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Super rogue waves with an amplitude of up to 5 times the background value are observed in a water-

wave tank for the first time. Nonlinear focusing of the local wave amplitude occurs according to the

higher-order breather solution of the nonlinear wave equation. The present result shows that rogue waves

can also develop from very calm and apparently safe sea states. We expect the result to have a significant

impact on studies of extreme ocean waves and to initiate related studies in other disciplines concerned

with waves in nonlinear dispersive media, such as optics, plasma physics, and superfluidity.
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I. INTRODUCTION

The nature of rogue waves (RWs) has been discussed in
the literature for more than a decade [1–4]. A few major
approaches have been suggested to explain the high-impact
power of these ‘‘monsters of the deep’’ [5]. Theories vary
depending on the conditions where these waves appear
[6,7]. One remarkable feature of rogue waves is that they
appear visibly from nowhere and disappear without a trace.
Nonlinear dynamics is one of the approaches that has been
successful in predicting the basic features of rogue waves
[8–11]. One of the prototypes suggested to model rogue
waves is the so-called Peregrine soliton [12,13]. The rea-
son is that such a solution describes the growing evolution
of a small, localized perturbation of a plane wave with the
subsequent peak amplification of 3 above the plane wave.
The large-amplitude peak appears just once in evolution (it
is doubly localized rather than periodic in space and time).
Despite decades of debate [5,6,8,14], only very recently
was the fundamental Peregrine breather soliton observed
experimentally in fiber optics [15]. Soon after, it was
observed in a water-wave tank [16] and a few months later
it was observed in multicomponent plasma [17]. These
observations proved that the nonlinear approach is fruitful
in a description of rogue waves. The nonlinear theory also
predicts that, in addition to the unique fundamental
Peregrine soliton, there is an infinite hierarchy of higher-
order breather solutions with a progressively increasing
amplitude [18,19] that are also localized both in space
and time. The study of these solutions is crucial in explain-
ing the even higher amplitude waves that can be observed

in deep-water conditions. Our present experimental study
shows that higher-order RWs do exist and can be success-
fully generated physically in a water-wave experiment.
These observations may have far reaching consequences
in our efforts to understand the waves that are, by far, still
being characterized as ‘‘mysterious.’’

II. MATHEMATICS AND EXPERIMENT

The nonlinear Schrödinger equation (NLS) is one of the
basic approaches used to describe the nonlinear wave
evolution in various media [20,21]. In particular, this equa-
tion describes gravity waves in deep water [22–24]:
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where t and x are the time and longitudinal coordinates,
while k0 and !0 ¼ !ðk0Þ denote the wave number and the
frequency of the carrier wave, respectively, which are
connected through the dispersion relation of linear
deep-water wave theory, !0 ¼
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The surface elevation �ðx; tÞ is related to the NLS vari-
able Aðx; tÞ to second order in steepness as follows:

�ðx; tÞ ¼ RefAðx; tÞ exp½iðk0x�!0tÞ�g
þ Ref12k0A2ðx; tÞ exp½2iðk0x�!0tÞ�g: (2)

A dimensionless form of the NLS,
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Here, X is the coordinate in the frame moving with the
wave-group velocity and T is the scaled time.

The NLS equation has a hierarchy of localized breathing
solutions with a single maximum [18,25], which can model
rogue waves in deep water. For a given carrier amplitude
proportional to c 0, they are given in terms of polynomials
GðX; TÞ, HðX; TÞ, and DðX; TÞ:

c ðX; TÞ ¼ c 0 1�Gþ iH

D

� �
expð2ijc 0j2TÞ; (5)

where c 0 is a background-amplitude-free parameter. In the
simplest case, the first order solution is defined by G ¼ 4,
H ¼ 16jc 0j2T, and D ¼ 1þ 4jc 0j2X2 þ 16jc 0j4T2.
Then (5) is the well-known Peregrine soliton [12,13]. It
is a solution that is the limiting case of the space-periodic
Akhmediev breather [26] and the time-periodic
Kuznetsov-Ma breather [27,28] when the period tends to
infinity. This solution is localized in space and time and the
maximal amplitude amplification obtained at X ¼ 0 and
T ¼ 0 is 3 times the background amplitude. The higher-
order rational solution, localized in both space and time,
was presented in [18,25] and the polynomials for this
solution are

G¼ðjc 0j2X2þ4jc 0j4T2þ3
4Þðjc 0j2X2þ20jc 0j4T2þ3

4Þ�3
4;

(6)

H ¼ 2jc 0j2Tð4jc 0j4T2 � 3jc 0j2X2Þ
þ 2jc 0j2T½2ðjc 0j2X2 þ 4jc 0j4T2Þ2 � 15

8 �; (7)

