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Freak Waves in Random Oceanic Sea States
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Freak waves are very large, rare events in a random ocean wave train. Here we study their generation
in a random sea state characterized by the Joint North Sea Wave Project spectrum. We assume, to cubic
order in nonlinearity, that the wave dynamics are governed by the nonlinear Schrödinger (NLS) equation.
We show from extensive numerical simulations of the NLS equation how freak waves in a random sea
state are more likely to occur for large values of the Phillips parameter a and the enhancement coefficient
g. Comparison with linear simulations is also reported.
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Freak waves are extraordinarily large water waves
whose heights exceed by a factor of 2.2 the significant
wave height, Hs, of a measured wave train [1]. The
mechanism of freak wave generation has become an issue
of principal interest due to their potentially devastating
effects on offshore structures and ships. In addition to the
formation of such waves in the presence of strong currents
[2] or as a result of a simple chance superposition of
Fourier modes with coherent phases, it has recently been
established that the nonlinear Schrödinger (NLS) equation
can describe many of the features of the dynamics of freak
waves which are found to arise as a result of the nonlin-
ear self-focusing phenomena [3–5]. The self-focusing
effect arises from the Benjamin-Feir instability [6]: a
monochromatic wave of amplitude a0 and wave number
k0 perturbed on a wavelength L � 2p�Dk, is unstable
whenever Dk��k0´� , 2

p
2, where ´ is the steepness of

the carrier wave defined as ´ � k0a0. The instability
causes a local exponential growth in the amplitude of the
wave train. This result is established from a linear stability
analysis of the NLS equation [7] and has been confirmed
experimentally (see, for example, [8] and references
therein) and from numerical simulations of the fully non-
linear water wave equations [5]. Even though the above
results are well understood and robust from a physical [7]
and mathematical [9,10] point of view, it is still unclear
how freak waves are generated via the Benjamin-Feir
instability in more realistic oceanic conditions.

In this Letter, our attention is focused on freak wave
generation in numerical simulations of the NLS equa-
tion where we assume initial conditions typical of oceanic
sea states described by the Joint North Sea Wave Project
(JONSWAP) power spectrum (see, e.g., [11]):
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where s0 � 0.07 if f # f0 and s0 � 0.09 if f . f0. Our
use of the JONSWAP formula is based upon the estab-
lished result that developing storm dynamics are governed
by this spectrum for a range of the parameters [11]. Here
f0 is the dominant frequency, g is the “enhancement” co-
0031-9007�01�86(25)�5831(4)$15.00
efficient, and a is the Phillips parameter. For g � 1 and
a � 0.0081 the spectrum reduces to that of Pierson and
Moskowitz [11]. As g increases, the spectrum becomes
higher and narrower around the spectral peak. In Fig. 1
we show the JONSWAP spectrum for different values of
g �g � 1, 5, 10� for f0 � 0.1 Hz and a � 0.0081.

The major finding we would like to discuss herein is that
as g and a grow, nonlinearity becomes more important and
the probability of the formation of freak waves increases.
Our results have been achieved by considering the NLS
equation as the simplest nonlinear evolution equation for
describing deep-water wave trains. We have performed
numerical simulations using the JONSWAP spectrum to
determine the initial conditions. Since the analytical form
of the spectrum is given as a function of frequency, analysis
is carried out by considering the so-called timelike NLS
equation (TNLS) (for the use of timelike equations in water
waves, see, e.g., [12–14]), which describes the evolution
of the complex envelope A in deep water waves:
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where dimensional quantities denoted with primes have
been scaled according to A � a0A0, x � x0�k0, and t �
t0�Dv with 1�Dv a characteristic time scale of the en-
velope which corresponds to the width of the frequency

1

10

100

0.1 0.2 0.3 0.4

γ =1  

γ =5 

γ =10  

P ( f )

Hz

FIG. 1. The JONSWAP spectrum for g � 1 (solid line), g �
5 (dotted line), and g � 10 (dashed line); with f0 � 0.1 Hz
and a � 0.0081.
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spectrum. Equation (2) solves a boundary value prob-
lem: given the temporal evolution A�0, t� at some location
x � 0, Eq. (2) determines the wave motion over all space,
A�x, t�.

At this point, it is instructive to introduce a parameter
that estimates the influence of the nonlinearity in deep
water waves. This parameter, which is a kind of “Ursell
number” [14], can be obtained as the ratio of the nonlinear
and dispersive terms in the TNLS equation:

Ur �

µ
´

Dv�v0

∂2

. (3)

When Ur ø 1 waves are essentially linear; for Ur $ 1,
the dynamics become nonlinear and the evolution of the
wave train is likely dominated by envelope solitons or un-
stable mode solutions such as those studied by Yuen and
co-workers [7].

