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Abstract

When the wave spectrum is sufficiently narrow-banded and the wave steepness is sufficiently high, the modulational instability can take

place and waves can be higher than expected from second-order wave theory. In order to investigate these effects on the statistical

distribution of long-crested, deep water waves, direct numerical simulations of the Euler equations have been performed. Results show

that, for a typical design spectral shape, both the upper and lower tails of the probability density function for the surface elevation

significantly deviate from the commonly used second-order wave theory. In this respect, the crest elevation is observed to increase up to

18% at low probability levels. It would furthermore be expected that wave troughs become shallower due to nonlinear effects.

Nonetheless, the numerical simulations show that the trough depressions tend to be deeper than in second-order theory.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The wave amplitude represents an important wave
characteristic for many practical applications. For the
design of marine structures, for example, the statistical
distribution of the crest elevation (i.e., the highest elevation
of an individual wave) must be established with care as it is
an input to wave load calculations. Further, for offshore
platforms a proper statistical knowledge of extreme crests
are essential for defining a sufficient air gap under a
platform deck to ensure that a wave crest does not
endanger the structure integrity. Also the distribution of
wave troughs (i.e., the deepest depression of an individual
wave) is of significance for engineering applications. For
example, it is essential for the definition of the maximal
trough depth in the design of offshore rigs, because

underwater cross-bars must not be exposed to the air,
but at the same time should be sufficiently close to the
surface. A proper statistical description of wave trough,
moreover, is important for the definition of tether loads for
the design of tension-leg platforms.
As a first approximation, the water surface can be

represented as a Gaussian random process (linear wave
theory). Provided the wave spectrum is narrow-banded and
the phases of the Fourier components are uniformly
distributed, the probability distribution of linear wave
crests and troughs follows the Rayleigh distribution
(see Longuet-Higgins, 1952). Real waves, however, are
different than linear theory would predict. The wave crests
are actually higher and sharper while the wave troughs are
shallower and flatter than in a Gaussian process (see, for
example, Ochi, 1998, and reference therein). As a result, the
statistical distribution of crests and troughs deviates from
the Rayleigh distribution.
In order to capture such effects, it is common practice

to approximate the surface elevation by including the
second-order, bound, contribution for each free wave mode
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(i.e., second-order wave theory: Hasselmann, 1962;
Longuet-Higgins, 1963). Exploration of this approach has
revealed that statistical properties of random, unidirec-
tional, narrow-band, second-order wave trains agree
relatively well with wave measurements (see, e.g.,
Forristall, 2000; Prevosto et al., 2000, among others).
Nonetheless, there are wave records that clearly show a
large discrepancy between measurements of crest ampli-
tudes and second-order theory, especially in the extreme
tail of the distribution (see, e.g., Bitner-Gregersen and
Magnusson, 2004; Petrova et al., 2006).

Second-order theory, in this respect, only accounts for
bound (i.e., phase locked) modes, and hence does not
involve the nonlinear interaction between free waves. For
certain spectral conditions, it has been shown that the latter
can also be responsible for significant deviation from
Gaussian statistics (Janssen, 2003; Onorato et al., 2004;
Socquet-Juglard et al., 2005; Mori and Janssen, 2006). This
departure can be attributed to the Benjamin–Feir instabil-
ity mechanism, which, for irregular waves, can take place
when the wave spectrum is sufficiently narrow and the
steepness is sufficiently high. Janssen (2003), in particular,
demonstrated that the statistical properties of long-crested,
deep water waves strongly depend on the ratio between
the wave steepness and the spectral bandwidth (see also
Mori and Janssen, 2006), which is referred to as the
Benjamin–Feir index (BFI); note that this parameter, with
a different name, was already proposed by Onorato et al.
(2001).

To take the effects of both bound and free waves into
account, the statistical properties of nonlinear wave trains
have been investigated by means of direct numerical
simulations of the primitive Euler equations (see, for
example, Brandini, 2001; Mori and Yasuda, 2002) as well
as flume experiments (Onorato et al., 2004, 2006). Provided
the BFI is sufficiently large, results have shown that the
deviation from the Gaussian statistics can be more
significant than in second-order theory. Recently, similar
findings have also been discussed by Gibson et al. (2007),
who have investigated the wave crest distribution by
combining a fully nonlinear wave model with reliability
methods, which are used for design and safety assessment
of marine structures.

In the present study, we use Monte Carlo simulations of
the Euler equations to perform a systematic analysis of the
differences between the statistical properties of fully
nonlinear long-crested waves and second-order long-
crested waves. Both wave crest and wave trough distribu-
tions are taken into account. The paper is organized as
follows. We first begin with a brief description of the
numerical methods and the simulation technique. In
Section 4, the statistical properties of the surface elevation
simulated with the Euler equations are compared with the
values expected in second-order theory. We show, in
particular, that free wave modes have significant effects
on the occurrence of extreme values in agreement with
theoretical (Janssen, 2003; Mori and Janssen, 2006) and

experimental (Onorato et al., 2004) results. This leads to a
deviation of the tails of the probability density function. In
this respect, nonlinear effects are expected to increase the
crest height and decrease the trough depression. However,
whereas the crest elevations are observed to exceed the
second-order prediction, we will show that the wave
troughs are actually deeper than in second-order profiles.
In the section following that, the probability distribu-
tions of crest and trough amplitudes are shown; changes of
the shape of the distribution are discussed as a function of
the BFI. The statistical distribution of the trough-to-crest
wave height is also discussed. In Section 6, the distribution
of extremes is computed from the crest, trough, and
trough-to-crest height distributions; the occurrence of
extreme amplitudes is then discussed as a function of the
number of events. Conclusions will be reported in the last
section.

