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a b s t r a c t

It is well established that the modulational instability enhances the probability of occurrence for

extreme events in long crested wave fields. Recent studies, however, have shown that the coexistence of

directional wave components can reduce the effects related to the modulational instability. Here,

numerical simulations of the Euler equations are used to investigate whether the modulational

instability may produce significant deviations from second-order statistical properties of surface gravity

waves when short crestness (i.e., directionality) is accounted for. The case of a broad-banded directional

wave field (i.e. wind sea) is investigated. The analysis is concentrated on the wave crest and trough

distribution. For completeness a comparison with a unidirectional wave field is presented also. Results

will show that the distributions based on second-order theory provide a good estimate for the

simulated crest and trough height also at low probability levels.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The statistical description of the wave amplitude represents a
fundamental input for many practical applications. For the design
of marine structures, for example, the probability distribution of
the crest elevation (i.e., the highest elevation of an individual
wave) must be established with care as it is used for the
calculation of wave loads. Furthermore, a proper statistical
knowledge of extreme crests is essential to define a sufficient
air gap under the platform deck, and hence to ensure that a wave
crest does not endanger the structure’s integrity. Although the
analysis of the wave crest distribution has received more
attention, also the statistical description of wave troughs
(i.e., the deepest depression of individual waves) is of importance
for a number of engineering applications. For example, it is
essential to define the maximal trough depth in the design of
offshore rigs, because underwater cross-bars must not be exposed
to the air, but at the same time should be sufficiently close to the
surface. The wave trough distribution, moreover, is of importance
also for specification of tether loads when designing tension-leg
platforms.

Today it is common practice to describe the surface elevation
by taking into account bound modes up to the second order, i.e.
second-order wave theory (Hasselmann, 1962; Longuet-Higgins,

1963), from which probabilistic models for the crests and troughs
can be developed (see, for example, Tayfun, 1980; Arhan and
Plaisted, 1981; Forristall, 2000; Prevosto et al., 2000; Tayfun and
Fedele, 2007b). Among them, the wave crest distributions
proposed by Forristall (2000) are frequently used for engineering
calculations. However, although exploration of this approach has
already proved a relatively good agreement with observations,
there are measurements that clearly show significant discrepan-
cies especially at low probability levels (Bitner-Gregersen and
Magnusson, 2004; Petrova et al., 2006).

In this respect, when waves are long crested, i.e. unidirectional,
narrow banded and in water of infinite depth, the modulational
instability of free wave packets can develop (Onorato et al., 2001,
2006; Janssen, 2003). As a result, the statistical properties of
surface gravity waves can significantly diverge from the ones
calculated by second-order theory (see, e.g., Mori and Yasuda,
2002; Onorato et al., 2006; Gibson et al., 2007). Using direct
numerical simulations of the Euler equations, furthermore, Toffoli
et al. (2008) have demonstrated that the effects related to free
wave modes can enhance the crest height up to 20%, at probability
levels as low as 0.001. However, for the more realistic case of short
crested waves (local wind sea), where wave components with
different directions of propagation coexist, the effect of the
modulational instability is reduced (Onorato et al., 2002a;
Socquet-Juglard et al., 2005; Waseda, 2006; Gramstad and
Trulsen, 2007). Socquet-Juglard et al. (2005), in particular, using
higher order nonlinear Schrödinger-type equations (Dysthe, 1979),
have shown that the modulational instability does not yield any
significant deviation of the wave crest distribution from the
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theoretical second-order based distribution proposed by Tayfun
(1980) in broad directional wave fields. However, the Schrödinger-
type equations are limited to narrow-banded spectra (both in
frequency and direction). It is therefore not yet clear whether the
modulational instability may significantly change the statistical
properties of surface gravity waves when more broad-banded
spectral conditions are considered.

The present study attempts to address this problem by using
numerical simulations of the Euler equations to describe the
statistical properties of a broad-banded, short crested wave
field in water of infinite depth. For comparison, simulations of
long crested wave fields have also been performed. Although
some approximations are needed to carry out the simulations, the
Euler equations account for both the effects related to bound
modes of second and higher order and the ones related to free
modes. Moreover, this approach does not have any bandwidth
constraints unlike the nonlinear Schrödinger-type equations used
in Socquet-Juglard et al. (2005).

