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[1] We present an experimental and numerical investiga-
tion on the statistical properties of the surface elevation in
crossing sea conditions. Experiments are performed in a
very large wave basin (70 m × 50 m × 3 m) and numerical
results are obtained using a higher order method for solving
the Euler equations. Both experimental and numerical
results indicate that the number of extreme events depends
on the angle between the two interacting systems. This out-
come is supported by recent theoretical investigations which
have highlighted that the instability of wave packets may be
triggered by the nonlinear interactions between coexisting,
non‐collinear wave systems. Citation: Toffoli, A., E. M.
Bitner‐Gregersen, A. R. Osborne, M. Serio, J. Monbaliu, and
M. Onorato (2011), Extreme waves in random crossing seas:
Laboratory experiments and numerical simulations, Geophys.
Res. Lett., 38, L06605, doi:10.1029/2011GL046827.

1. Introduction

[2] The research on extreme waves (also known as freak
or rogue waves) in the ocean has been rapidly developing in
the last ten years and has also attracted the attention of many
other fields in physics. In the absence of an ambient current,
one of the mechanisms which can explain the occurrence of
rogue waves is the instability of a uniform narrow banded
wave train to side‐band perturbations (Benjamin‐Feir or
modulational instability, see Zakharov and Ostrovsky [2009]
for a review). In deep water the modulational instability is
described by the Nonlinear Schrödinger (NLS) equation
[Zakharov and Ostrovsky, 2009], which is derived from the
Euler equations assuming weak nonlinearity and narrow
spectra.
[3] For single peaked (or unimodal) spectral conditions,

the statistical properties of waves and their relation to the
modulational instability have been investigated in a number
of theoretical [Janssen, 2003], experimental [Onorato et al.,
2009; Waseda et al., 2009] and numerical studies [Onorato
et al., 2001; Socquet‐Juglard et al., 2005; Chalikov, 2009].
Findings have revealed that the instability of wave packets is
indeed responsible for a substantial increase of the proba-
bility of occurrence of extreme waves which yields to strong
deviations from Gaussian statistics (Normality), provided

the wave spectrum is sufficiently steep and narrow banded
both in the frequency and directional domain.
[4] Very often, however, ocean wave spectra are charac-

terized by the coexistence of two wave systems with dif-
ferent directions of propagation. This condition, which is
known as a crossing sea, implies that the energy is con-
centrated over two different spectral peaks (i.e., bimodal
spectrum). In the present Letter, we discuss the occurrence
of extreme waves and deviations from Normality in crossing
sea conditions. In particular, we intend to show that the
deviation from Gaussian statistics depends on the angle
between the two wave systems.
[5] From a theoretical point of view, the stability of a

system of two non‐collinear wave trains can be described to
the leading order in dispersion and nonlinearity by the fol-
lowing set of coupled NLS equations [see Roskes, 1976;
Onorato et al., 2006; Shukla et al., 2006]:
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The analytical forms of the coefficients in (1) and (2) are
reported by Onorato et al. [2006]. To the leading order in
nonlinearity, the surface elevation h(x, y, t) is related to the
envelopes A and B in the following way:
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and g is gravity acceleration. The

angle between the two wave systems is defined as b =
2arctan(l/k). A linear stability analysis of plane wave solu-
tions of (1) and (2) [Ioualalen and Kharif, 1994; Badulin
et al., 1995; Onorato et al., 2006; Shukla et al., 2006]
indicates that not only do the growth rates of perturbations
moving along the main direction of propagation depend on
the length of the perturbation but also on the angle between
the two wave systems. In this respect, growth rates different
from zero are found for 0 < b < arctan(

ffiffiffi
2

p
/2) ’ 70.53°. As

b approaches bc ≈ 70.53°, the nonlinear terms in the coupled
system become increasingly more important. Consequently,
the ratio between nonlinearity and dispersion, a measure
for the presence of extreme waves in single NLS [Onorato
et al., 2001; Janssen, 2003], increases substantially (see
Onorato et al. [2010, Figure 2] for details). For b > bc,
however, the ratio changes sign and the coupled NLS
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change from focusing to defocusing. For random waves, we
can expect that larger deviations from Normality already
begin for b > 40° [Onorato et al., 2010]. Interestingly
enough, the growth rate decreases and eventually becomes
zero for b approaching bc. Hence, deviations from Nor-
mality should decrease for angle b close to 70.53°.
[6] In order to verify this conjecture, here we present a

unique laboratory experiment, which was designed to observe
the nonlinear dynamics of non‐collinear, co‐propagating,
random wave trains. A qualitative description of the role of
modulational instability in crossing seas is then provided by
numerical simulations of a third order truncation of the
potential Euler equations [West et al., 1987]. The fourth order
moment of the surface elevation (kurtosis), which is strictly
related to the probability of appearance of a freak waves [see
Janssen, 2003], is here discussed as a function of the angle
between the wave systems.