2. Theoretical methods

In the case of constant water depth (h ¼ 1 in this
study), the velocity potential fðx; z; tÞ of an irrotational,
inviscid, and incompressible liquid that propagates in one
(x) direction satisfies the Laplace’s equation everywhere in
the fluid (see, for example, Whitham, 1974). The boundary
conditions are such that the vertical velocity at the bottom
ðz ¼ �1Þ is zero, and the kinematic and dynamic
boundary conditions are satisfied for the velocity potential
cðx; tÞ ¼ fðx; Zðx; tÞ; tÞ on the free surface, i.e., z ¼ Zðx; tÞ
(see Zakharov, 1968); the expressions of the kinematic and
dynamic boundary conditions are as follows:

Zt þ cxZx �W ½1þ ðZxÞ
2
� ¼ 0, (1)

ct þ gZþ 1
2
ðcxÞ

2
� 1

2
W 2½1þ ðZxÞ

2
� ¼ 0, (2)

where the subscripts denote the partial derivatives; W ðx; tÞ
represents the vertical velocity evaluated at the free surface.
It is straightforward to show that a first-order (linear)

solution of the governing equations for irregular waves
takes the following form (Whitham, 1974):

Zð1Þðx; tÞ ¼
XN

i¼1

ai cosðkix� oitþ eiÞ, (3)

where t is time, x the position, ki the wavenumber, and oi

the angular frequency, which is related to the wavenumber
through the linear dispersion relation oi ¼

ffiffiffiffiffiffiffi
gki

p
; ei is a

uniformly distributed random phase in ½0; 2p�; N is the total
number of frequencies; ai is a Rayleigh-distributed random
amplitude (see, e.g., Prevosto, 1998) with

ha2
i i ¼ haðkiÞ

2
i ¼ 2EðkiÞDk, (4)

where h�i refers to the expected value, and EðkiÞ is the
spectral density function in wavenumber space.
A second-order correction to the linear wave surface

(Eq. (3)) was first derived for deep water by Longuet-
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Higgins (1963); it has the following form:

Zð2Þðx; tÞ ¼
1

4

XN

i;j¼1

aiaj½K
�
ij cosðji � jjÞ

þ Kþij cosðji þ jjÞ�, ð5Þ

where ji ¼ kix� oitþ ei, and Kþij and K�ij are the co-
efficients of the sum and difference contributions.

The expression reported in Eq. (5) only involves the
contribution of bound waves up to the second-order.
Nonlinear terms higher than the third-order are considered
negligible and hence excluded. In order to achieve a more
complete description of the wave field, which includes
nonlinear interactions higher than third-order as well as the
effects related to the dynamics of free wave modes, direct
numerical simulations of Eqs. (1) and (2) can be performed.
To this end, different numerical approaches can be found
in the literature; a review is presented in Tsai and Yue
(1996). Recently new, promising methods have been
proposed by Annenkov and Shrira (2001), Clamond and
Grue (2001), Zakharov et al. (2002). For this study, we
have used the high-order spectral method (HOSM), which
was proposed independently by Dommermuth and Yue
(1987) and West et al. (1987); a concise review of HOSM
can also be found in Tanaka (2001a). A comparison of the
two methods has recently been presented by Clamond et al.
(2006). Their results indicate that the formulation proposed
by Dommermuth and Yue (1987) does not converge when
the amplitude is very small unlike the formulation by West
et al. (1987). The latter, therefore, has been chosen for the
present study.

HOSM uses a series expansion in the wave slope of the
vertical velocity W ðx; tÞ about the free surface; herein
we have considered a third-order expansion so that the
four-wave interaction is included (see Tanaka, 2001b).
This expansion is used to evaluate the velocity potential
fðx; Zðx; tÞ; tÞ and the surface elevation Zðx; tÞ from Eqs. (1)
and (2) at each instant of time. All aliasing errors generated
in the nonlinear terms are removed (see Tanaka, 2001a, for
details). The time integration is then performed by means
of a four-order Runge–Kutta method. A small time-step,
Dt ¼ 0:02 s, is used to minimize the energy leakage;
throughout the simulations, the variation of total energy
remains lower than 0.5%.

3. Numerical experiments

For irregular wave trains, the crest distribution can be
obtained from the analysis of many random simulations of
the sea surface. In the case of second-order wave theory,
the nonlinear sea surface at a certain time t can be
calculated from Eqs. (3) and (5) as follows: Zðx; tÞ ¼
Zð1Þðx; tÞ þ Zð2Þðx; tÞ. For a certain input spectral condition,
repetitions have been performed by using different random
phases and random amplitudes; approximately 60 000
waves have been simulated.