A brief description of the model and the initial conditions
taken into account are presented in the next section. In Section 3,
the statistical properties of the simulated directional wave fields
are compared with results for unidirectional waves. Although
directional effects have not been investigated comprehensively
(only one type of directional distribution has been taken into
account), we show that directionality has a significant effect on
the formation of extreme waves, substantially reducing their
probability of occurrence. In Section 4, the shape of the simulated
wave crest distributions is investigated and compared with
distributions based on second-order wave theory; the effect of
the selected directional spreading on the tail of the distribution is
discussed. A similar analysis is then extended to the probability
distribution of the wave troughs (Section 5). Concluding remarks
are presented in the last section.

2. The numerical experiment

2.1. The model

In the case of constant water depth (h ¼ 1 in this study), the
velocity potential fðx; z; tÞ of an irrotational, inviscid, and
incompressible liquid satisfies the Laplace’s equation everywhere
in the fluid. The boundary conditions are such that the vertical
velocity at the bottom ðz ¼ �1Þ is zero, and the kinematic and
dynamic boundary conditions are satisfied for the velocity
potential cðx; y; tÞ ¼ fðx; y;Zðx; tÞ; tÞ on the free surface, i.e., z ¼

Zðx; y; tÞ (see Zakharov, 1968). The expressions of the kinematic
and dynamic boundary conditions are as follows:

ct þ gZþ 1
2ðc

2
x þ c2

y Þ �
1
2W2
ð1þ Z2

x þ Z
2
y Þ ¼ 0, (1)

Zt þcxZx þcyZy �Wð1þ Z2
x þ Z

2
x Þ ¼ 0, (2)

where the subscripts denote the partial derivatives, and
Wðx; y; tÞ ¼ fzjZ represents the vertical velocity evaluated at the
free surface.

The time evolution of the surface elevation can be calculated
from Eqs. (1) and (2). Numerical simulations of these equations,
however, are rather complex. For this study, we have used the
higher order spectral method (HOSM), which was independently
proposed by West et al. (1987) and Dommermuth and Yue (1987).
A comparison of these two approaches (Clamond et al., 2006) has
shown that the formulation proposed by Dommermuth and Yue
(1987) is less accurate than the one proposed by West et al.
(1987). The latter, therefore, has been applied for the present
study.

HOSM uses a series expansion in the wave slope of the vertical
velocity Wðx; y; tÞ about the free surface. Herein we have
considered a third-order expansion so that the four-wave
interaction is included (see Tanaka, 2001b, 2007); note, however,
that the solution is not fully nonlinear. The expansion is then used
to evaluate the velocity potential cðx; y; tÞ and the surface
elevation Zðx; y; tÞ from Eqs. (1) and (2) at each instant of time.
All aliasing errors generated in the nonlinear terms are removed
(see West et al., 1987; Tanaka, 2001b for details). The time
integration is performed by means of a four-order Runge–Kutta
method. A concise review of HOSM can be found in Tanaka
(2001a).

Note that other numerical approaches can be found in the
literature (see, for example Tsai and Yue, 1996, for a review).
Promising methods have also been proposed by Annenkov and
Shrira (2001), Clamond and Grue (2001), and Zakharov et al.
(2002). A comparative analysis between the performance of the
HOSM and other numerical approaches can be found in Clamond
et al. (2006).