2. Laboratory Experiments

[7] Laboratory tests were performed in the directional
wave tank at Marintek (Norway). The facility has dimen-
sions of 70 m × 50 m and is fitted with a directional wave‐
maker along the 70 m side. The tank is also equipped with
two minimum‐reflection beaches: one is located in front of
the directional wave‐maker, while a second one is on the
right‐hand 50‐m side. For the present experiments the water
depth was fixed at 3 m.
[8] Irregular waves were mechanically generated accord-

ing to an input directional spectrum E(w, #), where w is the
angular frequency and # is the direction. Amplitudes were
randomly chosen from the Rayleigh distribution, while the
random phases were assumed to be uniformly distributed in
the interval [0, 2p). The input spectrum was composed by
the sum of two identical JONSWAP spectra [Komen et al.,
1994] describing two long‐crested wave fields, propagating
along two different directions. Each spectrum has a peak
period Tp = 1 s, which corresponds to a peak wave length

lp = 1.56 m, a significant wave height Hs = 0.068 m and
a peak enhancement factor g = 6; the wave steepness is
kpa = 0.14, where kp is the wavenumber at the spectral
peak and a = Hs/2. The systems were forced to propagate
along two different directions, which are symmetrical with
respect to the normal to the wave‐maker. The following
angles between the two systems were considered: b = 10°,
20°, 30° and 40°. Note that for random wave fields the
perturbations can propagate along the main direction of
propagation as well as the incident direction of each system.
The latter, may trigger a type of instability (instability of type
Ib [Ioualalen and Kharif, 1994]), which differs from the
conditions imposed in (1) and (2), where the perturbation
only moves along the main direction of propagation.
[9] Throughout the experiments, the surface elevation

was measured at a sampling frequency of 80 Hz. Probes were
deployed along the main axis of the basin every 5 meters (see
Onorato et al. [2009] for details). In order to have enough
samples to produce a statistical analysis, four realizations of
the random sea surface with the same imposed spectrum
were performed with different sets of random amplitudes and
phases. For each test, 20‐minute time series were collected,
including the initial ramp‐up; about 4500 individual waves
were measured at every probes.
[10] Note that, whereas the wave system moving right-

ward is completely absorbed by the beaches, waves moving
leftward are inevitably reflected by the side wall. Prelimi-
nary tests using monochromatic waves with leftward prop-
agation and period and amplitude consistent with Tp and Hs

did not reveal the presence of any reflection for directions
b/2 ≤ 20° with respect to the normal to the wave‐maker. To
further dispel any doubts, a few tests were also repeated with
unimodal irregular wave fields. An observed energy spec-
trum at about 22.5 peak wavelengths from the wave‐maker
(nearby the beach) is presented in Figure 1; directional
properties were derived by using the wavelet directional
method [Donelan et al., 1996]. This measurement shows
that the energy remained confined within a range of leftward
directions, thus excluding the presence of reflected waves.

3. Numerical Simulations

[11] To support the experimental results qualitatively,
direct numerical simulations of the potential Euler equations
with initial conditions nominally identical to the ones
applied in tank were performed. Assuming the hypothesis of
an irrotational, inviscid and incompressible fluid flow, the
velocity potential �(x, y, z, t) satisfies the Laplace’s equation
everywhere in the fluid. At the bottom, z = ‐∞, the vertical
velocity is zero; at the free surface, z = h(x, y, t), the fol-
lowing kinematic and dynamic boundary conditions hold
[see Zakharov and Ostrovsky, 2009]:
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where W(x, y, t) = �z∣h is the vertical velocity at the free
surface and y(x, y, t) is the potential calculated at the sur-
face. Numerical simulations of (4) and (5) were performed

Figure 1. Derived directional spectrum [Donelan et al.,
1996] near the absorbing beach opposite the wave‐maker
for a wave system propagating towards the vertical wall.
Circles indicate frequency (from 0.5 Hz, inner circle, to
2 Hz, outer circle), while straight lines indicate directions (°);
90° is the direction normal to the wave‐maker.
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with the Higher Order Spectral Method (HOSM) proposed
by West et al. [1987] under the assumption of weak non-
linearity. This is a pseudo‐spectral method that uses a series
expansion in the wave slope of W(x, y, t) about the free
surface to estimate the surface elevation and velocity
potential at each time step. Here a third order expansion is
used so that modulational instability can be modeled. This
approach provides a good approximation of the evolution of
three‐dimensional, mechanically generated random waves
with a unimodal spectral distribution [Toffoli et al., 2010].
Note, however, that other methods can be employed to
simulate crossing wave fields [see, e.g., Ruban, 2009].
[12] The initial surface elevation was calculated from the

input spectrum by first switching from (w, #) to (kx, ky)
coordinates and then using an inverse Fourier transform
with the random amplitude and phase approximation. The
velocity potential y(x, y, t = 0) was obtained from the input
surface with linear theory. The wave field was contained
in a square domain of about 15 m with spatial mesh of
256 × 256 nodes; periodic boundary conditions were con-
sidered. A fourth‐order Runge‐Kutta method was used for
the time integration. A time step of Dt = Tp/100 was
employed. Aliasing errors were eliminated by truncating the
spectrum for k > 6 kp (see, e.g., Toffoli et al. [2010] for
further details). Numerical tests reproduced the wave evo-
lution for a period of 60 Tp; the surface elevation and
velocity potential were stored every 6 Tp. About 100 reali-
zations with the same input spectrum and different random
amplitudes and phases were performed. Numerical simula-
tions were extended up to b = 90° with an increasing step
of 10°.
[13] Whereas the experiments provide the spatial evolu-

