetch behavior in the WAM model. Journal of Atmospheric and

Oceanic Technology 18, 711–715.

Hashimoto, N., Kawaguchi, K., 2001. Extension and modification of the Discrete Interaction Approximation (DIA) for computing

nonlinear energy transfer of gravity wave spectra. In: Edge, Billy L., Hamsley, J. Michael (Eds.). Ocean Wave Measurement and

Analysis, Proceedings of the WAVES 2001: The 4th International Symposium, vol. 1. ASCE, San-Francisco, CA, USA, pp. 530–539.

Hashimoto, N., Tsuruya, H., Nakagawa, Y., 1998. Numerical computations of the nonlinear energy transfer of gravity-wave spectra in

finite water depth. Coastal Engineering Journal 40 (1), 23–40.

Hashimoto, N., Haagsma, IJ.G., Holthuijsen, L.H., 2003. Four-wave interactions in SWAN. In: Smith, Jane McKee (Ed.), Proceedings of

the 28th International Conference on Coastal Engineering, 2002. World Scientific Publishers, Cardiff, UK, pp. 392–404.

Hasselmann, D.E., Bosenberg, J., 1991. Field measurements of wave-induced pressure over wind sea and swell. Journal of Fluid

Mechanics 230, 391–428.

Hasselmann, K., 1962. On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. Journal of Fluid Mechanics

12, 481–500.

Hasselmann, K., 1963a. On the non-linear energy transfer in a gravity-wave spectrum. Part 2. Conservation theorems; wave-particle

analogy; irreversibility. Journal of Fluid Mechanics 15, 273–281.

Hasselmann, K., 1963b. On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of energy flux and swell–sea

interaction for a Neumann spectrum. Journal of Fluid Mechanics 15, 385–398.

Hasselmann, K., 1971. On the mass and momentum transfer between short gravity waves and larger-scale motions. Journal of Fluid

Mechanics 4, 189–205.

Hasselmann, K., 1974. On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorology 6, 107–127.

Hasselmann, K., Collins, J.I., 1968. Spectral dissipation of finite-depth gravity waves due to turbulent bottom friction. Journal of Marine

Research 26, 1–12.

Hasselmann, K., Hasselmann, S., 1985. The wave model EXACT-NL. In: The SWAMP Group (Eds.), Ocean Wave Modelling. Plenum

Press, New York and London (256pp).

Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.I., Gienapp, H., Hasselmann, D.E.,

Kruseman, P., Meerburg, A., Müller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind–wave growth

and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsche Hydrographische Zeitschrift A 8 (12), 1–95.

Hasselmann, S., Hasselmann, K., 1981. A symmetrical method of computing the non-linear transfer in a gravity wave spectrum (parts I, II,

and III). In: Hamburger Geophysikalische Einzelschriften, Reihe A, Helft 52. Max-Planck Institut für Meteorologie, Hamburg.

Hasselmann, S., Hasselmann, K., Allender, J.A., Barnett, T.P., 1985. Computations and parameterizations of the non-linear energy

transfer in a gravity-wave spectrum. Part 2: parameterizations of the non-linear transfer for application in wave models. Journal of

Physical Oceanography 15, 1378–1391.

Hayes, W.D., 1970. Conservation of action and modal wave action. Proceedings of the Royal Society of London, Series A: Mathematics

and Physical Sciences 320, 187–208.

Heathershaw, A.D., 1982. Seabed-wave resonance and sand bar growth. Nature 296, 343–345.

666 L. Cavaleri et al. / Progress in Oceanography 75 (2007) 603–674



Author's personal copy

Henyey, F.S., Creamer, D.B., Dysthe, K.B., Schult, R.L., Wright, J.A., 1988. The energy and action of small waves riding on large waves.

Journal of Fluid Mechanics 189, 443–462.

Herbers, T.H.C., Burton, M.C., 1997. Nonlinear shoaling of directionally spread waves on a beach. Journal of Geophysical Research 102,

21101–21114.