In the case the Euler equations are used, records of the
sea surface can be obtained by the evolution of Eqs. (1) and
(2); the input surface Zðx; t ¼ 0Þ is computed with Eq. (3);
the velocity potential cðx; t ¼ 0Þ is then obtained from
the input surface by using linear wave theory (see, e.g.,
Whitham, 1974). The total duration of the computation
is 200 Tp; using a 2.4GHz processor, the computation
requires about 3.5min of CPU time. The output surfaces
Zðx; tÞ are captured every three times Tp, after the statistical
properties of the surface elevation have stabilized. To
ensure enough samples for the statistical analysis, many
repetitions ð� 500Þ have been performed with different
initial surfaces (i.e., different random phases and random
amplitudes). For consistency with the second-order experi-
ment, 60 000 individual waves have been considered for the
analysis.
As it is frequently used for many practical applications,

the JONSWAP formulation (see, for example, Komen
et al., 1994) is herein used to define several input frequency
spectra. An expression in the wavenumber space can be
obtained using the linear dispersion relation (see Tanaka,
2001a). The input spectra are defined with 256 equally
spaced wavenumbers; the spacial domain is chosen such
that the wave field measures 1410m.
Input spectral densities are generated considering a

constant dominant wavelength lp ¼ 156m (which corre-
spond to a peak period Tp ¼ 10 s), and different values of
the Phillips parameter a and peak enhancement factor g.
Although, a and g are not free parameters in a natural
environment (Babanin and Soloviev, 1998), we select their
values in order to generate slightly different sea states,
where the significant wave height is kept constant and the
spectral energy is gradually concentrated around the
spectral peak, i.e., the spectral bandwidth is gradually
reduced. Herein we define the spectral bandwidth as Dk=kp,
where Dk is a measure of the width of the spectrum
estimated as the half-width at half-maximum (see Onorato
et al., 2001), and kp is the peak wavenumber. Since the
spectrum becomes higher and narrower around the spectral
peak (i.e., smaller Dk=kp) if g is increased, four different
values of the peak enhancement factor have been used:
g ¼ 1, 2, 3.3, and 5. The corresponding values of a are then
chosen so that Hs ¼ 6:50m.
As the dominant wavelength and significant wave height

do not change, the wave steepness remains constant:
kpa ¼ 0:13, where a is half the significant wave height.
We have chosen spectral densities with such a steepness,
because, if calculated with respect to a mean wavelength
(lm ¼ gTm�10

=
ffiffiffiffiffiffi
gk

p
, where Tm�10 is a spectral mean period),

it represents the upper bound of the joint distribution of
significant wave heights and mean wave periods, which
were observed during some 270 ship accidents reported as
being due to bad weather conditions (Toffoli et al., 2005).
It is important to note, furthermore, that the spectral
bandwidth changes, and hence different values of the
BFI, which is related to the modular instability of free
wave modes, are consequently taken into account; for
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computational details of the BFI and its relation to the
JONSWAP spectrum see, for example, Onorato et al.
(2006). For the chosen peak enhancement factors, the BFI
assumes the following values: BFI ¼ 2kpa=ðDk=kpÞ ¼ 0:25;
0.55; 0.80; 1.10, respectively.

It is important to note that the time evolution of the
surface elevation produces changes to the initial spectral
shape. Numerical simulations of two-dimensional wave
fields performed by Janssen (2003) indicate that there is a
considerable broadening of the spectrum. In particular, the
evolution of the spectral bandwidth shows, after an initial
overshoot, a rapid transition towards an equilibrium value.
It follows, therefore, that the spectral shape at the time of
the output storage is actually different from the initial
spectral shape. As an example, we have measured that the
spectral bandwidth, Dk=kp, increases about 5% for an
initial BFI ¼ 0:25, and up to 20% for an initial BFI ¼ 0:80.
The latter seems to be consistent with the simulations
presented by Janssen (2003) for a similar initial degree of
nonlinearity.

4. Statistical properties of the surface elevation

The most obvious effect of wave nonlinearity is the
sharpening of the wave crests and the flattening of the wave
troughs. This results in a deviation of the skewness l3
(i.e., the third order moment of the probability density
function of surface elevation) from the value expected in a
linear wave field ðl3 ¼ 0Þ.

For second-order waves, it can be easily verified that the
skewness is a function of the wave steepness (see Srokosz
and Longuet-Higgins, 1986). It can be written as follows:

l3 ¼ 3�, (6)

where � ¼ kp
ffiffiffiffiffiffi
m0
p

, and m0 is the spectral variance.
Simulated second-order bound waves, which were

obtained with constant steepness, show that the skewness
is approximately equal to 0.19 for all simulated cases.
Therefore, no significant effects of the spectral bandwidth
were found. This result is in agreement with Eq. (6).

The numerical simulations of the Euler equations
(Eqs. (1) and (2)) performed for this study indicate that
higher-order effects of bound waves as well as the
nonlinear interaction between free modes provide a very
limited contribution to the vertical asymmetry of the wave
profile. Thus, the asymptotic value of the skewness does
not change significantly with the BFI (see Fig. 1); l3 was, in
fact, observed to vary from 0.18, for BFI ¼ 0:25, to 0.20,
for BFI ¼ 1:10. These values are thus consistent with the
second-order simulations.