2.2. Initial conditions and simulations

For the construction of the initial conditions, a directional
wave spectrum Eðo; yÞ ¼ SðoÞDðo;yÞ is used, where SðoÞ repre-
sents the frequency spectrum and Dðo; yÞ is the directional
function. As it is frequently used for many practical applications,
the JONSWAP formulation (see, e.g., Komen et al., 1994) is herein
adopted to describe the energy distribution in the frequency
domain. In the present study, for convenience, we have chosen a
peak period Tp ¼ 4 s, which corresponds to a dominant wave-
length lp ¼ 25 m, and Phillips parameter a ¼ 0:014. Note that the
choice of the peak period is arbitrary, and any other wave period
representing wind sea could have been applied. Different values
for the peak enhancement factor g, then, have been selected to
describe different significant wave heights ðHsÞ. This choice is
twofold: (i) it defines different degrees of nonlinearity as
measured by the wave steepness kpa (the higher the steepness,
the more important the contribution of nonlinear terms), where
kp is the wavenumber related to the dominant wavelength and a is
half the significant wave height; (ii) it defines different values of
the Benjamin–Feir Index (BFI), which measures the relative
importance of nonlinearity and dispersion (see Onorato et al.,
2001; Janssen, 2003). The BFI is here calculated as the ratio of the
wave steepness kpa to the spectral bandwidth Dk=kp, where Dk is
a measure of the width of the spectrum estimated as the half-
width at the half-maximum (see for details Onorato et al., 2006).
Note that, for narrow-banded wave trains, the non-resonant
interaction between free modes gives rise to a much larger
deviation from the Gaussian statistics than bound waves if BFI ¼
Oð1Þ (Janssen, 2003; Mori and Janssen, 2006). The values of the
peak enhancement factor g, wave steepness and BFI are summar-
ized in Table 1. These values are related to the selected JONSWAP
spectra only, and hence do not contain any information regarding
directionality. We also mention that the concurrent values of the
steepness are representative for rather extreme sea states (see,
e.g., Toffoli et al., 2005; Socquet-Juglard et al., 2005), which are of
interest for practical applications.
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Table 1
Parameters of numerical experiments

g Hs kpa BFI

1.0 0.84 0.106 0.20

3.3 1.04 0.131 0.70

6.0 1.20 0.151 1.00
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A cos2sðy=2Þ function is then applied to model the energy in the
directional domain. Several definitions for the spreading coeffi-
cient s can be found in the literature (see, e.g., Ewans, 1998 for a
concise review). For the present study, we have chosen the
formulation proposed by Mitsuyasu et al. (1975) so that at the
peak frequency sðopÞ ¼ 10. Considering that the mean direction of
propagation is equal to zero, the selected function and directional
spreading distribute the energy on a range of �25�.

From the directional-frequency spectrum, Eðo; yÞ, an initial
two-dimensional surface Zðx; y; t ¼ 0Þ is computed using first the
linear dispersion relation to move from ðo; yÞ to wavenumber
coordinates ðkx; kyÞ, and then the inverse Fourier transform with
the random phase approximation. In this respect, the random
phase � is assumed to be uniformly distributed over the interval
½0;2p�. Note that also random amplitudes should be used to
include the natural variability of waves. For the present simula-
tions, therefore, we have assumed that the amplitudes are
Rayleigh distributed (see, e.g., Prevosto, 1998). The velocity
potential cðx; y; t ¼ 0Þ is obtained from the input surface using
linear theory (see, e.g., Whitham, 1974). The wave field is
contained in a square domain of 225 m with spatial mesh of 256�
256 nodes. The selected resolution of the physical domain allows
that the maximum mode number, kmax, corresponds to the sixth
harmonic of the peak of the spectrum after the mode numbers k

affected by aliasing errors are removed. It is important to mention
that, in the present study, we are interested in the effect of the
modulational instability mechanism, i.e., a quasiresonant four-
wave interaction process that takes place near the peak of the
spectrum. Therefore, the removal of aliasing errors should not
have any influence on the results.

For comparison, unidirectional wave trains Zðx; tÞ have also
been simulated using the Euler equations. To this end, we have
used the same input frequency spectra SðoÞ which have been
selected for the simulations of the directional wave fields.
Theoretical and numerical studies (Janssen, 2003; Socquet-Juglard
et al., 2005) have shown that deviations from the Gaussian
statistics due to the modulational instability mechanism occur on
a short timescale, typically on the order of 10 wave periods. In the
present study, therefore, the total duration of the simulation is set
equal to 100Tp so that the effects of modulational instability are
captured. A small time step, Dt ¼ Tp=100 ¼ 0:04 s, is used to
minimize the energy leakage; note that the selected time step is
much smaller than the period of the shortest waves considered in
this study. The accuracy of the computation is checked by
monitoring the variation of the total energy Etot (see, e.g., Tanaka,
2001a). An example of the variation of the total energy is shown in
Fig. 1 for the case BFI ¼ 1:0. Despite the fact that the energy

content shows a decreasing trend throughout the simulation, its
variation is negligible as the relative error in Etot does not exceed
�0:4% (this result is consistent with similar simulations per-
formed by Tanaka, 2001a).