Herbers, T.H.C., Elgar, S., Guza, R.T., 1994. Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part 1. Forced waves. Journal

of Physical Oceanography 24 (5), 917–927.

Herbers, T.H.C., Russnogle, N.R., Elgar, S., 2000. Spectral energy balance of breaking waves within the surf zone. Journal of Physical

Oceanography 30, 2723–2737.

Herbers, T.H.C., Orzech, M., Elgar, S., Guza, R.T., 2003. Shoaling transformation of wave frequency-directional spectra. Journal of

Geophysical Research 108 (C1), 3013. doi:10.1029/2001JC001304.

Hersbach, H., Janssen, P.A.E.M., 1999. Improvement of short fetch behavior in the WAM model. Journal of Atmospheric and Oceanic

Technology 16, 884–892.

Herterich, K., Hasselmann, K., 1980. A similarity relation for the non-linear energy transfer in a finite-depth gravity-wave spectrum.

Journal of Fluid Mechanics 97, 215–224.

Holthuijsen, L.H., Herbers, T.H.C., 1986. Statistics of breaking waves observed as whitecaps in the open sea. Journal of Physical

Oceanography 16, 290–297.

Holthuijsen, L.H., Tolman, H.L., 1991. Effects of the Gulf Stream on ocean waves. Journal of Geophysical Research 96, 12755–12771.

Holthuijsen, L.H., Herman, A., Booij, N., 2003. Phase-decoupled refraction–diffraction for spectral wave models. Coastal Engineering 49,

291–305.

Hristov, T.S., Miller, S.D., Friehe, C.A., 2003. Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature 442,

55–58.

Hsiao, S.V., Shemdin, O.H., 1980. Interaction of ocean waves with a soft bottom. Journal of Physical Oceanography 10 (4), 605–610.

Hsu, T.-W., Ou, S.-H., Liau, J.-M., 2005. Hindcasting nearshore wind wave using a FEM code for SWAN. Coastal Engineering 52, 177–

195.

Hsu, Y.L., Dykes, J.D., O’Reilly, W.C., 2004. User’s manual for long-range swell forecasting model. Technical Report NRL/MR7320-04-

8719, Oceanography Division, Naval Research Laboratory, Stennis Space Center, MS, USA, 25pp. Available from: <http://

torpedo.nrl.navy.mil/tu/ps/>.

Hua, F., Yuan, Y., 1992. Theoretical study of breaking wave spectrum and its application. In: Banner, M.L., Grimshaw, R.H.J. (Eds.),

Breaking Waves, IUTAM Symposium, Sydney, Australia, 1991. Springer, Berlin, Heidelberg, pp. 277–282.

Huang, N.E., Tung, C.-C., 1976. The dispersion relation for a nonlinear random gravity wave field. Journal of Fluid Mechanics 75, 337–

345.

Hwang, P.A., 2005. Temporal and spatial variation of the drag coefficient of a developing sea under steady wind-forcing. Journal of

Geophysical Research 110, C07024. doi:10.1029/2005JC002912.

Hwang, P.A., Wang, D.W., 2004. An empirical investigation of source term balance of small scale surface waves. Geophysical Research

Letters 31, L15301. doi:10.1029/2004GL020080.

Hwang, P.A., Xu, D., Wu, J., 1989. Breaking of wind-generated waves: measurements and characteristics. Journal of Fluid Mechanics

202, 177–200.

Hwang, P.A., Wang, D.W., Walsh, E.J., Krabill, W.B., Swift, R.N., 2000. Airborne measurements of the directional wavenumber

spectra of ocean surface waves. Part 1. Spectral slope and dimensionless spectral coefficient. Journal of Physical Oceanography 30,

2753–2767.