Nonlinear effects also result in a deviation of the fourth-
order moment of the probability density function, i.e.
kurtosis ðl4Þ, from the value expected for a Gaussian
random process ðl4 ¼ 3Þ. Under the narrow-banded
approximation, the contribution of bound waves (second
and third-order) to the kurtosis can be expressed as follows

(see, for example, Mori and Janssen, 2006):

l4 ¼ 24�2. (7)

Considering the spectral densities used in this study, Eq. (7)
would lead to l4 ¼ 3:10, which is only slightly different
than the kurtosis observed in the second-order simulations
ðo2%Þ. As mentioned in Onorato et al. (2004), however,
free waves provide a more relevant contribution to the
kurtosis than bound modes if the spectrum is sufficiently
narrow. In this respect, when the spectral bandwidth
satisfies the conditions ðDk=kpÞ

2op=12
ffiffiffi
3
p

, the contribu-
tion of free modes, which leads to the modulation
instability, dominates the contribution of bound waves
(Mori and Janssen, 2006). It follows that for broad-banded
spectra (e.g., the case with BFI ¼ 0:25 in this study) the
modulational instability effects may not be relevant as
ðDk=kpÞ

24p=12
ffiffiffi
3
p

. The direct simulations of the Euler
equations, for this case, show that the value of the kurtosis
is in agreement with Eq. (7) as l4 ¼ 3:14. When the BFI
increases, however, the modulational instability begins
since the spectral bandwidth is reduced. As a result, the
occurrence of extreme events becomes more frequent.
Thereby, the kurtosis significantly deviates from the
value of Eq. (7), and increases as a function of the BFI
(see Fig. 2). To some extent, the kurtosis of the simulated
profiles is consistent with the theoretical formulation
presented by Janssen (2003) and Mori and Janssen
(2006), where the kurtosis is calculated as follows:

l4 ¼
pffiffiffi
3
p

�

Do=op

ffiffiffi
2
p

� �2

. (8)

The term within brackets in Eq. (8) corresponds to a
slightly different form of the BFI than the one used for this
study. It is interesting to note that, for large degrees of
nonlinearity ðBFIX1:1Þ, Eq. (8) overestimates the kurtosis
of the simulated profiles. This is likely related to the fact
that the simulations account for a third order expansion
of the vertical velocity only. Nonetheless, our simula-
tions are in agreement with laboratory experiments on
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unidirectional wave trains (see Onorato et al., 2004), also
for large values of the BFI (see Fig. 2).

It is now instructive to look at the probability density
function of the surface elevation. This is presented in
Fig. 3, where it is compared with the normal (Gaussian)
distribution and a theoretical probability density function
for second-order surface elevation (the standard deviation
s is here used as a normalizing factor). The latter
distribution was first derived by Tayfun (1980); a more
user-friendly expression can be found in Socquet-Juglard et
al. (2005). The second-order effect, as aforementioned,
produces high and sharp crests and shallow and flat
troughs. As a result, the tails of the probability density
function deviate rightwards from the normal distribution
(possible effects due to the spectral bandwidth will be

discussed in the next section). If the Euler equations are
used to simulate the sea surface, similar degree of vertical
asymmetry can be found (see Fig. 1). However, the tails of
the distribution behave differently than in second-order
wave theory. Whereas the upper tail deviates rightwards as
the crests become higher, the lower tail shows that the
troughs are actually deeper than for second-order profiles.
In particular, the lower tail relaxes on the normal
probability density function for relatively low values of
the BFI (BFI ¼ 0:25 and 0:55). As the BFI increases,
furthermore, the troughs appear to be deeper than in linear
wave theory; the lower tail, in fact, deviates leftwards from
the Gaussian distribution.

5. Probability distribution of the wave amplitude

5.1. Theoretical distribution for second-order wave

amplitudes

In the case of a narrow-banded spectrum in water of
infinite depth, the second-order surface elevation can be
written as follows:

Zðx; tÞ ¼ aðx; tÞ cosðyÞ þ 1
2
kpa2ðx; tÞ cosð2yÞ, (9)

where y ¼ kpx� otþ e and aðx; tÞ is the slowly varying
envelope. The second term on the right-hand side of Eq. (9)
generates the Stokes-type contribution, which is a high
frequency signal with a local maxima for each crest and
trough. It is therefore straightforward to show that the
wave crest amplitude assumes the following expression:

Zc ¼ aþ 1
2
kpa2. (10)

Similarly, the wave trough can be written as follows:

Zt ¼ a� 1
2
kpa2. (11)

Under the hypothesis that linear wave amplitudes are
Rayleigh distributed, Eq. (10) can be used to derive an
expression for the exceedance probability of the crest
amplitudes (see Tayfun, 1980, for details); the exceedance
probability can be written as follows:

PðZc4ZÞ ¼ exp �
8

H2
s k2

p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2kpZ

p
� 1Þ2

" #
. (12)

Similarly, we use Eq. (11) to express the exceedance
probability for wave troughs:

PðZt4ZÞ ¼ exp �
8

H2
s k2

p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kpZ

p
� 1Þ2

" #
. (13)

Note that Eq. (12) is often referred to as the Tayfun
distribution (Tayfun, 1980). In the following, Eqs. (12) and
(13) are used as reference to investigate the effect of the
spectral bandwidth on the probability distribution of crests
and troughs.
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5.2. Wave crest distribution

In Figs. 4 and 5, we present the exceedance probability
for the crest amplitude as simulated from second-order
wave theory, Eqs. (3) and (5), and the Euler equations,
Eqs. (1) and (2), respectively. The results are compared
with the theoretical distribution for narrow-banded,
second-order waves (Eq. (12)). For convenience, the crest
amplitudes are normalized by a constant wave height equal
to four times the standard deviation of the whole sample
(i.e., the significant wave height of the input spectrum).

