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The shallow water limit of the Zakharov Equation and consequences for (freak) wave prediction

Abstract

Finite amplitude deep-water waves are subject to nonlinear focussing, which when the phases are right, may
give rise to giant waves or freak waves. The same process is responsible for the Benjamin-Feir instability. In
shallow water, finite amplitude surface-gravity waves generate a current and deviations from the mean sur-
face elevation. This stabilizes the Benjamin-Feir instability and the process of nonlinear focussing ceases to
exist whenkh< 1.363. This is a well-known property of surface gravity waves (Benjamin, 1967; Whitham,
1974) and, here it is shown for the first time, that the usual starting point for wave evolution studies, namely
the Zakharov equation, shares this property as well.

Consequences for (freak) wave prediction are pointed out.

1 Introduction.

Since the beginning of the 1990’s we have seen a rapid increase in our understanding of the generation of large
freak waves on the open ocean. Nowadays the consensus is that third order nonlinear interactions enhance freak
wave appearance and are the primary cause for the generation of freak waves. Exceptions are cases of strong
wave-current interaction or wave diffraction behind islands.

In deep water third-order interactions lead to focussing of wave energy. However, most observations are at
locations close to the coast, where shallow water effects may become important. For example, the famous
Draupner freak wave was observed in water with a depth h of 69 m, and using the observed freak frequency
and the shallow water dispersion relation one infers that the dimensionless depthk0h is just above 1,k0h = 1.2.

This therefore prompted a study into the effects of shallow water on the generation of extreme waves, with some
unexpected consequences. In shallow water finite amplitude waves generate a wave-induced current, hence for
decreasing depth less and less wave energy is available for nonlinear focussing. As a consequence the process
of nonlinear focussing ceases to exist for sufficiently small water depth,k0h < 1.363. This well-known result
was first found by Benjamin (1967) and Whitham (1974) when studying the instability of a uniform, finite
amplitude wave train. The consequence of this result should be clear: in shallow water it is less likely that giant
freak waves occur.

Before we do this, we first establish that the basic evolution equation for surface gravity waves, the Zakharov
equation, indeed correctly accounts for the stabilizing effects of wave-induced current and mean sea surface
elevation. This holds for intermediate water depth and even for very shallow water when the dynamics of the
waves is determined by the Korteweg-de Vries equation.

An important implication for spectral wave modelling in shallow waters is that aroundk0h = 1.363 there is a
considerable reduction of the nonlinear transfer rates. This will be shown explicity in this work by means of
results of Monte Carlo forecasting of the Zakharov Equation. In addition, these results support the conjecture
that freak waves indeed occur less frequently in waters of intermediate depth.

These results are unexpected because the ’classical’ approach (Herterich and Hasselmann, 1980) predicts a
vanishing of the nonlinear transfer at much smaller values of dimensionless depth,k0h' 0.6− 0.7. This is
an important difference because in shallow water a ’typical’ saturated windsea corresponds to a dimensionless
depthk0h of about 1. In that case, in a considerable part of the wave spectrum the balance is determined by
wind input and dissipation only.
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2 Preliminaries.

The formulae for the second and third order interaction coefficients follow from Krasitskii (1994), while the
expression forT in the Zakharov equation is obtained from Zakharov (1992).

Introduce
T0 = tanhkh0 (1)

with k the wavenumber andh0 the mean depth. Then the dispersion relation reads

w2 = gkT0. (2)

In addition introduce
q = w2/g. (3)

In shallow water we have the following relation betweenĥ , ŷ and the action density variableA(~k, t)

ĥ =
√

w

2g

(
A(~k)+A∗(−~k)

)
, ŷ =−i

√
g

2w

(
A(~k)−A∗(−~k)

)
. (4)

For a homogeneous random sea one then finds the following relation between the action density spectrumN
and the surface elevation spectrumFh ,

N =
gFh
w

. (5)

Zakharov (1968) found that gravity waves are a hamiltonian system where the hamiltonian is the energy E, the
sum of potential and kinetic energy. In terms of the action variableA(~k, t) he obtained the following expansion

E =
∫

d~k1w1A1A∗1 +
∫

d~k1,2,3d1−2−3V
(−)
1,2,3

[
A∗1A2A3 +c.c.