Ivonin, D.V., Broche, P., Devenon, J.-L., Shrira, V.I., 2004. Validation of HF radar probing of the vertical shear of surface currents by

acoustic Doppler current profiler measurements. Journal of Geophysical Research 101, C04003.

Jacobs, S.J., 1987. An asymptotic theory for the turbulent flow over a progressive water wave. Journal of Fluid Mechanics 174, 69–80.

Janssen, P.A.E.M., 1982. Quasilinear approximation for the spectrum of wind-generated water waves. Journal of Fluid Mechanics 117,

493–506.

Janssen, P.A.E.M., 1989. Wave-induced stress and the drag of air flow over sea waves. Journal of Physical Oceanography 19, 745–754.

Janssen, P.A.E.M., 1992. Experimental evidence of the effect of surface waves on the airflow. Journal of Physical Oceanography 22, 1600–

1604.

Janssen, P.A.E.M., 2003. Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography 33, 863–884.

Janssen, P.A.E.M., 2004. The Interaction of Ocean Waves and Wind. Cambridge University Press, Cambridge, UK, p. 300.

Janssen, P.A.E.M., Onorato, M., 2007. The intermediate water depth limit of the Zakharov equation and consequences for wave

prediction. Journal of Physical Oceanography, in press.

Janssen, P.A.E.M., Bidlot, J.-R., Abdalla, S., Hersbach, H., 2005. Progress in ocean wave forecasting at ECMWF. ECMWF Tech. Memo.

478. ECMWF, Reading, United Kingdom, p. 27.

Janssen, T.T., Battjes, J.A., van Dongeren, A.R., 2003. Long waves induced by short-wave groups over a sloping bottom. Journal of

Geophysical Research 108 (C8), 3252. doi:10.1029/2002JC001515.

Janssen, T.T., Herbers, T.H.C., Battjes, J.A., 2006. Generalized evolution equations for nonlinear surface gravity waves over two-

dimensional topography. Journal of Fluid Mechanics 552, 393–418.

Jeffreys, H., 1924. On the formation of waves by wind. Proceedings of the Royal Society A 107, 189–206.

Jeffreys, H., 1925. On the formation of waves by wind. II. Proceedings of the Royal Society A 110, 341–347.

Jenkins, A.D., Phillips, O.M., 2001. A simple formula for nonlinear wave–wave interaction. International Journal of Offshore and Polar

Engineering 11 (2), 81–86.

L. Cavaleri et al. / Progress in Oceanography 75 (2007) 603–674 667



Author's personal copy

Jensen, B.L., Sumer, B.M., Fredsoe, J., 1989. Turbulent oscillatory boundary-layers at high Reynolds-numbers. Journal of Fluid

Mechanics 206, 265–297.

Jiang, F., Mehta, A.J., 1996. Mudbanks of the southwest coast of India. 5. Wave attenuation. Journal of Coastal Research 12 (4), 890–897.

Johnson, A.K., Hojstrup, J., Vested, H.J., Larsen, S.E., 1998. On the dependence of sea surface roughness on wind waves. Journal of

Physical Oceanography 28 (9), 1702–1716.

Kagan, B.A., Alvarez, O., Izquierdo, A., 2005. Weak wind–wave/tide interaction over fixed and moveable bottoms: a formulation and

some preliminary results. Continental Shelf Research 25 (7–8), 753–773.

Kahma, K.K., 1981. A study of the growth of the wave spectrum with fetch. Journal of Physical Oceanography 11, 1505–1515.

Kaihatu, J.M., 2001. Improvement of parabolic nonlinear dispersive wave model. Journal of Waterways, Port, Coastal and Ocean

Engineering, ASCE 127 (2), 113–121.

Kaihatu, J.M., Kirby, J.T., 1995. Nonlinear transformation of waves in finite water depth. Physics of Fluids 7, 1903–1914.

Keen, T.R., Glenn, S.M., 2002. Predicting bed scour on the continental shelf during Hurricane Andrew. Journal of Waterway Port Coastal

and Ocean Engineering – ASCE 128 (6), 249–257.