Note, however, that the wave envelope is modulated due to
the sampling variability. This means that the local
significant wave height varies. As shown by Bitner-
Gregersen and Hagen (2004), this slightly changes the
form of the statistical distribution. By using a constant
normalizing factor, in this respect, a more conservative
result is achieved.
The expression in Eq. (12) indicates that the form of the

second-order wave crest distribution only changes accord-
ing to the wave steepness. Our numerical simulations of
irregular second-order wave crests, furthermore, indicate
that the shape of this distribution does not significantly
change if different spectral bandwidth (and therefore
different BFI) are considered. As shown in Fig. 4, in this
respect, the Tayfun distribution provides a good estimate
of all considered sets of second-order simulations.
If the wave spectrum is broad-banded (for example, the

case with BFI ¼ 0:25 in this study), the nonlinear interac-
tion between free waves does not have any significant effect
on the wave amplitude. As a result, the tail of the wave
crest distributions, which were derived from the direct
simulations of the Euler equations, only slightly deviates
from Eq. (12) (see Fig. 5). The relative difference D between
fully nonlinear and second-order crest amplitudes at low
probability levels, PðZc4ZÞp0:001, is almost negligible
(o4% as indicated in Fig. 6). The reason for this departure
is most likely related to the effect of third-order bound
modes, which slightly modify the kurtosis (cf. Fig. 2). If the
wave spectrum is sufficiently narrow, on the other hand,
the modulational instability can occur and facilitate the
formation of large wave amplitudes. Thus, as the BFI is
increased, the form of the statistical distribution changes.
Consequently, the departure from the second-order theory
becomes more significant; for BFI ¼ 0:55, and low prob-
ability levels ðPðZc4ZÞp0:001Þ, the crest amplitudes
obtained from the simulations of the Euler equations are
measured to be 10% higher than second-order crest
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Fig. 4. Wave crest distribution from second-order theory (Eqs. (3) and

(5)): Rayleigh distribution (dashed line), second-order theoretical dis-

tribution (Tayfun, 1980) (solid line); numerical simulations with kpa ¼

0:13 and BFI ¼ 0:25 (o); numerical simulations with kpa ¼ 0:13 and

BFI ¼ 0:55 ð�Þ; numerical simulations with kpa ¼ 0:13 and BFI ¼ 0:80
ðnÞ; numerical simulations with kpa ¼ 0:13 and BFI ¼ 1:10 (+).
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Fig. 5. Wave crest distribution from direct numerical simulations

(HOSM) of the Euler equations (Eqs. (1) and (2)): Rayleigh distribution

(dashed line), second-order theoretical distribution (Tayfun, 1980) (solid

line); numerical simulations with kpa ¼ 0:13 and BFI ¼ 0:25 (o);

numerical simulations with kpa ¼ 0:13 and BFI ¼ 0:55 ð�Þ; numerical

simulations with kpa ¼ 0:13 and BFI ¼ 0:80 ðnÞ; numerical simulations

with kpa ¼ 0:13 and BFI ¼ 1:10 (+).
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Fig. 6. Relative difference D between wave crests simulated with HOSM

and second-order theory at different probability levels: PðZc4ZÞ ¼ 0:1
ðnÞ; PðZc4ZÞ ¼ 0:01 (+); PðZc4ZÞ ¼ 0:001 (o).
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amplitudes (Fig. 6); for BFIX0:8, wave crests are about
18% higher than second-order amplitudes. This finding is
consistent with the results of flume experiments presented
by Onorato et al. (2006). For a practical point of view, it is
worth noting that BFI ¼ 0:80 is obtained with a JONS-
WAP spectral formulation with peak enhancement factor
g ¼ 3:3, which represents a common spectral shape for
many practical applications. The tail of the wave crest
distribution, however, does not significantly change further
if BFI40:80. As shown in Figs. 5 and 6, at low probability
levels, PðZc4ZÞp0:001, the wave crests have approxi-
mately the same amplitude for both BFI ¼ 0:80 and 1.10
(cf. Onorato et al., 2006).

It is important to remark that the simulations used for
this study only represents unidirectional wave fields. In the
more realistic condition of directional sea states, the
coexistence of different directional components may limit
the effect of the modulational instability and hence reduce
the deviation from second-order theory (see, e.g., Onorato
et al., 2002; Socquet-Juglard et al., 2005; Gramstad and
Trulsen, 2007).

5.3. Wave trough distribution

It is relatively well established that the troughs of
nonlinear wave profiles are flatter than in a Gaussian
random process (see, e.g., Ochi, 1998). Therefore, similarly
to what is observed for the wave crests, their statistical
distribution is expected to deviate from the Rayleigh
density function. Fig. 7, in this respect, shows the
theoretical and simulated probability of exceedance for
second-order wave troughs in comparison with the
Rayleigh distribution. It is interesting to note that the
theoretical wave trough distribution, Eq. (13), provides a

relatively good estimate of the simulated second-order
trough amplitude.
Despite the result presented in Fig. 7, direct simulations

of the Euler equations of long-crested, wave trains show
that troughs can be deeper than in second-order profiles.
This is presented in Fig. 8, where their probability of
exceedance is compared with the distribution for second-
order and linear troughs. As a general result, the wave
trough distribution follows the one for second-order
profiles if PðZc4ZÞp0:01. For lower probability
levels, however, the wave troughs are deeper than the
second-order prediction. For a low value of the BFI
(i.e., BFI ¼ 0:25), for example, the trough amplitude can
be about 12% deeper (see Fig. 9); the tail of the
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Fig. 7. Wave trough distribution from second-order theory (Eqs. (3) and