]
+

1
3

∫
d~k1,2,3d1+2+3V

(+)
1,2,3

[
A1A2A3 +c.c.

]
+
∫

d~k1,2,3,4d1−2−3−4W
(1)
1,2,3,4

[
A∗1A2A3A4 +c.c.

]
+

1
2

∫
d~k1,2,3,4d1+2−3−4W

(2)
1,2,3,4

A∗1A∗2A3A4 (6)

+
1
4

∫
d~k1,2,3,4d1+2+3+4W

(4)
1,2,3,4

[A∗1A∗2A∗3A∗4 +c.c]

The second-order coefficients become

V(±)
1,2,3

=
1

4
√

2

{[
~k1.

~k2±q1q2

]( gw3

w1w2

)1/2

+

[
~k1.

~k3±q1q3

]( gw2

w1w3

)1/2

+
[
~k2.

~k3 +q2q3

]( gw1

w2w3

)1/2
}

(7)

with ki = |~ki |,wi = w(ki). The relevant third-order coefficient isW = W(2)
1,2,3,4

. It becomes

W1,2,3,4 = U−1,−2,3,4 +U3,4,−1,−2−U3,−2,−1,4−U−1,3,−2,4−U−1,4,3,−2−U4,−2,3,−1 (8)

with

U1,2,3,4 =
1
16

(
w3w4

w1w2

)1/2[
2(k2

1q2 +k2
2q1)−q1q2

(
q1+3 +q2+3 +q1+4 +q2+4

)]
. (9)
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The hamiltonian is in terms of the action variableA. It contains cubic terms which are non-resonant and which
may be eliminated by means of a canonical transformation

A1 = a1 +
∫

d~k2,3

{
A(1)

1,2,3
a2a3d1−2−3 +A(2)

1,2,3
a∗2a3d1+2−3 +A(3)

1,2,3
a∗2a∗3d1+2+3

}
+O(a3) (10)

where

A(1)
1,2,3

=−
V(−)

1,2,3

w1−w2−w3

A(2)
1,2,3

=−2
V(−)

2,1,3

w1 +w2−w3
(11)

A(3)
1,2,3

=−
V(+)

1,2,3

w1 +w2 +w3

The resulting energy density then becomes

E =
∫

d~k1w1a∗1a1 +
1
2

∫
d~k1,2,3,4T1,2,3,4a∗1a∗2a3a4d1+2−3−4, (12)

where the nonlinear interactions coefficientT1,2,3,4 reads

T1,2,3,4 = W1,2,3,4

−V(−)
1,3,1−3

V(−)
4,2,4−2

[
1

w3 +w1−3−w1
+

1
w2 +w4−2−w4

]
−V(−)

2,3,2−3
V(−)

4,1,4−1

[
1

w3 +w2−3−w2
+

1
w1 +w4−1−w4

]
−V(−)

1,4,1−4
V(−)

3,2,3−2

[
1

w4 +w1−4−w1
+

1
w2 +w3−2−w3

]
(13)

−V(−)
2,4,2−4

V(−)
3,1,3−1

[
1

w4 +w2−4−w2
+

1
w1 +w3−1−w3

]
−V(−)

1+2,1,2
V(−)

3+4,3,4

[
1

w1+2−w1−w2
+

1
w3+4−w3−w4

]
−V(+)

−1−2,1,2
V(+)
−3−4,3,4

[
1

w1+2 +w1 +w2
+

1
w3+4 +w3 +w4

]
.