Keller, J.B., 1958. Surface waves on water on non-uniform depth. Journal of Fluid Mechanics 4, 607–614.

Kirby, J.T., 1988. Current effects on resonant reflection of surface water waves by sand bars. Journal of Fluid Mechanics 186, 501–520.

Kirby, J.T., 1997. Nonlinear, dispersive long waves in water of variable depth. In: Hunt, J.N. (Ed.), Gravity Waves in Water of Finite

Depth, Advances in Fluid Mechanics Series, vol. 10, pp. 55–125.

Kirby, J.T., Chen, T.-M., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. Journal of Geophysical

Research 94 (C1), 1013–1027.

Kirby, J.T., Lee, C., 1993. Short waves in rotating, shallow tank with bathymetry: a model equation in the mild slope approximation.

SIAM Journal of Applied Mathematics 53, 1381–1400.

Kitaigorodskii, S.A., 1983. On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. Journal of Physical

Oceanography 13, 816–826.

Kofoed-Hansen, H., Rasmussen, J.H., 1998. Modeling of nonlinear shoaling based on stochastic evolution equations. Coastal Engineering

33, 203–232.

Komatsu, K., 1996. Development of a new generation wave forecasting model bases on a new schema of nonlinear energy transfer among

wind waves. Ph.D. Thesis, University of Kyushu, Japan, 155pp. (in Japanese) (unpublished).

Komatsu, K., Masuda, A., 1996. A new scheme of nonlinear energy transfer among wind waves: RIAM Method. Algorithm and

Performance. Journal of Oceanography 52, 509–537.

Komen, G.J., Hasslemann, S., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical

Oceanography 14, 1271–1285.

Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.A.E.M., 1994. Dynamics and Modelling of Ocean

Waves. Cambridge University Press, Cambridge, p. 554.

Komen, G.J., Janssen, P.A.E.M., Makin, V., Oost, W., 1998. On the sea state dependence of the Charnock parameter. Global Atmosphere

and Ocean System 5, 367–388.

Korteweg, D.J., deVries, G., 1895. On the change of form of long waves advancing in a rectangular channel, and on a new type of long

stationary waves. Philosophical Magazine 39 (5), 422–443.

Kudryavtsev, V.N., 1994. The coupling of wind and internal waves. Journal of Fluid Mechanics 278, 33–62.

Kudryavtsev, V.N., Makin, V.K., 2004. Impact of swell on the marine atmospheric boundary layer. Journal of Physical Oceanography 34,

934–949.

Lahoz, M.G., Albiach, J.C.C., 1997. A two-way nesting procedure for the WAM model: application to the Spanish coast. Journal of

Offshore Mechanics and Arctic Engineering 119, 20–24.

Lai, R.J., Long, S.R., Huang, N.E., 1989. Laboratory studies of wave–current interaction: kinematics of the strong interaction. Journal of

Geophysical Research 94, 16,201–16,214.

Lamb, H., 1932. Hydrodynamics, sixth ed. Dover, New York, p. 738.

Landau, L.D., Lifshitz, E.M., 1960. Mechanics. The Addison-Wesley Series in Advanced Physics. Pergamon Press, New York, 165pp.

(Transl. from Russian by J.B. Sykes & J.S. Bell).

Lange, B., Johnson, H.K., Larsen, S., Hojstrup, J., Kofoed-Hansen, H., Yelland, M.J., 2004. On detection of a wave age dependency for

the sea surface roughness. Journal of Physical Oceanography 34 (6), 1441–1458.

Lavrenov, I.V., 2001. Effect of wind wave parameter fluctuation on the non-linear spectrum evolution. Journal of Physical Oceanography

31, 861–873.

Lavrenov, I.V., 2003a. Numerical study of non-stationary solution of Hasselmann equation. Journal of Physical Oceanography 33, 499–

511.