(5)): Rayleigh distribution (dashed line), second-order theoretical dis-

tribution (Eq. 13) (solid line); numerical simulations with kpa ¼ 0:13 and

BFI ¼ 0:25 (o); numerical simulations with kpa ¼ 0:13 and BFI ¼ 0:55
ð�Þ; numerical simulations with kpa ¼ 0:13 and BFI ¼ 0:80 ðnÞ; numerical

simulations with kpa ¼ 0:13 and BFI ¼ 1:10 (+).
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Fig. 8. Wave trough distribution from direct numerical simulations

(HOSM) of the Euler equations (Eqs. (1) and (2)): Rayleigh distribution

(dashed line), second-order theoretical distribution (Eq. 13) (solid line);

numerical simulations with kpa ¼ 0:13 and BFI ¼ 0:25 (o); numerical

simulations with kpa ¼ 0:13 and BFI ¼ 0:55 ð�Þ; numerical simulations

with kpa ¼ 0:13 and BFI ¼ 0:80 ðnÞ; numerical simulations with kpa ¼

0:13 and BFI ¼ 1:10 (+).
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Fig. 9. Relative difference D between wave troughs simulated with HOSM

and second-order theory at different probability levels: PðZc4ZÞ ¼ 0:1
ðnÞ; PðZc4ZÞ ¼ 0:01 (+); PðZc4ZÞ ¼ 0:001 (o).
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distribution results in agreement with the Rayleigh distri-
bution. This difference is even more significant than the
one observed for wave crests at the same BFI (cf. Fig. 6).
Note, moreover, that for BFI ¼ 0:25, the modulation
instability should not be relevant. Therefore, this difference
might be only due to high-order bound contributions.

As the BFI is increased, the deviation of the wave trough
distribution from second-order theory increases. For
BFI ¼ 0:55, however, this departure is not particularly
significant if compared to the case with BFI ¼ 0:25. The
difference between second-order theory and direct simula-
tions of the Euler equations is, in fact, approximately 14%
for PðZc4ZÞ ¼ 0:001 (Fig. 9). This deviation drastically
increases when BFIX0:80, as the effect of the modulational
instability becomes more significant (see Fig. 8). For these
cases, the simulations of the Euler equations indicates that
wave troughs are about 21% deeper than the ones expected
in second-order theory. The tail of the distribution,
moreover, shows a significant deviation from the Rayleigh
probability density function, which underestimates the
simulated troughs.

It is important to remark that the simulations only
represent unidirectional wave trains. Field measurements,
however, show that the trough distribution can actually be
overestimated by the Rayleigh distribution (see Mori et al.,
2002) and hence the deviation from second-order theory
may not be too large.

Using the nonlinear Schrödinger equation, Osborne
et al. (2000) have observed that deep holes can occur
before and/or after large crests. For a certain time instant,
our simulations of the random sea surface show that deep
troughs ðZt=4s � 1:0Þ can sometime occur together with
high crests ðZc=4s41:2Þ; two examples are presented in

Fig. 10 (upper left and upper right panels). Nonetheless, on
average, the deepest troughs was observed to be uncorre-
lated to the largest crests amplitudes (examples are
presented in Fig. 10, lower left and lower right panels).
In this respect, we have observed that deep troughs
ðZt=4s41:0Þ mainly occur with relatively low crests
ðZc=4so1:0Þ.

5.4. Trough-to-crest wave height distribution

In the following section, the wave height distribution is
presented. To this end, we define the wave height as the
sum of the trough depression and the crest elevation of
an individual wave (trough-to-crest wave height), which
is defined as the portion of the wave signal between
two consecutive zero-downcrossings. The wave height
distributions obtained from second-order theory and
direct simulations of the Euler equations are presented in
Figs. 11 and 12, respectively, and compared with the
Rayleigh distribution.
The second-order theory does not have any significant

effect on the wave height in comparison to the linear wave
theory. Therefore, provided the wave spectrum is narrow
banded, its distribution can be approximated by the
Rayleigh density function (Tayfun, 1980). For the adopted
spectral conditions and definition of wave height, however,
Fig. 11 shows that the Rayleigh distribution over predicts
the second-order simulations; this overestimation slightly
increases with the spectral bandwidth. This result is
consistent with the findings presented by Tayfun (1981).
In the previous sections, it has already been discussed

that the modulational instability of the wave packages
produces a modification of the wave crest and trough
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A. Toffoli et al. / Ocean Engineering 35 (2008) 367–379374



Author's personal copy

distribution as there is an excess of extreme values.
Consequently, also the form of the wave height distribution
is modified. Whereas for low degrees of nonlinearity the
difference between second-order theory and the simula-
tions of the Euler equations is limited (o4%, see Fig. 13),
for moderate and high degrees of nonlinearity ðBFIX0:55Þ
the deviation becomes more relevant (49% at low
probability levels). For these conditions, the tail of the
distribution is close to the Rayleigh density function.
The latter, however, tends to slightly underestimate
the simulated heights as BFIX0:8 (cf. Mori and
Yasuda, 2002). For these degrees of nonlinearity, and

low probability levels (0.001), the wave heights are
measured to be approximately 13% higher than in
second-order theory (see Fig. 13).