3 Comparison with known results

The Zakharov equation now follows from Hamiltons equations¶a/¶ t =−idE/da∗, or,

¶a1

¶ t
+ iw1a1 =−i

∫
d~k2,3,4T1,2,3,4a∗2a3a4d1+2−3−4, (14)

This very compactly written equation contains a lot of interesting physics, and here we would like to explore
this for the general case of intermediate depth. We will try to derive for the case of a single wave important
relations such as the dispersion relation, the expression for the mean surface elevation and the mean current, and
we will try to compare with known results from Davey-Stewartson (1974) and Whitham (1974). In particular,
we would like to check that wave-induced current and mean surface elevation indeed have a damping effect on
the Benjamin-Feir instability in such a way that fork0h0 = 1.363 the instability disappears. In other words, for
k0h0 > 1.363 nonlinearity focusses wave energy, while in the opposite case we have defocussing.
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3.1 Summary of known results

In shallow water the wave-induced current and mean surface elevation have a stabilizing effect in such a way
that for k0h0 < 1.363 the Benjamin-Feir Instability disappears and there is no focussing (Benjamin, 1967;
Whitham, 1974). This is understood most easily from Whitham’s variational approach. The nonlinear disper-
sion relation on a currentb is found to be

(w−kb )2

gktanhkh
= 1+

9T4
0 −10T2

0 +9
4T4

0

k2E
g

, (15)

with E = ga2/2 the wave energy for a single wave train with amplitude a. This dispersion relation is accompa-
nied by equations for the currentb and mean elevationb = h−h0. Whitham finds

b =−
h0

c2
S−v2

g

S
h0

, (16)

with c2
S = gh0,~vg = ¶w/¶~k andS the radiation stress,

S=
(

2vg

c0
− 1

2

)
E, (17)

while

U = b +
E

c0h0
=

vg

h0
b (18)

Linearizing in b, the dispersion relation becomes

w = w0 +Ω2(k)
k2E
c0

,w2
0 = gkT0, (19)

where

Ω2(k) =
9T4

0 −10T2
0 +9

8T3
0

− 1
kh0

{(
2vg−c0/2

)2

c2
S−v2

g
+1

}
. (20)

The stability of a uniform wave train is determined by the sign of the product of the second derivative ofw0,
denoted byw ′′

0 , andΩ2. There is instability whenw ′′
0 Ω2 < 0 (Whitham, 1974). Noww0 = (gkT0)

1/2 andw ′′
0 is

always negative. The stability of a uniform surface gravity wave train is therefore determined by the sign of the
nonlinear term: there is stability for negativeΩ2 and instability in the opposite case.

For large depth, the wave-induced current contribution vanishes, whileT0 → 1. In that event,Ω2(k)→ 1 which
results in the well-known nonlinear dispersion relation for deep-water waves. Clearly, asΩ2 is positive, a
deep-water uniform wave train is unstable, and the nonlinearity leads to focussing of wave energy. For shallow
waters, the curly bracketed term in Eq. (20) becomes important. It is positive definite and leads to stabilization
of the Benjamin-Feir instability. Atkh0 = 1.363, Ω2 vanishes. Hence, forkh0 < 1.363 a uniform wave train is
stable asΩ2 is negative.

In the opposite case of very small depth, hencekh0 << 1, one finds thatΩ2 = −9/8(kh0)
−3 hence a uniform

wave train is, as expected, stable. The resulting dispersion relation corresponds exactly with the nonlinear
dispersion relation as obtained from the Korteweg-de Vries equation (Hasimoto and Ono, 1972).
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3.2 Narrow-band approximation

We use the canonical transformation (10) up to second order in amplitude and as a starting point for the iteration
we take

ai = âid (~ki −~k0), âi = re−iwit . (21)

This gives for the action variableA to second order

A1 = âid (~k1−~k0)−

[
V(−)

1,0,0

w1−2w0
â2

0d (~ki −2~k0)+
V(+)

1,0,0

w1 +2w0
â∗20 d (~ki +2~k0)

+2
∫

d~k2,3

V(−)
2,1,3

w1 +w2−w3
|â0|

2d (~k2−~k0)d (~k3−~k0)d (~k1 +~k2−~k3)

]
(22)

hence the second-order term generates a second harmonic contribution and a mean response (which for obvious
reasons we have not yet written explicitely).