Many aspects of the importance of the nonlinearity can
be addressed by computing Ur from the spectrum (1).
In Fig. 2 we show the Ursell number as a function of
the parameter g for a � 0.0081 and a � 0.0162. In the
construction of the plot an estimation of ´ and Dv�v0
needs to be given. Dv has been estimated as the half
width at half maximum of the spectrum and the steepness
as ´ � k0Hs�2. From the plot it is evident that for the
Pierson-Moskowitz spectrum �g � 1� the Ursell number
is quite small: this indicates that dispersion dominates
nonlinearity. It has to be pointed out that for small values
of g �g � 1, 2� the spectrum is not narrow banded; as
g increases the spectrum becomes narrower (Dv�v0 �
0.2 or less), suggesting that the NLS equation is more
appropriate. For large values of g the mean steepness
increases; for g � 8, a � 0.01 the steepness is equal to
0.16, therefore the equation is no longer valid and higher
order terms in steepness are required. In Fig. 2 we have
placed vertical lines at g � 2.5 and g � 8 to indicate the
region in which the NLS equation is applicable.

When the spectral width becomes large, one expects re-
sults which are somewhat out of the range of applicability
of the NLS equation. As pointed out in a number of papers
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FIG. 2. The Ursell number as a function of g for the
JONSWAP spectrum.
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[15,16] the main defect in the NLS equation concerning the
narrow-band approximation, arises from the fact that linear
dispersion is not at high enough order. Reference [16] pro-
poses an equation that includes all the terms in the linear
dispersion relation. The equation [Eq. (1) in their paper],
which is basically the NLS equation with the full linear
dispersion relation of the primitive equations, “reproduces
exactly the conditions for nonlinear four-wave resonance
even for bandwidth greater than unity.” In the linear limit
the equation is exact. In our numerical simulations with
the Pierson Moskowitz spectrum �g � 1, a � 0.0081� we
have used both the NLS equation and its modified form
[Eq. (1) in [16] ]. In this specific case the two equations
give basically the same results: nonlinearities are weak
(Ursell number � 0.03; see Fig. 2) and the dynamics are
basically linear; the correction in the linear dispersion re-
lation does not essentially alter the value of the maximum
simulated wave amplitudes. The results of these tests have
convinced us that, for the important range g � 2.5 8, the
simpler NLS equation is a valid approach for studying
many of the properties of rogue waves.

The influence of the parameter a consists in increasing
the energy content of the time series and therefore, as
a increases, the wave amplitude and, consequently, the
wave steepness also increase. If a doubles, the steepness
increases by a factor of

p
2 and the Ursell number by a

factor of 2 since the spectral width remains constant. From
this analysis we expect that large amplitude freak waves
(large with respect to their significant height) are more
likely to occur when g and a are both large.

We now consider numerical simulations of Eq. (2)
which have been computed using a standard split-step,
pseudospectral Fourier method [12]. Initial conditions for
the free surface elevation z �0, t� have been constructed as
the following random process [17]:

z �0, t� �
NX

n�1

Cn cos�2pfnt 2 fn� , (4)

where fn are uniformly distributed random numbers on
the interval �0, 2p�, and Cn �

p
2P� fn�Dfn, where P� f�

is the JONSWAP spectrum given in (1). For the computa-
tional domain considered, it was checked that the shape of
the JONSWAP spectrum has been not substantially altered
during the evolution of the NLS equation. In Fig. 3 we
show an image of smoothed contours of a space-time field
of jAj from a numerical simulation of TNLS obtained with
g � 4. The dominant frequency and the Phillips parame-
ter of the initial wave train were set, respectively, to 0.1 Hz
and a � 0.02. A large amplitude wave appears in the
simulation and in order to better visualize it, in Fig. 4 we
show a time series of the free surface z �t� at x � 1550 m
obtained using the following relation:

z �t� � �A�t�ei2pf0t 1 c.c.��2 , (5)

where c.c. denotes complex conjugate. A freak wave of
about 18.5 m in a random wave train with significant
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FIG. 3. Nonlinear Schrödinger space-time evolution of a ran-
dom wave field using the JONSWAP spectrum with g � 4,
a � 0.0081. For details refer to the text. Gray scale ranges
from 0 m (white) to 12.8 m (dark).

wave height of Hs � 6.9 m is evident at time t � 140 s.
We point out that the same simulation, not reported here
for brevity, with exactly the same initial conditions, has
been performed after setting to zero the term jAj2A. No
waves fulfilling the freak wave threshold �H . 2.2Hs�
were found in the domain considered.

