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a b s t r a c t

Rogue waves is the name given by oceanographers to isolated large amplitude waves,
that occur more frequently than expected for normal, Gaussian distributed, statistical
events. Rogue waves are ubiquitous in nature and appear in a variety of different contexts.
Besides water waves, they have been recently reported in liquid Helium, in nonlinear
optics, microwave cavities, etc. The first part of the review is dedicated to rogue waves
in the oceans and to their laboratory counterpart with experiments performed in water
basins. Most of the work and interpretation of the experimental results will be based on
the nonlinear Schrödinger equation, an universal model, that rules the dynamics of weakly
nonlinear, narrow band surface gravity waves. Then, we present examples of rogue waves
occurring in different physical contexts and we discuss the related anomalous statistics
of the wave amplitude, which deviates from the Gaussian behavior that were expected
for random waves. The third part of the review is dedicated to optical rogue waves, with
examples taken from the supercontinuum generation in photonic crystal fibers, laser fiber
systems and two-dimensional spatiotemporal systems. In particular, the extreme waves
observed in a two-dimensional spatially extended optical cavity allow us to introduce a
description based on two essential conditions for the generation of roguewaves: nonlinear
coupling and nonlocal coupling. The first requirement is needed in order to introduce an
elementary size, such as that of the solitons or breathers, whereas the second requirement
implies inhomogeneity, a mechanism needed to produce the events of mutual collisions
and mutual amplification between the elementary solitons or wavepackets. The concepts
of ‘‘granularity’’ and ‘‘inhomogeneity’’ as joint generators of optical rogue waves are
introduced on the basis of a linear experiment. By extending these concepts to other
systems, rogue waves can be classified as phenomena occurring in the presence of many
uncorrelated ‘‘grains’’ of activity inhomogeneously distributed in large spatial domains, the
‘‘grains’’ being of linear or nonlinear origin, as in the case of wavepackets or solitons.
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1. Introduction

Roguewaves are extreme events occurring in systems characterized by the presence ofmanywaves. They are rare events,
themost knownexamples being the extreme events that seldom, andunpredictably, appear on the ocean surfaces. The terms
‘‘rogue’’ or ‘‘freak’’ waves have, indeed, been coined in this context, where these extreme events constitute a well-known,
and frightening, phenomenon, leading to water walls as tall as 20–30 m and representing a threat even for large boats and
ocean liners [1,2]. The origin of rogue waves is still a matter of debate [3] and a large interest has grown in the last years
that has brought to the development of different theoretical approaches as well as to setup different kind of laboratory
experiments.

Several models have been developed, most of them relying on the weak nonlinear interaction betweenmany waves and,
thus, based on the nonlinear Schrödinger equation [4,5]. However, such envelope equation approaches may fail to catch
the very steep profile that characterizes the extreme events. In this context, numerical simulations play an important role
shedding light on basically involved mechanisms, as the role of large breathers [6] and the emergence of extreme events
fromwave turbulence [7]. Recently, large scale experiments have been performed to study directional ocean waves [8], and
the steadily growing interest in the subject has led to study rogue waves in laboratory experiments and in many different
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systems, as nonlinear light propagation in doped fibers [9,10], acoustic turbulence [11], nonlinear optical cavities [12] and
microwave transport [13].

The common feature characterizing roguewave phenomena in the different systems is the observation of large deviations
from the Gaussian statistics of the wave amplitude, with long tails of the probability density function (PDF) accounting for
the rather frequent emission of the giant waves. Despite the specificity of each experiment, other common properties can be
identified, as the existence of many uncorrelated ‘‘grains’’ of activity that are inhomogeneously distributed in larger spatial
domains. Depending on the system under study and on the nature of the waves considered, grains can be of a different
origin, for instance, solitons in nonlinear systems orwave packets in linear propagatingwaves, and their clustering in spatial
domains can occur via different mechanisms, as a temporal delay, a spatial symmetry breaking, a transport phenomenon or
a hypercycle type amplification [14].

On the other hand, it has been recently outlined in the microwave experiment that rogue waves can occur even in
the absence of nonlinearity [13]. It seems, therefore, that nonlinearity has the role of bringing forth granularity, that is,
of inducing soliton-like structures. In order to verify this conjecture, a linear optical experiment has been developed and the
outcomes have been compared to those from a nonlinear cavity [15]. The results show that the appearance of rogue waves
is related to the presence, in the system, of a suitable amount of granularity and inhomogeneity, independently if they are
induced by a linear or a nonlinear mechanism.

2. Introduction to the statistical properties of ocean waves

The dynamics of oceanwaves is described by a set of partial differential equations, known as theNavier–Stokes equations,
that account for the conservation of mass andmomentum applied to a fluid considered as a continuum. The solution of such
system is challenging and, even under the hypotheses that the atmosphere is decoupled from the ocean, the equations are
not easily tractable from an analytical and numerical point of view. This is mostly related to the fact that one must impose
the boundary conditions on the free surface in order to describe the evolution in time and space of the perturbations that
takes place on the surface itself. The boundary conditions requires that the surface is impermeable (water particle cannot
leave the surface) and, in the inviscid limit, the pressure is a continuous function across it. Mathematically speaking, the
boundary conditions results in two evolution equations, one for the surface elevation and one for the velocity potential
calculated on the surface. The peculiarity of these equations is that they are both nonlinear. Only under the hypothesis of
small amplitude waves (with respect to the wavelength) the equations can be linearized and the linear dispersion relation
can beworked out in a straightforwardmanner. If h is the water depth, then the angular frequency,ω, and the wave number
k are related as follows:

ω =


gk tanh(kh), (1)

with g the gravity acceleration. It is customs in the ocean wave community to treat separately the deep and the shallow
water regimes; if kh → ∞ waves are considered in deep water and ω ≃

√
gk; if kh → 0 waves are in shallow water waves

and the dispersion relation takes the form ω ≃
√
ghk


1 −

h2k2
6


. As it will be clear later, such distinction will become

useful in the description of the mechanisms of formation the rogue wave formation: while in deep water self-focusing
phenomena (local concentration of energy due to nonlinear interactions) can take place naturally, shallow water are stable
and, as it will be shown, the nonlinearity is of de-focusing type. Except for the very shallow water regime, ocean waves are
dispersive: longwaves travel faster than shortwaves. Suchmechanismhas been used for decades for producing roguewaves
in wave tank facilities: the idea is to generate first short waves that are then caught up by longer waves. If the experiment
is well designed, at some distance from the wave maker, all waves generated are in phase and can be summed-up (linear
superposition principle) to generate a large amplitude wave (see for example [16–18]).

The idea has also been extended to two horizontal dimensions both in laboratory [19] and in numerical computations
[20]. Note that the nonlinearity cannot be neglected completely because during the late stages of the formation of the
extremewave the steepness is not a small parameter anymore and the small amplitude approximation fails. The generation
of waves through such linear mechanism is very useful in laboratory tests; however, from an oceanographic point of view
it appears artificial because it needs an ad hoc preparation of the phases for each Fourier component. Oceanographers have
historically treated the surfacewaves as a homogeneous and stationary stochastic processes characterized by Fourier phases
uniformly distributed in the [0, 2π) interval, [21,22]. In the linear approximation, the wave components are assumed to
be independent from each other and, according to the central limit theorem, the surface elevation is characterized by a
probability density function which is approximately Gaussian. On a statistical bases, the phases in principle can assume
the same value, but the probability of such event is rare and it will be discussed in more details in Section 2.2. Should the
waves show some correlation at an hypothetical initial time, such correlationwould decrease exponentially fast due to linear
dispersion [22]. Linear superposition has attracted the attention of many oceanographers working on rogue waves; in the
present review we will not consider it furthermore and we redirect the reader to the excellent book by C. Kharif et al. [23].

2.1. The wave spectrum

Before entering into the discussion on the effects of nonlinearity, we introduce some oceanographic terminology that it is
often encountered in roguewaves papers; hereafter a short digression on the oceanwave spectrum and related quantities is
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furnished. The shape of the interface between water and air is described by the function η(x, t) where the vector x = (x, y)
corresponds to the horizontal coordinates and t is time. Given the simultaneous observation of the surface displacement
η(x) at two different spatial points, x1, x2, such that r = x1 − x2, one can introduce the two-point correlation function,
⟨η(x1)η(x2)⟩, where the brackets implies ensemble averaging. Assuming homogeneity of the wave field, the two-point
correlation function depends only on the distance r and can be defined as:

R(r) = ⟨η(x + r)η(x)⟩. (2)

The two dimensional wave number spectrum, P(k), is related to the autocorrelation function via the Fourier Transform:

R(r) =


P(k) exp(ik · r)dk (3)

such that

ρg⟨η2
⟩ = ρgR(0) = ρg


P(k)dk, (4)

with ρ the fluid density. The quantity on the left is the total (kinetic + potential) energy in the wave field, therefore the
wavenumber spectrum furnishes the distribution of energy over wavenumbers. Even though an estimate from experiments
of P(k) is possible [24], it is much more common and simple in the oceanographic research to place a wave recorder
(for example a buoy) in a fixed position and measure the surface displacement as a function of time. If the time series is
sufficiently long and stationary, such measurement leads to a straight forward estimate of the frequency spectrum. More in
general, the two dimensional frequency spectrum is related to the two dimensional wave number spectrum as follows:

P(k)dk = P(k, θ)dkdθ = P(ω, θ)dωdθ, (5)

where k and θ are the two polar coordinates. From a single point measurement it is impossible to retrieve the directional
information of the wave fields and only the frequency spectrum, P(ω), defined as:

P(ω) =

 2π

0
P(ω, θ)dθ, (6)

is available. During the sixties and seventies the parametrization of the shape of P(ω) and its dependence on wind and fetch
(distance over which wind has blown) has been a major experimental task. The most important experiment was conducted
in the North Sea by the JONSWAP (Joint North Sea Wave Project) group [25]. The empirical distribution proposed is the
following:

PJON(ω) =
αg2

ω5
exp


−

5
4


ωp

ω

4
γ

exp


−

(ω−ωp)2

2σ2ω2
p


(7)

where σ = 0.07 if ω ≤ ωp and σ = 0.09 if ω > ωp. The α, γ and σ were originally obtained by fitting the experimental
data. Here ωp is the angular frequency corresponding to the peak of the spectrum, γ is the so called ‘‘enhancement’’ factor
and α is the Phillips parameter which is related to the energy of the wave field. In Fig. 1 we show the JONSWAP spectrum for
different values of γ = 1, 3, 6, ωp = π/6 rad/s and α = 0.0081. From the figure is clear that, as γ increases, the spectrum
becomes more energetic and narrower around the spectral peak. As will become clear in the next sections, this will have
some consequences on the formation of rogue waves in the ocean.

The determination of the angular distribution of the frequency wave spectrum is not an easy task. Arrays of wave gauges
or directional buoys are needed and a post processing procedure has to be employed in order to extract the energy angular
dependence. Without entering into the details of the difficulties of such estimate [26], the directional frequency spectrum
is usually parametrized by factorizing its angular dependence. For the purpose of the present review it is sufficient to report
the following simple form of the directional frequency spectrum:

P(ω, θ) = PJON(ω)B(N) cosN(θ), (8)

which has been recently used in experimental studies of rogue waves [27,8]. B(N) is a normalization coefficient such that
the integral over angle is 1. In Fig. 2 we show the angular distribution of wave energy. For large values of N wave almost
unidirectional and are known as long crested. For small N , the distribution of energy in angle is wide and the waves are
known as short crested.

2.2. Rayleigh distribution for the wave envelope: linear theory

As discussed in the previous section, the wave field at fixed location is described by the superposition of a large number
of wave components with different frequencies. If the waves are characterized by a small amplitude, then components are
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Fig. 1. The JONSWAP spectrum for different values of γ .

Fig. 2. Wave energy density angular distribution for different values of N .

de-correlated and the resulting surface elevation, η(t), is described by a Gaussian distribution. Under such hypothesis, one
can calculate the distribution for the wave envelope A(t) which is related to the surface elevation as follows:

η(t) = A(t) cos[θ(t)]. (9)

One way of approaching the problem consists in introducing the auxiliary variable, ζ (t),

ζ (t) = A(t) sin[θ(t)] (10)

so that:

A(t) =


η(t)2 + ζ (t)2, θ(t) = arctan(ζ (t)/η(t)). (11)

By construction η(t) and ζ (t) are de-correlated functions, both characterized by a Gaussian distribution, therefore their
joint probability density function is:

p(η, ζ ) =
1

2πσ 2
exp


−

η2
+ ζ 2

2σ 2


(12)

with σ the standard deviation of η and ζ (both η and ζ are zeromean functions). From such probability one can compute the
joint probability of the envelope and phases, p(A, θ) = Ap(η, ζ ) (the factor A comes from the Jacobian of the transformation
to polar coordinates). The probability density function for the wave envelope is obtained by integrating over angles:

p(A) =

 2π

0

A
2πσ 2

exp

−

A2

2σ 2


dθ =

A
σ 2

exp

−

A2

2σ 2


. (13)

The obtained distribution is called the Rayleigh distribution.
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Fig. 3. An example of time series recorded in the ocean. The black dots indicate the zero crossing.

The envelope is a mathematical well defined quantity; however, oceanographers do not deal often with it and prefer to
compute the statistics of wave heights, H . In order to illustrate this concept, we consider a time series as in Fig. 3, and look
for the zero-crossing (the points in which the surface elevation is zero). The difference between the maximum value of the
surface elevation in between two zero-crossing and the minimum value of the surface elevation in the adjacent (next or
previous) zero crossing interval is called wave height. Clearly, for a linear narrow band process, H ≃ 2A, then the statistics
of the envelope is closely related to the statistics of wave height. An other concept used by oceanographer is the significant
wave height, Hs, introduced by W. Munk in 1944, [28] which expresses the wave height estimated by a ‘‘trained observer’’.
Nowadays, it is a common rule to identify the significant wave height with 4σ ; therefore, we will take it as a definition:
Hs = 4σ .

In the oceanographic rogue wave context, often one is interested in addressing the problem on what is the probability of
measuring (or encountering) a wave whose height is larger than some specific height H0, i.e the exceedence probability or
cumulative probability function defined as:

P(H > H0) =


∞

H0

H
4σ 2

exp

−

H2

8σ 2


dH = exp


−

H2
0

8σ 2


= exp


−2

H2
0

H2
s


. (14)

Sometimes in the literature, a roguewave is defined as awave such thatH > 2Hs (this definition is clearly not completely
satisfactory and accepted in the oceanographic and naval architecture community because it would for example identify a
20 cm wave as a rogue wave if the significant wave height is 10 cm!!). According to Eq. (14), then its probability turns out
to be 1/2980. For ocean waves characterized by a dominant period of 10 s, this implies that in approximately 8.2 h one
expect to encounter one of such waves. As will be shown later, nonlinear interactions will modify such probability. An other
quantity that oceanographers and naval architectures are interested in are the wave crests and wave troughs; given two
successive zero crossing, the maximum/minimum between those two points is the wave crest/trough. In linear theory the
statistics of the troughs is identical to the crests and both are described by a Rayleigh distribution. Second order nonlinearity
changes the statistics of crests (and troughs); in the narrow band approximation the so called Tayfun distribution [29] can
be derived starting from the second order Stokes expansion. The resulting distribution accounts for the vertical asymmetry
that characterizes ocean waves.