For each instant of time, the skewness ðl3Þ and kurtosis ðl4Þ of
the surface elevation are stored. It is not clear, however, how to
extract individual waves from the two-dimensional surface
Zðx; y; tÞ. For the investigation of the crest and trough distributions,
therefore, a time series analysis (down-crossing waves) of the
surface elevation has been performed. To this end, time series
have been collected from five different grid points to ensure
enough samples for the statistical analysis, starting at time
t ¼ 40Tp. This choice has been motivated by the fact that after a
time of 30240Tp, the statistical properties of the surface
elevations reaches a statistically stable condition. Furthermore,
the grid points have been chosen to ensure that the collected time
series are independent realizations, i.e., the cross-correlation of
the time series collected at two arbitrary grid points can be
regarded as negligible.

Many repetitions ð� 100Þ have been performed with different
initial surfaces (i.e., different random amplitudes and phases).
Approximately 30 000 individual waves have been considered.

It is important to mention that the spectral shape changes as
the wave field evolves in time. Therefore, the wave spectrum at
the last time step differs from the input spectrum. As an example,
we show the normalized, integrated wavenumber spectrum at the
initial condition and after 100 peak periods in Fig. 2. As the wave
field evolves, part of the energy is transferred towards low
wavenumbers, yielding the downshift of the spectral peak.
Furthermore, there is a clear tendency towards a k�5=2 power
law in the high wavenumber spectral tail. More detailed analysis
of the spectral evolution can be find in Tanaka (2001b), Onorato
et al. (2002b), Socquet-Juglard et al. (2005).

3. Skewness and kurtosis

In the following section, we discuss the effect of short
crestness on the skewness and kurtosis of the surface elevation.
Whereas the first describes the degree of vertical asymmetry, the
latter refers to the occurrence of large events. For a Gaussian,
linear, random process, the following values should be expected:
l3 ¼ 0; l4 ¼ 3. In Figs. 4 and 5, the skewness and kurtosis of the
simulated time series are presented as a function of the BFI; both
the unidirectional and directional case are shown. It is important
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to mention that a large number of time series are needed to
calculate stable statistical moments (see Bitner-Gregersen and
Hagen, 2003). In this respect, we have verified that the collected
time series are long enough to satisfy their stability (see, for
example, Fig. 3).

It is well known that the vertical asymmetry of the wave
profile becomes more pronounced if the wave steepness, and
hence the BFI, increases; wave crests tend to be sharper and
higher, while wave troughs become shallower and flatter.
Consequently, the skewness departs from the values expected
for Gaussian processes (see Fig. 4). As shown in Toffoli et al.
(2008), only bound modes significantly contribute to this
deviation (cf. Janssen, 2003; Mori and Janssen, 2006). When
directional sea states are simulated, however, the skewness
decreases, because coexisting directional components limit the
nonlinear effects of bound modes (see, e.g., Forristall, 2000; Toffoli
et al., 2006). For all cases examined herein, the skewness of the
directional field shows an approximately constant reduction of
about 28% if compared with the concurrent unidirectional
simulations.

For long crested, deep water waves, on the other hand, the
kurtosis is dominated by the nonlinear interaction between free
modes. Apart from the experiment with BFI ¼ 0:2, the kurtosis
reaches significantly high values, l443:45, if compared with the

contribution of bound modes, which leads on average to
l4ðboundÞ ¼ 3þ 24 ðkpHs=4Þ2 � 3:12 (see, for example, Mori and
Janssen, 2006, for details). However, when a broad-banded
directional distribution is considered, the contribution of free
modes is substantially reduced. Although a certain dependency
from the degree of nonlinearity (BFI) is still visible (see Fig. 5), the
simulations show that the kurtosis does not significantly diverges
from the values expected for linear and second-order waves.
This result is consistent with numerical simulations of directional
sea states that were performed with higher order nonlinear
Schrödinger-type equations by Onorato et al. (2002a), and
laboratory experiments conducted in a directional wave basin
(Waseda, 2006).