D ¼ 1
3ðjc 0j2X2 þ 4jc 0j4T2Þ3 þ 1

4ðjc 0j2X2 � 12jc 0j4T2Þ2
þ 3

64ð12jc 0j2X2 þ 176jc 0j4T2 þ 1Þ: (8)

A remarkable property of this solution is that it boosts the
peak amplitude of the carrier wave at X ¼ 0 and T ¼ 0 by

a factor of 5 (see Fig. 1). As such, it describes rogue waves
that are higher than the standard Peregrine soliton, the
latter being characterized by an amplification factor of 3.
In terms of water waves, this is a significantly higher
elevation.
In thiswork,we present the first observation of the higher-

order rogue wave, which is obtained in the water-wave
experiments. The tank in which the experiments were per-
formed is 15 m� 1:6 m� 1:5 m. Figure 2 shows a photo
and a schematic illustration of our equipment. A single-flap
wave-producing paddle activated by a hydraulic cylinder is
located at the far endof the tank.The assumption that theflap
displacement is proportional to the generated surface height
has been checked by measurements and validated by the
subsequent results. To avoid wave reflections, an absorbing
beach is installed at the opposite end. All experiments are
conducted in deep-water conditions, the ratio of the water
depth of 1m to thewavelength ismuch larger than unity. The
water-surface elevation at any given point is measured by a
capacitance wave gauge with a sensitivity of 1.06 V/cm and
a sampling frequency of 0.5 kHz.
In order to excite the super rogue wave in the tank, one

has to fix the initial amplitude a0 and the wave number of
the carrier wave k0. Those two parameters define the steep-

ness. Then, using the relation, c 0 ¼ a0
ffiffiffi
2

p
k0, and inverting

the scaling in Eq. (4), the analytical solution is written in
dimensional form and shifted in space in order to observe
the formation of the rogue wave at any desired location in
the wave tank. This automatically furnishes the solution at

FIG. 1. Higher-order Akhmediev-Peregrine rational solution
of the NLS given by Eqs. (5)–(8) with the following background:
c 0 ¼ 1. The maximal amplification of five above the back-
ground wave can be observed at X ¼ 0 and T ¼ 0.

FIG. 2. (a) Photo of the water-wave tank with the surface-
elevation gauge. Waves are generated with the paddle located
at the far end of the tank. (b) Schematic illustration of the facility
including the paddle, the gauge, and the beach.
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the wave maker and consequently the signal that drives the
paddle.

III. OBSERVATIONS OF THE
HIGHER-ORDER ROGUE WAVE

Our experiments are conducted for a carrier amplitude
of a0 ¼ 0:001 m and a steepness of " ¼ a0k0 ¼ 0:03; the
corresponding wavelength is 20 cm. Close to the wave
maker, at a distance of 1 m, the regular background wave
is locally perturbed in the middle of the wave train. The
parameters of our wave tank, in particular, its limited
length, unfortunately, do not allow us to directly observe
the full evolution of the higher-order breather from a very
small amplitude to its maximum in a single run. As the
growth of the amplitude is algebraic rather than exponen-
tial, even the use of longer wave tanks remain problematic
in this sense. To overcome this difficulty, we split the
experiment into several stages. Namely, starting the wave
generation repetitively with different boundary conditions
given from theory, we measured the wave profile at the
other end of the tank. Each time, we check that the final
profile follows the theoretical prediction. Deviations from
theory found by the direct superposition of theoretical and
experimental curves are minimal and mainly feature in the
left-right asymmetry of the profiles.

We repeat this process 7 times, thus multiplying the
propagation length of 9 meters 8 times. This way we reach
the propagation distance of 72 m, which corresponds to the
point of maximum amplitude. The left panel in Fig. 3 shows
the profiles measured at the end of each propagation
segment. The right-hand side panel in Fig. 3 shows the

corresponding theoretical curves. The comparison between
the measured wave profiles and the theoretical curves
shows very good agreement and basically justifies our
approach.
A more detailed set of profiles of the final stage of

evolution in this experiment, effectively from 63 to 72 m
is shown in Fig. 4. As it was prearranged with the initial
conditions, the maximal amplitude amplification is
reached at the end of the total distance of x ¼ 72 m
(or 9 m from the beginning of the last span).
The evolution of the surface elevation spectra at the last

stage of the experiment is shown in Fig. 5. Only two curves
at the beginning and at the end of the segment are shown
for clarity. The very fact of a change of spectra in propa-
gation shows clearly that the evolution process is nonlinear.
The shape of the highest part of the spectrum (around the
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FIG. 3. Wave-profile evolution in the experiment with split
propagation. The left panel shows experimental profiles at the
end of each segment, while the right panel shows theoretical
ones. Up to a distance of 63 m, the curves are almost identical.
The maximum amplitude of the higher-order breather is reached
at the end of the total propagation distance of 72 m.