3. Experimental evidence of rogue waves in the ocean

While there are a lot of visual observation of roguewaves [30], fieldmeasurements are less common. Themost impressive
and studied one is probably the ‘‘Draupner wave’’ (see for example [31]). On January 1 1995, the Statoil Draupner platform
was hit by a giant wave. The water depth in the area is about 70 m. The wave was measured by a down-looking laser device
and the significant wave height averaged over 20minwas about 11.9m. Themaximumwave height was 26m, but probably
the most impressive result is that its crest was 18.5 m (Fig. 4). In [32] seven cases of rogue waves, including the Draupner
wave, are reported (time series are shown in the paper). Those waves, recorded in the North Sea (see also [33] for further
analysis), in finite depth conditions, all show very large crests with respect to the significant wave height of the time series
(such ratio ranges from 1.24 to 1.75). Rogue waves have also been measured off the coast of Brazil, in Campos Basin. A
discussion of the data is found in [34]. From the 7457 available data sets each of approximately 17 min, they obtained 276
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Fig. 4. The Draupner time series.

Fig. 5. Yura wave.
Source: From [35].

distinctive cases of waves larger than 2 times Hs. The measurements are performed with a directional buoy, therefore, in
principle, directional information are available.

Three kilometers off the Yura fishing harbor facing the Sea of Japan, analysis of field data have also reveal the presence
of rogue waves, [35,36]; an example is given in Fig. 5. In [35] it was found that the crest and trough amplitude distributions
of the observed sea waves, including the freak ones, are different from the Rayleigh distribution, although the wave height
distribution tends to agree with the Rayleigh distribution.

As a general comments, we may state that waves whose height is larger than two times (and more) the significant wave
height have been recorded in field measurements (this is not a surprise even in a linear system). The experimental data, as
they are, do not furnish any information on the physical mechanism of formation of suchwaves. Moreover, more than often,
the time records last 20 min, surely not enough for achieving the convergence of the statistics on the tails of the probability
density function and for observing possibly the deviation from the Rayleigh distribution. A physical understanding of the
formation of the rogue wave would require space–time measurements. In 2004 in [37,38] it has been proposed a method
to derive two-dimensional sea surface elevation fields from complex synthetic aperture radar (SAR) data. According to [37],
once applied to spaceborne SARdata, as those acquired by EuropeanRemote Sensing 2 (ERS-2) or the Environmental Satellite
(ENVISAT), the method allows to analyze the structure of ocean wave fields, e.g., wave grouping or individual wave heights
on a global scale and possibly rogue waves. However, in [39] it has been argued that this is not possible. The main reason is
that the SAR imaging mechanism is, in general, strongly nonlinear; thus the SAR image of the ocean wave field is a distorted
image of the oceanwave fieldwhich bears little resemblancewith the actual oceanwave field [39].Wave radars [40] located
on platform or ships offer an alternative for measuring the surface elevation and potentially rogue waves; however, more
research is need in order to establish the accuracy of such type of measurements.

4. Nonlinearity and rogue waves in one horizontal dimension

The intrinsic nonlinearity of the ocean wave dynamics plays an important role in assessing the departure from Gaussian
statistics of the surface elevation. Two types of nonlinearities can possibly be associated to the surface elevation: the first
one is the result of the presence of the so called bound (or phase locked) modes. Those modes, as will become clearer in the
next section, are the ones responsible of a vertical asymmetry of the surface elevation; anyone who has observed carefully
ocean waves has realized that wave crests are sharper and narrower than wave troughs: this is especially true for waves in
the shallowwater regime. Such distorted shape is the result of a superposition of a primary sinusoidal wave with an infinite
number of harmonics (the Stokes expansion). The harmonics have an amplitude that is a function of the primary wave and
have the same initial phase. They do not obey to the linear dispersion relation. In terms of the statistical properties of the
surface elevation, the role of the bound modes is to produce a positive skewness in the probability density function of the
surface elevation. Bound modes do not interact in a dynamical sense and are phase lock to free modes (primary waves)
whose interaction is the second source of departure from Gaussian statistics of the surface elevation. Indeed, it has been
shown in [41] that quasi-resonant interaction between free modes may result in an increase (in deep water) or a decrease
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(in shallow water) of the kurtosis with respect to its Gaussian value. The underneath mechanism of increasing the kurtosis
in the random wave context is a generalization of the modulational instability processes. In the following sections these
aspects will be considered in details in the framework of the Nonlinear Schrödinger equation, NLS.

4.1. The nonlinear Schrödinger equation for water waves in infinite water depth

Under the hypothesis of irrotational flow and inviscid fluid, the dynamics of a free surface flow is described by the Laplace
equation for the velocity potential, by two boundary conditions (dynamic and kinematic) on the free surface and by one on
the bottom. Even though the Laplace equation is linear, the boundary conditions on the free surface are not: this makes the
problemmuchmore difficult to solve and, at the same time, muchmore attractive and rich in terms of physical phenomena.
Only under the assumption of very small amplitudewaves (steepness) the problem can be linearized. Oceanwaves, forced by
winds, are usually characterized by an average steepness ϵ = Hskp/2 of about 0.1, with kp the wavenumber corresponding
to the peak frequency of the spectrum; single waves hardly survive to steepnesses larger than 0.4 [42]. Even though the
wave breaking is a strongly nonlinear process, its final effect is to keep the water wave dynamics in a statistically weakly
nonlinear regime (this justify the weakly nonlinear approach).

The standard way of deriving the NLS equation from primitive equations of motion is to expand the surface elevation
and the velocity potential in power series and use the multiple scale method; the idea is to introduce slow independent
variables (both for time and space) and treat each of them as independent. The extra degrees of freedom arising from
such variables allows one to remove the secular terms that may appear in the standard expansion. The multiple scale
expansion is usually performed in physical space and a simplification of the procedure is the requirement that thewaves are
quasi-monochromatic. Indeed, in infinite water depth, if such procedure is performed it turns out that the surface elevation
up to third order in nonlinearity takes the following form (see for example [43]):

η(x, t) =


|A(x, t)| −

1
8
k20|A(x, t)|3


cos(θ) +

1
2
k0|A(x, t)|2 cos(2θ) +

3
8
k20|A(x, t)|3 cos(3θ) + · · · (15)

A(x, t) is the complex wave envelope, k0 is the wave number of the carrier wave and θ = k0x − Ω0t + φ, φ is a phase,
Ω0 = ω0(1 + k20|A(x, t)|2/2) is the nonlinear dispersion relation, with ω0 =

√
gk0 and g the gravity acceleration. The

amplitude and the phase of the higher harmonics are fixed once the amplitude and the phase of the primary wave are
established; the higher order modes are called bound modes (or slave modes), while the primary one is a free mode. Note
the presence of a correction to the first harmonic arising from the third order nonlinearity. If A(x, t) is constant, then (15) is
known as the third order Stokes wave. The complex envelope obeys to the NLS equation:

i


∂A
∂t

+ cg
∂A
∂x


−

ω0

8k20

∂2A
∂x2

−
1
2
ω0k20|A|

2A = 0. (16)

cg = ∂ω/∂k is the group velocity. The second term takes into account the dispersive behavior of the surface elevation, while
the last one is the nonlinear term. The NLS equation is an integrable equation via the Inverse Scattering Transform and such
property has been used also in the rogue wave context to identify rogue waves in random wave trains [44–47].

If one is interested in comparing the NLS simulations with experimental results in wave tank facilities, it is a common
practice to write the NLS equation as an evolution equation in space rather than in time. In order to derive such equation
one uses the leading order relation

∂A
∂x

≃ −
1
cg

∂A
∂t

(17)

to calculate the second order derivative in the dispersive term. The evolution equation in space has the following form:

i


∂A
∂x

+
1
cg

∂A
∂t


−

k0
ω2

0

∂2A
∂t2

− k30|A|
2A = 0. (18)

The resulting equation is similar to the one that is usually presented in nonlinear optics.

4.1.1. The NLS in nondimensional form: the Benjamin–Feir-Index
In classical fluid mechanics it is a common practice to introduce nondimensional numbers that immediately furnishes

some information on the flow conditions. The standard way of obtaining such numbers is to write the equations in
nondimensional form by introducing characteristics scales of the relevant physical quantities of the problem. For example,
the Reynolds number is obtained by scaling in an appropriate way the Navier–Stokes equation. We approach the Eq. (16)
in a similar way and scale the variable x with a typical length, L, which is of the order of the wave packet length, and the
amplitude of the wave with a characteristics wave amplitude, a0, so that to obtain the following nondimensional variables
identified by primes:

x′
=

x
L
, A′

=
A
a0

, t ′ =
ω0

8k20L2
t (19)
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(the reason why time is scaled in that way becomes obvious when the previous scalings are introduced in Eq. (16)). The NLS
equation, for nondimensional variables, in a coordinate system moving with the group velocity, takes the following form:

i
∂A
∂t

−
∂2A
∂x2

− (2k0a0)2(k0L)2|A|
2A = 0, (20)

where the primes have been omitted for simplicity. Note that in this form the nonlinear term in NLS equation is multiplied
by a nondimensional number which includes the product of the steepness by the nondimensional length of the wave group.
We expect the nonlinearity to be important if such product is large.

Oceanwaves are composed by differentwave packetswhose lengths are variable but in average are related to the spectral
bandwidth: therefore, if we introduce ∆k as a typical spectral bandwidth, then L ∼ ∆k−1. Having this in mind and using
the nondimensional number in Eq. (20), one may introduce the so called Benjamin–Feir-Index as:

BFI = 2
√
2

k0a0
∆k/k0

=
√
2

k0a0
∆ω/ω0

, (21)

which is nothing than the square root of the nondimensional number that appears in (20) (a factor of
√
2 has been included

in order to match an exact analytical result which will be presented later). The last equality results from the fact that in
deep water the group velocity is half of the phase velocity. k0a0 is now the average steepness of the random waves that
can be estimated as k0a0 = Hskp/2 where kp is the wave number corresponding to the spectral peak and Hs the significant
wave height. The above derivation has been proposed originally in [4], where it has been shown numerically that for initial
conditions characterized by large BFI, the probability of finding extreme waves increases. A more formal way of relating
freak waves to the BFI has been introduced a couple of years later [41] and will be discussed in the Section 4.6.

4.2. The modulational instability

Themodulational instability, also known as the Benjamin–Feir instability, has been discovered in thewater wave context
in the late sixties independently by Benjamin and Feir [48] and Zakharov [49]; see [50] for an historical review on the subject
and possible applications. It describes the exponential growth of an initially sinusoidal long wave perturbation of a plane
wave (Stokeswave) solution of the one dimensional waterwave problem. The condition of instability in infinitewater depth
is that 2

√
2A0k0N > 1, where A0 is the amplitude of the plane wave and k0 is the corresponding wave number; N = k0/K is

the number ofwaves under the perturbation ofwavenumber K . Themodulational instability is frequently studiedwithin the
nonlinear Schrödinger equation that describes weakly nonlinear and dispersive waves in the narrow band approximation.
In this context, the nonlinear stage of the modulational instability is described by an exact solution of the NLS, known as
breather [51,52]. Such waves have been considered as prototypes of rogue waves [53,54]. More recently the modulational
instability has been also considered as awave breakingmechanism [55]. Indeed, if the initial steepness of themonochromatic
wave is large, during the process of modulational instability, one wave will start growing and will soon reach the limiting
steepness, and break much before becoming a rogue wave.

4.3. Breather solutions

(i) The Peregrine solution
The Peregrine solution, also known as rational solution, has been originally proposed in [56]. It has the peculiarity of being

not periodic in time and in space: it is a wave that ‘‘appears from nowhere and disappears without trace’’ [57]; its maximum
amplitude reaches three times the amplitude of the unperturbed waves. For the above reasons it has been considered as
special prototype of freak wave, [58]. The Peregrine solution has been recently reproduced experimentally in wave tank
laboratories [59] and in optical fibers [60]. Recent experiments have also reported the evidence of Peregrine solitons in
plasmas [61].

Below we present its analytical form:

A(x, t) = A0 exp

−iβA2

0t
  4α(1 − i2βA2

0t)
α + α(2βA2

0t)2 + 2βA2
0(x − cg t)2

− 1


(22)

here α and β are the coefficient of the dispersive and nonlinear term in (16), respectively, i.e. in infinite water depth
α = ω0/(8k20) and β = k0ω2

0/2. In Fig. 6we show an example of such solution for steepness 0.1. Time is nondimensionalized
by thewave period, spacewithwavelength and the amplitudewith the A0. Note that only thewave envelope is shown in the
figure. The Peregrine solution is fully determined once the amplitude and the wavelength (i.e. the steepness) are selected.
Independently of such choices, the amplification factor is always equal to three; the shape of the largest wave group changes
depending on the initial steepness. The NLS theory does not predict the breaking or overturning of the waves: in principle
a Peregrine solution of the NLS can be built with arbitrary steepness. In nature, steepness hardly reaches values larger than
0.4, [42], because of wave breaking; therefore, if one desires to generate a Peregrine solution in a wave tank, the initial
condition should be characterized by a small steepness such that when the rogue wave appear, wave breaking does not
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Fig. 6. The Peregrine soliton: normalized wave envelope as a function of nondimensional time and space.

occur. In spectral space the Peregrine solution is characterized, even at its early stages, by a triangular shape (see [62] for
and experimental evidence). In [63,64] it has been proposed that such spectral shape could be used as an early warning of
the presence of a rogue wave.

(ii) The Akhmediev solution
The Akhmediev breather is an exact solution of the NLS equation [65,66,51]; it describes the modulational instability in

its nonlinear regime; it is periodic in space. It is characterized by an amplification factor which ranges from 1 to 3 (this last
value corresponds to the Peregrine solution). The breather has the following analytical form:

A(x, t) = A0 exp

−iβA2

0t
  √

2ν̃2 cosh[Ωt] − i
√
2σ̃ sinh[Ωt]

√
2 cosh[Ωt] −

√
2 − ν̃2 cos[Kx − cg t]

− 1


(23)

and

ν̃ =
K
A0


α

β
, σ̃ = ν̃


2 − ν̃2, Ω = βA2

0σ̃ , (24)

K is the wave number of the perturbation. The solution is periodic in space. It is straightforward to show that for large
negative times, the solution corresponds to A0 exp(iφ)(1+ δ cos(Kx)), wit δ small; such solution corresponds to a perturbed
Stokes wave. Ω corresponds to the exponential growth rate of the perturbation. The perturbation grows if 2 − ν̃2 > 0,
which for deep water waves corresponds to the condition K < 2

√
2A0k20; not surprisingly such result corresponds to the

standard one achieved by performing the linear stability analysis of a Stokes wave solution of the NLS equation. One can
find the absolute maximum of the solution and after some algebra it is straightforward to show that

Amax

A0
= 1 + 2


1 −

ν̃2

2
= 1 + 2


1 −


1

2
√
2ϵk0/K

2

. (25)

The maximum amplitude reached when ϵk0/K = ϵN → ∞; for such case Amax/A0 is equal to 3, i.e. the Peregrine solution.
In the water wave context, the steepness ϵ is always less than one, therefore, in order to reach the limit one has to make a
very long perturbation that includes a large number of waves under it. In Fig. 7 we show an example of such solution for
steepness 0.1 and k0/K = 5 with Amax/A0 = 2.4142 . . . .