The second harmonics are easy to deal with because the denominators remain finite. The relevant matrix
elements become

V(±)
1,0,0

=
1

4
√

2

{
2(~k1 ·~k0±q1q0)

(
g
w1

)1/2

+
k2

0 +q2
0

w0

√
gw1

}
, at~k1 = 2~k0. (23)

The mean flow contribution is much more awkward because of the singularity caused by the factorw1 +w2−
w3 = 0 for~k2 →~k0, ~k3 →~k0 and consequently~k1 → 0. Strictly speaking the mean response in the action
density diverges and only the mean surface elevation remains finite. In addition, one obtains different answers
depending on how the limits are taken. An example of a limit is the one where~k2 =~k0, and~k3 =~k0 while the
limit~k1 → 0 is only taken afterwards. The resulting expression for the mean surface elevation is identical to the
one given by Benjamin (1967). The problem with this limit is, however, that by choosing finite~k1 one moves
from the resonance surface determined by the resonance condition~k1 +~k2−~k3 =~0.

We prefer to stick to the resonance surface and to choose~k2 and~k3 slightly different in order to satisfy the
resonance condition (see also, Gorman, 2003). Specifically, write

~k3 =~k0 +~e, ~k2 =~k0 (24)

wheree is assumed to be small. Because of the resonance condition the wave length of wave ’1’ becomes very
long, or,

~k1 =~e. (25)

As a consequence, on the resonance surface the factorw1 +w2−w3 becomes equal tok1cS−~k1vg, with cS the
shallow water speed andvg the group velocity.

Hence by choosing the wavenumbers in this fashion we are considering the mean surface elevation and the
nonlinear transfer in the limit of a very long wave group! The mean flow response then becomes to lowest
significant order

〈A1〉=−B0|â0|
2d (~k1−~e), (26)

where

B0 =
2V(−)

0,1,0

k1cS−~k1.~vg
, (27)
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and

V(−)
0,1,0

=
1

4
√

2

{
k2

0−q2
0

w0

√
gw1 +2~k0 ·~k1

(
g
w1

)1/2
}

, for~k1 →~0. (28)

From now on consider only the one-dimensional case, nevertheless we will still use vector notation in order to
distinguish magnitude of a vector from the usual vector (which in 1D carries a sign). Hence, write the action
density as

A1 = â1d (~k1−~k0)−B2â2
0d (~k1−2~k0)−B−2â∗2d (~k1 +2~k0)−B0|â0|

2d (~k1−~e) (29)

whereB0 is given by Eq. (27) while

B2 =
V(−)

1,0,0

w1−2w0
, andB−2 =

V(+)
1,0,0

w1 +2w0
. (30)

The surface elevation now becomes

h =
∫

d~k ĥ ei~k.~x =
∫

d~k

(
w

2g

)1/2

A(~k)ei~k.~x +c.c. (31)

Substitution of (30) into (31) and introduction of the amplitudea = (2w0/g)1/2 r gives

h = acosq − a2

2w0

(
gw(e)

2

)1/2[
B0(+~e)+B0(−~e)

]
− a2

w0

(
gw(2~k0)

2

)1/2[
B2(2~k0)+B−2(−2~k0)

]
cos2q , (32)

whereq =~k0.~x−w0t.

Using the expression forB0, B2 andB−2 and taking the limit of vanishinge one finds explicitely

h = k0a2∆+acosq +k0a2Pcos2q , (33)

with

P =
1

4T0

(
3

T2
0

−1

)
, T0 = tanhk0h0,

while

∆ =−1
4

c2
S

c2
S−v2

g

(
2(1−T2

0 )
T0

+
1

k0h0

)
.

Both expressions agree with Whitham (1974, 13.123&16.99). A remarkable property of the mean flow response
is that it does not vanish exponentially for largek0h0. In stead it only vanishes like 1/k0h0 !

In the Appendix a similar calculation is performed for the mean flow according to the Zakharov equation. To
this end Whitham introduced in a natural way the wave-induced mass transport velocityuw. With wave variance
E = 1/2ga2 one has,

uw =
E

c0h0
=

1
2

gk0

w0h0
a2 (34)
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and Whitham (1974) finds that the average mass transport velocity, defined as the sum of the wave-induced
transport and the mean circulation velocityb = ¶ 〈f〉/¶x, or, U = b + uw, obeys the relation (18), i.e. U =
vgb/h0, whereb= k0a2∆ is the mean surface elevation. We have determined the mean of the velocity potential,
〈f〉, from Zakharov’s Hamiltonian approach in the Appendix, and it is found that Eq. (18) is indeed satisfied.