tion of waves along the basin, the simulations provide the
temporal evolution of an initial wave field with periodic
boundary conditions. This difference is a possible source of
discrepancy when comparing numerics with experiments. In
the following analysis the comparison is based on the

leading order approximation, i.e., space and time are related
by the group velocity along the direction perpendicular to
the wave‐maker. Recent numerical simulations of the tem-
poral and spatial evolution of unimodal wave fields seem to
confirm the goodness of such approximation [Toffoli et al.,
2010]. It is important to stress that numerical simulations are
only used to obtain a qualitative description of the role of
modulational instability in the evolution of crossing sea
states. A more accurate approximation of experimental
results can be achieved with numerical wave tanks. How-
ever, a discussion on the quantitative comparison between
experiments and numerical simulations is not the aim of the
present letter.

4. Results

[14] An indication of the presence of extreme events in
time series can be obtained by the kurtosis, i.e., the fourth
order moment of the probability density function of the
surface elevation. For a Gaussian random wave field, the
kurtosis is equal to 3. The evolution of the kurtosis is pre-
sented in Figure 2 for both experimental and numerical data.
Note that the kurtosis requires very large data sets to
minimize the statistical uncertainty. To quantify the latter,
the 95% confidence intervals are shown in Figure 2; these
intervals are calculated with bootstrap methods [Emery and
Thomson, 2001]. Due to the limited number of waves
measured in the tank, experiments are subjected to a rather
large error band of about ±0.2. Numerical simulations, on
the other hand, are more accurate due to the large number of
realizations: the confidence interval is approximately ±0.08.
[15] Laboratory observations reveal that the kurtosis

increases almost monotonically as waves propagate along
the tank. Qualitatively, this growth is generally recovered by
the numerical simulations during the first 15–20 wave-
lengths, while a decreasing trend is observed thereafter.
Note that there are some quantitative discrepancies between

Figure 2. Evolution of kurtosis along the tank (x refers to the distance from the wave‐maker): laboratory experiments
(crosses); numerical simulations (circles).
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experimental and numerical results. These differences,
however, are confined within the concurrent confidence
intervals and may not be statistically significant. We should
recall, nonetheless, that the experimental and numerical set‐
up are not exactly the same. Because we cannot be sure a
priori that the wave‐maker is capable to properly reproduce
bimodal conditions, the actual wave spectrum in the tank
may differ from the initial conditions for the simulations.
Furthermore, the kurtosis in the wave tank is then measured
from time series at different distances from the wave‐maker,
while the kurtosis is calculated at fixed time from a surface
in the numerical computations. The kurtosis as a function of
space from numerical simulations is then converted into
kurtosis as a function of time using the group velocity
normal to the wave‐maker. Note also that in random sea
states the perturbations can propagate along both the main
direction of propagation (normal to the wave‐maker) and the
mean direction of the incident wave systems. The latter
could not be properly modeled numerically due to the lim-
ited dimension of the physical domain. All these limitations
can contribute to the observed discrepancy. Despite these
differences, however, laboratory and numerical tests quali-
tatively show that there is a consistent tendency for the
kurtosis to increase with the increase of b. This is high-
lighted in Figure 3, where the maximum recorded kurtosis is
displayed as a function of the angle b. It is important to
remark that the differences between experimental and
numerical records are well within the confidence intervals
and hence can be attributed to statistical uncertainty. For
b > 40°, experimental results are not available due to the
limitation of that wave‐maker to generate waves at large
angles. Fortunately, numerical computations for large angles
do not present any limitations. In this respect, simulations
show that the kurtosis remains more or less constant from
40° to 60° and then starts decreasing. The observed
dependency of the kurtosis from the angle b is consistent
with the qualitative predictions based on the analysis of the
coupled NLS equations.

5. Conclusions

[16] Laboratory experiments and numerical simulations of
a third order truncation of the potential Euler equations were
carried out to investigate the statistical properties of crossing
sea states. A simple prediction based on the coupled NLS

equations was also reported. A number of angles between
two identical, non‐collinear systems were investigated.
Results showed that the kurtosis, a measure of the proba-
bility of occurrence of extreme waves, depends on the angle
between the crossing systems. Numerical simulations fur-
thermore suggest that the maximum value is achieved for
40° < b < 60°. Note that although the presented analysis is
affected by the limitations of the laboratory experiment and
assumptions adopted in numerical models the results show
qualitatively the identical trend. It is important to mention
that crossing seas can be far more complicated than the
ones investigated here. Therefore, research is still called
for to fully understand the role of the interaction between
co‐propagating wave trains for the occurrence of extreme
waves.
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