(iii) The Kuznetsov–Ma solution
The Kuznetsov–Ma solution [52,67] is periodic in time and decrease exponentially in space. In some previous literature,

the same solution has been attributed only to Ma; Nevertheless Kuznetsov found it two years earlier. While for the
Akhmediev breather the large time (positive or negative) limit is a plane wave plus a small perturbation, the modulation for
the Kuznetsov–Ma breather is never small; therefore it does not corresponds to the classical Benjamin–Feir instability. The
solution has the following analytical form:

A(x, t) = A0 exp

−iβA2

0t
  −

√
2µ̃2 cos[Ωt] + i

√
2ρ̃ sin[Ωt]

√
2 cos[Ωt] −


2 + µ̃2 cosh[Kx − cg t]

− 1


(26)

with

µ̃ =
K
A0


α

β
, ρ̃ = µ̃


2 + µ̃2, Ω = βA2

0ρ̃. (27)
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Fig. 7. The Akhmediev solution: normalized wave envelope as a function of nondimensional time and space.

Fig. 8. The Kuznetsov–Ma solution: normalized wave envelope as a function of nondimensional time and space.

Just like for the Akhmediev breather one can find the maximum amplitude and obtain:

Amax

A0
= 1 +

√
2

2 + µ̃2 = 1 +

√
2


2 +


1

2ϵk0/K

2

. (28)

In Fig. 8 we show an example of such solution for steepness 0.1and µ̃ =
√
2, which corresponds to a ratio AmaxA0 = 3.8284.

4.3.1. Relation between the breather solutions and standard solitons
As discussed for example in [53,68], the breather solutions are related. The Akhmediev solution becomes the

Kuznetsov–Ma solution if K is replaced by iK . The Akhmediev and the Kuznetsov–Ma solution become the Peregrine solution
in the limit of K → 0. The Akhmediev solution becomes the plane wave solution if ν̃ =

√
2 and the Kuznetsov–Ma solution

becomes a soliton in the limit of K → ∞.

4.3.2. Higher order breathers
Nonlinear superposition of breather solutions is also possible. The NLS solutions associated with such mechanism

are known as higher order solutions [65,69–72]. In [57] a method for finding the hierarchy of rational solutions of the
self-focusing nonlinear Schrödinger equation is presented from first to fourth order. The maximum amplitude reached by
the fourth order solution is 9. It appears that from a mathematical point of view there is no limitation in the amplification
factor of the solution. In Fig. 9 a second order Peregrine solution is shown.

4.3.3. Experimental/numerical verification of the breather solutions in wave tanks
As just mentioned, an Akhmediev breather corresponds for large negative times to a sinusoidal wave for the surface

elevation. Such breather solutions has been produced in laboratories, probably unconsciously, starting with the pioneering
work by Yuen and Lake in themid seventies, summarized in [74]. They did not realized that such solutions could be possibly
related to the appearance of rogue waves in the ocean and their scope was mostly limited to the verification of the growth
rates of the Benjamin–Feir instability within the nonlinear Schrödinger equation or higher order effects. Their work has
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Fig. 9. Second order rational solution of the NLS The maximal amplification of five above the back-ground wave is 5.
Source: From [73].
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Fig. 10. Comparison of measured surface height at the position of maximum rogue wave amplitude (solid line) with the theoretical Peregrine solution
(dashed line).
Source: From [59].

then been followed by a number of studies of which it is worth to quote the one performed by Tulin and Waseda [75] who
systematically performed the so called ‘‘seeded experiments’’: instead of producing a monochromatic wave at the wave
maker and let the most unstable mode develop along the tank, they have included small amplitude long perturbations,
obtaining patterns corresponding, at least qualitatively, to the Akhmediev breathers. They also study the breaking of such
solutions. It was only after the independent work in [53,54] that breather solutions have been brought up as rogue wave
models. The Kuznetsov–Ma and the Akhmediev breathers were reproduced in March 2003, within the Large scale Facility
Access project supported by the EU, in theMARINTEK (Trondheim) longwave tank facility [45]. A recent experimental study
on the Akhmediev solution is also described [76]. As far as we know, the Peregrine solution with steepness 0.1 has been
produced only recently in a short wave tank in the Hamburg University of Technology [59]. The experiments is performed
in a water wave tank 15 m long and 1.6 mwide with 1 mwater depth. The measurement and the exact solutions are shown
in Fig. 10. The comparison seems more than satisfactory; the measured surface elevation, which naturally include second
(and higher) order effects in terms of Stokes expansion, is compared directly with the leading order NLS solution without
including the Stokes expansion (see (15)). The extraction of the free wave component from the measured time series would
result in a slightly smaller maximum.

Recently, the Kuznetsov–Ma solution in intermediate water depth has been produced at the wave tank of the Technical
University of Berlin [77] and used for sea keeping tests. As described later, it has been also observed in nonlinear optics
experiment [78].
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Fig. 11. Evolution of a Peregrine breather with steepness 0.1 and wave length 0.1 m.
Source: From [79].

Fig. 12. Wave-profile evolution: the left panel shows experimental results while the right panel shows theoretical one.
Source: From [73].

Less expensive than wave tank experiments and very accurate are the results that can be obtained by the so called
‘‘numerical wave tanks’’, i.e. numerical simulations of the potential water wave problem which include the presence at
one boundary of a wavemaker. Such simulations have also the advantage that the surface elevation is available every where
in the tank and not only in specific places were the wave gauges are placed. In this context the Peregrine solution have
been simulated in 2006 [79]. Fig. 11 shows 11 time series recorded at different distances from the wave maker. Besides the
formation of a large crest at x = 20 m from the wave maker, at 27.2 m a visible deep hole is displayed in the time series.

The second order Peregrine solution, known as super rogue wave, has been recently reproduced in a wave flume [73].
In Fig. 12 we show the experimental and exact solutions: as it is clear from the figure the super rogue wave appear as a
nonlinear superposition of two breathers.

4.4. Finite depth effects

It is worth mentioning that the nonlinear Schrödinger equation presented in (16) is derived in the limit of infinite water
depth, i.e. k0h → ∞. An NLS equation in arbitrary depth has been derived in [80]. The group velocity and coefficients of the
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Fig. 13. Typical profile of a breather from the fully nonlinear potential equation. The initial condition is an NLS envelope soliton with large steepness.
Source: From [6].

dispersive and nonlinear terms are also a function of water depth h and are reported below:

cg =
∂ω

∂k


k0

=
ghk0 sech2

[k0h] + g tanh[k0h]
2ω0

α =
1

2ω0


c2g − gh sech2
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
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ω0k20
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8 sinh[k0h]4
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(k0 sinh[2k0h])2(gh − c2g )


,

(29)

with ω0 =
√
gk0 tanh[k0h]. The interesting thing is that the coefficient of the nonlinear term changes sign at k0h < 1.36

from positive to negative and the NLS equation becomes of defocusing type and the waves are stable (no breather solutions
exist but only dark solitons). The fact that unidirectional plane waves are stable for k0h < 1.36 was recognized firstly
in [48]. The consequences on rogue wave formation and prediction have been discussed in [81]. It should bementioned that
in two horizontal dimension, the modulational instability may persists also for depth smaller than 1.36 [82]. However, the
transverse instability in shallow water has a very small growth rate and at the moment it is unknown if such instability can
be associated to the formation of rogue waves.

4.5. The fully nonlinear approach in one horizontal dimension

A first comparison between the NLS simulations of unstable wave groups and fully nonlinear simulations is provided
in [83]. The general idea is that the NLS equation describes accurately the surface elevation if the initial conditions are
consistent with the hypotheses under which the equation has been derived, i.e. small steepness and narrow spectrum.
However, as the steepness grows, differences between the exact solutions and the experimental or fully nonlinear results can
be appreciated in particular in the symmetry properties of thewave envelope. It has been observed that an initial symmetric
envelope evolves in an asymmetric one. This is not feasible within the NLSmodel, and it is well captured by including higher
order nonlinear dispersive effects in the NLS equation (see [84]); the resulting equation is known as the Dysthe equation and
has beenwidely used in the studies of roguewaves (in this reviewwewill not treat specifically the Dysthe equation, see [85]
for recent consideration on the equation). The long time evolution of longwave packets has been studied numerically in [86].
Fully nonlinear numerical simulations show how an initially long wave group slowly splits into a number of solitary wave
groups. They occur during a time scale that is beyond the time range of validity of simplified equations like the NLS equation
or modifications. Temporary downshiftings of the dominant wavenumber of the spectrum coincide with the formation of
large wave events. The wave slope at maximal amplifications is about three times higher than the initial wave slope. The
results show how roguewave events can emerge from a longwave packet. A follow up of such idea has been considered also
in [87,6]. The authors use a fast and accurate (probably the fastest and themost accurate existing)model based on conformal
variables for solving the fully nonlinear potential equations for surface gravity waves. Numerical simulation demonstrates
the existence of giant breathers on the surface of deep water.

The initial condition used in [6] is an NLS envelope soliton. However, the parameters of the soliton were chosen far
beyond the applicability of the NLS equation. The simulation was performed in the periodic domain. As the initial NLS
soliton propagates, the radiation is absorbed by an ad hoc damping. After some wave periods the damping is removed and
the formation of single giant breather is observed, see Fig. 13. The numerical analysis shows that this breather does not loose
energy in the fully nonlinear equations.
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Fig. 14. Evolution of the kurtosis along the wave tank: BFI = 0.2, crosses; BFI = 0.9, empty circles; and BFI = 1.2, full circles. The horizontal axis has
been nondimensionalized with the characteristic wavelength computed using the linear dispersion relation.
Source: From [89].

4.6. Rogue waves in random sea states

As mentioned in the introduction, real ocean waves are considered a stochastic process, therefore the concept of rogue
wave just presented and based on the nonlinear stages of the Benjamin–Feir instability should be considered with care.
A number of questions appear naturally: do breathers exists also in random wave trains? If yes, how do they naturally
form? How much the randomness of the ocean destroys the coherency of such breathers? How does the presence of these
breather alters the tails of the probability density function of wave height and wave crests? We will tray to answer these
questions by showing some experimental works that has been performed in the last 10 years; moreover, some analytical
predictions in the NLS framework on the skewness and the kurtosis which characterizes the tails of the surface elevation
will also be presented.Wewill first concentrate on one dimensional propagation and thenmake some consideration on fully
directional waves.

4.7. Some experimental results in wave tank laboratories for 1-dimensional propagation

The experimental work which will be briefly summarized has been performed in the long wave flume at Marintek,
Trondheim (Norway). The length of the tank is 270 m and its width is 10.5 m. The depth of the tank is 10 m. A horizontally
double-hinged flap type wave-maker located at one end of the tank was used to generate the waves. A sloping beach is
located at the far end of the tank opposite the wave maker. The wave surface elevation was measured simultaneously
by 19 probes placed at different locations along the flume. Twin-wire conductance measuring probes were used. The
goal of the experiment was to highlight the concept of the Benjamin–Feir-Index (BFI) defined in (21) as the ratio of the
steepness (nonlinear) and spectral bandwidth (dispersion) in the NLS equation, as a measure of the nonlinearity (of the
modulational instability type) of the system. The idea is straightforward: a sea state characterized by a large BFI is more
likely to contain rogue waves than a seas state with lower BFI. The experiments have been performed as follows: the wave
maker is programmed in order to reproduced in front of it a surface elevation that is characterized by a JONSWAP spectrum
(7) with random phases. The waves evolve along the wave tank and the surface elevation is measured at different distances
from the wave maker. Statistical properties are then estimated from time series. Different repetition with a different set of
random phases have been performed in order to increase the statistics. Three different JONSWAP spectra have been chosen
characterized by different γ and α parameters in order to reproduced different seas states with different BFI. The results can
be found in [88–90] (see also [91]). The BFI considered assumed the values 0.2, 0.9, 1.2. The evolution of the kurtosis along
the tank is shown in Fig. 14. Waves are generated at the wave-maker with random phases and, because of the central limit
theorem, for x/λ = 0, the amplitudes are Normal-distributed (the kurtosis is equal to 3). As the waves evolve along the tank
there is a clear evidence that for the intermediate and large BFI the kurtosis increases and deviates substantially from the
Normal value. Because the kurtosis is the fourth order moment of a probability density function, it carries some information
on the tails of it; therefore, larger values of kurtosis indicates that rogue waves are more probable. As wewill see in the next
section an analytical formula relating the kurtosis and the BFI can be worked out within some approximations. A typical
example of rogue wave measured in the wave tank is shown in Fig. 15. Those kind of events are much more frequent for
BFI = 0.9 and BFI = 1.2 with respect to the case of BFI = 0.2. In Fig. 16, the probability of exceedence defined in (14) is
shown. The plot shows a fattening of the tails of the probability of exceedence for larger values of BFI.

The results just presented leads to twomain conclusions: (i) deviations from the expectation of the linear theory (Rayleigh
distribution) are possible and systematically observed for long crested waves; (ii) stronger deviations are observed when
the spectrum at thewavemaker is characterized by larger BFI, i.e. large steepness and small spectral bandwidth. Onemay be
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Fig. 15. Time series recorded for BFI = 1.2 at 32 wavelengths from the generator showing a rogue wave.
Source: From [88].

Fig. 16. Exceedence probability of wave height estimated from time series recorded at 32 wavelengths.
Source: From [88].

tempted to say that for each spectral shape one could associate a probability of occurrence of roguewaves: this consideration
should be taken with some care because the spectrum evolves as the waves propagate along the tank: usually one observes
a broadening of the spectrum during the evolution (see [92]), therefore the BFI is not constant and probably is not as large
in the middle of the tank (where rogue waves are measured) as it is at the wave-maker. With more confidence one may
state that the appearance of rogue waves depends on the history of the spectrum and not on the spectrum its self. A narrow
and energetic initial spectrum (large BFI) with random phases will generate in more or less 30 wave lengths a highly non
Gaussian statistics even though at such distance the BFI is not large anymore.

One of the important goal in both engineering and scientific research is the determination of the probability density
function of wave height. In the view of what has been presented, it is obvious that any theoretical approach would have to
deal with non small corrections to the Rayleigh distribution. In practice this important task has not been achieve yet. Many
parametrization for the wave height distribution exists, each fitting the data for which they have been developed. Some
systematic approach which include nonlinear corrections to the Rayleigh distribution have been started in [93], followed
then in [94,95]. The idea is to include in the probability of wave height also a contribution from the fact that the kurtosis does
not assume the Normal value. Results are encouraging when applied to experimental data [96], however a detail analysis
performed in [97] indicates that the statistics ofwave envelopeswith theoretical expectation is ‘‘somewhat poor, particularly
in the presence of relatively strong instabilities’’.

From the Marintek experimental data, also the statistics of wave crests have been analyzed in [90] and compared with
second order theory, i.e. a description of the surface elevation based on the fact that the spectrum is frozen and only second
order bound, components, see (15), contribute to deviation from Normal statistics. The results show that any second order
theory strongly underestimate the tails of the crest distribution for large BFI.