5.5. Remarks: wave breaking

The numerical models used for this study cannot
simulate wave breaking. As the latter may limit the
occurrence of very large, steep waves, it may modify the
tail of the probability distributions. In a recent work by
Babanin et al. (2007), however, it has been shown that
wave breaking may not occur when the mean wave
steepness of the sea state does not exceed the value of
0.1. In our simulations, the mean steepness ðkpa ¼ 0:13Þ is
only slightly higher than this threshold, and hence the wave
breaking is expected to occur rarely. Furthermore, using
laboratory experiments on regular waves, Babanin et al.
(2007) have also shown that deep water waves break when
their local steepness exceed 0.44. In this respect, the
investigation of the properties of the simulated, individual
waves reveals that the local steepness overcomes the value
of 0.3 only for a small percentage of them (0.01%).
Although wave breaking cannot be excluded a priori, we
expect that it does not have a significant effects on the
probability distribution reported in Figs. 5, 8, and 12; at
least not for the considered probability levels. As the
HOSM performs well when the local steepness is lower
than 0.3 (see Clamond et al., 2006), furthermore, this may
also exclude convergence problems.

6. The distribution of extremes

From a practical point of view, it is important to
estimate the largest wave amplitude, which is expected to
occur within a specific number of observations or an
adopted sea state duration (see, for example, Bitner-
Gregersen, 2003, where the distribution of extreme crests
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Fig. 11. Trough-to-crest wave height distribution from second-order

theory (Eqs. (3) and (5)): Rayleigh distribution (dashed line); numerical

simulations with kpa ¼ 0:13 and BFI ¼ 0:25 (o); numerical simulations

with kpa ¼ 0:13 and BFI ¼ 0:55 ð�Þ; numerical simulations with kpa ¼

0:13 and BFI ¼ 0:80 ðnÞ; numerical simulations with kpa ¼ 0:13 and

BFI ¼ 1:10 (+).
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Fig. 12. Trough-to-crest wave height distribution from direct numerical

simulation of the primitive Euler equations (Eqs. (1) and (2)): Rayleigh

distribution (dashed line); numerical simulations with kpa ¼ 0:13 and

BFI ¼ 0:25 (o); numerical simulations with kpa ¼ 0:13 and BFI ¼ 0:55
ð�Þ; numerical simulations with kpa ¼ 0:13 and BFI ¼ 0:80 ðnÞ; numerical

simulations with kpa ¼ 0:13 and BFI ¼ 1:10 (+).
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Fig. 13. Relative difference D between trough-to-crest wave heights

simulated with HOSM and second-order theory at different probability

levels: PðZc4ZÞ ¼ 0:1 ðnÞ; PðZc4ZÞ ¼ 0:01 (+); PðZc4ZÞ ¼ 0:001 (o).
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is discussed in detail by using a second-order wave model).
A review concerning the probability distribution of extreme
values can be found, for example, in Gumbel (1958), Ochi
(1998). In the following, the distribution of extremes is
estimated on the basis of a three-parameter Weibull
distribution, by which the simulated amplitudes (wave
crests, troughs and trough-to-crest heights) are fitted.
Assuming, then, that the wave amplitudes are independent
events, the occurrence probability for extremes (within a
certain number of events) is given by

FEðZeÞ ¼ 1� exp �
Ze � gw

aw

� �bw( )n

, (14)

where n denotes the number of expected observations, and
Ze is a generic extreme event; aw is the scale parameter, bw
is the slope, and gw is the location parameter of the Weibull
distribution; they are estimated from the simulated profiles
by means of a least square method.

It can be verified that the probability of occurrence for
the characteristic largest event, defined as a function
of the number of observations, is as follows (see, e.g.,
Gumbel, 1958):

FEðZmaxÞ ¼ 1�
1

n
. (15)

Therefore, considering Eq. (14), an expression for the
largest amplitude can be written as

Zmax ¼ gw þ aw½lnðnÞ�1=bw . (16)

In Figs. 14, 15 and 16 the extreme crests, troughs, and
trough-to-crest heights are presented as a function of the
number of observations (Eq. (16)). For simplicity, only the
cases with BFI ¼ 0:25 and 0.80 are considered as they
represent common spectral shape in the design practice
(g ¼ 1:0 and 3.3, respectively); the distribution for second-
order extreme amplitudes is then reported as a reference.

The simulations performed herein assume that the sea
surface is a stationary random process (i.e., the spectral
energy remains constant). In real conditions, this hypoth-
esis is only valid within 20–30min. Thus, considering that
the selected peak period is 10 s, this means a total number
of about 150 waves. Within this condition, the second-
order wave theory would predict a maximum crest height
of about 1:10Hs (see Fig. 14). However, if the direct
simulations of the Euler equations are taken into account,
the maximum crest height may be enhanced up to 1:14Hs

for BFI ¼ 0:25 and 1:20Hs for BFI ¼ 0:80.
It is common practice to consider that the input sea state

represents an average description of e.g. a 3-h storm
(see, for example, Bitner-Gregersen, 2003). If this is the
case, approximately 1000 waves can be expected. Conse-
quently, a second-order wave model would estimate a
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second-order (dotted line); direct simulations (HOSM) of the Euler

equations with BFI ¼ 0:25 (dashed line); direct simulations (HOSM) of
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Fig. 15. Extreme trough amplitude as a function of the number of events:

second-order (dotted line); direct simulations (HOSM) of the Euler

equations with BFI ¼ 0:25 (dashed line); direct simulations (HOSM) of

the Euler equations with BFI ¼ 0:80 (solid line).
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Fig. 16. Extreme trough-to-crest wave height as a function of the number

of events: second-order (dotted line); direct simulations (HOSM) of the

Euler equations with BFI ¼ 0:25 (dashed line); direct simulations (HOSM)

of the Euler equations with BFI ¼ 0:80 (solid line).
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maximum crest height of approximately 1:25Hs, which is
the same value obtained from the Euler equations within a
number of observations one order of magnitude smaller.
From the simulations of the Euler equations, however, the
most extreme crest amplitude expected within a 3-h storm
could enhance up to 1:31Hs if a broad band spectrum is
considered ðBFI ¼ 0:25Þ. More extreme crests may be
encountered if a narrower spectral condition is accounted
for (e.g., BFI ¼ 0:80). The maximum crest amplitude may,
in these conditions, overcome 1:41Hs, which is much
higher than the crest amplitude of so-called freak or rogue
waves (i.e., 1:221:3Hs). The values of the extremes are
summarized in Table 1 for completeness.