In order to give additional quantitative results we have
performed more that 300 simulations of the TNLS equa-
tion. The simulations have been performed in dimensional
units in the following way. An initial time series of 250 s
has been computed from the JONSWAP spectrum for dif-
ferent values of a (from a � 0.0081 to a � 0.02) and
g (g � 1, g � 4, and g � 10). To increase the number
of statistical events we made computer runs with 10 dif-
ferent sets of random phases, fn. The time series were
then evolved according to the TNLS for a distance of
10 km, saving the output every 10 m. From an experimen-
tal point of view, this approach corresponds to setting 1000
probes along the wave propagation direction (one every
10 m) and measuring each time series for 250 s at a sam-
pling frequency of 2.05 Hz. The significant wave height,
Hs, of each realization has been computed; the highest
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FIG. 4. Free surface elevation z �t� at x � 1550 m obtained
from Fig. 3.
wave, Hmax, has been found and the ratio Hmax�Hs has
been determined. In order to verify that, in all the simu-
lations performed, our findings are really a consequence
of the nonlinear dynamics, we have also computed ex-
actly the same simulations using the linear version of the
TNLS equation. The results are summarized in Figs. 5
and 6. Figure 5 corresponds to g � 1. A horizontal line
at Hmax�Hs � 2.2 indicates the threshold that arbitrarily
discriminates the height of rogue waves. For the Pierson
Moskowitz spectrum (g � 1 and a � 0.0081) only one
realization of the 10 considered shows a “rogue” wave with
Hmax�Hs � 2.25. For higher values of a only a few of
the realizations show waves with Hmax�Hs slightly greater
than 2.2. From the plot it is clear that the effects of nonlin-
earities are rather small for this case �g � 1�. Among all
the 50 linear simulations performed with g � 1, we have
encountered a number of large amplitude waves but none
exceeds 2.2Hs. For g � 4, see Fig. 6, the physical picture
becomes much more interesting: while in the linear simu-
lations there are no freak waves, 50% of the nonlinear
simulations performed show at least one freak wave. For
larger g the picture is qualitatively the same and therefore
the graphs are not reported. There is clear evidence that
increasing g increases the probability of freak wave oc-
currences; high values of g do not, however, guarantee the
presence of a giant wave. The local properties of the wave
trains are presumably of fundamental importance for un-
derstanding the formation of freak waves: it may happen
that the Benjamin-Feir instability mechanism is satisfied
only in a small temporal portion of the full wave train,
giving rise to a local instability and therefore to the forma-
tion of a freak wave.

From a physical point of view, we are aware of the fact
that the NLS equation overestimates the region of insta-
bility and the maximum wave amplitude with respect to
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FIG. 5. Hmax�Hs as a function of a for g � 1. Circles and
crosses correspond, respectively, to the nonlinear (TNLS) and
linear simulations. For each value of a, ten different realizations
corresponding to ten different sets of random numbers have been
performed.
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FIG. 6. Hmax�Hs as a function of a for g � 4. See caption
of Fig. 5 for details.

higher order models [18], especially for ´ greater than 0.1.
Furthermore, it is well known that the NLS equation is for-
mally derived from the Euler equations under the assump-
tion of a narrow-banded process. Nevertheless, in spite
of these deficiencies in the NLS equation, we believe that
our results provide new important physical insight into the
generation of freak waves. Simulations with higher order
models [18] or directly with the fully nonlinear equations
of motion will be required in order to confirm these results.
Wave tank experiments will also be very useful in this
regard.

Another issue that has to be taken into account for future
work is directional spreading. In a recent paper [19] we
have considered simple initial conditions using the NLS
equation in 2 1 1 dimensions, and we have found the
ubiquitous occurrence of freak waves. Whether the ad-
ditional directionality in the JONSWAP spectrum changes
our statistics is still an open question; at the same time
we are confident that our results can apply to the case in
which the spectrum is quasi-unidirectional. In particular,
as recently suggested [20], the so called “energetic swells,”
which correspond to the early stage of swell development,
still characterized by a highly nonlinear regime (peaked
spectra and large values of a are candidates for the occur-
rence of freak waves).
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