ALICE physics results summary

Francesco Prino
ALICE publications in 2013

- **15** physics **papers** already published by ALICE in 2013
 - **Journals**: 7 on PLB, 5 on PRL, 2 on EPJC, 1 on PRD
 - plus … **8** papers submitted to arXiv (3 of them already accepted for publication)

- **System**: 6 papers on p-Pb, 10 on Pb-Pb, 7 on pp results

- **Italian contribution**: 8 of them had at least one italian member of the paper committee
Cite summary (from InSPIRE)

already 40 citations for a p-Pb paper
ALICE at SQM conference

- Most relevant conference about physics with heavy ion collisions in 2013
- 32 ALICE talks + 3 posters
 - 8 talks with new results from the p-Pb run
 - 8 talks with Italian speaker
... in the next slides

- A selection of results from few analyses that were recently published or that produced recently new preliminary results
- DISCLAIMER: the selection is strongly biased towards
 - Analyses with a significant contribution from Italian groups
 - New results from the p-Pb run
p-Pb run in Jan-Feb 2013

- **3 weeks** of data taking with p-Pb collisions
 - About 30 nb\(^{-1}\) delivered to ALICE, ATLAS and CMS and few nb\(^{-1}\) to LHCb
 - Beam reversal (p-Pb and Pb-p) for about 1/2 of statistics (relevant for ALICE and LHCb)

- **Motivations**
 - **Benchmark for AA collision** for hard processes to disentangle initial state (cold nuclear matter) effects
 - Nuclear PDFs at **small-x** (shadowing/saturation/Color Glass Condensate)
Collective expansion

- Bulk matter created in high-energy heavy-ion collisions can be described in terms of **hydrodynamics**
 - The initial hot and dense partonic matter rapidly expands and cools down
 - **Collective flow** develops
 - Phase transition to hadron gas when critical temperature is reached

- This results in:
 - Dependence of the shape of the p_T distribution on the particle mass
 - Described with a common kinetic freeze-out temperature T_{kin} and a collective average expansion velocity $<\beta_T>$
 - Azimuthal anisotropic flow patterns as a consequence of anisotropic spatial distribution of the colliding nucleons

- **Open question**: are there final state dense matter effects in p-A at the LHC?
Identified particle spectra in p-Pb

- p_T spectra measured for π^\pm, K^\pm, K^0_s, p, Λ in $0<y_{\text{cms}}<0.5$ for 7 multiplicity intervals
- Clear evolution with multiplicity: p_T distributions become harder with increasing multiplicity
Baryon/meson: p-Pb vs. Pb-Pb

- Evolution of p/π and Λ/K^0_s ratios vs. p_T reminiscent of what observed in Pb-Pb (enhancement at intermediate p_T)
- Pb-Pb results commonly understood in terms of collective flow and hadronization via quark recombination
- The magnitude of the effect differs significantly between p-Pb and Pb-Pb
Constrain theoretical models

- **Models:**
 - **Blast-wave fit** = locally thermalized medium expanding with collective flow velocity
 - **EPOS LHC** = full event generator including hydrodynamical evolution
 - **Kracow** = 3+1 viscous hydrodynamics (works at low p_T)
 - **DPMJET** = PHOJET pp + nuclei via Glauber-Grybov approach

- Models including hydrodynamics give a better description of the spectra

ALICE, arXiv:1307.6796
In-medium energy loss

- Partons produced in high Q^2 processes (high p_T, large mass) lose energy traversing the medium
- Modification of the momentum distribution of hadrons/jets \rightarrow **suppression of yield at high p_T**
 - Observable: **nuclear modification factor**:
 \[
 R_{AA} = \frac{dN^{AA}/dp_T}{N_{coll}dN^{pp}/dp_T}
 \]

- Open questions
 - How much of this suppression is due to **initial state** (cold nuclear matter) effects \rightarrow **check with p-Pb**
 - Is the expected hierarchy $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b)$ there? \rightarrow check with heavy flavours
Charged particle R_{AA} and R_{pA}

- Charged particle spectra strongly modified in Pb-Pb collisions
 - Large suppression of yield of charged particles in a wide p_T range
 - Maximum suppression at $p_T \sim 6-7$ GeV/c
- Results from p-Pb confirm that it comes from a final state effect (parton in-medium energy loss)
D-meson nuclear modification

Large suppression of D meson yield at high p_T → substantial in-medium energy loss of c quarks

Small effect expected from nuclear PDFs for $p_T > 5$ GeV/c → p-Pb as control experiment
D mesons in p-Pb

- D-meson nuclear modification factor in p-Pb
 \[R_{pA} = \frac{d \sigma^{pA}/dp_T}{A \cdot d \sigma^{pp}/dp_T} \]

- R_{pPb} is compatible with unity and well described by predictions from pQCD + EPS09 nuclear PDFs

- Cold nuclear matter effects are small

- Suppression measured in Pb-Pb is due to charm quark in-medium energy loss
Charm vs. Beauty energy loss

- R_{AA} of prompt D (ALICE) vs. non-prompt J/ψ from B decays (CMS)
 - p_T interval of D mesons chosen to match the p_T range of parent B
 - Caveat: slightly different y range (but y dependence of R_{AA} is small)
- Goal: test the expectation: $R_{AA}(D) < R_{AA}(B)$
- Indication of larger energy loss of charm quarks than beauty quarks
Quarkonia as a QGP thermometer