A similar analysis for the wave troughs indicates that
maximum troughs can be equal to the significant wave
height within a 30-min time window (Fig. 15) if they are
simulated from the Euler equations. Thus troughs are
slightly deeper than the second-order wave model predic-
tions. For longer sea state durations (e.g., the 3-h storm
condition), the wave trough may be expected to be deeper
than 1:21Hs.

Despite the fact that the crest amplitudes and trough
depths reach large values, the trough-to-crest wave heights
remain well below twice the significant wave height
(see Table 1 and Fig. 16), which also sets a threshold limit
for the definition of rogue waves. Within the framework of
our numerical approach (i.e., HOSM), such extreme waves
could only appear for sea state durations longer than 6 h.

7. Conclusions

A series of Monte Carlo simulations have been
performed by using second-order wave theory and the
primitive Euler equations, in order to analyze the statistical
properties of unidirectional, deep water waves. For the
simulations of the Euler equations, the high order spectral
method proposed by West et al. (1987) has been used.
A total of about 60 000 waves have been generated
considering different random phases and random ampli-
tudes. Input wave spectra have been chosen in order to
have a constant wave steepness and different spectral
bandwidth, i.e. different Benjamin-Feir Index.

Whereas the second-order theory only accounts for
bound waves, the Euler equations also include the
nonlinear interaction between free wave modes, which

dominates the non-Gaussian properties of deep water
waves. It is important to note, however, that the high order
spectral method used for this study is based on a third-
order expansion of the vertical velocity.
The analysis of the simulated profiles shows that free

waves do not have any significant effect on the vertical
asymmetry of the wave profile. However, they may increase
the probability of occurrence of extreme events, provided
the BFI is sufficiently high. As a result, the tails of the
probability density function deviate from the distribution
of second-order wave profiles. The wave crests, as
expected, are higher than in second-order theory as waves
become unstable; for low probability levels, the difference
can be up to 18% if BFIX0:80.
The instability of wave trains, moreover, has an influence

on the wave troughs, which tend to be deeper than in
second-order profiles. Using the Euler equations, the
troughs have been measured to be about 20% deeper than
second-order troughs at low probability levels. In this
respect, it is interesting to note that the lower tail of the
probability density function of the surface elevation relaxes
on the normal distribution for moderate and low values of
the BFI; the wave troughs have therefore the same
amplitude as a Gaussian random process. Slightly deeper
troughs are then to be expected as the BFI increases. In this
respect, it is surprising that very deep troughs occur when
the BFI is relatively small. Further analysis, however, is
needed to reach a firm conclusion.
Although crests and troughs show strong deviations

from the second-order theory, we have observed that, for
the trough-to-crest height, this deviations is not too large.
It is worth noting, in this respect, that for large degrees of
nonlinearity, the trough-to-crest wave height simulated
from the Euler equations is only slightly underestimated by
the Rayleigh probability density function, and it exceeds
the second-order prediction of about 13%.
The numerical approach used for this study does not

consider wave breaking. Therefore, it cannot be excluded a
priori that some simulated large, steep waves may not exist
in a natural environment. A recent study on regular waves
(Babanin et al., 2007), however, has shown that deep water
waves break when the local steepness exceed 0.44. As the
waves accounted for our analysis seldom overcome a local
steepness of 0.3, we expect that the wave breaking may not
influence the main conclusions.
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Table 1

Extreme values for wave crests, troughs and trough-to-crest heights

Parameter Time window Second-order HOSM, BFI ¼ 0:25 HOSM, BFI ¼ 0:8

Zc=4s 150 waves 1.10 1.14 1.20

1000 waves 1.25 1.31 1.41

Zt=4s 150 waves 0.95 1.00 1.04

1000 waves 1.06 1.15 1.21

H=4s 150 waves 1.42 1.46 1.55

1000 waves 1.67 1.71 1.85
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It is important to remark that results based upon the
third order truncation in the HOSM do not describe
‘‘fully’’ nonlinear waves; therefore, they must be inter-
preted within the framework of the numerical approach.
Furthermore, only unidirectional wave trains have been
taken into account. Real waves, however, are characterized
by a certain directional distribution, which may limit the
effect of the nonlinear interaction between free wave modes
(see, e.g., Onorato et al., 2002; Socquet-Juglard et al., 2005;
Gramstad and Trulsen, 2007). Note, however, that strong
deviations from the second-order theory have been
observed herein for a sea state characterized by a
JONSWAP spectrum with peak enhancement factor of
3.3, which is a common spectral shape for many practical
applications. Thus, in the case that narrow directio-
nal conditions occur, such as swell dominated wave
fields, deviations from second-order predictions might be
expected.
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