The experimental results just described highlight the fact that in one dimensional wave systems strong deviations from
linear predictions can be observed for large BFI. At themoment none of the existing theory is capable of describing accurately
the tails ofwave height andwave crest distributions. The origin of such deviation resides in the natural formation of unstable
wave packets (similar to the breather solution of the NLS). In order to achieve a large BFI one has to decrease the spectral
bandwidth, increasing the correlation lengths of the wave packets. Those coherent wave packets, if sufficiently energetic
(large steepness), may become unstable and their envelope can be locally amplified; phase correlations during this process
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Fig. 17. Time series recorded at different probes. Time series, starting from the second probe, have been shifted by adding a constant amplitude in order
to visualize them in the same graph. Time series have also been shifted in time in order to follow the evolution of the wave groups.
Source: From [89].

can be observed, [98]. An example of this phenomenology is shown in Fig. 17where different time series recorded at various
distances from the wave maker are displayed. A wave packet between 1100 and 1110 s became unstable, giving origin to a
rogue wave. Note also at 75 m from the wave-maker the presence of a ‘‘hole in the sea’’.

In the next section we will show that, within some approximations, there is a formal relation between the BFI and the
kurtosis.

5. Kurtosis and skewness of the surface elevation

5.1. The contribution to the kurtosis from free modes

Strong deviation from the Normal statistics in random one dimensional sea surface system is related to the cubic
nonlinearity in the equation ofmotions. Thiswas already observed throughnumerical computations [99,100] of the potential
water wave problem using the so called Higher Order Spectral Method [101,102], i.e. a numerical method that allows one
to include in a systematic way the desired order of accuracy in nonlinearity in the solution. However, a direct connection
between the observed numerical or experimental deviations from Normal statistics and the third order nonlinearity has
been pointed out in the seminole paper by P.A.E.M. Janssen [41] starting from the Hamiltonian formulation of surface
gravity waves. The calculation requires a number of hypothesis: (i) The wave field must be homogeneous. (ii) Because of
the nonlinearity of the problem, the calculation of the fourth order correlator automatically requires the knowledge of the
sixth order correlator; therefore, a closure is needed to split the latter as a sum of the product of second order correlators
(the spectrum). (iii) The large time limit is taken. Under such hypotheses, if one assumes that the wave spectrum is narrow
and has the shape of a Gaussian function, frozen in time, the following elegant result for the kurtosis is obtained [41,95]:

κ (dyn)
=

⟨η4
⟩

⟨η2⟩2
= 3 +

π
√
3

√
2k0


⟨η2⟩
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2

= 3 +
π
√
3
BFI2 (30)

with ∆ω the standard deviation of the Gaussian (i.e. related to the width of the spectrum) and ω0 is the mean value of the
Gaussian corresponding to the peak angular frequency. k0


⟨η2⟩ is a statistical measure of the steepness of the waves. Note

that the superscript (dyn) on κ indicates that the kurtosis is the result of a dynamical process (basically a modulational
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instability) and should not be confused from the kurtosis κ (bound) that is the result of bound (or slave) modes. For cubic
nonlinearity the contribution to the skewness from the dynamics is zero.

The main point to be underlined here is that the Eq. (30) states that as the spectrum becomes more energetic (large
steepness) and narrow, the kurtosis increases; therefore the probability of formation of a rogue wave increases as well.
As mentioned before, this result is consistent with experimental results described in [88,89] and is the base for the
operational forecasting (in a statistical sense) of rogue waves at the European Centre for Medium-RangeWeather Forecasts
(ECMWF) [103].

Effects of finite and shallowwater have been discussed in [81]; in particular it has been shown that when k0h < 1.36 the
last term in (30) becomes negative, so that the kurtosis becomes less than 3. This has been confirmed numerically in [104].
Values of the kurtosis less than 3 have also been observed in numerical simulations [105] of the Korteweg de Vries equation
that describes the dynamics of shallow water waves.

Oceanwaves are not long crested and this is themain criticism to the theory developed. A correction to the Benjamin–Feir
Index for short crested waves has been considered in [106,107] and will be discussed briefly in Section 6.

5.2. The contribution to deviations from Gaussian statistics by bound modes

The idea that deviations from Gaussian statistics of the surface elevation could result separately from a contribution of
bound and freemodeswas first exploited in [108] and then followed in [43,109]. Indeed, it possible to estimate the skewness
and the kurtosis from bound modes components. In the narrow band approximation, the calculation is straightforward for
long crested waves: starting from the definition of the skewness and kurtosis and using Eq. (15) and averaging over the
phases, one finds, respectively: (see [110,95]):

s =
⟨η3

⟩

⟨η2⟩3/2
= 3k0


⟨η2⟩ (31)

κ (bound)
=

⟨η4
⟩

⟨η2⟩2
= 3 + 18(k0


⟨η2⟩)2. (32)

The bound modes contribution to the kurtosis is related to the steepness of the waves, therefore the dynamic contribution
of the kurtosis (which depends also on the spectral bandwidth) can in principle bemuch larger than the one from the bound
modes (at least for long crested waves). The effects of finite water depth on s and κ (bound) are discussed in [43].

In broad band (both in frequency and angle) spectra the effect of bound modes cannot be estimated analytically and
numerical calculations are needed. The calculations are based on the model developed by Longuet-Higgins [111] and
then re-considered in [112]. In principle, the model is able to include the effects of wave steepness, water depth, and
directional spreading with no approximation other than the truncation of a small-amplitude expansion to the second
order (resonances or quasi-resonances as the modulational instability are not contained in the model). Explorations of
this method for short-crested waves (see, e.g., [113,114]) have shown that statistical properties of second-order simulated
time series agree relatively well with many field measurements in both deep and intermediate water depth. In [115] the
second-order surface wave model is used to investigate the effect of double peaked directional wave spectra at different
water depths. For unimodal seas (i.e. single peaked), the addition of directional components reduces the effects of the
second-order interactions in deep water and increases them in shallower depths. For a bimodal sea (i.e. double peaked),
on the other hand, a large angle between the wave trains decreases systematically the vertical asymmetry of the wave
profile. However, evident deviation of the wave crest distribution at low probability levels if compared with the unimodal
condition are observed when two wave spectra are slightly separated in direction. In [116] the same second order model
finite-depthwave theory is here used to investigate the statistical properties of the surface elevation andwave crests of field
data from Lake George, Australia. By low-pass filtering the Lake George time series, there is evidence that some energetic
wave groups are accompanied by a setup instead of a setdown (i.e. the longwave component is in phasewith thewave group
andnot in anti-phase as predicted by Longuet-Higgins and Stewart [117]). A numerical study of the coupling coefficient of the
second-order difference contribution predicts a setup as a result of the interaction of two waves with the same frequency
but with different directions. This idea was exploited in [118] to explain the set-up observed in the famous Draupner data.

6. Rogue waves in two horizontal dimensions

Ocean waves are only rarely long crested andmore often are characterized by a directional spectrum (see Eq. (8)), i.e. the
energy is distributed in angle and not only in frequency. This has some consequences on the statistical properties of surface
gravity waves and in particular on the formation of rogue waves. The issue was discussed for the first time in [119] from
laboratory measurements and in [120] where numerical simulations in two horizontal dimensions of a higher order NLS
equation have been performed. It has been shown that by increasing the directionality of the initial spectrum the appearance
of deviation from Normal statistics is reduced. Those papers were then supported firstly in [121] and then by a much
more detailed analysis in [122] where a large number of simulations have been performed to reveal how the occurrence
of freak waves on deep water depends on the group and crest lengths for fixed steepness. It has been found that there is
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Fig. 18. Time series showing a rogue wave.
Source: From [8].

Fig. 19. Exceedence probability for wave crests estimated from time series recorded at the probe where the maximum of kurtosis is observed.
Source: From [8].

a sharp qualitative transition between short- and long-crested sea, for a crest length of approximately ten wavelengths.
For short crest waves the statistics of freak waves deviates little from Gaussian. For long crest waves the statistics of freak
waves is strongly non-Gaussian and the BFI is a good indicator of increased freak wave activity. Experimental verification
of these results have been conducted independently in the Laboratories of the Tokyo University [123] and of the Marintek
(Norway) [124]. The experiment in Japan was conducted in a facility 50 m long, 10 mwide, and 5 m deep with a segmented
plunger type directional wave maker equipped with 32 plungers. The Marintek basin is one of the largest in the world; it is
50 m long and 70 m wide with an adjustable depth of 10 m maximum. The basin is equipped with a multi-flap generator
composed by 144 flaps. Both basins are equipped with absorbing beaches at one end (opposite to the wave maker) in
order to reduce wave reflections. The experiments consisted in generating a directional spectrum with random phases
(see Eq. (8) and Figs. 1 and 2) at the wavemaker and let the waves evolve along the tank. The experiments where conducted
for different values of the directional parameter N . Even though the basins have different sizes and aspect ratios, the results
in both experiments are consistent with each other [8]. In Fig. 18 a typical time series including a rogue wave is shown; it
is also interesting to note the presence of a deep hole after the large wave. The height of the largest wave is about 2.5 times
larger than the significant wave height. In Fig. 19 the probability of exceedence for wave crests normalized with 4 times the
standard deviation is shown for N = 24 (short crested waves) and N = ∞ (long crested waves). The figure also includes the
Rayleigh and the Tayfun [29] predictions. The latter is based on second order Stokes theory, therefore it accounts for bound
modes up to second order. The statistics of short crested waves is well described by the Tayfun distribution, however for
long crested waves the experimental data are well above the theoretical predictions. In Fig. 20 we show the evolution of the
kurtosis along thewave tank for different values ofN . Clearly larger values ofN results in larger kurtosis. These experimental
results have been confirmed also numerically [125] using both the envelope equation approach [126] and the Higher Order
Spectral Method [127].

In [128] wave data from the Kvitebjorn platform (190 m deep) in the northern North Sea from 2003 to 2005 were
analyzed. The data were used to select the days when relatively more freak waves were observed. The days were classified
into freakish and non-freakish days, respectively. It was found that the freakish days are characterized by a directional
spectrum that is in average 7.6° narrower in directions. This field experimental result support the idea that rogue waves
appear more frequently in sea states characterized by a narrow directional spectrum.

Speaking in terms of equations, in one horizontal dimension the NLS has played a major role in the understanding of the
main physical mechanisms of formation of rogue waves. An 2D version of the NLS equation can be derived from the Euler
equations. However, such equation has some limitations: the instability region is unbounded and long time simulations
leads to non-physical results (see [74]). The equation is not integrable and therefore analytical solutions, which have played
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Fig. 20. Kurtosis as a function of distance from the wave maker for different values of N .
Source: From [27].

an important role in the one dimensional NLS (see Section 4.3), are lacking. Asmentioned before higher order NLS equations
have been used for numerical simulations [120–122]. A different numerical approach, not based on envelope equation has
been devised in [129]. The simulations are based on fully nonlinear equations describingweakly three-dimensional potential
flows of an ideal fluid with a free surface in terms of conformal variables [130,131]. Simulations are performed starting with
a perturbed Stokes wave. Spontaneous formation of zigzag patterns for wave amplitude is observed in a nonlinear stage of
the instability. If the initial wave steepness is sufficiently high a rogue wave is produced (see also [132]). In [133] it has also
been shown that the maximum amplitude reached by the rogue wave is related to the angle between the perturbation and
the original Stokes wave. This result can be easily understood in terms of the 2D NLS equation.

Because of the strong dependence of the statistics on the directional spreading the concept of the BFI, as defined for one
dimensional wave propagation, is not suitable for operational forecasting of rogue waves. In [106] a modification of the
BFI which include also the width of the spectrum in angle has been proposed. The work is mainly based on Monte Carlo
simulations of the nonlinear Schrödinger equation in two horizontal dimensions. A large number of simulations have been
performed in order to obtain the behavior of the kurtosis as a function of the BFI and directional spread in directional sea
states. The parametrization of the dynamical kurtosis estimated from directional spectra is the following:

κdyn
= 3 +

π
√
3
BFI22D (33)

where the BFI2D is the effective BFI parameter which includes directional effects. It is given by:

BFI22D =
BFI2

1 +
α∆θ2

2(∆ω/ω0)2

(34)

∆θ is measure of the angular width of the spectrum and α = 7.1 is a fitting parameter; the error of the parametrization is
at most 10%. The parametrization is verified against laboratory data, and good agreement is obtained, [106].

7. The role of inhomogeneity: the Alber–Saffman approach

As has been already made clear in the present review, one mechanism of formation of rogue waves is the modulational
instability which formally is the result of the linear stability analysis of a monochromatic wave to side band perturbations.
In real sea state conditions, the spectrum is characterized always by a finite width and the modulational stability
analysis procedure cannot be adopted. Therefore, one should consider the problem of the stability of a wave spectrum to
non-homogeneous perturbations. The methodology to accomplish such task has been developed in [134,135] and is based
on a statistical description of the NLS equation. In the context of rogue waves such approach has been used in [41,136,137].
The idea is to start with the NLS equation (16) and apply the Wigner transform [138] defined as:

P(x, k, t) =
1
2π


+∞

−∞

⟨A∗(x + y/2, t)A(x − y/2, t)⟩ exp[−iky]dy (35)

and derive an evolution equation for the second order correlator P(x, k, t), which is nothing but a wave spectrum that
depends on the spatial coordinate x. After using the random phase approximation, a Vlasov–Poisson-type of equation is
obtained and the linear stability of the spectrum can be worked out. In [136] the stability of a JONSWAP like spectrum (see
Eq. (7) and Fig. 1) is investigated. The final result is the instability diagram reported in Fig. 21where the (γ –α) plane is shown.
We recall that γ is related to thewidth of the spectrum: the larger the value of γ is, the narrower the spectrum is.α is related
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to the total energy of the spectrum: large values of α indicates larger significant wave height and for fixed dominant wave
number, it corresponds to larger steepness. The results indicate that the spectrum is unstable for large values of α and γ ;
this implies that in order to have instability the steepness must be large and the spectrum narrow banded. In [136] it has
been shown that the instability of the spectrum corresponds to the formation of coherent structures which are probably of
breathers type. Concerning the propagation in two horizontal dimensions, in [139] it has been showed that the stabilization
only depends on the bandwidth of the wave vector component in the main propagation direction, and does not depend on
the transversal direction (crest length). The Alber–Saffman approach has been used in [137] to study the interaction of wind
waves and swell (wave propagatingwithout the forcing of thewind) as amechanism for the generation of roguewaves. They
show that in such a sea state, the probability of freak waves higher than twice the significant wave height increases by a
factor of up to 20 compared to the classical value given by Rayleigh’s distribution.

8. Rogue waves in crossing seas

Ocean waves are generated by wind and for pure wind waves the spectrum is characterized by a single peak whose
coordinates in Fourier space indicates the dominant period of the waves and the direction of the waves. When the wind
stops, waves can still travel long distances; such wave system is called swell. It can happen that the swell enters into an
ocean region where a storm is taking place and locally wind waves are generated; the result is that the wave spectrum
is now characterized by two peaks: one for swell and one for wind sea. Two wave systems can also be generated in the
case of rapidly turning wind, in this latter case, even if the waves propagate in different directions they may have similar
frequencies.