Lavrenov, I.V., 2003b. Wind-waves in Oceans: Dynamics and Numerical Simulations. Springer, Berlin, p. 377.

Lavrenov, I.V., 2004. Weak turbulent fluxes estimation in surface water wave spectrum. In: Proceedings of the 8th International

Workshop on Wave Hindcasting & Forecasting, Oahu, Hawaii, November 14–19, 2004, p. 14.

Lavrenov, I.V., Onvlee, J.R.A., 1995. A comparison between the results of wave energy propagation of the WAM model and the

Interpolation-Ray method. Russian Meteorology and Hydrology 3, 29–42.

Lavrenov, I.V., Resio, D.T., Zakharov, V.E., 2002. Numerical simulation of weak turbulent Kolmogorov spectrum in water surface

waves. In: 7th International Workshop on Wave Hindcasting and Forecasting, Banff, Alberta, Canada, October 21–25, 2002, pp. 1-12.

Lavrenov, I.V., Kozhevnikov, S.D., 2003. Optimal Numerical Realization of the Energy Balance Equation for Wind Wave Models, ICCS-

2003 Pt. II, Proceedings Lecture Notes in Computer Science, St. Petersburg, 2–4 June, 2003, pp. 179–187.

668 L. Cavaleri et al. / Progress in Oceanography 75 (2007) 603–674



Author's personal copy

Leonard, B.P., 1979. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Computer

Methods in Applied Mechanics and Engineering 19, 59–98.

Leonard, B.P., 1991. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer

Methods in Applied Mechanics and Engineering 88, 17–74.

Leykin, I.A., Rozenberg, A.D., 1984. Sea-tower measurements of wind–wave spectra in the Caspian Sea. Journal of Physical

Oceanography 14, 168–176.

Lin, R.Q., Perrie, W., 1998. On the mathematics and approximation of the nonlinear wave–wave interactions. In: Perrie, W. (Ed.),

Nonlinear Ocean Waves, Advances in Fluid Mechanics. Computational Mechanics Publications, Southampton (UK), pp. 61–88.

Lin, R.Q., Perrie, W., 1999. Wave–wave interactions in finite depth water. Journal of Geophysical Research 104, 11193–11213.

Liu, A.K., Mollo-Christensen, E., 1988. Wave propagation in a solid ice pack. Journal of Physical Oceanography 18, 1702–1712.

Liu, P.C., Babanin, A.V., 2004. Using wavelet spectrum analysis to resolve breaking events in the wind wave time series. Annales

Geophysicae 22, 3335–3345.

Liu, Y., Yue, D.K.P., 1998. On generalized Bragg scattering of surface waves by bottom ripples. Journal of Fluid Mechanics 356, 297–326.

Longuet-Higgins, M.S., 1957. On the transformation of a continuous spectrum by refraction. Proceedings of the Cambridge Philosophical

Society 53 (1), 226–229.

Longuet-Higgins, M.S., 1969a. On wave breaking and the equilibrium spectrum of wind-generated waves. Proceedings of the Royal

Society London A 310, 151–159.

Longuet-Higgins, M.S., 1969b. A nonlinear mechanism for the generation of sea waves. Proceedings of the Royal Society London A 311,

371–389.

Luo, W., Monbaliu, J., 1994. Effects of the bottom friction formulation on the energy-balance for gravity-waves in shallow-water. Journal

of Geophysical Research-Oceans 99 (C9), 18501–18511.

Luo, W., Sclavo, M., 1997. Improvement of the third generation WAM model (cycle 4) for application in nearshore regions. POL Internal

Document, 116.

Madsen, O.S., Poon, Y.-K., Graber, H.C., 1988. Spectral wave attenuation by bottom friction: theory. In: Proceedings of the 21th ASCE

Coastal Engineering Conference, pp. 492–504.

Madsen, P.A., Sørensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Engineering 20 (4), 359–388.
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