In order to obtain the dispersion relation for a single wave in shallow water we requireT0,0,0,0. Inspecting the
general expression forT in Eq. (13) it is evident that once more the limit of equal wavenumbers is akward,
since the first four terms show apparent singularities. We will treat this limit in a similar fashion as in the case
of the mean surface elevation. The task is, however, simplified by the ubundance of symmetries ofT. Let us
start with the first singular term, and we perturb all wave numbers slightly, respecting the resonance condition
in the Zakharov equation, hence

~k1 =~k0 +~e1,
~k2 =~k0 +~e2,

~k3 =~k0 +~e3,
~k4 =~k0 +~e4, (35)

in such a way that~e1 +~e2 =~e3 +~e4. The first bracketed term in (13), denoted byf (~d), becomes in lowest
significant order

f (~d) =− |~d|
16(|~d|cS− ~d ·~vg)

{
k2

0(1−T2
0 )

gcS

w0
+

2~k0 · ~d
|~d|

(
g
cS

)1/2
}2

, (36)

where~d =~e1−~e3. The last singular term in (13) can be obtained from the first one by interchanging the indices
1, 3 and 4, 2. As a result, this last term equalsf (−~d). Combining the two terms we have that their sum equals
f (~d)+ f (−~d) and is therefore independent of the sign of the difference vector~d.

The second and third singular term give a similar contribution and upon taking the limit of vanishing distance
~d one finds that the singular terms amount to

− 1
4

k3
0c2

S

c2
S−v2

g

[(
1−T2

0

)2

T0
+

4gvg

w0c2
S

(
1−T2

0

)
+

4
k0h0

]
(37)

Making use of the dispersion relation and the expression for the group speed Eq. (37) becomes

−
k3

0

k0h0

{(
2vg−c0/2

)2

c2
S−v2

g
+1

}
, (38)

wherec0 = w0/k0 is the linear phase speed.

The regular terms inT0,0,0,0 can be obtained in an elaborate, but straightforward, manner and the final result
becomes

T0,0,0,0/k3
0 =

9T4
0 −10T2

0 +9
8T3

0

− 1
k0h0

{(
2vg−c0/2

)2

c2
S−v2

g
+1

}
. (39)

The dispersion relation now follows in a straightforward manner from the Zakharov equation by substitution of
(21) into (14). The resulting evolution equation is

¶ â
¶ t

+ iw0â =−iT0,0,0,0|â|
2â (40)

Solving this with the Ansatz ˆa = â0e−iΩt the result is

Ω = w0 +T0,0,0,0|â0|
2. (41)
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In order to be able to compare with results obtained by Whitham (1974) the energyE of a wave train is
introduced. Not surprisingly it is given by

E = w0|â|
2 (42)

Writing the dispersion relation (41) as

Ω = w0(k0)+Ω2(k0)
k2

0E
c0

(43)

one finds forΩ2,

Ω2 = T0,0,0,0/k3
0, (44)

whereT0,0,0,0 is given by Eq. (39).

Whitham (1974) derived the nonlinear dispersion relation for shallow water waves using a variational approach
and his result (Eq. (16.103), see also Eq.(20)) is in exact agreement with the present result displayed in Eq.
(44). Combining Whitham’s analysis and our work it appears that the singular terms inT1,2,3,4 result from
the wave-induced changes in mean sea surface level and the wave-induced mean flow. These changes have
a stabilizing effect on the Benjamin-Feir instability ask0h0 decreases from the deep water limit. The critical
value for stability is determined by the value ofk0h0 for which Ω2 = 0. This value is found numerically to be
k0h0 = 1.363. Fork0h0 > 1.363 modulations grow, while instability is absent in the opposite case.

This threshold for instability was deduced by Whitham from the variational approach and by Benjamin (1967)
by means of a Fourier mode analysis. There are important implications for the probability distribution function
(pdf) of the surface elevation. Fork0h0 > 1.363 nonlinearities result in focussing of wave energy, hence the
kurtosis of the pdf is positive, reflecting the increased probability of extreme waves. In the opposite case
nonlinearities result in defocussing, hence the kurtosis of the pdf is negative (Janssen, 2003).