From a theoretical point of view, such mixed sea state can be idealized as a system of Coupled Nonlinear Schrödinger,
CNLS, equations, each describing the dynamics of each sea state [140]. In [141] the linear stability analysis of the CNLS
equations have been performed and it have been speculated that the modulational instability in the system could be
responsible for the formation of rogue waves. It has been shown that given a single unstable plane wave, the introduction
of a second plane wave, propagating in a different direction, can result in an increase of the instability growth rates and
enlargement of the instability region (see also [142]). In the last mentioned papers it has been noted that there is a critical
angle between the twowave systems, θc ≃ 70.60, atwhich the interaction changes features,making the systemswith θ < θc
more unstable due to overlapping instability regions and forming rogue waves at shorter time scales (see also [143–145]
where numerical computations of the CNLS equations and fully nonlinear equations describing weakly three-dimensional
waves, have been performed). In [146] a detailed analysis of the coefficients of the CNLS equations have been performed
and besides the growth rate of the perturbation, themaximal amplification factor of the unstable waves was considered. For
θ ≃ 53.50 the system CNLS becomes integrable and exact roguewave solutions of the Peregrine type have been found [147].
The conclusions of the paper is that roguewaves is the result of a compromise between strong nonlinearity and large growth
rate and it has been estimated that this happens for angles between 400 and 600. This result has been confirmed in an
experimental work performed in the Marintek laboratories and in numerical computations [148].

It should be mentioned that an accident of a rogue wave that impacted on the cruise ship Louis Majesty in the
Mediterranean see along the coast of Spain has happened in crossing sea conditions in March 2010; such event has been
analyzed in details in [149].

An interesting idea on the generation of rogue waves has been proposed in [150] where the authors have analyzed
an accident along the Japanese coast of a fishing boat. Some hours before the accident a wind sea and a swell coexisted.
Under the influence of rising wind speed, the swell system grew exponentially at the expense of the wind sea energy,
and the bimodal crossing sea state transformed into an unimodal sea state, characterized by a very narrow spectrum and
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steep waves. This last condition is characterized by a large BFI and therefore suitable for formation of rogue waves via the
modulational instability process.

9. Rogue waves and currents

It is has been known for many years that in the regions of the ocean where a current is present, ‘‘abnormal’’ waves have
been observed (see [151]). The current changes the dispersion relation and may refract waves to converge in a single point
creating a large amplitude wave (see [152] for an old but good review on the interaction of waves and current; more recent
papers on the subject are [153,154,2,155–157]). It is well known that waves traveling in non-homogeneous currents may
give rise to phenomena such as caustics formation. This phenomenon is well understood in terms of the linear theory of
waves. Such mechanism is well described in [23] and will not be covered here.

In this section we will describe only recent developments on the formation of rogue waves in the presence of currents in
weakly nonlinear wave fields. In [158] the combined effects of refraction and nonlinearity on the evolution of ocean surface
wave statistics are considered and possible implications for the likelihood of roguewaves are examined. The authors derived
a deterministic model that accounts for cubic nonlinear dynamics and weak lateral homogeneity of the medium. Through
Monte Carlo simulations, the evolution of wave statistics in freely developing waves over an opposing shearing current are
computed. The simulations show that freely developing, directionally spread wave fields generally maintain near-Gaussian
statistics. However, the enhanced nonlinearity caused by the refractive focusing of narrowbandwave fields can result locally
in strongly non-Gaussian statistics.

In [159] the authors derive a modified 2DNLS equation which includes a slowly varying in space current; they
investigated, using again Monte Carlo simulations, the effect of nonlinearity with respect to the variation of significant
wave height, kurtosis and occurrence of freak waves. They showed that depending on the configuration of current and
waves, the kurtosis and the probability of freak waves can either grow or decrease when the wave height increases due to
linear refraction. They investigated a jet like current and found that at the center of the opposing current jet where waves
are known to become large, freakwaves should bemore rare than in the open ocean away from currents. The largest amount
of freak waves on an opposing current jet is found at the jet sides where the significant wave height is small. In [160] the
author used the same model as derived in [159] and show that in one horizontal dimension the model can be reduced to
an NLS equation with a non constant coefficient in front of the nonlinear term. The effect is that as the waves enter into an
opposing current, the nonlinearity grow and rogue waves can be triggered naturally. The equation used in [159,160] has
been criticized in [161] because it does not preserve wave action properly and a new modification of the NLS for variable
currents has been proposed. However, the mechanism of triggering rogue waves in opposing current still work within such
modified equation.

A current modified higher order envelope equation has also been used in [162]. They showed that when the average
steepness is large the key variables determining the probability distribution are the steepness, and the angular and frequency
spread of the incoming waves. Greater probability of extreme wave formation is predicted when linear focusing and
nonlinear effects are acting together.

At this point, what is still lacking is a comparison between the model simulations and observations and experiments.

10. Rogue waves in other physical systems

Rogue waves in laboratory experiments are easier to investigate than ocean rogue waves because the experimental
systems offer often the possibilities of handling the parameters that are at the origin of the extremewaves. At the same time,
the collection of many events becomes possible in relatively short time intervals, depending on the typical response time of
the system considered. For these reasons, there has been recently a considerable effort to study rogue waves in a number
of different physical contexts. The experimental realizations include weak turbulence in superfluid Helium [163], transport
in microwave systems [164], parametrically driven capillary waves [165], plasmas [61] and various optical systems [9,12].
On the other hand, numerical simulations have also been performed in different contexts and led to study rogue waves in a
number of systems, for instance, in plasmas [166], Alfvén waves [167], Bose–Einstein condensates [168], discrete nonlinear
lattices [169].

The aim of this section is to give a brief description of some of the above mentioned systems and of the associated rogue
wave phenomena. In particular, we will focus on: the transient rogue waves appearing during the inverse cascade of the
wave turbulence regime in superfluid Helium, the linear roguewaves resulting from the inhomogeneous emission of a large
number of microwave antennas, the rogue waves occurring on the surface of a parametrically driven fluid and rogue waves
in plasma systems. We have chosen these examples not only because they represent different physical systems but also
because they are representative of different originating mechanisms.

The questions arising from the comparison of the different systems, their analogies and differences, bring forth the
searching for an unified conceptual source of rogue waves, which is still a matter of debate. This debate is particularly active
in the field of optics, where different approaches for the excitation, and the explanation, of optical rogue waves have been
proposed, with some of them close to the classical description in terms of modulational instability and envelope solitons as
solutions of the NLSE, and other closer to different approaches, as the wave turbulence theory [7] or the linear superposition
of many uncorrelated waves [15]. Optical rogue waves will be presented more extensively in the next sections.
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Fig. 22. (a) Experimental setup for the observation of second sound waves in superfluid Helium. (b) Evolution of the second sound wave amplitude after
switching on the drive at a frequency near resonance; the signals (c)–(e) are enlarged plots corresponding to the 1–3 windows indicated by the arrows.
Rogue waves appear in the 2 window and typically accompany the subharmonic formation that characterizes the inverse cascade.
Source: From [170].

10.1. Wave turbulence and rogue waves in superfluid Helium

When cooled below the critical temperature of Tλ = 2.17 K, 4He condenses to form a liquid that has remarkably
different properties than a normal fluid. It is, usually, called He II to distinguish it from the He I above Tλ. He II behaves
as if it were a mixture of two different fluids: a normal fluid component with viscosity and carrying all of the thermal
energy of the liquid, and an inviscid superfluid component with zero entropy. The two fluids separately fill the containing
vessel.

Oscillatory counterflow of the two components can occur at constant density and pressure, corresponding to a
temperature–entropy wave known as second sound. Second sound has a relatively low phase velocity (∼20 m/s) and an
extremely small attenuation coefficient for frequencies below about 1MHz. Its velocity u2 depends strongly on its amplitude
δT and can be approximated as

u2 = u20(1 + αδT ), (36)

where u20 is the velocity at vanishingly small amplitude. The nonlinearity coefficientα can bemade large, and either positive
or negative, by adjustment of the temperature. The strength of the wave interactions is determined by α, hence, can be
easily controlled. These properties make He II an ideal medium for systematic studies of nonlinear interactions between
waves [163,170].

Rogue waves have been observed in an experiment involving second sound waves within a resonant cavity filled with
superfluid Helium. Because of the small attenuation coefficient for the second sound, the quality factor of the cavity is
very high, enabling large wave amplitudes to be achieved. Being a temperature wave, second sound can conveniently be
excited with a heater and detected thermometrically. Energy is injected in the system by a thin heater sinusoidally driven
by a harmonic voltage generator in the frequency range 0.1–100 kHz, while the frequency of the second sound (twice the
frequency of the voltage generator) is set close to a longitudinal resonance of the cavity.

Under certain experimental conditions a direct energy cascade exists, that is, the energy injected at the driving frequency
flows steadily towards higher frequencies with negligible dissipation until the viscous cut-off is reached, beyond which it is
rapidly dissipated as heat.When the driving amplitude is increased or the detuning of the drive from the resonant frequency
is decreased, an inverse cascade appears, which is associated with an instability against the formation of subharmonics.
Rogue waves are observed during the transient evolution of the inverse cascade, that is, they accompany the subharmonic
formation that characterizes the inverse cascade. A typical experimental evolution is shown in Fig. 22.

Rogue waves in superfluid Helium have, so far, only been observed during the transient evolution of the second sound
waves, in the wave turbulence regime and while the inverse energy cascade is evolving. Their relation with rogue waves
on the ocean surface include similarities: in both cases, the phenomena under consideration are non-equilibrium in nature,
the rogue waves are rare, extreme, events and appear to arise from an instability of large amplitude waves. The differences
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Fig. 23. (a) Experimental setup for the observation of rogue waves in a microwave system: the platform has width 260mm and length 360mm; the probe
antenna is fixed in a horizontally movable top plate located 20 mm above the bottom (not shown). (b) A rogue wave event: the time evolution of wave
intensity at the center of one of the hot spots is shown for the most extreme event observed; the inset shows the region surrounding the hot spot at the
moment of the freak event.
Source: From [164].

include: the second sound waves are produced directly by a periodic driving force, whereas on the ocean roughly periodic
waves are created by e.g. wind of a sufficient velocity, the second sound waves are one-dimensional standing waves, within
the volume of the fluid, whereas the ocean waves are on the surface and can propagate in two dimensions, rogue waves on
the ocean can apparently appear under steady state conditions, whereas those in second sound have only been observed
during the transient evolution of the inverse energy cascade [170].

10.2. Microwave experiments: two-dimensional rogue waves in the linear regime

Rogue waves have recently been observed in a study of microwave transport [164]. The experimental setup, shown in
Fig. 23a, is made of randomly placed metallic cones, each mimicking an r−2 potential on the scale of its radius. The metallic
bottomplate supports the random arrangements of scatterers. The source antenna ismounted close to one of the short sides,
and varying its position enables the incoming waves to arrive from different directions. The drain antenna is mounted in the
top plate (not shown) and acts as a probe. The top plate can be moved in both horizontal directions, allowing for a spatial
mapping of the wave fields within the scattering arrangement.

For wavelengths smaller than or comparable to the scatterer size (frequency f = 30–40 GHz), the system shows
branching structures reminiscent of electron current distributions observed in two-dimensional electron systems [164].
At wavelengths larger than the cone size (frequency f = 7.5–15 GHz), the bulk of the intensity distribution approaches a
multiple-scattering correction to Rayleigh statistics, as expected in multiple-scattering media. However, the probability of
finding very high intensities is greatly enhanced with respect to the predictions provided by the Rayleigh statistics.

The extreme events in the microwave system occur in space (two-dimensions) and time, therefore, offering several
qualitative analogies with the rogue waves on the ocean surfaces. However, the microwave system is linear, so that the
origin of the extreme events cannot be searched in amodulational instability effect, as it occurs for nonlinear waves, and the
description in terms of envelope solitons fails in this case. What is suggested by the authors is that the large deviations from
the Rayleigh distribution is a consequence of inhomogeneities in the system and of averaging over different configurations
of disorder. The randomly placed cones behaves like lens, which occasionally focus the microwaves into a hot spot (the
mechanism is very similar to the focusing obtained by random currents [153]. Indeed, it is verified by fixing the probe
position that the local distribution of intensities is a Rayleigh law Ploc(I) = s−1e−

I
s , with the time-averaged value s = ⟨I⟩

depending on the chosen position. Then, the overall distribution of time-dependent intensities, collected over different
positions and/or realizations of the disorder, is given by the integral of the local distributions, which yields a chi-square
distribution that fits the experimental data.

This example shows how inhomogeneity can play a key role in inducing large deviations from the Gaussian wave
statistics. As reported in the following section, such a key role of inhomogeneity has emerged also in optics, both in
nonlinear [12] and linear experiments [15]. In particular, in the linear systems the inhomogeneity appears as an essential
ingredient. Indeed, in this case the construction of the roguewave events can be understood in terms of linear superposition
of wave packets traveling with different group velocities and interfering constructively at a given space position and at a
certain instant time. For this rare and positive coincidences to occur more frequently the spectrum of the possible group
velocities must be large, a condition that is enhanced if the system is largely inhomogeneous.

10.3. Extreme events in parametrically driven capillary waves

Parametrically excited waves occurs at the surface of vibrated fluids as a consequence of the interplay between gravity
and the capillary forces that tend to maintain the surface of the liquid at its rest position. Above a critical amplitude of
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Fig. 24. (a) Time trace of the surface elevation showing an extremewave event in parametrically driven capillarywaves. Instantaneous snapshots showing
waveforms: (b) 4 periods before the large event, and (c) during the large wave event. (d) Probability density function of the wave crests versus the
normalized crest height.
Source: From [165].

the forcing, an instability takes place for which small surface deformations are amplified and waves oscillating at half the
forcing frequency set on the surface of the vibrated liquid [171]. Capillary waves belong to the high frequency branch of
the surface waves, for which the restoring force is the surface tension. Their wavelengths are typically shorter than about
10mm. Because of their small scale, capillary waves can be studied under well-controlled conditions in the laboratory using
a variety of experimental methods.

Extreme events have been recently obtained in a system of capillary waves excited parametrically in a vertically shaken
container filled with water [165]. The waves were forced by shaking the container at the frequency of 60 Hz with an
acceleration in the range of a = 0.3–5 g. The strength of forcing is characterized by the value of supercriticality above
the threshold ath of the parametric excitation, ε = a − ath. The water surface was visualized by adding a small amount of
a fluorescent dye to the water and by illuminating it with a thin green laser sheet. The motion of the fluorescent surface in
the vertical cross section was then captured by a fast video camera.

Fig. 24a shows a time trace of the surface elevation η(t) measured at the strongest forcing, ε = 5. This trace contains an
extreme wave event, that is, a wave with a crest height >6 mm. The peak amplitude exceeds the standard deviation of the
wave background by a factor of more than five. Two instantaneous snapshots show the waveforms before the peak, Fig. 24b,
and during the large event, Fig. 24c. Note that the rogue wave is characterized by an almost vertical wave front.

Fig. 24d shows the probability density function of the normalized wave crest heights x = η/σ , where σ is the standard
deviation, recorded for 300 s, or 104 wave periods. Strongest waves, x > 5, have a probability which is substantially higher
than expected from the e−2x Gaussian trend. The system displays, therefore, a statistical behavior typical of extreme
events [172]. As for the frequency spectra of the parametrically excited waves, the development of frequency sidebands
is first observed when the forcing is gradually increased, thus, suggesting that the classical phenomenology of modulation
instability is, here, at the origin of the rogue wave phenomenon. Indeed, at further increase of the forcing the spectrum
becomes continuously broadened and displays a triangular shape with exponential tails. Correspondingly, the PDF of the
wave amplitude develops tails with crest heights in excess of 6.

The evolution of the wave amplitude in the time domain shows envelope solitons as a result of the modulational
instability, and the nonlinear broadening of the spectra seems to originate from the generation of shorter envelope
solitons, in analogy to the spectral broadening of the light pulses observed in photonic crystal fibers at the first stages of
supercontinuum generation [173]. Then, the rogue wave generation in the parametrically excited waves probably results
from a process similar to the collision of breathers as observed, for instance, in optical fibers [174]. In any case, modulation
instability appears as a characteristic feature for the spectral broadening.