For completeness, it is instructive to look at the temporal
evolution of the kurtosis, which is presented in Fig. 6 for the case
BFI ¼ 1:0; note that here the kurtosis represents an ensemble
average value for the surface elevation at each considered time
step. When the wave field is unidirectional, the modulational
instability occurs on a short time scale and a strong departure
from Gaussian statistics is observed at about 40 peak periods.
If directional components are accounted for, on the other hand,
the kurtosis does not show any substantial departure from the
values expected in linear and second-order theory. A few
runs performed for longer temporal evolution (up to 500Tp),
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moreover, have shown that the absence of substantial
deviation from Gaussian statistics is a robust feature of broad
directional wave fields. It can therefore be concluded that
simulations of the Euler equations indicate that extreme wave
events in a broad-banded, short crested wave field seem to be
neither more frequent nor higher than the second-order theory
predicts.

4. The wave crest distribution

In the following, a numerical distribution of wave crests
generated from the Euler equations is compared with the
predictions given by the second-order Tayfun (1980) and Forristall
(2000) distributions.

The distribution proposed by Tayfun (1980) is derived by
assuming that second-order, deep water waves with a narrow-
banded spectrum can be described in a simplified form in which
each realization of the surface elevation becomes an amplitude-
modulated Stokes wave with a mean frequency and a random
phase. Further, it does not include explicitly directional spreading.

In the case of a narrow-banded spectrum, the second-order
surface elevation in the infinite water depth can be expressed as
an envelope with a slowly varying amplitude and phase (see
Tayfun, 1980):

Zðx; tÞ ¼ arðx; tÞ cosðyÞ þ 1
2kpa2

r ðx; tÞ cosð2yÞ, (3)

where y ¼ kpx�ot þ � and arðx; tÞ is the slowly varying envelope.
The second term on the right-hand side of Eq. (3) generates the
Stokes-type contribution, which is a high frequency signal with a
local maximum for each crest and trough. It is therefore
straightforward to show that the wave crest assumes the
following expression:

Zc ¼ ar þ
1
2kpa2

r . (4)

Under the hypothesis that the linear wave amplitude is Rayleigh
distributed, Eq. (4) can be used to derive an expression for the
exceedance probability of the crest height (see Tayfun, 1980 for
details); the latter can be written as follows:

PðZc4ZÞ ¼ exp �
8

H2
s k2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2kpZ

q
� 1

� �2
" #

. (5)

Note that the wave crest distribution in Eq. (5), known as the
Tayfun distribution, represents a general expression, describing
both long and short crested wave fields (Fedele and Arena, 2005;
Tayfun, 2006; Tayfun and Fedele, 2006a, b, 2007b), when a fixed
location is considered, i.e. an envelope in time. Nonetheless, by
simulating long and short crested, second-order wave profiles,
Forristall (2000) has shown that the directional spreading actually
reduces the effect of second-order interaction, and hence modifies
the tail of the wave crest distribution (see also Toffoli et al., 2006).
For deep water waves, in this respect, the simulations of
directional wave fields indicate that the crest height is slightly
lower than the one obtained from the simulations of unidirec-
tional wave trains, confirming findings reported earlier in the
literature by several authors.