Finally, note that Resioet al. (2001) have considered this problem before. These authors claim that the Za-
kharov equation does not include wave-induced currents, while they numerically find thatT0,0,0,0 is given by
the first factor in Eq. (39). We can reproduce their result by numerically taking the limit in such a way that the
resonance condition~k1 +~k2 =~k3 +~k4 is not satisfied. We argue that it is essential to satisfy the resonance con-
dition because this condition follows from a basic property of the basis functions, namely the orthonormality
property (see also Gorman, 2003).

3.3 Consequences for wave prediction in shallow water

The threshold for instability atk0h0 = 1.363 has important consequences for wave modelling in shallow waters
of intermediate depth. The reason is that for these dimensionless depths there is a considerable reduction of the
nonlinear transfer and hence the shape of the wave spectrum is only determined by the balance of wind input
and dissipation.

In order to illustrate the stabilising effect of the wave-induced current and mean surface elevation we have
plotted in Fig. (1) the narrow band transfer coefficientR= T0,0,0,0/k3

0 as function of dimensionless depth using
Eq. (39) with and without the wave-induced current effects. Including wave-induced effects shows that indeed
the transfer coefficient changes sign atk0h0 = 1.363 while the transfer only approaches very slowly the deep
water value (in agreement with the fact that the mean surface elevation slowly vanishes like 1/(k0h0) and
not exponentially). In Fig.(1) we have also plotted the narrow-band approximation of the nonlinear transfer
using the complete expression in Eq. (13). In order to take the limit numerically we perturbed the relevant
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0 1 2 3 4
kD

−4

−2

0

2

4
R

Depth dependent correction factor Zakharov Equation

Eq. (12)
Eq. (39) (with wave−induced current)
Eq. (39) (no wave−induced current)

Figure 1: Depth dependence of numerical (Eq. (13)) and analytical narrow-band approximation (Eq. (39) of the nonlinear
transfer coefficient normalized with the deep water value. The effect of the wave-induced current and mean surface
elevation is shown as well.

0 1 2 3 4
kD

0

2

4

6

8

R
^2

Depth dependent correction factor Kinetic Equation

Eq. (39) (no wave−induced current)
Eq. (39) (with wave−induced current)

Figure 2: Depth dependence of the square of the nonlinear transfer coefficient in the narrow-band approximation (Eq.
(39) in comparison with the case when wave-induced effects are removed.
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wavenumbers according to Eq. (35). The agreement with the analytical result (39) is satisfactory. Hence, the
Zakharov equation contains the effects of wave-induced current and mean surface elevation.

These wave-induced effects have an even more pronounced effect in the kinetic equation for the action density,
as the nonlinear transfer coefficient is squared. Recall that according to Janssen (2003) the corresponding
kinetic equation becomes

¶

¶ t
N4 = 4

∫
d~k1,2,3T2

1,2,3,4d (~k1 +~k2−~k3−~k4)Ri(∆w, t)

×
[
N1N2(N3 +N4)−N3N4(N1 +N2)

]
, (45)

whereRi(∆w, t) = sin(∆wt)/∆w and∆w = w1 +w2−w3−w4. In Fig. (2) we have plottedR2 as function of
dimensionless depth and compared it with the case in the absence of wave-induced effects. Clearly, in a wide
range of dimensionless depth aroundk0h0 = 1.363 the nonlinear transfer is small. Although the narrow-band
approximation to the nonlinear transfer only has a very restricted validity, it nevertheless indicates that the
wave-induced effects should have a dramatic impact on the down shifting of the peak of the wave spectrum in
shallow water. When the peak wavenumber of the spectrum approaches the threshold valuekthr = 1.363/h0
one would expect that the downshift of the spectrum is arrested.