10.4. Rogue waves in plasmas

Numerical investigations have been, recently, reported for the generation of acoustic rogue waves in a dusty plasma
composed of negatively charged dust grains and nonextensive electrons and ions [166]. A reductive perturbation technique
has been used to obtain a nonlinear Schrödinger equation, hence, predicting a nonlinear evolution of modulationally
unstable dust-acoustic wave packets. The authors show numerically that within the modulational instability region a
random perturbation of the amplitude grows, thus, creating dust-acoustic rogue waves.
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(a) Evolution of central lobe. (b) Power evolution with distance.

Fig. 25. (a) False color plot of experimental and theoretical intensity evolutionwith propagation distance. (b) plots the evolution of the power at the center
of the modulation cycle as a function of normalized distance comparing experiment (red circles), the theoretical evolution of the KM soliton (black solid
line) and simulation (blue dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Source: From [78].

Experiments in a multicomponent plasma with negative ions have, recently, reported the evidence of Peregrine solitons
of ion-acoustic waves [61]. It is shown that, for a critical concentration of negative ions, slowly amplitude modulated
perturbations undergo self- modulation, hence, giving rise to high amplitude localized pulses. The measured amplitude
of the Peregrine soliton is 3 times the nearby carrier wave amplitude, which agrees with the theory and with the numerical
solution of the nonlinear Schrödinger equation. Direct analogies for this type of soliton solutions can be established with
the Peregrine solitons observed in wave tank experiments [59] and in optical fibers [60].

Finally, rogue waves, in the form of giant breathers, are numerically shown to develop in the Alfvén wave turbulence
regime described by the randomly driven derivative nonlinear Schrödinger equation in the presence of a weak
dissipation [167]. The distribution of the instantaneous global maxima of the Alfvén wave intensity fluctuations is shown to
be accurately fitted bypower laws,which contrastswith the integrable regime (absence of dissipation and forcing)where the
behavior is rather exponential. As the dissipation is reduced, rogue waves form less frequently but reach larger amplitudes.
Here, the rogue wave generating mechanism appears as related to a genuine wave turbulence regime. Analogies could
be drawn with the rogue waves experimentally observed in the superfluid Helium during the wave turbulence inverse
cascade [163].

11. Rogue waves in optics

Wehavewitnessed, recently, a growing interest for roguewaves in the field of optics and lasers. This burst of investigation
activities in the optics domain has been, firstly, triggered by the work of Jalali group [9], where the concept of optical
rogue waves was introduced. There, high amplitude intensity peaks were identified in the supercontinuum generated by
a nonlinear photonic crystal fiber. The high pulses, manifesting themselves in the intensity time series, are assimilated to
the rogue waves observed on the ocean surfaces. Indeed, the light propagation in the nonlinear fiber can be described by
a nonlinear Schrödinger equation and the high amplitude peaks occur close to the modulational instability regime, thus,
establishing a direct analogy with the mechanism generating rogue waves in water waves [90]. However, the extreme
waves observed in the optical fiber experiments are intrinsically of 1D nature, since they are peaks occurring during the
temporal evolution of the light intensity. Moreover, the light intensity is usually measured as the spectral amplitude at a
specific wavelength, or across a filtered spectral interval, of the whole emitted spectrum. Therefore, care must be taken
when evaluating the statistical properties of such filtered intensity time series, because they can vary considerably when
changing the filtering conditions [10].

Several works have followed [9] for studying optical rogue waves in the supercontinuum generation, comprising
picosecond pulsed supercontinuum [10,175], continuous pumped supercontinuum [176] and femtosecond pulsed
supercontinuum [177]. Envelope solitons have been experimentally identified in this context, in particular, the Peregrine
soliton has been observed in nonlinear optical fibers [60] and more recently the Ma–Kuznetsov breather has also been
reproduced experimentally [78]. In Fig. 25 we show the experimental results compared with the theoretical one, [78].

Optical rogue waves in the form of high peak temporal pulses have also been observed in fiber Raman amplifiers [178].
A different approach to optical rogue waves is proposed in [7], where the emergence of extreme events from wave

turbulence regimes is demonstrated by numerical simulations of the nonlinear Schrödinger equation. Depending on the
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amount of nonlinearity in the system (i.e. the ratio between the nonlinear part of the Hamiltonian to the linear one for the
initial condition), three turbulent regimes that lead to the emergence of specific rogue wave events have been identified
in [7]: (i) persistent and coherent rogue quasi-solitons, (ii) intermittent-like rogue quasi-solitons that appear and disappear
erratically, and (iii) sporadic roguewaves events that emerge from turbulent fluctuations as bursts of light or intense flashes.
We underline here that the ratio between the nonlinear and linear Hamiltonian is nothing but the BFI defined in Eq. (21)
in the context of the NLS equation for water waves. The observation of high amplitude solitons is interpreted in view of
establishing a link between thewave turbulence theory [179] and the roguewave phenomena. The experimental verification
of an optical wave turbulence regime has been reported for a one-dimensional in space liquid crystal system, where large
amplitude solitons are, indeed, observed after the inverse cascade, whenmodulation instability of the wave condensate sets
in [180,181]. However, a clear derivation of the rogue wave phenomenon from the soliton wave turbulence approach [182]
still remains, up to now, not straightforward to achieve.

Because an unambiguous and widely accepted definition of rogue waves is still lacking, the debate on the possible
classification of the different types of rogue waves is strongly interesting the scientific community, in particular, in the
case of optical rogue waves, for which different examples and experimental systems are available. In order to clarify the
issue, we can, at least, resort to the main phenomenological features that are common to rogue waves. First, rogue wave
phenomena are characterized by large deviations of the wave amplitude statistics from the Gaussian behavior, the latter
being typical of fully random systems. Another fundamental feature is that the emergence of high amplitude events must
be the consequence of a coherent build-up that establishes itself during the propagation/interaction of many waves in an
extended spatio-temporal system. In optical fibers the role of space is played by the frequency dispersion, hence, bringing
forth a complex behavior in the time–frequency domain and leading to the appearance of coherent structures, or solitons,
in the corresponding spectrograms. In spatially extended optical systems the wave dynamics occurs on the transverse
wavefront and it is typically two-dimensional in space.

Then, despite the specificity of each experiment, other common properties that can be identified in rogue wave
phenomena are related to the so-called ‘‘granularity’’ and ‘‘inhomogeneity’’, that is, rogue wave systems are usually
characterized by the presence of many uncorrelated ‘‘grains’’ of activity, these being inhomogeneously distributed in larger
spatial domains. Depending on the systemunder study and on the nature of thewaves considered, grains can be of a different
origin, for instance, solitons in nonlinear systems orwave packets in linear propagatingwaves, and their clustering in spatial
domains can occur via different mechanisms, as a temporal delay, a spatial symmetry breaking, a transport phenomenon or
a hypercycle type amplification [12].

In any case, rogue waves must be described by partial differential equations, because they intrinsically originate from
propagation and dispersion, the latter being either temporal dispersion, as in optical fibers or in multimode lasers, or
diffraction, as in spatially extended systems. In other words, it is essential, first, to have waves, hence, a dispersion relation,
then, to let the system be able to introduce individual wave frequency changes, due either to dispersion or to nonlinearity,
and finally to have a coherent build-up from the mistuned waves, such a build-up spontaneously occurring in certain
space/time locations. Other types of spiking phenomena, observed, for instance, in certain laser systems, stem fromdifferent
processes, as one dimensional chaotic behaviors [183] or noise induced intermittency [184], which are, indeed, described
by ordinary equations. These processes do not belong to the class of phenomena that go under a wave-type description and
must, therefore, be discarded from the rogue wave classification.

12. Optical rogue waves in fiber supercontinuum generation

In [9] optical rogue waves are identified as high amplitude peaks in the intensity time series of the light at the output
of a nonlinear optical fiber. The experimental setup comprises a picosecond seed light pulse, at 1064 nm wavelength,
propagating through a highly nonlinear microstructured optical fiber, a system known to generate supercontinuum
radiation [173], that is, at the exit of the fiber the emitted light has a broad spectral contents, going from violet to red.
By a particular type of filtering, only a small portion of the red spectral contents of the output field is kept (1450 nm). The
amplitude evolution of the filtered intensity is recorded by a photodiode and plotted as a function of time. The time series are
characterized by rare giant peaks over a noisy background, the number of the extreme events increasing when increasing
the average power level of the input light. Three representative time series and corresponding intensity histograms are
displayed in Fig. 26 for increasing values of the input intensity.

The L shape of the intensity histograms shows clearly large deviations from the Gaussian behavior, these deviations
increasing at larger input powers. A nice analogy between the optical rogue waves and the ocean rogue waves is established
on the basis of a common theoretical approach. Indeed, the supercontinuum generation in the photonic crystal fiber
can be described by a generalized nonlinear Schrödinger equation, sharing several features with the NLSE describing
the ocean surface. In the nonlinear optical fiber equation, dispersive terms plus nonlinearity ensure wave propagation
phenomena and modulational instability, in analogy to what happens in water waves. Envelope solitons result from the
modulational instability and appear in the time–frequency domain. There, they give rise to rogue waves through the
ejection during the propagation from the pulsed temporal shape of the pump [10]. A representation of this process in
displayed Fig. 27.
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c
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Fig. 26. Optical rogue waves in the supercontinuum generated by a photonic crystal fiber. (a)–(c) Single-shot time traces and (d) associated histograms
for average power levels 0.8 mW (a and d-left), 3.2 mW (b and d-center) and 12.8 mW (c and d-right), respectively.
Source: From [9].

(a) Evolution of ‘‘rogue’’ event. (b) Evolution of ‘‘median’’ event.

Fig. 27. Rogue waves in the supercontinuum generation. Numerical spectrograms showing (a) the evolution of a rogue event generated by the emission
of a high peak soliton around 1240 nm; (b) the evolution for a case where the output spectrum is closer to the distribution median.
Source: From [10].

12.1. The 1D generalized nonlinear Schrödinger equation

A generalized nonlinear Schrödinger equation is used to model the light propagation in the nonlinear optical fiber. The
model equation reads as
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∂
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
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−∞

R(t ′)|A(z, t − t ′)|2dt ′


, (37)

where A(z, t) is the envelope of the optical field and the βk and γ are the usual dispersion and nonlinear coefficients. The
nonlinear response R(t) = (1 − fR)δ(t) + fRhR(t) includes instantaneous and Raman contributions. The self-steepening
timescale τ includes the dispersion of the nonlinearity due to the frequency-dependent fiber mode area.

The above equation has been used to perform numerical simulations. Harnessing and control of optical rogue waves
has been proposed by a detailed numerical study of the evolution dynamics of statistically-rare extreme red-shifted soliton
pulses arising from the supercontinuum generation [10].
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12.1.1. Numerical simulations
Numerical simulations show that the rogue wave dynamics can be controlled by acting on the different system

parameters [10]; it is shown that the generation of rogue waves can be enhanced by adding a small modulation to the input
pulse envelope, whereas it can suppressed through the use of a sliding frequency filter. By plotting the field amplitude in the
frequency and the time domain, rogue waves appear as soliton pulses that are red-shifted in the spectrum and propagates
along the fiber. Numerical spectrograms showing the formation of rogue waves from the soliton emission are reported in
Fig. 27.

12.1.2. Statistical properties
As for their statistical properties, it is shown that the optical roguewaves display a distribution well fitted by theWeibull

function, a class of extreme value probability density functions, showing clearly a non-Gaussian behavior [10]. The Weibull
function reads as

f (x) = C

x − x0

l

k−1

e−


x−x0

l

k
, (38)

where k, l and x0 are shape, scale and location parameters, respectively, and C is the normalization constant. The shape
parameter k characterizes the skewness of the distribution.

A detailed statistical analysis is performed in [185], where the PDF obtained in the filtered and unfiltered data are
compared. There, it is shown that the statistics is largely modified depending on the filtering process applied to the light
intensity data. This procedure eventually excludes the large events and leads to a more careful identification of classes of
filtered and unfiltered optical rogue waves.

Interpretations on the origin of the optical rogue waves generated in fiber supercontinuum are proposed, which relay on
the onset of convective modulational instabilities [176]. The convective nature of the rogue wave phenomenon is described
by adding in the model higher-order terms (odd-order dispersion and stimulated Raman scattering) that break the time
reversal symmetry of the nonlinear Schrödinger equation. It is shown that the third-order dispersion term alone turns the
system to be convectively unstable, resulting in more powerful rare events. When, in addition, stimulated Raman scattering
is considered, both the convective instabilities and the power of extreme events are further enhanced, giving rise to a
probability density function with a more pronounced large tails.

12.2. Optical rogue waves in continuous pumped supercontinuum

Successive experimental works on nonlinear optical fibers have evidenced the appearance of rogue waves in
correspondencewith the soliton collisions that characterize the complex dynamics in the spectrograms, i.e. time–frequency
plots, of the light intensity [175]. In [175] the photonic crystal fiber is pumped by a continuous (CW) laser. The CW-pumped
supercontinuum exhibits optical rogue waves in analogy with the pulsed supercontinuum. However, in the continuous case
the roguewaves result from temporal collisions among a gas of solitons,while in the case of pulsed pumping the roguewaves
correspond to intense solitons that are ejected during the propagation from the pulsed temporal shape of the pump [10].

As for the statistics, the powerful and rare temporal events exhibit an L-shaped distribution. However, in logarithmic
scale, the evolution of the PDF is quasi-linear, indicating a quasi-exponential behavior, therefore a quasi-Gaussian behavior.
In pulsed pumping schemes, the rare events show quite different statistical properties, with large deviations from the
Gaussian behavior. Indeed, despite the similarities of the experimental setups and of the qualitative observations in the
intensity time series, the mechanism at the origin of rogue waves in the pulsed and CW pumped supercontinuum is
drastically different. As pointed out in [175], while in the pulsed supercontinuum rogue waves are giant solitons that are
ejected from the pump packet, in the CW pumping scheme, the rogue waves come from the collision of two propagating
intense solitons. The latter mechanism is represented in Fig. 28.

Numerical simulations show the temporal evolution of spectrograms, that is, time–frequency plots, where the collision
of two solitons can be identified as the phenomenon at the origin of rogue wave formation. Indeed, the two solitons,
initially well separated in the time domain, travel at different group velocities because of their different spectral locations.
Consequently, they become closer and closer in the time domain, until they collide and, after the collision, they again behave
independently. The most interesting aspect of this process is the formation of a localized powerful spike, with a peak power
3–4 times higher than the mean power, which appears during the collision and disappears quickly just after.

12.3. Optical rogue waves in femtosecond pumped supercontinuum

The generation of optical rogue waves in supercontinuum has also been studied in the femtosecond pulsed regime [177].
The intensity histograms obtained from spectrally filtering the super-continuum exhibit the L-shaped characteristics typical
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Fig. 28. Rogue waves are generated by soliton collisions in the time–frequency domain of the continuous pumped supercontinuum generation. (a)–(e)
Single images displaying a close-up of the numerical spectrogram highlighting the collision between two solitons from L = 300 m to L = 303 m. (f) Power
distribution in the temporal domain at the exact moment of collision.
Source: From [175].

of extreme value phenomena on both the long and short wavelength edges of the spectrum. The generation of rogue events
is attributed to cross-phasemodulation and soliton-dispersivewave coupling. Furthermore, the formof the histogramvaries
from L-shaped to quasi-Gaussian as wavelengths closer to the pump are included in the filtered measurements.