Furthermore, based on a large amount of second-order
numerical simulations for the JONSWAP spectrum, Forristall
(2000) has proposed a two-parameter Weibull fit for both
unidirectional and directional waves. For the latter case, the
directional distribution was described by a cos2sðy=2Þ function
with the spreading coefficient defined as in the work by Ewans
(1998). The parameters of the Weibull distributions have been
defined as functions of the average wave steepness and Ursell
number. For short crested wave fields the two-parameter Weibull

crest distribution is as follows:

PðZc4ZÞ ¼ exp �
Z

awHs

� �bw

" #
, (6)

where

aW ¼ 0:3536þ 0:2568S1 þ 0:0800Ur, (7)

bW ¼ 2� 1:7912S1 � 0:5302Ur þ 0:2840Ur2. (8)

S1 and Ur are the mean steepness and the Ursell number
respectively:

S1 ¼
2p
g

Hs

T2
01

, (9)

Ur ¼
Hs

k2
01h3

, (10)

where T01 is the mean wave period calculated from the ratio of the
first two moments of the wave spectrum, k01 is the associated
wavenumber, and h is the water depth. It is straightforward to
note that the term in Eq. (10) is zero for deep water waves
(k01h!1). The wave crest distribution in Eq. (6) will be referred
to as the Forristall distribution hereafter.

Note that the directional distribution chosen by Forristall
(2000) is slightly narrower than the one used for the present
study. Recently, however, Toffoli et al. (2006) have shown that the
statistical properties of second-order, directional wave fields are
not significantly influenced by the value assumed by the
directional spreading coefficient. It is important to mention,
nonetheless, that the Weibull fit method proposed by Forristall
(2000) is strictly applicable for unimodal spectra only. Second-
order simulations performed by Bitner-Gregersen and Hagen
(2003), however, showed that the crest height in bimodal spectra
were somewhat higher than those in unimodal spectra conditions
and were under predicted by the Forristall distribution.

In Figs. 7–9, the second-order wave crest distributions of
Tayfun and Forristall (Eqs. (5) and (6)) are compared with the
numerical simulations of the Euler equations (Eqs. (1) and (2)) for
both long and short crested wave fields. As aforementioned, for
long crested and narrow-banded wave trains, the dynamics of free
modes increases the probability of occurrence of extreme waves.
In the case of a small value of the BFI (0.2 in this study), the
modulation instability does not have a significant effect on the
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statistical properties of surface gravity waves (cf. Onorato et al.,
2006). The limited, but significant, departure of the simulated
wave crest distribution from the second-order wave crest
distribution is most likely related to the effects of third and
higher-order bound waves. As the degree of nonlinearity (BFI) is
enhanced, however, this deviation increases, because the effect of
the modulation instability becomes more relevant (see Onorato
et al., 2006; Toffoli et al., 2008 for example).

When a broad-banded directional distribution is taken into
account, the effect related to free modes is significantly reduced
(see also Fig. 5). As a result, the deviation from the theoretical,
second-order distributions vanishes. For low and moderate values
of the BFI (i.e., 0.2 and 0.7), the Tayfun distribution (Eq. (5))
provides a satisfactory approximation of the simulated crest
heights also at low probability levels ðPðZcÞ ¼ 0:0001Þ. This result
is consistent with the findings presented by Socquet-Juglard et al.
(2005), who performed numerical simulations of the surface
elevation for a short crested wave field with BFI � 0:7 by using
higher order nonlinear Schrödinger-type equations. If higher
values of BFI ð40:7Þ are considered, however, the Tayfun
distribution slightly overestimates our simulated crest heights.

For probability levels greater than 0.0001, this departure appears
to be statistically significant as the Tayfun distribution
lays outside the 95% confidence intervals of the simulations (see
Fig. 10). In this respect, it is interesting to note that the Tayfun
distribution does not include directional effects explicitly as in the
Forristall distribution. For short crested waves, the latter (Eq. (6))
indicates that directionality is responsible for a reduction of the
crest height of about 2–4% than in the Tayfun distribution (see,
e.g., Fig. 9); our simulations appear to be consistent with this
(note that this finding does not invalid the fact that the Tayfun
distribution approximates field data well). Nonetheless, it appears
clear that second-order effects dominate the statistical properties
of the examined directional wave fields, while modulational
instability effects become negligible. It should be mentioned,
however, that the HOSM implemented for this research only
accounts for a third order expansion of the vertical velocity. The
addition of higher order terms, therefore, might slightly modify
this result.