In order to test this conjecture we simulated the evolution of the wave spectrum by performing Monte Carlo
Forecasting of Eq. (14) (cf. Janssen (2003) for a number of cases namelyk0h0 = 1.363/2,k0h0 = 1.363 and
k0h0 = 3×1.363. The size of the ensemble is 500, while the Benjamin Feir Index equals 1. Results for the
spectrum and the nonlinear transfer are displayed in Fig. (3). Clearly, the ’deep’ water simulation shows the
expected down shift of the spectrum, while the intermediate water depth case (k0h0 = 1.363) shows no change
of the spectrum at all while the shallow water case shows signs of an upshifting of the peak of the spectrum.
Evidently, a simple scaling of the deep-water nonlinear transfer for shallow water cases (as is common practice
in wave modelling) does not seem to be a realistic option.

From the numerical simulations we have also obtained the time evolution of the kurtosis. These results are
plotted in Fig. 4 and are in agreement with our expectations. For deep-water we find a positive kurtosis (in
agreement with Janssen, 2003), hence there is an increased probability for extreme events. In shallow water, on
the other hand, kurtosis is found to be negative, thus it is less likely than normal to find extreme waves.

These simulations have been repeated with the kinetic equation (45) and fork0h0≥ 1.363 a good agreement with
the Monte Carlo Simulations is found. Fork0h0 < 1.363 we have defocussing, and Janssen (2003) found that in
those circumstances the range of validity of the kinetic equation is much restricted: by performing Monte Carlo
Simulations with the NLS equation good agreement was only found forBFI < 0.5. However, from Fig. (1) we
see that in shallow water the nonlinear transfer coefficient increases very rapidly with decreasing dimensionless
depth, so we very quickly end up with a strongly nonlinear case.

Referring to Janssen (2003) where the properties of the Zakharov equation were discussed, it was argued that
one is basically studying the balance between dispersion and nonlinearity. Thus, balancing the nonlinear term
and the dispersive term in the narrow-band version of Eq.(14) therefore gives the dimensionless number

−
v2

g

c2

gT0

w0

1
k4

0w
′′
0

s2

s ′2w
. (46)

Since our interest is in the dynamics of a continuous spectrum of waves the slope parameters and the relative
width s ′w of the frequency spectrum relate to spectral properties, hences= (k2

0 < h2 >)
1
2 , with < h2 > the av-

erage surface elevation variance, ands ′w = sw/w0. For positive sign of the dimensionless parameter (46) there
is focussing (modulational instability) while in the opposite case there is defocussing of the weakly nonlinear
wave train.
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Figure 3: Spectral evolution of shallow-water case (k0h0 = 1.363/2), an intermediate depth case (k0h0 = 1.363) and
a ’deep’-water case (k0h0 = 3× 1.363), showing upshifting and downshifting of the spectrum respectively caused by
nonlinear interactions. the BFI= 1. The spectra have been scaled in such a manner that the total surface is 1.
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Figure 4: Time evolution of kurtosis for BFI= 1. As expected for deep-water(k0h0 = 3×1.363) nonlinearity focusses
waves resulting in a positive kurtosis while for shallow water(k0h0 < 1.363) we have defocussing giving a negative
kurtosis.
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Using the dispersion relation for deep-water gravity waves and the expression for the nonlinear interaction
coefficient,T0 = k3

0, the BF Index (which is the square root of (46)) becomes,

BFI =
s
√

2
s ′w

. (47)

However, in the general shallow water case the appropriate dimensionless parameter becomes

BFI =
s
√

2
s ′w

2vg

c

√
|T0|/k3

0. (48)

Hence, fork0h0 < 1.363 the factorT0 increases rapidly with decreasing depth and one quickly deals with a
strongly nonlinear problem. The kinetic equation is then only valid for rapidly decreasing ratio of steepness
and relative width.

4 Conclusions

The overall conclusions from this work are clear. The threshold value for instabilityk0h0 = 1.363 plays an
important role in understanding the generation of freak waves and in understanding the spectral evolution in
shallow water. A simple scaling of the deep-water nonlinear transfer for shallow water cases is probably not
working.