- In the QGP, quarkonia with radius $>\text{Debye screening length}$ are expected to melt due to colour screening of the $q\bar{q}$ potential.
 - Quarkonia states melt above a given temperature, depending on their binding energy → sequential suppression pattern
 - Melting sequence of quarkonia as QGP thermometer
 - Matsui, Satz, PLB178 (1986) 416; Digal et al., PRD64 (2001) 094015

- Also expected: J/ψ production from $c\bar{c}$ (re)combination in the deconfined medium or at hadronization
 - (Re)combination contribution larger at LHC \sqrt{s}
 - Braun-Munzinger, Stachel, PLB 490 (2000) 196

- Plus other effects:
 - Feed-down from higher quarkonium states
 - Cold nuclear matter effects (also in p-A)
J/ψ suppression vs. (re)combination

→ Flat J/ψ R_{AA} vs. centrality
→ Less suppression at LHC with respect to RHIC energy

In (re)combination models
→ 50% of low-p_T J/ψ produced via (re)combination
→ at high p_T negligible contribution from recombination

→ qualitatively as expected in a scenario with J/ψ (re)combination
J/ψ in p-Pb

- **R_{pPb} for inclusive J/ψ vs. y**
 - Fraction of J/ψ from B decays is small (<10%)
 - p-Pb and Pb-p collisions to cover forward and backward rapidity regions
 - Bjorken x values probed for nucleons in the Pb nucleus
 - p-Pb: $1.8 \cdot 10^{-5} < x < 8.1 \cdot 10^{-5}$
 - Pb-p: $1.2 \cdot 10^{-2} < x < 5.3 \cdot 10^{-2}$
 - similar to those for Pb-Pb
 - **Color Glass Condensate calculations disfavoured by the data**

ALICE, arXiv:1308.6726
\(\Upsilon \) in Pb-Pb and p-Pb

- Similar suppression in Pb-Pb for \(\Upsilon \) and J/\(\psi \) within uncertainties
- Less regeneration for \(\Upsilon \) (b quarks less abundant)
- Feed-down from \(\Upsilon(2S) \), \(\Upsilon(3S) \) and \(\chi_b \) is \(\sim50\% \)

- Compatible nuclear modification factor of \(\Upsilon \) and J/\(\psi \) in p-Pb
- Shadowing models describe within uncertainties both J/\(\psi \) and \(\Upsilon \) \(R_{pPb} \)
Conclusions

- Many results already published from the p-Pb run + several preliminary results from p-Pb shown in conferences
 - **p-Pb** as control experiment: first assessment of cold nuclear matter effects → important for the interpretation of nuclear modification factors measured in Pb-Pb
 - **p-Pb** revealed many **interesting** and novel aspects **per se**, such as parton saturation, hints of collective behaviour in high multiplicity events
- Analysis of the **Pb-Pb** samples collected in 2010 and 2011 are continuing with more differential measurements
 - e.g. first measurement of D meson elliptic flow just published on PRL
- Preparation of Run II about to start
- … plus a lot of effort on the performance studies for the ALICE upgrades
Backup
Twin ridge structure in p-Pb

High multiplicity
- \(2 < p_{\text{T}_{\text{Twin}}} < 4 \text{ GeV/c}\)
- \(1 < p_{\text{T}_{\text{assoc}}} < 2 \text{ GeV/c}\)

\(\text{p-Pb} | s_{\text{NN}} = 5.02 \text{ TeV}\)
- 0-20%

Low multiplicity
- \(2 < p_{\text{T}_{\text{Twin}}} < 4 \text{ GeV/c}\)
- \(1 < p_{\text{T}_{\text{assoc}}} < 2 \text{ GeV/c}\)

\(\text{p-Pb} | s_{\text{NN}} = 5.02 \text{ TeV}\)
- 60-100%

High - Low
- \(2 < p_{\text{T}_{\text{Twin}}} < 4 \text{ GeV/c}\)
- \(1 < p_{\text{T}_{\text{assoc}}} < 2 \text{ GeV/c}\)

\(\text{p-Pb} | s_{\text{NN}} = 5.02 \text{ TeV}\)
- (0-20%) - (60-100%)

Similar observations in Pb-Pb are ascribed to collective effects
** in Pb-Pb ALICE vs. CMS

- ** suppression at forward rapidity in ALICE is similar to that measured at mid-rapidity by CMS

- No strong rapidity dependence of ** R_{AA} within the large range probed by ALICE and CMS
p-Pb: global event properties (1)

- **Pseudorapidity distribution of charged particles**

- **Model predictions:**
 - Saturation models are too steep with η_{lab}
 - pQCD models (HIJING, DPMJET) reproduce better the data
 - Where shadowing is included, significant (~30%) reduction of the yield
p-Pb: global event properties (2)

- Average p_T of charged particles vs. multiplicity
- Three different \sqrt{s} for pp, p-Pb and Pb-Pb, but \sqrt{s} dependence expected to be weak
- Much stronger increase of $\langle p_T \rangle$ in p-Pb than in Pb-Pb
- p-Pb follows pp up to $N_{ch} \sim 14-15$