5. The wave trough distribution

In the case of deep water waves, it follows from Eq. (3) that an
expression for the second-order wave trough can be written as

Zt ¼ ar �
1
2kpa2

r . (11)

By deriving the amplitude ar from Eq. (11) and substituting it in
the Rayleigh distribution, an expression for the exceedance
probability can be written as follows (cf. Arhan and Plaisted,
1981):

PðZt4ZÞ ¼ exp �
8

H2
s k2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kpZ

q
� 1

� �2
" #

. (12)

Likewise the Tayfun distribution, Eq. (12) is valid for long and short
crested waves when a fixed location is considered (time series).
However, according to the authors’ knowledge, an analytical form
for the second-order wave trough distribution including wave
directional spreading explicitly (as, for example, in the Forristall
distribution) has never been proposed. Therefore, in order to render
explicit the effect of directionality on the statistical description of
second-order wave troughs, series of random, time-domain profiles
have been simulated using a second-order model (see, for example,
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Fig. 9. Wave crest distribution for BFI ¼ 1:0: Tayfun distribution (solid line); three-

dimensional Forristall distribution (dashed line); simulations of long crested

waves from the Euler equations ðþÞ; simulations of short crested waves from the

Euler equations (o).
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Fig. 10. Wave crest distribution and 95% confidence intervals for BFI ¼ 1:0: Tayfun

distribution (solid line); three-dimensional Forristall distribution (dashed line);

simulations of long crested waves from the Euler equations ðþÞ; simulations of

short crested waves from the Euler equations (o); 95% confidence intervals (dash-

dotted line).
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Sharma and Dean, 1981, for details). The spectral conditions used
for the simulations of Eqs. (1) and (2) have been adopted to this
end; details on the simulations of second-order waves can be found
in Prevosto (1998). In Figs. 11–13, the wave trough distributions
obtained from simulations of Eqs. (1) and (2) and second-order
theory are presented.

In the case long crested waves are simulated, the effect of the
modulational instability tends to enhance the depth of the wave
troughs. This results in deviations from the second-order
distribution given by Eq. (12) (see Toffoli et al., 2008, for details);
this effect becomes more relevant if the BFI increases. As for the
wave crests, this deviation is substantially reduced if the spectral
energy is distributed on a broad range of directions. In this
respect, simulations of short crested wave fields from Eqs. (1) and
(2) show that the trough distribution deviates from the theore-
tical, second-order one (Eq. (12)), which slightly under predicts
the simulated troughs (it lays outside the 95% confidence intervals
as shown, for example, in Fig. 14). This is to some extent surprising
since a similar distribution, Eq. (5), has proved to fit the simulated
crests well. In this respect, second-order quasi-deterministic
theory could provide a slightly better approximation (see Tayfun
and Fedele, 2007b, for details). It is interesting to note,
furthermore, that this departure does not increase in magnitude
if BFI is increased.

Despite the under prediction of Eq. (12), however, the
simulations of second-order, short crested waves strongly indicate
that second-order theory provides a good approximation of the
trough distribution obtained from Eqs. (1) and (2). In this respect,
it seems that the second-order effect on the wave troughs is more
sensitive to the directional spreading than the one on the wave
crests, as a significant enhancement of the trough depth is already
observed for low degrees of nonlinearity. For higher values of the
BFI ð40:7Þ, however, the amplitude of the wave troughs predicted
by the simulations of second-order, short crested waves slightly
deviates from the results of Eqs. (1) and (2) at low probability
levels (0.0001). Nonetheless, this departure does not appear to be
statistically significant (see Fig. 14).

6. Conclusions

It is clearly established that, for deep water waves, the
modulational instability may produce a significant departure
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Fig. 12. Wave trough distribution for BFI ¼ 0:7: theoretical (second-order)

distribution (solid line); simulated, second-order short crested waves ðnÞ;
simulations of long crested waves from the Euler equations ðþÞ; simulations of

short crested waves from the Euler equations (o).
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Fig. 13. Wave trough distribution for BFI ¼ 1:0: theoretical (second-order)

distribution (solid line); simulated, second-order short crested waves ðnÞ;
simulations of long crested waves from the Euler equations ðþÞ; simulations of

short crested waves from the Euler equations (o).
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Fig. 14. Wave trough distribution and 95% confidence intervals for BFI ¼ 1:0:

theoretical (second-order) distribution (solid line); simulated, second-order short

crested waves (n); simulations of long crested waves from the Euler equations

ðþÞ; simulations of short crested waves from the Euler equations (o); 95%

confidence intervals (dash-dotted line).
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from Gaussian statistics as it enhances the probability of
occurrence for extreme waves. When directional wave compo-
nents are considered, however, this deviation is reduced. In order
to analyze the statistical properties of directional wave fields,
numerical simulations of the Euler equations have been used. To
this end, the higher order spectral method (HOSM) proposed by
West et al. (1987) is applied for the numerical solution of the Euler
equations. A set of numerical experiments have been performed
using a broad-banded directional wave field (wind sea) in water of
infinite depth to investigate whether the modulational instability
may produce a significant deviation from second-order statistical
distributions of wave crests and troughs.

As a general result, our simulations have shown that the
coexistence of different directional components reduces the
skewness and kurtosis of the surface elevation. The latter, in
particular, does not significantly depart from the value expected
for Gaussian, linear processes. In other words, the occurrence of
extreme events in broad-banded directional wave fields of infinite
water depth seems to be neither more frequent nor higher than
the second-order wave theory predicts.

The reduction of the value of the statistical moments leads to a
significant modification of the tail of wave crest distribution.
In the present study, the probability distribution of wave crests

has been compared with the second-order, theory-based Tayfun
(1980) and Forristall (2000) distributions. Whereas the first is
derived under the assumption of a narrow-banded wave spec-
trum, the latter includes wave directional spreading explicitly. For
low and moderated degrees of nonlinearity (BFI ¼ 0:2 and 0.7),
the directional spreading does not produce any significant effect
on the tail of the second-order wave crest distribution; both
distributions give very close predictions. Moreover, considering
that the coexistence of directional wave components reduces the
modulational instability, the crest heights simulated with the
Euler equations are fitted by second-order based distributions
well. These findings are consistent with the results presented by
Socquet-Juglard et al. (2005). For higher degrees of nonlinearity
ðBFI40:7Þ, however, the directional spreading slightly changes the
tail of the second-order wave crest distribution in agreement with
the Forristall distribution. Therefore, it may be concluded that
modulation instability does not have a significant influence on the
wave crest distribution, when the spectral energy is distributed on
a broad range of directional components.

For long crested wave fields, not only does modulational
instability have effects on the crest heights, but also on the wave
troughs. In particular, we have observed that wave troughs can be
significantly deeper than second-order theory would predict. The
directional spreading, however, tends to cancel these effects.
Unlike for the wave crest, the wave trough distribution slightly
deviates from the theoretical, second-order distribution, also at
low degrees of nonlinearity; simulated troughs tend, in fact, to
remain deeper. Due to the lack of theoretical distribution for the
wave troughs in short crested conditions, an additional set of
short crested second-order wave profiles have been simulated
with similar spectral conditions which were used for the
simulation of the Euler equations. The comparison of second-
order simulated profiles and numerical simulations of the Euler
equations indicates that the modulational instability does not
have any significant influence on the wave trough statistics if a
broad-banded directional spectrum is accounted for. The observed
under-estimation of the theoretical distribution is therefore
likely due to directional spreading effects on the second-order
interaction.

The results presented in the paper are valid within the
framework of the adopted numerical approach which is based
on the third order expansion of the vertical velocity and hence it is
not a fully nonlinear solution. Further, it does not account for

wave breaking. These limitations might affect the statistics
presented. Furthermore, the results presented are developed for
an unimodal spectral distribution with a broad-banded energy
spread, thus more narrow-banded directional spectra as well as
bimodal wave fields are not considered. On the whole, however, it
can be concluded that second-order theory provides a satisfactory
approximation of the statistical properties of broad-banded
directional wave fields simulated with HOSM. However, a
comparison of the numerical results with field data as well as a
more comprehensive investigation of the effects related to
different directional bandwidths and spectral bimodality is called
for before a firm conclusion can be reached about the applicability
of the second-order theory for extreme wave prediction.
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