The main concern is now why all this has not been noticed before. Nonlinear energy transfer in intermediate
water depths has been studied before. Herterich and Hasselmann (1980) also mention that the shallow-water
energy transfer cannot be scaled using the deep-water transfer, but according to these authors this occurs for
much smaller values ofk0h0 namely around the value 0.7 and not around the value 1.363 as found in this work.
For these very small values ofk0h0 the perturbation approach breaks down and Herterich and Hasselmann
(1980) do not discuss this problem any further. However, there is a large body of literature from the 1960’s
pointing out that the narrow-band approximation to the nonlinear transfer vanishes atk0h0 = 1.363. For these
values of dimensionless depth the perturbation approach is appropriate, and therefore one should deal with
the non-scaling behaviour of the shallow water nonlinear energy transfer. In addition, wind waves at these
dimensionless depths are a common feature near oil riggs and buoys, hence use of a more appropriate scaling
factor, e.g. the one from Eq. (39), should be investigated.
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A Evaluation of the potential for a single wave.

Let f̂ be the Fourier transform of the velocity potentialf and letŷ be the Fourier transform of the value of the
potential at the surface.. To second order in amplitude one then finds the following relation betweenf̂ andŷ:

f̂1 = tanh(k1h0)
[
ŷ1−

∫
d~k2,3q2ŷ2ĥ3d1−2−3

]
. (A1)

The velocity potential is then given by

f(x) =
∫

d~k f̂(~k)
cosh(k(z+h0))

sinh(kh0)
ei~k.~x (A2)

and using (A1) the potential at z=0, the mean surface, becomes

f(x) =
∫

d~k ŷ(~k)ei~k.~x−
∫

d~k1,2,3ei~k1.~xq2ŷ2ĥ3d1−2−3 (A3)

Note thatŷ andĥ are given in terms of the action variableA(~k) by Eq. (4), while for a single wave the action
variable is given by Eq. (29). There are two contributions tof(x), which are denoted byA andB.

The first one,A , is given by

A =
∫

d~k ŷ(~k)ei~k.~x =−i
∫

d~k

√
g

2w
A(~k)ei~k.~x +c.c (A4)

Making use of Eq. (29) and the introduction of the amplitudea (cf. below (29)) one finds in the limit of small~e

A =
ga
w0

sinq − ga2

w0

√
g

2w2

[
B2(2~k0)−B−2(−2~k0)

]
sin2q

−1
2

ga2

w0

√
g

2w(e)
[
B0(~e)−B0(−~e)

]
sin~e.~x. (A5)

thus giving a linear oscillation, a second harmonic and a mean flow contribution.

The second one,B, reads

B =−
∫

d~k1,2,3ei~k1.~xq2ŷ2ĥ3d1−2−3 (A6)

This is already quadratic in amplitude so only the linear representation ofŷ andĥ is required. As a result one
finds

B =−1
2

ga2

w0
q0sin2q . (A7)

Combining the two one finds for the potential of a single wave

f(x) =
ga
w0

sinq − ga2

w0
sin2q

[√
g

2w2

(
B2(2~k0)−B−2(−2~k0)

)
+

1
2

q0

]
−1

2
ga2

w0

√
g

2w(e)
[
B0(~e)−B0(−~e)

]
sin~e.~x. (A8)
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Making use of the expressions forB0, B2 andB−2 one finds in the limit of small~e

f(x) = bx+
ga
w0

sinq +na2sin2q (A9)

where

n =
3
8
w0

T4
0

(
1−T4

0

)
, (A10)

while

b =−1
4

k0a2

c2
S−v2

g

[
gvg

T0

(
1−T2

0

)
+

2g2

w0

]
. (A11)

Note that Eq. (A10) is in complete accord with Whitham (1974, 13.123 forz = 0). From the variational
approach Whitham finds that the mass flux involves the normal contribution of the currentb and a contribution
by the waves. This therefore suggests to introduce the mass transport velocityU as

U = b +uw (A12)

where, withE = 1
2ga2, as expected

uw =
E

c0h0
=

1
2

gk0

w0h0
a2 (A13)

Whitham deduces the following relation betweenU and the mean elevationb = k0a2∆ (cf Eq. (33)):

U =
vg

h0
b (A14)

Using (A11) in (A12) it can be verified that (A14) is indeed satisfied.

It is concluded that the narrow-band version of the Zakharov equation is in complete accord with the results of
Whitham’s variational approach.
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