12.4. Rogue waves in Raman fiber amplifiers

Another class of optical rogue waves is identified by the extreme events observed in fiber Raman amplifiers [178]. By
exploiting Raman amplification with an incoherent pump in nonlinear optical fibers, it is shown that the amplified signal
develop a series of temporal intensity spikes whose peak power follows a long-tailed probability distribution.

In this context, the potential role of rogue waves in telecommunication data stream has been outlined in a recent
theoretical study, where it is shown that the large broadening of short optical pulses due to fiber dispersion leads to a
strong overlap in information data streams resulting in statistical deviations of the local power from its average [186]. The
origin of the rare events examined here is linear, but the statistics of the high amplitude peaks deviate from the Gaussian
behavior.

As for the origin of the extreme events in Raman fiber laser, a recent numerical study suggests that the mechanism
of rogue wave generation in this kind of systems can be related to a turbulent-like four-wave mixing of the numerous
longitudinal modes excited in the fiber [187].

12.4.1. Mode-locked lasers
Another approach to optical rogue waves in the temporal domain is that provided by a recent numerical work on mode-

locked laser [188]. At difference with the conservative fiber systems that are described by a nonlinear Schrödinger equation,
it is considered, here, the dissipative case of mode-locked lasers where the optical field propagates in a cavity in which gain
is supplied in order to overcome the losses.

The system considered is a ring cavity that is composed of a nonlinear (Erbium doped) fiber, a single-mode fiber and a
saturable absorber. The light field evolution is described by a set of partial differential equations that accounts for gain and
losses in the cavity. Parameters can be chosen in such a way that the laser operates in the continuous regime or generates
pulses, either a single stationary pulse or periodically oscillating pulses or a chaotic field with several pulses per round
trip. Extreme events appear in the last situation, where the multi-mode dynamics taking place in the laser enables the
constructive build-up of high intensity waves.

Other optical systems that are proposed as source of rogue waves deal with optical spiking that occurs, for instance, in
laserswith injected signal because of homoclinic chaos dynamics [183] or inmultistable lasers because of noise driven on–off
intermittency [184]. In both cases, the respectivemechanismof spiking iswell-known (see, e.g., [189] for deterministic chaos
in lasers with injected signal and, e.g., [190] for noise driven on-off intermittency). The recent identification of such pulsing
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behavior with optical rogue waves seems rather arbitrary because both systems are described by ordinary differential
equations that do not admit a wave description (no dispersion relation).

13. Optical rogue waves in femtosecond filamentation

Another class of optical rogue events occur in femtosecond filamentation [191,192]. A high energy femtosecond pulse
propagates either in a bulkmedium, such as air, water or a crystal plate. In Ref. [191] optical roguewave statistics is observed
during high power femtosecond pulse filamentation in air. The wavelength-dependent intensity fluctuations is analyzed
across 300 nm broadband filament spectra. While the statistics is nearly Gaussian in the vicinity of the pump, it becomes
long tailed at the short wavelength and long wavelength edges of the spectra. The results are interpreted in terms of pump
noise transfer via self-phase modulation.

In Ref. [192] a 130-fs pulse at λ0 = 800 nm is tightly focused at the input face of a 43-mm-long cuvette filled with
water. The input energy was chosen so as to excite a single filament, whose occurrence was verified by the white-light
spectrum at the exit of the nonlinear medium. The statistical distribution of the spectral intensity reveal a non-Gaussian
behavior, with long tails corresponding to rogue events observed at the edges of the spectra. The spectra and corresponding
PDF of the intensity are shown in Fig. 29. In these experiments the longitudinal direction of light propagation leads to a
strong space–time coupling and the observed rogue events are associated toX-wave formation in the normal group-velocity-
dispersion regime, at difference with the temporal solitons observed in the anomalous regime in optical fibers.

A similar phenomenon is the white-light generation in thin bulk media, where the threshold for white-light generation
almost coincides with the threshold for self-focusing and filamentation [193]. In the paper by Majus and coauthors [193]
a statistical study of the white-light continuum generation in a sapphire plate is performed. The white-light continuum
is generated by focusing a 130 fs pulse, 800 nm central wavelength, onto the input face of 3 mm thick sapphire plate.
By analyzing the spectrum of the generated light, it is shown that, in certain input-pulse energy interval, the blue-shifted
spectral components exhibit large intensity variations, with high peaks that obey a non-Gaussian statistical distributions.
The PDF is quantified by using a Weibull fit function.

14. Optical rogue waves in 2D spatially extended systems

Roguewaves in 2D spatially extended optical systems have been studied in a nonlinear optical cavity [194]. In this system,
rogue waves appear as high amplitude pulses that spontaneously build up on the transverse profile of the beam circulating
in the cavity, where the non-Gaussian character of the wave amplitude statistics has been demonstrated [12]. Later, a linear
propagation experiment has been setup, where light propagates in a multimode optical fiber. There, extreme events appear
as a consequence of interference effects between the many waves propagating in the fiber [15].

A comparison between the nonlinear and linear setups has been very fruitful in view of identifying two key ingredients
for the generation of optical rogue waves, namely, granularity and inhomogeneity. While granularity is a minimal size of
the individual light spots, inhomogeneity is due to clustering of the light spots (grains) into separate domains characterized
by different average intensities. In the nonlinear cavity, grains results from nonlinearity, which selects the typical space
scale of field filamentation, while in the linear case grains are the consequence of multiple interference effects between the
manymodes propagating in the fiber. A symmetry breaking, introduced in the nonlinear cavity by an inversion of the return
field and in the optical fiber by a tilt of the input wave vectors, ensures the inhomogeneous clustering of the grains. On the
other hand, while dynamics is spontaneous in the nonlinear cavity, in the linear experiment it is introduced by appropriate
external perturbations, adjourning the field distribution at the exit of the fiber.
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LCLV

Fig. 30. A schematic illustration of the nonlinear optical cavity. The liquid crystal light-valve, LCLV, provides gain through wave mixing with the pump
beam Ep , hence, leading to the spontaneous generation of the cavity field Ec .

In both case, the PDF of the intensity shows a non-Gaussian behavior, with large tails deviating from the exponential.
Moreover, for the linear system it has been shown that the statistics of the waiting times between successive rogue waves
occurring at the same space position follows a log-Poisson distribution [15]. This behavior is characteristics of temporal
separation between large events occurring in cooperative and complex systems, with several examples arising in different
fields, as geophysics and biology.

14.1. Nonlinear optical cavity

A nonlinear optical cavity is built by using a two-wave mixing process as a gain mechanism. The nonlinear medium is
a liquid crystal light-valve, LCLV, a device formed by the assembly of a nematic liquid crystal layer with a photoconductive
crystal [195,196]. An external voltage V0 (typically of 20 V r.m.s. amplitude and with a frequency of 75 Hz) is applied across
the cell, whereas the photoconductive substrate transfers it to the liquid crystal layer, withinwhich occurs thewave-mixing.

When two light beams are sent to interfere on the LCLV, a fringe intensity pattern is created on the photoconductor,
which, on its turn, generates a refractive index grating through the reorientation of the liquid crystal molecules. The two
beams are, therefore, diffracted by the grating and, in undergoing this process, they mix-up, in the sense that part of the
photons of one beam are diffracted on the direction of the other and vice versa. If one of the two beams, called the pump
beam, is muchmore intense than the other, then, thewave-mixing provides a gainmechanism by transferring photons from
the pump into the direction of the weak beam.

The nonlinear optical cavity reported in [194] is a ring formed by three high-reflectivity dielectric mirrors and a lens of
f = 70 cm focal length, as illustrated in Fig. 30. The total cavity length is L = 273.3 cm and the lens is positioned at a
distance L1 = 88.1 cm from the entrance plane of the LCLV. The coordinate system is taken such that z is along the cavity
axis and x, y are on the transverse plane.

The pump beam, Ep, illuminating the LCLV is an enlarged and collimated (10mmdiameter) beam from a solid state diode
pumped laser (λ = 532 nm), linearly polarized in the same direction of the liquid crystal nematic director. Oscillations in
the cavity are built from thewave-mixing in the LCLV. The gain is provided bywave-mixingwith the pump Ep, and the cavity
field Ec is spontaneously generated starting from the amplification of refractive index fluctuations in the liquid crystals.

Cavity field oscillations occur in a large range of parameter space, with V0, the voltage applied to the LCLV, and Ip = |Ep|2,
the pump intensity, the control parameters [194]. Gauss–Laguerre modes are observed at the boundaries of the oscillation
region, with the order and number of modes increasing as increasing V0. A similar behavior is observed by fixing V0 and then
increasing the Fresnel number of the cavity, which is defined as the ratio of the area a2 of the most limiting aperture, the
transverse size of the LCLV in this case, to the size w2

0 = λL of the fundamental Gaussian mode, F = a2/λL. The maximum
number of transversemodes hosted in the cavity scales as F 2, F being themaximumnumber of nodes that fits the transverse
size along one direction [197]. In the typical experimental conditions F ∼ 100 and the number of cavity modes is as high as
F 2

∼ 104.
For high F , many modes oscillates simultaneously in the cavity, giving rise to a speckles like behavior of the field. In

this situation, extreme events appear as anomalous waves of large amplitude over the lower amplitude and fluctuating
background. These optical rogue waves occur erratically in space and time, and live for a typical time of the same order of
the response time of the LCLV. A typical experimental recording of such spatio-temporal pulses is displayed in Fig. 31.

14.2. The stretched exponential statistics

The optical rogue wave phenomenon is characterized by measuring the probability density functions, PDF, of the light
intensity in the high F regime. The PDF are determined by acquiring a large set of images (about 1000) and then performing
the histograms of the intensity values on the whole image stack. At this purpose, a small fraction (4%) of the field circulating
in the cavity is extracted by a beam sampler and sent to a CCD camera (1024 × 768 pixels and 12 bits depth).

While for relatively low pump intensity, Ip = 2 mW/cm2, the cavity field shows a complex spatiotemporal dynamics,
with the formation of many uncorrelated domains, at larger pump extreme events, rogue waves, appear as large amplitude
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Fig. 31. Spatiotemporal pulses observed on the transverse profile of the light field circulating in the cavity.
Source: From Ref. [194].
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Fig. 32. (a) Instantaneous experimental profile of the transverse intensity distribution; an extreme event appears over a speckle-like background; (b)
experimental PDF of the cavity field intensity; the pump is varied from Ip/Ith = 1.8, 4.0, 4.2, and 6.4 from the steepest to the shallowest distribution. The
steepest distribution is exponential. The solid black line is the stretched exponential function that fits the shallowest distribution, with c1 = 29.5.
Source: (From Ref. [12]).

peaks. An instantaneous experimental profile showing the transverse intensity distribution recorded for Ip = 4.2 mW/cm2

is shown in Fig. 32a. A large event in the form of a high amplitude peak can be clearly distinguished. The optical roguewaves
evolve spontaneously in space and time, appearing randomly and with a small probability. The typical time scale of the
dynamical evolution is 100 ms, which is ruled by the response time of the liquid crystals [198].

In Fig. 32b the PDF of the cavity field intensity, I = |Ec |2, are displayed for different values of the pump, Ip/Ith =

1.8, 4.0, 4.2, and 6.4, where Ith = 1.2 mW/cm2 is the threshold for the optical oscillations to start in the cavity. The
resulting PDF are plotted in log-linear scale, as shown in Fig. 32b. Increasingly large deviations from the exponential behavior
are observed as the pump intensity is increased. All the distributions are well fitted by the stretched exponential function
Ne−

√
c1+c2I , where 1/c1 is a parameter thatmeasures the deviation from the exponential behavior. The black line is the fitting

function of the PDF with Ip/Ith = 6.4.
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Fig. 33. (a) Cavity field intensity in the y-z plane; the yellow vertical line indicates the position of the LCLV; Ip = 10, 1−Γ = 0.7. (b) Numerical PDF of the
cavity field intensity for different values of the pump Ip/Ith = 6 (steepest (red) curve), 8 (middle (blue) curve), 10 (shallowest (green) curve); 1−Γ = 0.7.
The solid black line is a fit with an exponential; the dotted black line is a fit with a stretched exponential, c1 = 3.73. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Source: From Ref. [12].

Note that an exponential statistics for the intensity corresponds to a Gaussian statistics for the field amplitude. Therefore,
an exponential PDF of the intensity is characteristic of a speckles pattern, where each point receives the uncorrelated
contributions of many uncoupled modes. At low pump, indeed, this is the behavior displayed by the cavity field. However,
when the pump increases, the increasing nonlinear coupling leads to a complex space–time dynamics and extreme events
populate the tails of the PDF, providing a large deviation from Gaussianity.

Because of the geometry of the cavity, which is formed by three mirrors in a quasi-spherical configuration, the field
returning to the LCLV after a round trip is inverted along the transverse y axis. As a consequence, the nonlocal coupling of
the cavity field Ec induces a dynamical symmetry breaking.

Numerical simulations have been performed by using the full model equations of the cavity, as described in [199]

∂n0

∂t
= −n0 + α|Ec |2,

∂n1

∂t
= −n1 + αEcE∗

p ,

(39)

where n0 and n1 are, respectively, the amplitude of the homogeneous refractive index and the amplitude of the refractive
index grating at the spatial frequency kc −kp, kc and kp being the optical wave numbers of the pump and cavity field. α is the
nonlinear coefficient of the LCLV, and the diffusion length due to elastic coupling in the liquid crystal has been neglected.
The dynamics of the liquid crystals is much slower than the settling of the cavity field; thus, Ec adiabatically follows the
evolution of n0 and n1. By taking the wave propagation equation with the cavity boundary conditions, the cavity field can
be expressed as

Ec = i
∞
k=0

[Ĉein0 J0(2|n1|)]
kĈein0

n1

|n1|
J1(2|n1|)Ep, (40)

where Jm is the Bessel function of the first kind and of orderm, and Ĉ is an operator accounting for the geometry of the cavity
and losses,

Ĉ = Γ 1/2eiδ Ŝxei(L0∇
2
⊥

/2kp)e−i(kp r⃗2⊥/2f )ei(L1∇
2
⊥

/2kp),

with 1 − Γ the photon losses and δ the phase retardation in a round-trip. Ŝx is a symmetry operator that inverts the x axis,
thus accounting for the odd number of mirrors, ∇2

⊥
is the transverse Laplacian and r⃗⊥ the position in the transverse (x, y)

plane.
In order to account for the finite size of the LCLV and the diaphragm inserted near the lens, a spatial filter with radius

equal to 0.4 cm and a Fourier filter with radius k = 6.4× 10−3 rad are used in the simulations. As for the other parameters,
the liquid crystal response time is set to τ = 0.1 s, the photon loss fraction 1 − Γ in between 0.7 and 0.8, and α is chosen
in such a way that the unit is the pump threshold for the activation of the cavity field.
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Starting with a random initial condition, a transient speckle-like behavior is observed, then a symmetry breaking occurs.
The symmetry breaking becomes evident by plotting the numerical intensity |Ec |2 in the z–y plane, as shown in Fig. 33a.
The yellow line in z = 0 represents the position of the LCLV inside the cavity. As a consequence, there is an inhomogeneous
build-up of the field, which induces large deviations from Gaussianity.