FIG. 4. Final stage of the evolution of the temporal profile of
the water-surface elevation along the wave tank demonstrating
the super-RW formation at X ¼ 9 (in total 72 m).
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FIG. 5. Spectral profiles of the surface elevation at the last
stage of the experiment shown in Fig. 4 at x ¼ 1 m (red curve)
and at x ¼ 9 m (blue curve).
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frequency of 2.74 Hz), which is triangular, agrees well with
spectra expected for the second-order rogue wave. The
latter have been presented in Fig. 2 of [29]. Two additional
peaks of the spectra (around 5.48 Hz and 8.22 Hz) that also
have a triangular shape are the second and the third har-
monics of the main part of the spectrum. They represent
the higher harmonics bound to the primary Stokes wave.
Importantly, their amplitudes are 2 orders of magnitude
smaller than for the wave at the fundamental frequency.

Figure 6 shows the comparison of the theoretical pre-
diction at the position of maximal amplitude with the
measured surface elevation. The free surface elevation
has been calculated using Eq. (2). Indeed, the experimental
value of the amplification is very close to the expected
factor of 5. The destructive impact of such a high wave in a
scale of our wave tank is exemplified in Video 1.

The number of modulated waves, as well as the overall
wave shape at the left-hand side of the peak amplitude, is
almost identical to those obtained from the theoretical
higher-order rogue wave solution. Clearly, NLS provides
a good basic model for the nonlinear wave propagation.
Deviations at the right-hand side of the curve can be
attributed to higher-order effects that cannot be captured
within the NLS approximation. As expected, the agree-
ment becomes worse when nonlinearity, given by the
steepness of the initial condition, becomes higher.
Figures 6(b) and 6(c) show the results for a0 ¼ 0:002 m,
" ¼ 0:04 and a0 ¼ 0:003 m, " ¼ 0:05, respectively. An
experimentally observed asymmetry between the waves
before and after the rogue wave can be explained in terms
of higher-order NLS equations with odd terms such as
Dysthe [30] or similar [31] equations that account for the
formation of asymmetric wave packets. Moreover, for
steepness values of 0.06 and above, we can clearly observe
the wave breaking at the top of the rogue wave. Despite
these deviations, in all three cases presented above, the
wave amplitude at the maximum of the excitation consid-
erably exceeds the amplification of 2.2 above the signifi-
cant wave height, which is the common definition of a
rogue wave.

IV. SUMMARY

To conclude, the existence of the higher-order rogue
wave, a localized wave event with an amplitude of 5 times
the background wave, has been proven experimentally in
the case of water-surface gravity waves. When the steep-
ness is small (less than 0.03), the agreement between the

FIG. 6. Three clear observations of the higher-order RWs. Top
(blue) curves: Measured wave profile at the expected position of
the maximal carrier amplification, (a) for the background am-
plitude a0 ¼ 0:001 m and the steepness " ¼ 0:03, (b) for a0 ¼
0:002 m and " ¼ 0:04, and (c) for a0 ¼ 0:003 m and " ¼ 0:05.
For comparison, the bottom (red) curves correspond to the
theoretically predicted temporal profile at the same position.

VIDEO 1. Experimental demonstration of the generation and
destructive impact of a super rogue wave in a wave tank. The
experiment was conducted for a carrier amplitude of 0.003 m and
a steepness of 0.05. A 10 cm long toy boat is placed 9 m from the
wave maker, where the super rogue wave reaches its maximal
amplification of a factor of 5. First, the boat floats on a regular
wave train. Then, the high-order wave packet generated by the
wave maker’s paddle evolves to a super rogue wave and the toy
boat capsizes after being hit by the extreme wave.
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NLS theory and the observation is close to excellent. For
larger steepness values (less than 0.06), the observed waves
can still be related well to the theoretical breather solution.
The large amplification of the peak amplitude above the
background wave height by a factor of 5 suggests the
existence of a new class of waves to be called ‘‘super rogue
waves.’’ The second-order RW solution observed in the
present study can be considered the first representative of
this class. Our results show that, even in a sea state char-
acterized by a very small steepness (of the order of 0.03),
rogue waves can naturally develop due to the nonlinear
dynamics of the surface elevation. This is an extraordinary
fact that could explain some mysterious observations of
RWs in calm sea states (one example is shown on the cover
of [6]). Of course, in real oceans, we have to take into
account the second-horizontal dimension and the problem
needs more careful analysis. Nevertheless, our observation
of the second-order breather is important from the general
scientific viewpoint. In purely 1D systems, e.g., in fiber
optics, higher-order rogue waves are also possible and
could be observed without significant complications.
Thus, our present work may stimulate research in other
fields concerned with nonlinear dispersive media, e.g., in
optics, plasma physics, and superfluidity.
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