The numerical PDF of the cavity field intensity are displayed in Fig. 33b for different values of the pump. The intensities
are rescaled in such a way that the PDF have the same slope at the origin. The tails are increasingly populated as the pump
increases, in agreement with the experimental observations.

14.2.1. The hyper-cycle model
The nonlocal coupling between the cavity modes induces an inhomogeneous build-up of the field. Local domains of the

cavity field are coupled with other, and distant, domains, thus introducing large loops of amplification, a mechanism similar
to the hyper-cycle chain of reactions in the catalytic processes [14]. Because of this mechanism, there is a sort of focusing,
for which at some space locations the cavity field grows much more with respect to the surrounding places, giving rise to
large amplitude peaks and, thus, to large deviations from the Gaussian statistics.

To elucidate this mechanism, a simple two-mode model has been proposed, where only the evolution of the average
refractive index n1 is kept, the average being performed over the transverse plane. For a nearly plane cavity, n̄1 satisfies an
equation of the form

τ
∂ n̄1

∂t
= −n̄1 + IpF(n̄1), (41)

where the first and second terms account for the liquid crystal relaxation and, respectively, the grating feeding provided
by the pump and cavity fields. A cubic function is taken as an ansatz for F , which describes a linear growth followed by
saturation, this last one being mainly due to multiple scattering processes [199].

When the nearly plane cavity is replaced by a cavity nearly spherical, the above mean-field picture is modified by
the nonlocal coupling due to the inversion of the y-axis after a round trip. Therefore, two mean fields n̄+ and n̄− must
be considered, where the averages are performed over the upper and lower half-planes, respectively. Accounting for the
inversion y → −y of the cavity field, the grating n̄± is fed, after a round trip, by the grating n̄∓ at the opposite side, i.e, the
previous equation is replaced by the two following ones,

τ
∂ n̄+

∂t
= −n̄+ + IpF(n̄−),

τ
∂ n̄−

∂t
= −n̄− + IpF(n̄+),

(42)

where it is implicitly assumed that the cavity losses are very high, i.e., the cavity field is negligible after more than one round
trip.

The main features of F can be captured by the cubic function F(n̄±) = n̄± − n̄3
±
. It is easy to show that for 1 < Ip < 2,

Eqs. (43) have only one stable solution, n̄− = n̄+ = 0, whereas for Ip ≥ 2 a bifurcation occurs with the birth of the two
stable asymmetric states

n+ =
1

√
2

1 ±


I2p − 4

I2p
,

n− =
1

√
2

1 ∓


I2p − 4

I2p
,

(43)

which breaks the y → −y symmetry, thus qualitatively accounting for the experimental and numerical observations.
As an indicator of the deviation from the exponential statistics a nondimensional parameter can be defined [15]

D(r⃗) =
⟨I2(r⃗)⟩
⟨I(r⃗)⟩2

− 2, (44)

which is equal to zero for an exponential statistics and increases as c1 decreases. Fig. 34 shows the numerically calculated
D(x), which is D(r⃗) integrated along the vertical axis, as a function of the horizontal transverse coordinate x and for
Ip/Ith = 4, 6, 8.We see thatD(x) is an increasing function of both Ip and |x|.While for increasing Ip the nonlinearity increases,
moving away from x = 0, (that is the inversion symmetry axis of the system), the inhomogeneity also increases because of
the symmetry breaking introduced by the cavity configuration.
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Fig. 34. Numerically calculated nondimensional indicator of rogue wave statistics for a nonlinear optical cavity vs the transverse coordinate x and for
increasing pump intensity; Ip/Ith = 4, 6, 8 for the blue (lower), green (middle) and red (higher) curves.
Source: From Ref. [15].
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Fig. 35. Experimental intensity profiles for (a) the three-mirror cavity and (b) the four-mirror cavity. (c) Experimental PDF of the intensity for the four-
mirror cavity (red circles) and the three-mirror cavity (blue squares). The four-mirror cavity distribution is practically exponential (dashed black line)while
the three-mirror cavity is fitted by a stretched exponential (solid black line).
Source: From [200].

14.2.2. The role of inhomogeneity
The role of inhomogeneity in inducing a stretched exponential of the intensity has been experimentally investigated

by building a cavity with four, instead of three, mirrors, thus, removing the spatial symmetry breaking. Indeed, for the
four-mirror configuration there is no inversion symmetry. A direct comparison is made for the resulting PDF of the intensity
with the case of a three-mirror cavity. In both cases the Fresnel number is fixed to F = 125 and the pump intensity to
Ip = 5 mW/cm2. The voltage applied to the LCLV is fixed to V0 = 40 V r.m.s., f = 30 Hz, for the three-mirror cavity and to
V0 = 32 V r.m.s., f = 30 Hz, for the four-mirror cavity. These values are chose in such a way that for low pump intensity
the PDF of the cavity field show the most similar exponential behavior.

For a qualitative comparison, in Fig. 35a and b are shown two intensity profiles obtained from two instantaneous images
recorded for the three and four-mirror cavity, respectively. Roguewaves can be easily distinguished on the profiles recorded
for the three-mirror cavity while they are not observed in the typical profiles recorded for the four-mirror cavity. Indeed,
rogue waves appearance becomes much less probable in the absence of symmetry breaking.

The PDFof the intensity are recorded in a similarway as described above, both for the three and the four-mirror cavity. The
results are plotted in Fig. 35c. As it can be appreciated from the fitting curves, while for the three-mirror cavity the behavior
is well described by a stretched exponential, for the four-mirror cavity the data are quite well fitted by an exponential
function. A Gaussian field statistics is, therefore, recovered when removing the inhomogeneity brought forth by the cavity
configuration.

14.3. Rogue waves in a linear optical experiment

In order to outline the two key ingredients for the appearance of optical rogue waves, namely, granularity and
inhomogeneity, a linear optical experiment has been setup. Here, granularity, that is, fragmentation of the wave field into
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a b

Fig. 36. (a) Experimental setup for the linear excitation of optical rogue waves: a laser input beam is focused into a multimode glass fiber; the output field
is imaged onto a CCD camera; a SLM controls the input beam profile through variable transmittance masks T (x, y); a lateral perturbation n(t) rules the
fiber bending; (b) 1D intensity profile I(x) taken from a corresponding image; ⟨I⟩ is the intensity averaged over the whole image.
Source: From Ref. [15].
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Fig. 37. (a) PDF of the intensity at the output of the fiber; solid (red) line: homogeneous mask; (black) empty dots: inhomogeneous mask; (red) filled
dots: inhomogeneous mask and temporal perturbations; the black dashed line is a fit with an exponential function; the black solid line is a fit with a
stretched exponential fit (c1 = 10, c2 = 0.092). (b) Gaussian PDF of the perturbation n(t) used to drive the fiber and producing the large-tailed PDF. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: From Ref. [15].

a large number of elementary objects of still finite size, let us call them speckles, and inhomogeneity, that is, clustering of
speckles in spatial domains with different average intensities, can be separately controlled.

A schematic representation of the experimental setup is shown in Fig. 36a. It consists of a multi-mode glass optical fiber
(0.4mmdiameter and 2m length) inwhich a laser beam is let to propagate. The input beam comes from a frequency doubled
solid state laser, wavelength 532 nm. Less than 1 mW/cm2 is coupled inside the fiber and the input profile is controlled by
a spatial-light-modulator, SLM. This is a computer driven liquid crystal display, 768 × 1024 pixels, one inch diagonal size.
By setting onto the SLM appropriate transmittance masks T (x, y), arbitrary profiles of the input intensity distribution can
be introduced.

While an uniform mask T (x, y) allows the whole cone of input wave vectors to be coupled into the fiber, an
inhomogeneous mask with a black hole prevents the wave vectors passing in that direction to be coupled into the fiber,
thus inducing at the output domains of different average intensity. This symmetry breaking mechanism introduce high
amplitude peaks on the output intensity distributions I(x, y). In Fig. 36b a one-dimensional intensity profiles taken along
an x-line of a corresponding image is displayed for the inhomogeneous case. A large amplitude peak, or optical rogue wave,
can be clearly distinguished.

The average size of the grains (single speckle) is given by the effective aperture of the fiber, the total number of modes
supported by the fiber being proportional to (a/λ)2, with a the radius of the fiber core and λ the wavelength of light in
air [201]. For the typical experimental conditions, the total number of modes can be estimated as ∼106. On the other hand,
the inhomogeneous mask induces at the exit of the fiber an inhomogeneous distribution of the average intensity when it is
evaluated over domains of adjacent grains. By acquiring with a CCD camera (768 × 1024 pixels and 16 bits depth) a large
set of images (about one thousand) and then performing the histograms of the intensity values on the whole image stack,
the PDFs of the intensity are determined.

The results are shown in Fig. 37a, where the PDF recorded for a uniform T (x, y) is compared with the PDF recorded in the
presence of an inhomogeneous mask. The first one (red solid line) is well fitted by an exponential function (black dashed
line), as expected for speckles [201]. The second one (empty black dots) shows appreciable, though not too large, deviations
from the exponential. In the same figure, a PDF with strong deviations from the exponential is also plotted; it is obtained by
applying to the fiber a lateral perturbation n(t) with a Gaussian distribution of the amplitude, as displayed in Fig. 37b. The
perturbation is realized by placing a piezoelectric emitter in contact with a side of the fiber (see Fig. 36a).
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Fig. 38. (a) Spatiotemporal plots showing the evolution of the intensity when pulse-like perturbations n(t) are applied to the fiber. (b) Corresponding
spatially averaged intensity as a function of time; arrows indicate the instant times when the n(t) impulses are released.

Thanks to the elasto-optical effect, when the piezo emits a low frequency acoustic wave, it locally modifies the optical
paths inside the fiber, giving rise to a different spatial distribution of the output intensity, therefore, the detector collects
events over different speckle configurations. Note that in the nonlinear experiment themultimode dynamics spontaneously
introduces a continuous change of the cavity field, hence, allowing to explore a large number of configurations.

The effect of the temporal modulation greatly enhances the stretched exponential character of the PDF of the intensity.
Note, however, that in the inhomogeneous case the PDF is a stretched exponential even without temporal perturbations
(even though small-tailed when compared to the perturbed case), while in the homogeneous case the PDF remains
exponential even in the presence of temporal modulations.

When inhomogeneity and temporal perturbations are simultaneously present, the resulting large-tailed PDF of the
intensity is well described by a stretched exponential distribution, that is, P(I) = e−

√
c1+c2I , where c2 is a scale factor and

c1 a form parameter. In the limit c1 → ∞, the stretched distribution becomes an exponential. To account for the stretched
exponential character of the PDF let us consider the role of inhomogeneity. At the fiber exit the intensity is distributed as a
collection of speckle patternsmade of various domainswith different average intensity.Within a single domain the statistics
is exponential but the variance changes from domain to domain. As a consequence, the overall PDF becomes a stretched
exponential as the events are counted over the whole field. More precisely, the stretched distribution can be obtained as a
statistical mixture of many exponential distributions with different variance,

P(I) =


∞

0
dσρ(σ)

e−I/σ

σ
, (45)

where σ is the variance of the PDF in a single domain. The stretched distribution is exactly obtained when the distribution
of σ is

ρ(σ) =
√

σ e−
c2σ

4 −
c1
c2σ . (46)

Qualitatively, this prediction is well confirmed by the experimental results, where ρ(σ) has been evaluated by performing
the PDF analysis over small spatial domains and determining the local variance σ of the associated fit [15].

14.4. Log-Poisson statistics of the return times

The statistics of the waiting times between successive rogue waves occurring at a given space position have been
considered in the optical fiber experiment. By limiting the observations to a single homogeneous domain, it is possible
to classify a Poisson distribution of event separation. However, as n(t) jumbles the different domains within the detector
aperture, different rates associated with different domains are expected. Interpolation of the different Poissonian should
yield a log-Poisson statistics for the waiting times between two successive events [202,203].

In the experiment, the fiber is driven by the piezoelectric perturbation n(t), by sending an impulse and, then, letting
the dynamics to relax. A typical spatio-temporal plot is shown in Fig. 38a, where, after each impulse, a new configuration,
followed by a slowing-down readjustment, is observed. In Fig. 38b the spatially averaged intensity is plotted as a function
of time, with arrows indicating the instant times when the n(t) impulse is released.

The waiting time between successive events is defined asw = ln(tk)− ln(tk−1) = ln(tk/tk−1), where tk is the occurrence
time of the k-th event. To obtain the PDF of the waiting times, the events are recorded by placing a photodiode in a fixed
point and then counting a roguewave each time the intensity is above a given threshold, here taken as four times the average
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Fig. 39. Log-Poisson distribution of the waiting times between successive rogue waves; (red) squares, (black) dots, correspond to low, respectively, high
amplitudes of n(t).
Source: From Ref. [15].

intensity. The analysis of the recorded data over a large number of configurations, each one triggered by the application of
a n(t) impulse, yields a log-Poisson distribution of the waiting time between successive rogue waves, as depicted in Fig. 39.

15. Conclusions

Rogue waves are ubiquitous phenomena that were first brought into evidence by the oceanographers, since the
appearance of monster waves on the ocean surfaces has become beyond the legend of mariner tales and has been confirmed
as being at the origin of real, extremely dangerous, events. Then, rogue waves have been observed in such different physical
contexts as superfluid Helium, nonlinear optics, capillary waves, plasma waves and Bose–Einsteins condensates. Often, the
common nature of these different systems can be searched in their universal description, which is based on the nonlinear
Schrödinger equation. In this case, roguewaves are understood as the results of modulational instability and the subsequent
formation of oscillating envelope solitons. Rogue waves can be explained also in terms of inverse cascade and in some
systems they arise even in the absence of nonlinearity. The question remains open how to link all the different systems
under a common description, able to account for the different mechanisms generating the rogue waves.

Moreover, there is not yet a common definition of rogue waves. Each system displays his specificity and, especially,
the statistical behavior is not described by an universal distribution, even though a common feature of all rogue wave
phenomena is the occurrence of significant deviations from the Gaussianity. Another problem is the ambiguity sometimes
arising from the classification of extreme events as rogue waves, the two not necessarily coinciding. Indeed, rogue
waves require the existence of a dispersion relation and of a coherent build-up of large amplitude pulses through the
collision/interference of solitons/wavepackets traveling with different group velocities.

The aim of the presented review was not to be exhaustive of all the rogue wave phenomena reported in the literature,
neither to provide a common explanation, but of guiding the reader through a gallery of representative examples, where
the main physical mechanisms at the origin of rogue waves are elucidated and, when possible, compared. For instance,
from the large part of the results presented, it emerges that nonlinearity and nonlocal coupling are mechanisms that play a
key role in originating rogue waves. In this context, linear experiments, either in optics or in microwaves, have the role of
highlighting the essential role of granularity, that is, the fragmentation of the field in fundamental grains of activity, such
as solitons arising from the modulational instability or dispersive wavepackets in the linear case. Once grains activated, the
spatial inhomogeneity acts as a nonlocal coupling that provides a coherent build-up of rogue waves in different space/time
positions.

It must be stressed that in all the considered systems roguewaves are the result of the dispersive properties of ensembles
of many waves. In these systems, the nonlinearity needs not necessarily to be strong, provided the spatial inhomogeneity
plays its role of mixing-up the individual grains of activity.
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